
Levenberg-Marquardt Optimization

Sam Roweis

Abstract

Levenberg-Marquardt Optimization is a virtual standard in nonlinear optimization which

signi�cantly outperforms gradient descent and conjugate gradient methods for medium sized

problems. It is a pseudo-second order method which means that it works with only function

evaluations and gradient information but it estimates the Hessian matrix using the sum of outer

products of the gradients.

This note reviews the mathematical motivations for Levenberg-Marquardt and also details

the algorithm.

0.1 Improvements to simple gradient descent

Vanilla gradient descent works �ne for very simple models, but is too simplistic a method for more
complex models may free parameters. Convergence can take an extremely long time: the key insight
into why is to notice that the problem is sti� in the sense that the few places where small step sizes
are required ruin it for the whole problem. For example, when descending the walls of a very steep
local minimum bowl we must use a very small step size to avoid \rattling out" of the bowl. On
the other hand when we are moving along a gently sloping part of the error surface we want to
take large steps otherwise it will take forever to get anywhere. This problem is compounded by the
strange manner in which we implement gradient descent { we normally move by making a step that
is some constant times the negative gradient rather than a step of constant length in the direction
of the negative gradient. This means that in steep regions (where we have to be careful not to make
our steps too large) we move quickly and in shallow regions (where we need to move in big steps)
we move slowly. Another issue is that the curvature of the error surface may not be the same in all
directions. For example if there is a long and narrow valley in the error surface the component of
the gradient in the direction that points along base of the valley is very small while the component
perpendicular to the valley walls is quite large even though we have to move a long distance along
the base and a small distance perpendicular to the walls. So we would like to use slightly more
sophisticated gradient descent algorithms than simple steepest descent, which is just

wi+1 = wi � �rE(w)

This can be greatly improved upon with a little cleverness. Using second order information { in
other words using the curvature as well as the gradient of the error surface { can speed things
up enormously. However, it is often prohibitively expensive to compute the second derivatives of a
model exactly. Many successful techniques rely on estimating some curvature information from only
function evaluations and �rst order derivatives (gradients). For example, adding momentum to the

1



weight changes alleviates many of the above problems. Momentum is an example of an improvement
on our simple �rst order method that keeps it �rst order but tries to get some curvature information
by averaging the gradients locally. However in order to cut down on cost it only averages the
gradients that have already been computed. Another technique which improves basic gradient
descent by estimating curvature information and which works extremely well for medium sized
models is discussed below.

0.2 The quadratic approximation of E

We saw that when we have a linear function model, then the error function E was a simple quadratic
form. Recall that we de�ne E as the average squared error:

E(w) =< (f(x;w)� y)2 >

where the angle brackets donate the mean over input output pairs. For linear functions, this had a
quadratic form:

E(w) = a+ 2bT
w+wT

Cw

where a, b, and C depend on averages over the input output pairs. We can �nd the minimum in
closed form by solving for when the gradient goes to zero. Don't be concerned by all the matrix
notation, this is exactly the same thing that you know well from the scalar case: if the function
is linear then squared error is quadratic and everybody knows how to solve for the minimum of a
parabola.

rE(w) = b+Cw

rE(w) = 0) b+Cwopt = 0

�b = Cwopt

wopt = �C�1b

Here we don't have to do any gradient descent, we can just jump directly to the minimum. For
nonlinear choices of f of course, our function E will be more complex than the above quadratic form
and we won't just be able to hop to a minimum. However, close to a minimum, we can linearize

the function which will approximate E by a quadratic equation and use the above method to guess
where the minimum is. Even if we don't jump right to the true minimum the �rst time, if the
approximation is good we will converge much more quickly than with steepest descent. In essence
what we are doing is looking at the curvature of the error surface where we are and assuming that
the curvature we see is due to a parabolic bowl. Then we jump to the bottom of this �ctitious bowl
and re-evaluate things wherever we end up.



We will derive this quadratic approximation to E in a series of steps. First, consider the general
deterministic model f(x;w). It is a function of both the data x and its parameters w. When we
use our model to predict the behavior of the unknown target function, we have �xed w and are
more interested in f as a function of x. However, when we are training our model by optimizing
the weights to reduce E, we are interested in f as a function of w. For the discussion below, we
will concentrate on this view of f , and all derivatives and gradients will be with respect to w.

One way to approximate E as locally quadratic (in w) near a minimum is to approximate f(x;w)
as a linear function of w, which we will now derive. Remember that all gradients are with respect
to w and all averages are over input output pairs.

� First we write a new function f̂(x;w) which is a linear approximation of f(x;w) in the neighbor-
hood of a speci�c weight value w0:

f̂(x;w) = f(x;w0) + (w�w0)
Trf(x;w0)

� Assuming the model is f̂ , we write expressions for E(w) and rE(w) in terms of y, f̂(x;w) and
rf̂(x;w):

Ê(w) =
D
(f̂(x;w)� y)2

E

rÊ(w) =
D
2(f̂(x;w)� y)rf̂(x;w)

E

� Substituting for f̂ , we solve for rÊ(w) in terms of y, w, w0, f(x;w0), and rf(x;w0). (First
note the simple form of rf̂(x;w): rf̂(x;w) = rf(x;w0) because f̂ is a linear function of w.)
Now we can solve for rÊ,

rÊ(w) =
D
2(f(x;w0) + (w �w0)

Trf(x;w0)� y)rf(x;w0)
E

Let

d = h(f(x;w0)� y)rf(x;w0)i

H =
D
rf(x;w0)rf(x;w0)

T
E

where the letter d stands for derivative and the letter H stands for Hessian. Notice that while d
is exactly the average error gradient, H is not the true Hessian (matrix of mixed partials) of the
function. In other words Hij 6= @f=@xi@xj . Instead, H is an approximation to the Hessian which
is obtained by averaging outer products of the �rst order derivative (gradient). This approximation
is exact if f is linear, but in general may be quite poor. However, the trick that we will soon see is
that we rely on this approximation only in regions where a linear approximation to f is reasonable.
One �nal point: it may look as though H is of rank one since it is made from outer products of



vectors, however remember that it is the average of many such outer products (each of rank one)
and so in general it is full rank.

Back to our derivation to �nish up the quadratic approximation:

� We write the previous equation in terms of d and H, then solve for the w where rÊ goes to zero.

rÊ(w) = 2H(w�w0) + 2d

rÊ(w) = 0) 2H(wopt �w0) + 2d = 0

wopt = �H�1d+w0

0.3 The Levenberg gradient descent method

Now that we are �nished with the derivations, it is time to put all of this back into perspective. We
began this note with the idea that we could improve upon steepest descent. Given our de�nition of
d, steepest descent is simply

wi+1 = wi � �d

Compare this to the update rule based on our quadratic approximation

wi+1 = wi �H
�1
d

Our quadratic rule is not universally better since it assumes a linear approximation of f 's dependence
onw, which is only valid near a minimum. The technique invented by Levenberg involves \blending"
between these two extremes. We can use a steepest descent type method until we approach a
minimum, then gradually switch to the quadratic rule. We can try to guess how close we are to
a minimum by how our error is changing. In particular, Levenberg's algorithm is formalized as
follows: let � be a blending factor which will determine the mix between steepest descent and the
quadratic approximation. The update rule is

wi+1 = wi � (H+ �I)�1d

where I is the identity matrix. As � gets small, the rule approaches the quadratic approximation
update rule above. If � is large, the rule approaches

wi+1 = wi �
1

�
d

which is steepest descent. The algorithm adjusts � according to whether E is increasing or decreas-
ing as follows:



1. Do an update as directed by the rule above.

2. Evaluate the error at the new weight vector.

3. If the error has increased as a result the update, then retract the step (i.e. reset the weights
to their previous values) and increase � by a factor of 10 or some such signi�cant factor. Then
go to (1) and try an update again.

4. If the error has decreased as a result of the update, then accept the step (i.e. keep the weights
at their new values) and decrease � by a factor of 10 or so.

The intuition is that if error is increasing, our quadratic approximation is not working well and
we are likely not near a minimum, so we should increase � in order to blend more towards simple
gradient descent. Conversely, if error is decreasing, our approximation is working well, and we
expect that we are getting closer to a minimum so � is decreased to bank more on the Hessian.

Marquardt improved this method with a clever incorporation of estimated local curvature informa-
tion, resulting in the Levenberg-Marquardt method. The insight of Marquardt was that when � is
high and we are doing essentially gradient descent, we can still get some bene�t from the Hessian
matrix that we estimated. In essence, he suggested that we should move further in the directions
in which the gradient is smaller in order to get around the classic \error valley" problem. So he
replaced the identity matrix in Levenberg's original equations with the diagonal of the Hessian:

wi+1 = wi � (H+ �diag[H])�1d

As you can see, all this method needs is to operate are the same things steepest descent needs:
y, f(x;w) and rf(x;w). In other words, we can compute d and H based only on the value
of the function and its gradient which we know how to evaluate. Don't confuse this with being
an alternative to backprop: it is an alternative to simple gradient descent. Backprop is nothing
more than a clever and e�cient algorithm for evaluating rf(x;w) for networks. We can then use
this gradient in any way we want, either to do steepest descent or to do something tricky like
Levenberg-Marquardt.

It is also important to know that this is nothing more than a heuristic method. It is not optimal
for any well de�ned criterion of speed or �nal error, it is merely a well thought out optimization
procedure. But it is one that works extremely well in practice. It has become a virtual standard for
optimization of medium sized nonlinear models. Its only 
aw is that it requires a matrix inversion
step as part of the update which scales as the N3 where N is the number of weights. For medium
sized networks (a few hundred weights say) this method will be much much faster than gradient
descent plus momentum. However for a few thousand weights the cost of matrix inversion begins
to kill us and the speed gained by the cleverness of the method is lost in the time taken to do each
iteration. It is also important to be aware that the innocuous looking inverse operation is tricky to
implement in practice: it can be ill-conditioned and pseudo-inverse methods such as the singular
value decomposition are almost always preferred over a naive vanilla inverse. The gory details of
how this works are reviewed in more detail but somewhat less clarity in Numerical Recipes in C,

2nd Edition, pages 683-685.


