Instructions for submitting a technical report or thesis.
Title: Improving Event Extraction: Casting a Wider Net
Candidate: Cao, Kai
Advisor(s): Grishman, Ralph
Abstract:
Information extraction is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents. One facet of information extraction is event extraction (EE): identifying instances of selected types of events appearing in natural language text. For each instance, EE should identify the type of the event, the event trigger (the word or phrase which evokes the event), the participants in the event, and (where possible) the time and place of the event.
One EE task was defined and intensively studied as part of the ACE (Automatic Content Extraction) research program. The 2005 ACE EE task involved 8 types and 33 subtypes of events. For instance, given the sentence "She was killed by an automobile yesterday.", an EE system should be able to recognize the word "killed" as a trigger for an event of subtype DIE, and discover "an automobile" and "yesterday" as the Agent and Time arguments. This task is quite challenging, as the same event might appear in the form of various trigger expressions and an expression might represent different types of events in different contexts.
To support the development and evaluation of ACE EE systems, the Linguistic Data Consortium annotated a text corpus (consisting primarily of news articles) with information on the events mentioned. This corpus was widely used to train ACE EE systems. However, the event instances in the ACE corpus are not evenly distributed, and so some frequent expressions involving ACE events do not appear in the training data, adversely affecting performance.
The thesis presents several strategies for improving the performance of EE. We first demonstrate the effectiveness of two types of linguistic analysis -- dependency regularization and Abstract Meaning Representation -- in boosting EE performance. Next we show the benefit of an active learning strategy in which a person is asked to judge a limited number of phrases which may be event triggers. Finally we report the impact of combining our baseline system with event patterns from a system developed for a different EE task (the TABARI program). This step contains expert-level patterns generated by other research groups. Because the information received is complicated and quite different from the original corpus (ACE), the integration of this information requires more complex processing.
Title: Random Growth Models
Candidate: Florescu, Laura
Advisor(s): Spencer, Joel
Abstract:
This work explores variations of randomness in networks, and more specifically, how drastically the dynamics and structure of a network change when a little bit of information is added to "chaos". On one hand, I investigate how much determinism in diffusions de-randomizes the process, and on the other hand, I look at how superposing "planted" information on a random network changes its structure in such a way that the "planted" structure can be recovered.
The first part of the dissertation is concerned with rotor-router walks, a deterministic counterpart to random walk, which is the mathematical model of a path consisting of a succession of random steps. I study and show results on the volume (``the range") of the territory explored by the random rotor-router model, confirming an old prediction of physicists.
The second major part in the dissertation consists of two constrained diffusion problems. The questions in this model are to understand the long-term behavior of the models, as well as how the boundary of the processes evolves in time.
The third part is detecting communities in, or more generally, clustering networks. This is a fundamental problem in mathematics, machine learning, biology and economics, both for its theoretical foundations as well as for its practical implications. This problem can be viewed as "planting" some structure in a random network; for example, in cryptography, a code can be viewed as hiding some integers in a random sequence. For such a model with two communities, I show both information theoretic thresholds when it is impossible to recover the communities based on the density of the edges "planted" between the communities, as well as thresholds for when it is computationally possible to recover the communities.
Title: Circuit Complexity: New Techniques and Their Limitations
Candidate: Golovnev, Aleksandr
Advisor(s): Dodis, Yevgeniy; Regev, Oded
Abstract:
We study the problem of proving circuit lower bounds. The strongest known lower bound of 3n-o(n) for an explicit function was proven by Blum in 1984. We prove a lower bound of (3+1/86)n-o(n) for affine dispersers for sublinear dimensions.
We introduce the weighted gate elimination method to give an elementary proof of a 3.11n lower bound for quadratic dispersers. (Although currently there are no explicit constructions of such functions.) Also, we develop a general framework which allows us to turn lower bounds proofs into upper bounds for Circuit SAT algorithms.
Finally, we prove strong limitations of the developed techniques.
Title: Fine-scale Structure Design for 3D Printing
Candidate: Panetta, Francis Julian
Advisor(s): Zorin, Denis
Abstract:
Modern additive fabrication technologies can manufacture shapes whose geometric complexities far exceed what existing computational design tools can analyze or optimize. At the same time, falling costs have placed these fabrication technologies within the average consumer's reach. Especially for inexpert designers, new software tools are needed to take full advantage of 3D printing technology.
My thesis develops such tools and demonstrates the exciting possibilities enabled by fine-tuning objects at the small scales achievable by 3D printing. The thesis applies two high-level ideas to invent these tools: two-scale design and worst-case analysis.
The two-scale design approach addresses the problem that accurately simulating---let alone optimizing---geometry at the full resolution one can print requires orders of magnitude more computational power than currently available. However, we can use periodic homogenization to decompose the design problem into a small-scale problem (designing tileable structures achieving a particular deformation behavior) and a macro-scale problem (deciding where to place these structures in the larger object). We can then design structures for every possible deformation behavior and store them in a database, so that they can be re-used for many different macro-scale design problems.
Worst-case analysis refers to determining how likely an object is to fracture by studying the worst possible scenario: the forces most efficiently breaking it. This analysis is needed when the designer has insufficient knowledge or experience to predict what forces an object will undergo, or when the design is intended for use in many different scenarios unknown a priori.