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Background: Drug overdose persists as a leading cause of death 
in the United States, but resources to address it remain limited. As 
a result, health authorities must consider where to allocate scarce 
resources within their jurisdictions. Machine learning offers a strat-
egy to identify areas with increased future overdose risk to proac-
tively allocate overdose prevention resources. This modeling study 
is embedded in a randomized trial to measure the effect of proactive 
resource allocation on statewide overdose rates in Rhode Island (RI).
Methods: We used statewide data from RI from 2016 to 2020 to 
develop an ensemble machine learning model predicting neighborhood- 
level fatal overdose risk. Our ensemble model integrated gradient 
boosting machine and super learner base models in a moving window 

framework to make predictions in 6-month intervals. Our perfor-
mance target, developed a priori with the RI Department of Health, 
was to identify the 20% of RI neighborhoods containing at least 40% 
of statewide overdose deaths, including at least one neighborhood 
per municipality. The model was validated after trial launch.
Results: Our model selected priority neighborhoods capturing 
40.2% of statewide overdose deaths during the test periods and 
44.1% of statewide overdose deaths during validation periods. Our 
ensemble outperformed the base models during the test periods and 
performed comparably to the best-performing base model during the 
validation periods.
Conclusions: We demonstrated the capacity for machine learning 
models to predict neighborhood-level fatal overdose risk to a degree 
of accuracy suitable for practitioners. Jurisdictions may consider pre-
dictive modeling as a tool to guide allocation of scarce resources.
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Drug overdose remains a leading cause of death in the 
United States (US), with over 105,000 deaths in 2021 

alone.1 In recent years, the introduction of illicitly manufac-
tured synthetic opioids into the US drug markets has markedly 
increased overdose deaths.2 Overdose deaths further increased 
during the SARS-CoV-2 (COVID-19) pandemic, likely due to 
disruptions in the drug supply and health care services.3,4 The 
rapidly accelerating epidemic demands nimble resource allo-
cation tailored to the local profile of the overdose crisis.

Despite increased public-sector resources devoted to over-
dose response at local, state, and federal levels,5 population-level 
health interventions remain constrained by scarce resources.6 
As such, public health authorities must consider how to allocate 
overdose prevention resources across the jurisdictions they serve. 
Decisions about where to allocate preventive interventions (e.g., 
naloxone distribution, street outreach) typically are made using 
data on historical area-level fatal and nonfatal overdose burden, 
often absent other factors. However, changing trends in overdose 

Submitted March 17, 2023; accepted November 20, 2023
From the aCenter for Opioid Epidemiology and Policy, Department of 

Population Health, Grossman School of Medicine, New York University, 
New York, NY, USA; bDivision of Health Policy and Management, School 
of Public Health, University of California, Berkeley, Berkeley, CA, USA; 
cDepartment of Epidemiology, School of Public Health, Brown University, 
Providence, RI, USA; dCenter for Health Data and Analysis, Rhode Island 
Department of Health, Providence, RI, USA; eDivision of Epidemiology, 
School of Public Health, University of California, Berkeley, CA, USA; 
fCenter for Urban Science and Progress, New York University, New 
York, NY, USA; gDepartment of Computer Science, Courant Institute 
for Mathematical Sciences, New York University, New York, NY, USA; 
and hRobert F. Wagner Graduate School of Public Service, New York 
University, New York, NY, USA.

The results reported herein correspond to specific aims of grant R01DA046620 
to investigators B.D.L.M. and M.C. from the National Institute on Drug 
Abuse, where R01DA046620 is the project number, B.D.L.M. and M.C. 
are multiple Principal Investigators, and the National Institute on Drug 
Abuse is the funding agency. This work also was supported by grant 
T32DA007233 from the National Institute on Drug Abuse.

The authors report no conflicts of interest.
The data used in this study are not available for replication due to data use 

restrictions established with the Rhode Island Department of Health. 
Demonstration code is available at the following GitHub repository: 
https://github.com/pph-collective/provident-model.

 
Supplemental digital content is available through direct URL citations 
in the HTML and PDF versions of this article (www.epidem.com).

Correspondence: Bennett Allen, Department of Population Health, Center for 
Opioid Epidemiology and Policy, New York University, Grossman School 
of Medicine, 180 Madison Avenue, 5th Floor, New York, NY 10016. 
E-mail: bennett.allen@nyulangone.org.

B.A., R.C.S, J.A., and D.B.N. have joint first and senior authorship.

Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

PROVIDENT: Development and Validation of a Machine 
Learning Model to Predict Neighborhood-level Overdose 

Risk in Rhode Island
Bennett Allen,a Robert C. Schell,b Victoria A. Jent,a Maxwell Krieger,c Claire Pratty,c  

Benjamin D. Hallowell,d William C. Goedel,c Melissa Basta,d Jesse L. Yedinak,c Yu Li,c  
Abigail R. Cartus,c Brandon D. L. Marshall,c Magdalena Cerdá,a Jennifer Ahern,e and Daniel B. Neillf,g,h

D
ow

nloaded from
 http://journals.lw

w
.com

/epidem
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1

A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

2+
Y

a6H
515kE

=
 on 01/31/2024

https://github.com/pph-collective/provident-model
www.epidem.com
mailto:bennett.allen@nyulangone.org
https://orcid.org/0000-0002-6321-2436


Copyright © 2023 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Epidemiology • Volume 35, Number 2, March 2024 

© 2023 Wolters Kluwer Health, Inc. All rights reserved. www.epidem.com | 233

Machine Learning to Predict Neighborhood-level Overdose Risk

following the introduction of fentanyl and other potent synthetic 
opioids into the illicit drug supply complicate these decisions, as 
past overdose burden may no longer accurately reflect current 
community overdose risk.7 Public health and harm reduction 
practitioners require new methods to proactively identify future 
community-level overdose risk and inform service delivery. In 
the present study, we apply such a method that, while not explic-
itly modeling trajectories in overdose, incorporates historical 
overdose data to generate forecasts.

PROVIDENT: Forecasting Neighborhood-level 
Overdose Risk to Guide Public Health Resource 
Allocation

This modeling study is embedded within the Preventing 
Overdose using Information and Data from the Environment 
(PROVIDENT) randomized controlled trial (NCT05096429), 
which aims to test the effect of allocating overdose prevention 
resources in Rhode Island (RI) according to machine learning- 
based prediction of future overdose risk, in comparison to 
reactive responses guided by traditional surveillance reports.8 
The trial’s central hypothesis is that proactive resource allo-
cation based on machine learning model predictions can 
more effectively reduce drug overdose-related morbidity and 
mortality in the context of a spatially dynamic epidemic, 
compared with standard resource allocation approaches 
using epidemiologic surveillance. The PROVIDENT trial is 
conducted in partnership with the RI Department of Health 
(RIDOH), which centralizes overdose prevention resources 
and infrastructure across RI. As part of an academic–state 
health department partnership,9 the trial randomized each of 
RI’s 39 municipalities to an intervention condition, where 
model predictions are available to identify prioritized neigh-
borhoods with highest risk of future fatal overdose, or to a 
control condition receiving overdose prevention resources as 
usual in accordance with the state’s strategic plan and based 
on routine surveillance reporting without targeted prioritiza-
tion. Details of the PROVIDENT trial design and protocol 
are available in a prior publication.8 This study presents the 
development and internal validation of the predictive model 
informing the intervention and describes the evaluation crite-
ria used to assess its performance.

The PROVIDENT trial seeks to determine whether 
machine learning models might enable public health practi-
tioners to leverage available data to predict future community- 
level overdose risk and proactively allocate resources. 
Advances in small-area prediction using spatiotemporal 
machine learning methods indicate that accurate forecasting 
of future community overdose risk is possible.10 Such meth-
ods may bolster the impact of limited resources by prioritizing 
both communities with endemically high rates of overdose 
death and emerging overdose “hotspots.” Machine learning 
methods leverage a broad array of surveillance data as a sin-
gle, high-dimensional dataset without the need for theory- 
driven feature selection.11 With predictive performance as 

the goal, machine learning also can facilitate integration of 
complementary predictive approaches (e.g., spatiotemporal 
and tree based) through ensemble techniques.12

To inform allocation of overdose prevention interven-
tions and to maximize the impact of finite resources in RI, 
we developed a machine learning tool to forecast future  
neighborhood-level overdose burden. Our study builds on 
prior equity-focused work leveraging machine learning to tar-
get interventions in resource-limited settings in substance use 
and HIV.13–16 We uniquely focus on area-level overdose preven-
tion interventions, partnering directly with public health prac-
titioners. We note that the majority of machine learning work 
related to overdose has focused on individual-level prediction 
to inform clinical intervention,17–21 whereas our study focuses 
on community-level prediction to inform public health inter-
vention, a novel area for the application of machine learning. 
Using a variety of public health, social, environmental, and 
economic data sources widely available to state and local health 
authorities in the US and across multiple domains for which 
prior literature has established associations with neighborhood- 
level overdose mortality,8 the model predicts future community- 
level overdose risk in neighborhoods across RI.

METHODS

Study Setting and Period
This modeling study used RI data from 1 January, 2016 

to 30 June, 2020. The trial began in November 2021 and will 
continue through June 2024, updating model predictions 
every 6 months. Model predictions for municipalities in the 
intervention condition are shared with RIDOH and local com-
munity organizations through a password-protected web por-
tal to inform harm reduction service delivery.

The neighborhood unit was the census block group 
(CBG), the smallest geographic unit for which RI overdose 
mortality data and US Census data are available. CBGs cor-
respond to small areas of approximately 600–3000 residents, 
and prior research has identified them as valid proxies for 
neighborhoods,22 which aligns with the study goal of prioritiz-
ing public health interventions at neighborhood level. We use 
the terms “CBG” and “neighborhood” interchangeably.

As of the 2010 census, RI contains 815 CBGs organized 
into 39 municipalities. CBGs were defined as urban if they have a 
population density over 2500 persons per square mile and at least 
50% of land developed, and otherwise defined as nonurban.23 We 
excluded CBGs with special land use designations (e.g., bodies 
of water, military bases, or airports) for a final sample of 809 
populated CBGs, 57.6% of which were urban (Figure). All pro-
cedures were approved by Brown University School of Public 
Health and RIDOH Institutional Review Boards.

Data Sources
This study used five sources of data, aggregated to CBG 

level: (1) overdose mortality24; (2) emergency medical services 
(EMS)-attended nonfatal opioid overdoses25; (3) Prescription 
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Drug Monitoring Program (PDMP) data at both patient and 
prescription levels26; (4) American Community Survey (ACS) 
data27; and (5) public access land use, health care, and social 
service availability data28–33 (eAppendix A; http://links.lww.com/
EDE/C104). We selected these data sources for several reasons. 
First, they represent a standard set accessible to most public 
health authorities,9,34 which may facilitate replication of the mod-
eling approach elsewhere. Second, they contain features across 
several domains (e.g., physical environment, social capital) 
known to be associated with neighborhood-level overdose mor-
tality rates.8 And third, they were accessible at the CBG level to 
facilitate predictions that would guide CBG-level intervention.8,9

The model outcome was unintentional overdose deaths 
that occurred in RI between 1 January, 2016 and 30 June, 2020 
obtained from RIDOH’s State Unintentional Drug Overdose 
Reporting System (SUDORS).24

We used a variety of data sources as model predictors. 
First, EMS runs for nonfatal opioid overdoses from 1 January, 
2016 to 30 June, 2020 were obtained from the RI EMS 
Information System.35 Second, we obtained PDMP data from 

1 July, 2016 to 30 June, 2020 from the RI PDMP, to capture 
counts of opioid analgesic and buprenorphine prescriptions 
dispensed and patients filling prescriptions at the CBG level. 
Using both prescription and patient data accounts for potential 
discordance between neighborhood of pharmacy and neigh-
borhood of patient residence.26

Third, we extracted 5-year ACS estimates for calendar 
years 2016–2020 from the US Census.27 Finally, we derived 
public access land use, health care, and social service data from 
a range of sources including the Substance Abuse and Mental 
Health Services Administration’s treatment locator,28 Brown 
University’s PolicyMap license,29 SimplyAnalytics,30 the RI 
Department of Business Regulation,31 RIDOH Licensing,32 
and the RI Geographic Information System, an open-source 
geospatial data hub.33 For variables for which multiple years 
were available, we utilized the mean of a given variable’s val-
ues across years.

Statistical Methods and Modeling Process
To predict future CBG-level overdose risk, we 

used two machine learning methods: gradient boosting 
machines and super learner. We selected these two meth-
ods through extensive testing of a range of approaches, 
detailed in eAppendix B; http://links.lww.com/EDE/C104. 
For clarity and brevity, we present only the results from our 
ensemble model and its composite base models (gradient 
boosting machines and super learner), each of which is also 
an ensemble model. We also compared all models’ perfor-
mance to a baseline model using the top ranked CBGs by 
number of overdose deaths during the training periods to 
predict future overdose deaths.

Gradient boosting machines are a tree-based ensem-
ble method that offers an alternative to the more commonly 
used random forest algorithm.36 Gradient boosting machines 
are useful for modeling complex relationships using high- 
dimensional data. Where random forest models construct 
an ensemble of deep, independent trees, gradient boosting 
machines build an ensemble of shallow trees with each sub-
sequent tree building on the previous trees. We implemented 
gradient boosting machines using Python version 3.0 (Python 
Software Foundation, Wilmington, DE).

Super learner is an ensemble-based modeling approach 
that uses cross-validation to create a weighted optimal pre-
diction from a library of a priori-specified candidate algo-
rithms, where optimality is defined by the minimization of 
an objective function.37 Our Super learner was a five-fold, 
cross-validated composite of elastic net, random forest, and 
gradient-boosted tree algorithms with an elastic net acting as a 
screening algorithm, and the objective function was minimiz-
ing mean squared error.37 Super learner allows for integration 
of disparate modeling strategies to complement one another 
in solving a single prediction problem, with the ensemble 
super learner performing asymptotically as well as the best- 
performing candidate algorithm.38 The library used in the 

FIGURE. Rhode Island location within the contiguous United 
States.
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super learner model is presented in eAppendix C; http://links.
lww.com/EDE/C104. We implemented super learner using 
R version 3.6.3 (R Foundation for Statistical Computing, 
Vienna, Austria).

Our final model was an ensemble of the gradient boost-
ing machine and super learner base models, produced using a 
weighting approach. We calibrated ensemble weights to opti-
mize our performance target, considering weights between 
0 and 1 in increments of 0.02 to maximize the number of 
overdose deaths captured in the prioritized 20% of neighbor-
hoods for each base model. We took this approach due to our 
highly specific model evaluation criteria selected a priori with 
RIDOH partners as part of the randomized trial within which 
this modeling study was embedded. Predictions were gener-
ated using the weighted linear combination of the base models 
that maximized this metric: 0.92 to gradient boosting machine 
and 0.08 to super learner. Schematics detailing training for 
these models are presented in eAppendices D and E; http://
links.lww.com/EDE/C104.

Model Evaluation Criteria
We identified a priori modeling objectives and perfor-

mance criteria with study partners at RIDOH and tailored these 
targets to the design and implementation of the randomized 
trial. Our modeling objective was to identify the highest-risk 
neighborhoods for overdose prevention resource allocation 
within municipalities, so we evaluated model performance 
using a custom evaluation metric developed in collaboration 
with RIDOH. Our development of the model evaluation crite-
ria used for this study is detailed in a prior publication39 and 
outlined below.

Our primary performance metric was defined a priori as 
the proportion of statewide overdose deaths that occurred in 
the 20% of statewide CBGs prioritized by the model, subject 
to the constraint below. RIDOH selected the ceiling of 20% to 
represent the percentage of neighborhoods that could reason-
ably be prioritized by overdose prevention organizations given 
existing resources. To facilitate randomization of municipali-
ties into intervention and control conditions, we required that 
at least one neighborhood be prioritized by the model in each 
municipality, thus facilitating resource allocation decisions 
in every municipality assigned to the intervention condition. 
Given these constraints, we established the following bench-
mark model performance a priori through close collaboration 
with RIDOH: the model must meet or exceed a threshold of 
40% of predicted statewide overdose deaths (contained in the 
prioritized 20% of CBGs) before use in the trial.

We also considered secondary performance metrics 
to assess equity in neighborhood-level resource allocation 
across several dimensions, including urbanicity, racial/ethnic 
segregation, and neighborhood poverty. Given patterns of seg-
regation in RI, with urban CBGs more racially diverse than 
nonurban CBGs,23 we considered racial and socioeconomic 
equity separately by urbanicity. Within urban jurisdictions, 

we considered the proportion of CBGs selected for resource 
allocation by neighborhood segregation level, identified using 
percent non-White and Theil’s H as a multigroup entropy 
index.40 We considered neighborhoods as majority White, 
majority non-White, or mixed. Within nonurban jurisdictions, 
we considered the proportion of CBGs selected for resource 
allocation by neighborhood poverty level. Consistent with 
US Census definitions, we classified CBGs with more than 
20% of the population living below the federal poverty line as 
high-poverty neighborhoods.41

Baseline Comparison Condition
To assess the performance of our models in compari-

son with neighborhood allocation of harm reduction resources 
based on past overdose burden, we compared our model per-
formance to a “practice as usual” baseline condition, which 
approximates RIDOH’s standard resource distribution prac-
tices given the availability and completeness of SUDORS 
overdose mortality data in RI. We defined this baseline con-
dition as the 20% of CBGs statewide with the highest his-
torical overdose death burden during the respective training 
periods, subject to the same constraint that at least one CBG 
per municipality be included. We assessed the CBGs included 
in the baseline condition using the same model evaluation cri-
teria described above.

Model Training and Testing
We used 6-month prediction windows, established 

in collaboration with RIDOH, as a realistic time period for 
RIDOH and community-based organizations to adjust harm 
reduction resource allocation. Our training period of 1 January, 
2016–30 June, 2020 afforded us a total of seven 6-month win-
dows. The spatiotemporal distribution of overdose deaths in 
RI varied between 6-month periods in the training data, owing 
to the rarity of the outcome. Due to this variation, we sought 
to increase generalizability and reduce bias due to overfit-
ting by averaging performance across two test periods, rather 
than a single test period.42 Therefore, we utilized the first five 
6-month windows (1 January, 2016–30 June, 2019) as train-
ing periods and 1 July–31 December, 2019 and 1 January–30 
June, 2020 as the two testing periods.

We implemented a moving window approach to construct 
an ensemble of gradient boosting machine and super learner base 
model predictions. We predicted each target period t using data 
from t − 1 and t − 2 to make predictions. Base models thus rolled 
forward across the available training periods until all data were 
exhausted. For prelaunch model training, this produced five base 
models and two held out test periods.

For the gradient boosting machine base model, we 
simultaneously utilized all available features corresponding 
to the respective t − 1 and t − 2 time periods. In order to 
facilitate predictions based on unique sources of variation, the 
super learner modeling approach relied on only data from the 
t − 1 time period. To reduce dimensionality, we utilized elastic 
net feature selection screeners separately prior to fitting each 
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of the gradient boosting machine and super learner models.43 
Features selected for inclusion in super learner and gradient 
boosting machine base models are presented in eAppendices 
F and G; http://links.lww.com/EDE/C104.

Model Validation
To internally validate the model, we used SUDORS 

overdose mortality data from our trial launch period (1 July–
31 December, 2020) and model update period (1 January–30 
June, 2021). Our predictions for these periods were compared 
against the observed CBG-level overdose death counts after 
those data became available using our set of evaluation met-
rics. Model validation will remain ongoing across the life of 
the trial as future predictions are made every 6 months.

RESULTS

Overdose Mortality in Rhode Island
The overall rate of overdose mortality in RI increased 

across the study time period, from 29.4 per 100,000 residents 
in 2016 to 33.9 per 100,000 residents in 2020. The median 
CBG overdose death count across the full study period was 1, 
with interquartile range 0–2 and overall range 0–21.

Test Performance
Table 1 presents the test performance of the ensemble 

model (weighted average of gradient-boosted machine and 
super learner base models) across our primary metric, the 
proportion of statewide overdose deaths captured in the pri-
oritized 20% of CBGs, constraining the model to select at 
least one CBG per municipality. The ensemble model pre-
trial launch test average was 40.2% of overdose deaths across 
the periods of 1 July–31 December, 2019 and 1 January–30 
June, 2020, as compared to 39.5% for the gradient boosting 
machine model, 34.1% for super learner, and 33.5% for the 
baseline condition.

Table 2 presents the test performance of the ensemble 
model and baseline comparison across our secondary metrics. 
Statewide, the ensemble model prioritized 23.3% of urban and 
15.6% of nonurban CBGs. Within urban jurisdictions, it pri-
oritized 27.2% of racially integrated, 54.4% of majority non-
White, and 4.5% of majority White CBGs. Within nonurban 
jurisdictions, it prioritized 14.2% of low-poverty and 27.8% 
of high-poverty CBGs. Compared to the baseline condition, 
this reflects increased proportions of majority non-White 
and integrated urban CBGs and a decreased proportion of 
high-poverty nonurban CBGs. Secondary performance met-
rics for gradient boosting machine and super learner models 
are available in eTables 1 and 2; https://links.lww.com/EDE/
C105.

Validation Performance
Table 3 presents the validation performance of the 

ensemble model and base models along our primary met-
ric. Our ensemble model exceeded the a priori threshold and 
successfully prioritized 20% of CBGs that captured 44.1% 
of all overdose deaths in the subsequent 6-month period. 
This performance was comparable to the gradient boosting 
machine base model (44.3% of overdose deaths captured) 
and higher than super learner (33.1%) and the baseline con-
dition (36.2%).

Table 4 presents predictive performance of the ensemble 
model across our secondary metrics. Statewide, the ensemble 

TABLE 1. Model Test Performance: Proportion of Overdose 
Deaths Captured

Proportion of Overdose Deaths Captured at 20% of CBGs Prioritized

 

Test Period 1
(1 July–31  

December, 2019) 

Test Period 2
(1 January–30  

June, 2020) 
Test  

Average 

Ensemble 37.0% 43.3% 40.2%

Gradient boosting 

machine

35.6% 43.3% 39.5%

Super learner 33.2% 34.9% 34.1%

Baseline: practice 

as usual

34.9% 32.1% 33.5%

Sources: Brown University29; Rhode Island Department of Business Regulation31; 
Rhode Island Department of Health26; Rhode Island Department of Health24; Rhode 
Island Department of Health32; Rhode Island Emergency Medical Services Information 
System35; Rhode Island Geographic Information System33; Substance Abuse and Mental 
Health Services Administration28; United States Census.27

TABLE 2. Ensemble Model and Baseline Comparison Test 
Performance: Health Equity Considerations

Proportion of CBGs Prioritized by Urban Designation

 

Test Period 1
(1 July–31 

December, 2019) 

Test Period 2
(1 January–30 

June, 2020) 
Test 

Average 

Ensemble model

  Urban CBGs 23.6% 23.0% 23.3%

   Integrated 27.8% 26.5% 27.2%

   Majority non-White 53.9% 54.9% 54.4%

   Majority White 5.0% 4.0% 4.5%

  Nonurban CBGs 15.2% 16.0% 15.6%

   Nonpoverty areas 13.7% 14.7% 14.2%

   Poverty areas 27.8% 27.8% 27.8%

Baseline: practice as usual

  Urban CBGs 21.0% 22.3% 21.7%

   Integrated 21.6% 23.5% 22.6%

   Majority non-White 41.2% 39.2% 40.2%

   Majority White 10.4% 12.9% 11.7%

  Nonurban CBGs 18.7% 16.9% 17.8%

   Nonpoverty areas 16.0% 13.7% 14.9%

   Poverty areas 41.7% 44.4% 43.1%

Sources: Brown University29; Rhode Island Department of Business Regulation31; 
Rhode Island Department of Health26; Rhode Island Department of Health24; Rhode 
Island Department of Health32; Rhode Island Emergency Medical Services Information 
System35; Rhode Island Geographic Information System33; Substance Abuse and Mental 
Health Services Administration28; United States Census.27
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model prioritized 23.7% of urban and 15.1% of nonurban CBGs. 
Within urban jurisdictions, it prioritized 29.0% of racially inte-
grated, 52.5% of majority non-White, and 5.0% of majority 
White CBGs. Within nonurban jurisdictions, it prioritized 13.1% 
of low-poverty and 32.0% of high-poverty CBGs. Compared 
to the baseline condition, this reflects increased proportions 
of majority non-White and integrated urban CBGs, and high- 
poverty nonurban CBGs. Secondary validation metrics for gra-
dient boosting machine and super learner models are available in 
eTables 3 and 4; https://links.lww.com/EDE/C105.

DISCUSSION
We developed and internally validated an ensem-

ble machine learning model to predict overdose risk at 

neighborhood level in RI. For both testing and validation, our 
model, an ensemble of gradient boosting machine and super 
learner base models, successfully predicted over 40% of state-
wide overdose deaths within the top 20% of CBGs, the bench-
mark for success determined a priori with RIDOH.8 Our findings 
indicate that spatiotemporal forecasting of neighborhood- 
level overdose mortality is feasible as a strategy to inform 
overdose prevention resource allocation to a degree of accu-
racy suitable for practitioners.

Our models’ performances varied somewhat as the 
available training data increased, with ensemble and gradi-
ent boosting machine models performing comparably at val-
idation and super learner consistently underperforming the 
gradient boosting machine and ensemble. Gradient boost-
ing machine models marginally outperformed the ensem-
ble model during the second validation period, while the 
ensemble demonstrated a marginal gain in overdose capture 
at prelaunch testing. We selected the ensemble model for 
the PROVIDENT trial because it achieved the performance 
benchmark established with RIDOH in advance of the trial 
launch, while gradient boosting machine and super learner 
standalone models did not. This suggests that the ensemble 
model may offer greater potential when training periods are 
limited, while the gradient boosting machine’s increasing 
performance across the validation periods is suggestive of 
its potential to guide public health interventions in jurisdic-
tions with more extensive training data.44 It is possible that 
the use of a single time period in super learner’s moving win-
dows, compared with two time periods for gradient boosting 
machine, may have contributed to its lower performance. 

TABLE 3. Model Validation Performance: Proportion of 
Overdose Deaths Captured

Proportion of Overdose Deaths Captured at 20% of CBGs Prioritized

 

Validation Period 1
(1 July–31 

December, 2020) 

Validation Period 2
(1 January–30 

June, 2021) 

Vali-
dation 

Average 

Ensemble 42.4% 45.7% 44.1%

Gradient boosting machine 42.4% 46.2% 44.3%

Super learner 33.2% 33.0% 33.1%

Baseline: practice as usual 36.4% 36.0% 36.2%

Sources: Brown University29; Rhode Island Department of Business Regulation31; 
Rhode Island Department of Health26; Rhode Island Department of Health24; Rhode 
Island Department of Health32; Rhode Island Emergency Medical Services Information 
System35; Rhode Island Geographic Information System33; Substance Abuse and Mental 
Health Services Administration28; United States Census.27

TABLE 4. Ensemble Model and Baseline Comparison Validation Performance: Health Equity Considerations

Proportion of CBGs Prioritized by Urban Designation

 
Validation Period 1

(1 July–31 December, 2020) 
Validation Period 2

(1 January–30 June, 2021) Validation Average 

Ensemble model

  Urban CBGs 23.4% 24.0% 23.7%

   Integrated 29.6% 28.4% 29.0%

   Majority non-White 50.0% 54.9% 52.5%

   Majority White 5.0% 5.0% 5.0%

  Nonurban CBGs 15.5% 14.6% 15.1%

   Nonpoverty areas 13.4% 12.7% 13.1%

   Poverty areas 33.3% 30.6% 32.0%

Baseline: practice as usual

  Urban CBGs 23.0% 21.2% 22.1%

   Integrated 20.4% 19.8% 20.1%

   Majority non-White

  Majority White

45.1%

13.9%

40.2%

12.9%

42.7%

13.4%

  Nonurban CBGs 16.0% 18.4% 17.2%

   Nonpoverty areas 15.0% 16.3% 15.7%

   Poverty areas 25.0% 36.1% 30.6%

Sources: Brown University29; Rhode Island Department of Business Regulation31; Rhode Island Department of Health26; Rhode Island Department of Health24; Rhode Island 
Department of Health32; Rhode Island Emergency Medical Services Information System35; Rhode Island Geographic Information System33; Substance Abuse and Mental Health Ser-
vices Administration28; United States Census.27
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Critically, all our predictive models outperformed the base-
line condition during the prelaunch test periods, and all but 
super learner outperformed the baseline at validation, sug-
gesting that the use of machine learning to inform interven-
tion distribution may offer gains over public health practice 
as usual. We will continue to internally validate our ensemble 
model and the two base models across the life of the trial to 
assess differences in long-term stability of their predictions.

Crucially, this study contributes to emerging literature 
incorporating predictive analytics into population-level overdose 
prediction. Where prior studies have identified neighborhood- 
level predictors of overdose mortality45,46 and assessed the 
suitability of machine learning to inform the distribution of 
public health interventions,47 ours is the first to develop and 
validate a spatiotemporal machine learning model to predict 
neighborhood overdose risk for public health practice. By 
foregrounding prediction for public health prevention, our 
work builds on the robust and growing body of research uti-
lizing predictive analytics to guide clinical practice and reduce 
patient-level overdose risk,18,19,48 and introduces a possible 
tool for public health authorities to integrate into practice. 
This proactive approach to overdose prevention, in contrast to 
resource distribution based solely on retrospective area-level 
overdose history, presents a potential paradigm shift for public 
health practice. Likewise, our approach differs from methods 
using publicly sourced web data (e.g., Google Flu Trends49), 
which may be prone to error, by analyzing data sources that 
comprise “gold standard” overdose surveillance and are gen-
erally housed in state and local health departments. Moreover, 
using such data sources can facilitate uptake of area-level pre-
dictive modeling by practitioners. Demonstrating the potential 
for a proactive approach is essential as health authorities seek 
new strategies to address rising overdose deaths and spatially 
shifting patterns of risk.

LIMITATIONS
This study is subject to several limitations. First, 

while machine learning offers a methodologic toolkit for  
neighborhood-level forecasting, accuracy may be limited by 
this study’s small training set. As predictions are spatiotempo-
ral, the relatively low number of observation periods available 
for training may introduce bias if changes in the spatiotempo-
ral distribution and risk predictors of overdose occur quickly 
at CBG level.50 However, access to the full population of 
CBGs for model training may inform model accuracy in the 
absence of additional time periods, as demonstrated through 
our internal validation.

Second, this modeling study is embedded in a random-
ized trial to measure the effect of proactive, prediction-driven 
prevention resource allocation on fatal and nonfatal overdose. 
Thus, if the trial is successful in reducing overdose, outcome 
data will be affected in future time periods. However, given 
that this modeling study presents only the trial launch and 
early validation predictions, with increasing accuracy along 

our a priori selected primary metric, this bias, if present, is 
unlikely to affect our short-run model predictions.

Third, data availability may introduce selection bias in 
predictions. Some data sources may only signal community- 
level overdose risk as captured by service-involved popula-
tions (e.g., buprenorphine treatment data from the PDMP). 
Likewise, use of ACS estimates, which vary little across time 
periods, may prioritize neighborhoods with endemically high 
rates of overdose associated with known risk factors (e.g., 
poverty), while not capturing short-run spatial variation in 
overdose. Data sources not accessible for use during modeling 
but with established signals for overdose risk, for example, 
methadone treatment data,51 may prioritize out-of-treatment 
populations in model predictions. While emerging research 
demonstrates the capacity for social media data to inform 
area-level overdose risk,52 we restricted our data sources to 
those widely accessible to public health practitioners.

Fourth, as a tool for public health practice, the wealth 
of data sources available for use in RI to build our model may 
limit its portability to other jurisdictions. Application of these 
approaches in other settings will be crucial to assess its utility 
as a public health tool.

Fifth, our model evaluation criterion identified only the 
top 20% of CBGs for public health prioritization, a determina-
tion made in concert with practitioners at RIDOH. We consid-
ered other approaches (e.g., prioritization based on rank order of 
CBGs within each municipality), but these were deemed imprac-
tical to implement by state health authority and community- 
based practitioners who were research partners. While the 
single threshold facilitated feasibility in implementation 
of resource targeting by practitioner partners, allocating 
resources based on a fixed threshold may be inefficient relative 
to future risk. Future work could explore the capacity for mod-
eling across a continuous and dynamic risk threshold, with 
practitioner investments relative to the predicted future risk.

Sixth, since our model was embedded in a randomized 
trial, with municipality as the unit of randomization,8 our 
evaluation required that at least one CBG be selected in each 
municipality in RI. In addition, the state health department 
required prioritization of at least one CBG per town in order to 
ensure that resources were not being directed toward a small 
number of high burden municipalities as a result of the trial. 
Thus, while this may introduce inefficiency in public health 
resource targeting from a statewide perspective, it was viewed 
as more equitable from a municipal and health department 
perspective. Prior research conducted by our study team has 
illustrated the relative tradeoffs between the targeting compo-
sition of neighborhoods within and across municipalities.39

Relatedly, to achieve the 40% performance threshold 
identified a priori by RIDOH for this trial, our model pri-
oritized predictive performance over model transparency. 
Likewise, our ensembling approach was tailored to these 
unique model evaluation criteria and benchmarks for suc-
cess in the context of a randomized trial. Future work not 
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subject to such constraints could consider the relative bene-
fits of a more transparent modeling approach. Further, prior 
literature has demonstrated the successful implementation 
of super learner in constrained optimization settings.53 
Future work could directly integrate site-specific loss 
functions into modeling as these approaches expand in the 
applied public health sector.

Seventh, our second test period and both validation peri-
ods used data from the post-COVID era, while training data 
were drawn from the pre-COVID era. It is possible that our 
data and predictions may be subject to bias due to changes 
in the substance use and harm reduction services landscape 
during the SARS-CoV-2 pandemic. However, our use of two 
validation periods extending beyond the first wave of the pan-
demic imbues confidence in our model.

CONCLUSIONS
This study presents the development and internal val-

idation of an ensemble machine learning model to predict 
neighborhood-level overdose risk in RI. Our ensemble model 
achieved the target performance during test and validation 
phases and outperformed a baseline condition represent-
ing standard public health practice. We are currently testing 
the effect of using the model to guide overdose prevention 
resource distribution through a randomized trial. As the over-
dose epidemic continues, area-based machine learning models 
have the potential to inform prevention proactively, offering a 
new paradigm for intervention in jurisdictions impacted by 
the overdose crisis. Future work should consider application 
of our ensemble modeling approach in jurisdictions with pro-
files that differ from RI, as well as the inclusion of additional 
data sources to inform population-level predictive modeling 
for overdose prevention practice.
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