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Penalized Fast Subset Scanning

Skyler SPEAKMAN, Sriram SOMANCHI, Edward MCFOWLAND III,
and Daniel B. NEILL

We present the penalized fast subset scan (PFSS), a new and general framework
for scalable and accurate pattern detection. PFSS enables exact and efficient identifica-
tion of the most anomalous subsets of the data, as measured by a likelihood ratio scan
statistic. However, PFSS also allows incorporation of prior information about each data
element’s probability of inclusion, which was not previously possible within the subset
scan framework. PFSS builds on two main results: first, we prove that a large class
of likelihood ratio statistics satisfy a property that allows additional, element-specific
penalty terms to be included while maintaining efficient computation. Second, we prove
that the penalized statistic can be maximized exactly by evaluating only O(N) subsets.
As a concrete example of the PFSS framework, we incorporate “soft” constraints on
spatial proximity into the spatial event detection task, enabling more accurate detec-
tion of irregularly shaped spatial clusters of varying sparsity. To do so, we develop a
distance-based penalty function that rewards spatial compactness and penalizes spa-
tially dispersed clusters. This approach was evaluated on the task of detecting simulated
anthrax bio-attacks, using real-world Emergency Department data from a major U.S.
city. PFSS demonstrated increased detection power and spatial accuracy as compared
to competing methods while maintaining efficient computation.

Key Words: Disease surveillance; Likelihood ratio statistic; Pattern detection; Scan
statistic.

1. INTRODUCTION

Detecting patterns in massive datasets has multiple real-world applications in fields
such as public health, law enforcement, and security. For example, spatial scan statistics are
commonly used to alert public health officials to an unexpected increase in the number of
Emergency Department complaints from patients in some spatial region (i.e., set of nearby
zip codes), which may indicate the early stages of an emerging disease outbreak or attack.

In this work, we consider the “subset scan” approach to pattern detection, which treats the
problem as a constrained search over subsets of data elements, with the goal of finding the
most anomalous subsets. Unlike “bottom-up” approaches that find and aggregate individual
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PENALIZED FAST SUBSET SCANNING 383

anomalies, and “top-down” approaches that detect globally anomalous trends and then
localize them, subset scanning approaches maintain high detection power for both highly
localized and global trends (Neill 2009b, 2012). However, subset scanning approaches
pose two main challenges. First is appropriately evaluating the “anomalousness” of a given
subset, and second is the computational issue of searching through the 2N possible subsets
of a dataset containing N elements. Previous approaches (Kulldorff 1997; Neill et al. 2005;
Neill 2009b, 2012) have addressed the first concern by “scoring” each subset using a log-
likelihood ratio statistic, such as the expectation-based scan statistics (Neill et al. 2005;
Neill 2009b) considered here.

For spatial data, the computational challenge of subset scanning has been addressed in
several ways: limiting the search space to only consider regions of a given shape, such as
circles (Kulldorff 1997) or rectangles (Neill and Moore 2004; Wu et al. 2009), or perform-
ing a heuristic search over subsets, which is not guaranteed to find the most anomalous
subsets (Duczmal and Assuncao 2004; Agarwal et al. 2006). Such approaches enable ef-
ficient computation at the expense of reduced detection power and spatial accuracy (Neill
2012). The fast subset scan (FSS) approach (Neill 2012) resolves these computational
challenges through exact and efficient identification of the highest-scoring subset, for any
score function satisfying the linear-time subset scanning (LTSS) property. However, rather
than performing an unconstrained search over all possible subsets of the data, we often
wish to incorporate either “hard constraints” (ruling out some subsets completely) or “soft
constraints” (penalizing less likely subsets) into the search procedure.

Certain types of hard constraints are possible to incorporate within the FSS framework:
for example, the “fast localized scan” (Neill 2012) enforces a hard constraint on spatial
proximity by performing a search over the “local neighborhood” consisting of each spatial
location and its k − 1 nearest neighbors. Similarly, GraphScan (Speakman, McFowland,
and Neill 2015) incorporates hard connectivity constraints by ruling out subsets that are
disconnected in an assumed underlying graph structure. However, soft constraints (e.g., a
prior belief that some locations are more likely to be affected) cannot be easily incorporated.
Given a score function satisfying the LTSS property, a penalized version of that score
function is not guaranteed to satisfy LTSS, and thus FSS cannot efficiently identify the
highest-scoring penalized subset. An example is provided in Section 4.

In this work, we introduce and formalize a new property of scoring functions, Additive
linear-time subset scanning (ALTSS), which allows incorporation of prior information
about each data element’s probability of inclusion. We demonstrate that many commonly
used log-likelihood ratio scan statistics satisfy the ALTSS property. Thus, we show that the
penalized version of these statistics (where we have included each element’s prior log-odds
of being part of an anomalous subset as a bonus or penalty for including that element)
can be exactly and efficiently optimized over all subsets of the data, without requiring an
exhaustive search over all subsets.

We highlight three contributions in this work that follow from the ALTSS property. The
first is the penalized fast subset scan (PFSS) framework laid out in Section 3. PFSS is
very general, enabling any element-specific priors to be incorporated into the search over
subsets while maintaining computational efficiency and exactness. Our second contribution
is an investigation of the connections between ALTSS and the LTSS property (Neill 2012).

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 1
0:

19
 1

6 
M

ay
 2

01
6 



384 S. SPEAKMAN ET AL.

More specifically, we show that scoring functions in the form of expectation-based scan
statistics from the exponential family satisfy LTSS. This contribution extends LTSS, which
was previously limited to the “separable” subfamily of the exponential family. Expectation-
based scan statistics using the binomial and negative binomial distributions (which are not
part of the separable subfamily) may now be efficiently optimized in their penalized and
unpenalized forms.

Our final contribution is a specific application of PFSS based on motivating examples
from the fields of bio-terrorism and disease surveillance. While the “fast localized scan”
(subset scan with hard constraints on spatial proximity) has been shown to achieve high
detection power and spatial accuracy in this setting (Neill 2012), it does not take into
account the spatial attributes of the locations beyond the “hard” proximity constraint of
being one of the k − 1 nearest neighbors of a center location, and considers each of the
2k subsets of the neighborhood equally likely.

Soft proximity constraints incorporate the prior expectation that locations closer to the
center of an outbreak are more likely to be affected, thus rewarding spatial compactness and
penalizing spatially dispersed clusters. We demonstrate that this approach increases both
detection power and spatial accuracy as compared to the fast localized scan. Additionally,
while fast localized scan achieves high performance for well-chosen values of the neighbor-
hood size k, it performs worse than the standard, circular spatial scan (Kulldorff 1997) for
badly chosen k. We demonstrate in Section 7 that incorporation of soft constraints enables
our penalized version of the fast localized scan to be much more robust to the choice of
k, while still guaranteeing that the most anomalous penalized subset of locations will be
exactly and efficiently identified. This robustness to parameter selection is critical when
a limited number of labeled training examples exist or when a public health surveillance
system must be able to detect a wide range of possible outbreak types.

1.1 EXPECTATION-BASED SCAN STATISTICS

We now review the use of expectation-based scan statistics (Neill et al. 2005) for spatial
event detection. In the subset scanning framework, our goal is to identify a subset of the data
S ⊆ D that maximizes a score function F (S). In the spatial event detection setting consid-
ered here, the dataset D consists of spatial time series data: observed counts xi and expected
counts μi at a set of spatial locations si (i = 1, . . . , N ) and possibly other parameters, such
as the standard deviations σi . Likelihood ratio statistics have been commonly used as score
functions (Kulldorff 1997; Neill et al. 2005). The log-likelihood ratio statistic is defined as
F (S) = log (Pr(D |H1(S))/Pr(D |H0)), where the alternative hypothesis H1(S) assumes
an event occurring in region S ⊆ {s1, s2, . . . , sN } and the null hypothesis H0 assumes that
no events are occurring. For the expectation-based scan statistics, the alternative hypothesis
H1(S) assumes that counts xi are drawn with mean qμi inside region S and mean μi out-
side region S, for some constant multiplicative factor q > 1 known as the relative risk or
severity. We can then write the expectation-based scan statistic as

F (S) = max
q>1

∑
si∈S

(log Pr(xi | qμi)− log Pr(xi | μi)) . (1)
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PENALIZED FAST SUBSET SCANNING 385

A pivotal insight of our work is that for a fixed value of the relative risk q, the expectation-
based scan statistics from the exponential family can be written as an additive set function
over the data elements si contained in S. This insight leads to three useful consequences.
First, additional penalty terms may be added at the element level (i.e., a bonus or penalty
�i for each element si) and the resulting penalized function will still be additive. Second,
the highest scoring penalized subset can be efficiently identified by selecting only those
data elements si making a positive contribution to the penalized scoring function. Finally,
we show in Section 3.2 that only a small number of values of q must be considered, thus
leading to efficient optimization of (penalized or unpenalized) score functions F (S) over
all q > 1.

Kulldorff’s spatial scan statistic (Kulldorff 1997) is also a scoring function based on
likelihood ratio statistics, but it is not an expectation-based scan statistic. Kulldorff’s statistic
requires two parameters under the alternative hypothesis, qin and qout, which represent the
multiplicative increase in counts for locations inside and outside of S, respectively; in this
case, F (S | qin, qout) can be written as an additive function. Neill (2009a) demonstrated
that Kulldorff’s statistic has low detection power for large outbreaks that cover much of
the search region, since qin ≈ qout for all S and no subset appears particularly anomalous.
Expectation-based scan statistics use only data from within S and therefore represent a more
natural model when identifying locations with higher activity than expected. The expected
counts μi for expectation-based scan statistics can be derived from a variety of time series
forecasting methods, including simple moving averages or more complex functions that
adjust for seasonal and day-of-week trends (Burkom, Murphy, and Shmueli 2007).

We note that the assumptions of conditionally independent counts and a constant, multi-
plicative risk q are standard in the spatial scan literature (Kulldorff 1997). The assumption
of constant risk q, estimated by maximum likelihood, is preferable to the alternative of
estimating risks qi independently for each location. The latter approach tends to overfit the
noise in the data, since any locations with xi even slightly larger than μi would make a
positive contribution to the score function and would be included in the highest-scoring
subset.

2. THE ADDITIVE LINEAR TIME SUBSET
SCANNING PROPERTY

We now define the ALTSS property. Informally, a score function F (S) satisfies ALTSS
if conditioning on the relative risk q allows the function to be written as an additive set
function over the data elements si contained in S.

Definition 1. For a given dataset D, the score function F (S) satisfies the ALTSS property
if for all subsets S ⊆ D, we have F (S) = maxq>1 F (S | q), where F (S | q) =∑

si∈S λi(q),
and λi(q) depends only on the given value of q, the observed count xi , and expected count
μi (and in some cases standard deviation σi) for element si .

Theorem 1. Expectation-based scan statistics from the (single parameter) exponential
family satisfy the ALTSS property.
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386 S. SPEAKMAN ET AL.

Table 1. Derivation of λi (q) for expectation-based scan statistics in the exponential family

Distribution θ (qμi ) φ(qμi ) λi (q)

Poisson log(qμi ) qμi log(qμi )− qμi xi log q + μi (1− q)

Gaussian qμi

σ 2
i

(qμi )2

2σ 2
i

xiμi
(q−1)
σ 2
i

+ μ2
i

(
1−q2

2σ 2
i

)

Exponential − 1
qμi

− log(qμi )
xi
μi

(1− 1
q

)− log q

Binomial log
(

qμi
ni−qμi

)
qμi log

(
qμi

ni−qμi
)
+ ni log(ni − qμi ) xi log(q)+ (ni − xi ) log

(
ni−qμi
ni−μi

)

Negative
binomial

log
(

qμi
ri+qμi

)
qμi log

(
qμi

ri+qμi
)
− ri log(ri + qμi ) xi log (q)+ (ri + xi ) log

(
ri+μi
ri+qμi

)

Proof of Theorem 1. Following the notation in Neill (2012), we write the distribu-
tions from the exponential family as log Pr(x | μ) = T (x)θ (μ)− ψ(θ (μ)) = T (x)θ (μ)−
μθ (μ)+ φ(μ), where T (x) is the sufficient statistic, θ (μ) is a function mapping the mean
μ to the natural parameter θ , ψ is the log-partition function, and φ is the convex conjugate
of ψ . Plugging this form of the exponential family into (1) gives

F (S) = max
q>1

∑
si∈S

(T (xi) (θ (qμi)− θ (μi))+ μiθ (μi)− qμiθ (qμi)

+ φ(qμi)− φ(μi)) . (2)

Let λi(q) = T (xi) (θ (qμi)− θ (μi))+ μiθ (μi)− qμiθ (qμi)+ φ(qμi)− φ(μi) and then
F (S) satisfies the ALTSS property.

Table 1 summarizes the derivation of λi(q) for the expectation-based scan statistics from
several distributions in the exponential family.

An important consequence of scoring functions being written as additive functions
over the data elements contained in the subset is that additional bonus or penalty
terms �i may be included for each data element si while maintaining the additive
property.

Corollary 1. Given a scoring function F (S) that satisfies the ALTSS property,
assume an additive bonus or penalty �i for each si ∈ S. The resulting penalized score
function,
Fpen(S) = F (S)+∑

si∈S �i , also satisfies ALTSS.

Proof of Corollary 1.

Fpen(S) = F (S)+
∑
si∈S

�i

= max
q>1

F (S | q)+
∑
si∈S

�i
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PENALIZED FAST SUBSET SCANNING 387

= max
q>1

∑
si∈S

(λi(q)+�i)

= max
q>1

∑
si∈S

γi(q),

where γi(q) = λi(q)+�i is referred to as the total contribution of data element si to the
penalized scoring function for a fixed risk q.

The �i terms are a function of the given data element si ; they cannot depend on the
subset S. We plan to investigate more sophisticated penalties in future work.

A second important consequence of scoring functions being written as additive functions
is that the highest scoring subset for a fixed risk q can be easily identified.

Corollary 2. For a fixed risk q, functions satisfying ALTSS can be efficiently optimized
over all subsets S ⊆ D by including all and only those data elements making a positive
contribution to the scoring function, that is, si ∈ arg maxS⊆D F (S | q) if and only if γi(q) =
λi(q)+�i > 0.

The proof of Corollary 2 follows immediately from the fact that F (S | q) =∑
si∈S γi(q).

3. PENALIZED FAST SUBSET SCANNING

Penalized fast subset scanning (PFSS) is a novel method for scalable and accurate
pattern detection, which uses the ALTSS property of commonly used scoring functions
to incorporate prior information for each data element. This is in contrast to the FSS
method (Neill 2012), which does not allow for additional terms to influence the subset’s
score and therefore considers each element equally likely to be included in the highest
scoring unpenalized subset. The first half of this section focuses on how the additional,
element-specific terms are interpreted in the PFSS framework and the second half explains
how the penalized scoring function may be exactly and efficiently optimized over all
possible subsets.

3.1 PRIOR LOG-ODDS INTERPRETATION OF PENALTIES �i

We first show that the penalty terms �i can be usefully interpreted as the prior log-
odds that each data record si is affected. Let us assume a simple generative model
where some subset of records Strue ⊆ {s1, s2, . . . , sN } is affected, and each si is inde-
pendently chosen to be included in Strue with prior probability pi . We now consider
the penalized score function Fpen(S) = F (S)+∑

si∈S �i , where the log-likelihood ratio
F (S) = log (Pr(D |H1(S))/Pr(D |H0)) and �i = log (pi/(1− pi)) . Given the priors pi ,
we show that this choice of �i satisfies two useful properties: the highest-scoring penal-
ized subset S∗ = arg maxS Fpen(S) minimizes the total probability of error, and is also a
maximum a posteriori (MAP) estimate of the true affected subset Strue.

First, when comparing the detected subset S∗ and the true affected subset Strue, we wish
to minimize both the probability of incorrectly including extra records (Type I error) and
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388 S. SPEAKMAN ET AL.

the probability of failing to detect truly affected records (Type II error). We show that the
choice of �i = log (pi/(1− pi)) minimizes the sum of these two probabilities.

Theorem 2. Let �i = log (pi/(1− pi)), where pi is the prior probability that record
si ∈ Strue. This choice of�i minimizes the sum of the Type I and Type II error probabilities
when comparing S∗ = arg maxS Fpen(S) and Strue.

The proof of Theorem 2 is in the Appendix. Next, we show that S∗ =
arg maxS Fpen(S) may be interpreted as the MAP estimate of Strue.

Theorem 3. Let �i = log (pi/(1− pi)), where pi is the prior probability that record
si ∈ Strue. This choice of �i makes S∗ = arg maxS Fpen(S) the MAP estimate of the true
affected subset Strue.

Proof of Theorem 3.

log Pr(H1(S) |D) ∝ log Pr(D |H1(S))+ log Pr(H1(S))

∝ F (S)+ log

⎛
⎝∏
si∈S

pi
∏
si /∈S

(1− pi)
⎞
⎠

= F (S)+
∑
si∈S

(logpi − log(1− pi))+
N∑
i=1

log(1− pi)

= F (S)+
∑
si∈S

�i −
N∑
i=1

log(1+ exp(�i))

∝ F (S)+
∑
si∈S

�i,

where terms independent of S have been ignored. Thus, choosing the subset S∗ that maxi-
mizes Fpen(S) = F (S)+∑

si∈S �i also maximizes the posterior probability ofH1(S) mak-
ing S∗ the MAP estimate of Strue.

This Bayesian interpretation of the penalized maximum likelihood estimate should not
be confused with the Bayesian and multivariate Bayesian scan statistics (Neill, Moore, and
Cooper 2006; Neill and Cooper 2010), which calculate marginal likelihoods and compute
the total posterior probability that each subset S has been affected. The Bayesian scan
framework in previous work is limited to Gamma-Poisson count data and cannot be easily
generalized to other settings.

3.2 EFFICIENT OPTIMIZATION OF THE PENALIZED SCORE FUNCTION

We now consider how the optimal penalized subset S∗ = arg maxS⊆D Fpen(S) can be
efficiently computed. As noted above in Corollary 2, for a given value of the relative risk
q, Fpen(S | q) can be efficiently optimized over subsets by including all and only those data
elements making a positive contribution to the penalized scoring function, that is, those
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PENALIZED FAST SUBSET SCANNING 389

data elements with γi(q) = λi(q)+�i > 0. We now show that only linearly rather than
exponentially many values of q must be considered.

Theorem 4. The optimal subset S∗ = arg maxS Fpen(S) maximizing a penalized
expectation-based scan statistic from the exponential family may be found by evaluat-
ing only O(N ) subsets, where N is the total number of data elements.

Proof of Theorem 4. Let γi(q) = λi(q)+�i as defined above, and assume that all
�i are independent of q. The first derivative γ ′i (q) = λ′i(q) = μi[T (xi)− qμi]θ ′(qμi) has
only one zero, obtained when q = T (xi)/μi (the maximum likelihood estimate). Thus,
γi(q) has at most two zeros. More precisely, we must have either (a) there exists some
qmin
i and qmax

i such that γi(qmin
i ) = γi(qmax

i ) = 0 and γi(q) > 0 for all qmin
i < q < qmax

i ,
or (b) for all q, γi(q) ≤ 0. In the latter case, data element si will never be included in the
highest-scoring penalized subset. Critically, we must consider at most 2N distinct values of
q, since we consider the qmin

i and qmax
i for each si , i = 1, . . . , N . This property also holds

when restricting q > 1; see Figure 1 for an example using the penalized expectation-based
Poisson scan statistic. We now sort these values of q (eliminating any duplicate q values)
and let I1, . . . , I2N be the disjoint intervals formed by consecutive values of the sorted q. By
construction, within each interval Ij , we have for each si that either γi(q) > 0 for all q ∈ Ij ,
in which case including si will increase the penalized score for all values of q in this interval,
or γi(q) < 0 for all q ∈ Ij , in which case including si will decrease the penalized score for
all values of q in this interval. Also, we note that if q /∈⋃2N

j=1 Ij , then Fpen(S | q) ≤ 0 for

all S, and hence we only need to evaluate the best subset for q ∈⋃2N
j=1 Ij . We can write

S∗ = arg maxS maxq>1Fpen(S | q)

= arg maxS maxq∈⋃2N
j=1 Ij

Fpen(S | q)

= arg maxj∈{1,...,2N}Fpen(S∗j ),

Figure 1. A three-record example of forming the O(N ) intervals needed to evaluate Fpen(S | q). Throughout
interval I1, records 1 and 2 are making positive contributions and would be included in S∗1 . S∗2 would include
all three records. S∗3 would include records 2 and 3, and S∗4 would include record 2 only. Further details:
x1 = 130, μ1 = 110, �1 = 0; x2 = 26, μ2 = 20, �2 = 0.5; x3 = 40, μ3 = 30, �3 = −1. I1 = [1, 1.132], I2 =
[1.132, 1.3844], I3 = [1.3844, 1.557], and I4 = [1.557, 1.760].
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390 S. SPEAKMAN ET AL.

where S∗j = arg maxS Fpen(S | q ∈ Ij ). We can construct these sets efficiently as follows:

S∗j = {si : γi(q) > 0 for all q ∈ Ij }.

Note that S∗j is the set of all elements that make positive contributions to the score
Fpen(S | q ∈ Ij ) through γi(q). Hence, S∗j is an optimal subset for any q ∈ Ij . Therefore,
we need to evaluate onlyO(N ) subsets (one for each interval) to find the optimal penalized
subset S∗.

4. RELATIONSHIP BETWEEN ALTSS AND LTSS

The LTSS property enables exact and efficient optimization of unpenalized scoring
functions from the “separable” exponential family. Insights from the ALTSS property
expand on the LTSS property in two ways. First, we consider an alternative priority function
that enables us to broaden the class of functions that satisfy LTSS to expectation-based scan
statistics from the entire exponential family. Second, our PFSS framework introduced in
Section 3 enables exact and efficient optimization of both penalized and unpenalized score
functions, while LTSS applies only in the unpenalized case.

A function satisfies LTSS if and only if maxS⊆D F (S) = maxj=1,...,N F ({s(1), . . . ,

s(j )}) where s(j ) represents the jth highest priority data element according to a provided
priority function (Neill 2012). The highest scoring subset must be composed of the j highest
priority data elements for some priority function g(si) and some j between 1 and N. Neill
(2012) defined a “separable” subfamily of the exponential family, including those distri-
butions such as the Poisson, Gaussian, and exponential for which θ (qμi) can be expressed
as ziθ0(q)+ vi , for zi and vi independent of q. He then proved that expectation-based scan
statistics from the separable exponential family satisfy LTSS with the priority function
g(si) = xi

μi
. In other words, the highest scoring subset must consist of the j data elements

si with largest ratios of xi to μi , for some j between 1 and N. The ratio of observed counts
to expected counts is also the maximum likelihood estimate of the relative risk q for the
individual record si . This is referred to as qmle

i .
The binomial distribution, while part of the exponential family, is not included in the

separable exponential family. We show that the expectation-based binomial (EBB) scan
statistic cannot be efficiently optimized using the priority function qmle

i . EBB assumes that
each count xi is drawn from a binomial distribution Bin(ni, pi), with meanμi = nipi , under
H0. See Table 1 for more details. Consider a dataset with three elements {s1, s2, s3}, where
(x1, μ1, n1) = (1500, 300, 4000); (x2, μ2, n2) = (25, 8, 40); and (x3, μ3, n3) = (12, 4, 40).
The priority function g(si) = xi

μi
= qmle

i suggests {s1}, {s1, s2}, and {s1, s2, s3} as the three
subsets to evaluate. However, the subset that maximizes the EBB statistic is S∗ = {s1, s3},
with F (S∗) ≈ 1437 at q = 4.97. We note that s2 would make a negative contribution to the
score for all q ≥ 4.7, so it is not included in S∗.

We now provide an alternative priority function that satisfies LTSS for unpenalized
scoring functions from the single-parameter exponential family including the binomial and
negative binomial distributions. Recall that for each record si there exists qmin

i and qmax
i such
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PENALIZED FAST SUBSET SCANNING 391

that λi(qmin
i ) = λi(qmax

i ) = 0. For unpenalized scoring functions (�i = 0), qmin
i = 1 for all

i, while qmax
i is a function of the observed count xi and expected count μi .

Theorem 5. Unpenalized expectation-based scan statistics from the single-parameter
exponential family satisfy the LTSS property with priority function g(si) = qmax

i , where
qmax
i is the unique q > 1 such that λi(qmax

i ) = 0.

Proof of Theorem 5. We denote the jth highest priority record as s(j ) with s(1) as the highest
priority record and s(N) as the lowest. We write the priority of record s(j ) as g(s(j )) = qmax

(j ) .
Assume that the jth priority record s(j ) is included in the optimal subset S∗. It suffices
to show that all higher priority records, s(1), . . . , s(j−1), must also be included in S∗. By
Theorem 1, we know that expectation-based scan statistics from the exponential family
satisfy ALTSS and may be written as additive functions over the data elements contained
in the subset for a fixed risk q. By Corollary 2, we know that if s(j ) ∈ S∗ then there exists
a fixed relative risk q∗, where q∗ = arg maxq>1 F (S | q), such that the jth highest priority
record is making a positive contribution at that risk, λ(j )(q∗) > 0. Furthermore, we have
qmin

(j ) = 1 < q∗ < qmax
(j ) . Finally, consider any higher priority record s(h) and note that the

priority ordering implies qmax
(h) > qmax

(j ) . It follows that s(h) must also have qmin
(h) = 1 < q∗ <

qmax
(h) , which implies λ(h)(q∗) > 0 and therefore s(h) ∈ S∗.

In summary, using priority function g(si) = qmax
i , we have shown that inclusion of the jth

highest priority record in the highest scoring subset necessitates the inclusion of all higher
priority records. Therefore, the optimal subset may be efficiently identified by sorting the
records based on qmax

i and evaluating only the N subsets of the form {s(1), . . . , s(j )} for
j = 1, . . . , N . Figure 2 provides a visual comparison for the expectation-based Poisson
(EBP) and binomial scoring functions and the two priority functions qmax

i and qmle
i discussed

in this section.
Theorem 5 shows a connection between LTSS and ALTSS for unpenalized scoring

functions. We now provide a penalized scoring function that satisfies ALTSS but not
LTSS. Consider maximizing the expectation-based Poisson scoring function with a penalty
on subset size, Fpen(S) = FEBP(S)− |S|. The unpenalized EBP scoring function satisfies
the LTSS property, but including the size penalty violates LTSS, preventing the efficient
optimization of the penalized scoring function over subsets of the data. Consider a dataset
with three elements: (x1, μ1) = (5, 2), (x2, μ2) = (68, 55), and (x3, μ3) = (68, 55). Note
that s1 is the optimal penalized subset of {s1, s2} so if Fpen(S) satisfies LTSS, s1 must
be higher priority than s2. However, the highest scoring penalized subset of {s1, s2, s3} is
{s2, s3}. This implies that s2 must be higher priority than s1, which is a contradiction. Thus,
no priority function can exist for which Fpen(S) satisfies the LTSS property.

This penalized scoring function does satisfy ALTSS: F (S) = maxq>1
∑

si∈S(λi(q)+
�i), where λi(q) = xi log q + μi(1− q) from Table 1, and �i = −1 for all data elements
si , since

∑
si∈S(−1) = −|S|. This enables us to efficiently maximize the penalized scoring

function in our new PFSS framework. Due to the �i penalty terms, we no longer have
qmin
i = 1 for all i. As shown in Theorem 3, this creates a partitioning over q instead of

a priority ordering over q. The partitioning creates at most 2N intervals over the range
of q > 1, and for each interval we need only to consider the subset of records making
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392 S. SPEAKMAN ET AL.

Figure 2. The top panel provides a three-record example using the expectation-based Poisson scoring function,
which is a member of the “separable” exponential family. In this setting, both priority functions g(si ) = qmle

i (in-
troduced in Neill 2012) and g(si ) = qmax

i (introduced in this work) satisfy LTSS. Note the same ordering produced
by either function. Further details: x1 = 8, μ1 = 6, qmle

1 = 1.33, qmax
1 = 1.74; x2 = 35, μ2 = 28, qmle

2 = 1.25,
qmax

2 = 1.54. x3 = 170,μ3 = 150, qmle
3 = 1.133, qmax

3 = 1.28. The bottom panel provides a three-record example
from the expectation-based binomial scoring function, which is not a member of the “separable” exponential family.
In this setting, the two priority functions result in different orderings. We prove in Theorem 5 that g(si ) = qmax

i is
the correct priority ordering to satisfy LTSS for expectation-based scan statistics formed by distributions from the
entire exponential family. Further details: x1 = 40, n1 = 140, p1 = 0.075, qmle

1 = 3.81, qmax
1 = 7.95; x2 = 125,

n2 = 190, p2 = 0.15, qmle
2 = 4.39, qmax

2 = 6.51; x3 = 130, n3 = 155, p3 = 0.18, qmle
3 = 4.66, qmax

3 = 5.555.

a positive contribution to the scoring function. These 2N subsets are the only ones that
must be evaluated to identify the highest scoring penalized subset in the PFSS framework.
This partitioning of q intervals rather than use of a priority function differentiates the
contributions from ALTSS in this work and LTSS in previous work. Table 2 summarizes
the comparison of LTSS and ALTSS.

5. PFSS WITH SOFT PROXIMITY CONSTRAINTS

The fast localized scan (Neill 2012) performs searches for each local neighborhood
(center location sc and its k − 1 nearest neighbors), thus enforcing hard constraints on
spatial proximity.
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PENALIZED FAST SUBSET SCANNING 393

Table 2. Summary of the LTSS and ALTSS comparisons

Scoring functions Priority function
Number of subsets

to be evaluated Notes

Separable exponential family
with no penalty terms

(a) g(si ) = xi
μi

or N (a) is from Neill 2012.
(b) g(si ) = qmax

i (b) is proposed here.

Entire exponential family with
no penalty terms

g(si ) = qmax
i N We expand the class of

scoring functions
that satisfy LTSS.

Entire exponential family with
penalty terms

No priority function
satisfies LTSS

2N We introduce ALTSS
to efficiently
incorporate penalty
terms.

PFSS with soft proximity constraints allows us to take additional spatial information
into account, rewarding spatial compactness and penalizing sparse regions within a local
neighborhood. When considering a local neighborhood Sck with center location sc and
neighborhood size k, we define �i for each location si ∈ Sck as: �i = h (1− (2di/r)),
where di is the distance between location si and the center location sc, r is the neigh-
borhood radius (distance from sc to its (k − 1)th neighbor), and 0 ≤ h ≤ ∞ is a constant
representing the strength of the soft proximity constraint. Through the prior log-odds in-
terpretation of �i , we interpret h as assuming that the center location (di = 0,�i = h)
is exp(h) times as likely to be included in the affected subset as its (k − 1)th neighbor
(di = r,�i = −h). Figure 3 shows the probability of inclusion for locations that are a
distance di from the center, across various values of h. Note that for h = 0, PFSS re-
duces to the original FSS solution. Incorporation of soft proximity constraints (h > 0)
gives preference to more spatially compact clusters by rewarding locations that are closer
to the center, while still considering all subsets within a given neighborhood. For very
large h values, all locations with di < r/2 would have �i >> 0 and all locations with
di > r/2 would have�i << 0, and thus PFSS reduces to the circular scan with fixed radius
r/2.

Figure 3. A location’s prior probability of being included in the detected subset is based on both h and its
distance from the center location. Note that the center location is assumed to be exp(h) times more likely to be
included than the farthest (k − 1 neighbor) location.
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394 S. SPEAKMAN ET AL.

The PFSS algorithm with soft proximity constraints (Algorithm 1) builds a local
neighborhood of size k for each center location, then computes the penalties �i and
maximizes the penalized scoring function Fpen(S) for each neighborhood. Note that
we are considering each location si , i = 1, . . . , N , as a possible center. To compare
scores across different neighborhoods, we subtract the sum

∑
si∈Sck log (1+ exp(�i)).

This insures that Fpen(S) is proportional to the log-posterior probability Pr(H1(S) |D),
and thus we maintain the interpretation of S∗ = arg maxS Fpen(S) as a MAP estimate
(Theorem 3).

Algorithm 1: Penalized Fast Subset Scanning with soft proximity constraints.

1: for c = 1, . . . , N do
2: Let Sck be center location sc and its k − 1 nearest neighbors.
3: for each si ∈ Sck do
4: Compute �i , qmin

i , and qmax
i .

5: end for
6: Q← sort and remove duplicates({qmin

1 , qmax
1 , . . . , qmin

2k , q
max
2k }).

7: If there exists any q ∈ Q such that q < 1, exclude all q < 1 and add q = 1 to Q.
8: S ← {∅}.
9: for j = 1, . . . , 2k do
10: If Qj is a qmin

i , then S ← S ∪ {si}. If Qj is a qmax
i , then S ← S \ {si}.

11: Record Fpen(S) = F (S)+∑
si∈S �i .

12: end for
13: Subtract

∑
si∈Sck log (1+ exp(�i)) from Fpen(S).

14: end for
15: Output the optimal subset S∗ = arg maxS Fpen(S).

We conclude this section with a complexity analysis for PFSS. To find the optimal subset
for a given neighborhood, we sort the at most 2k values of q, which is an O(k log k) op-
eration, and step through the sorted values of q, which is an O(k) operation. Over N
neighborhoods, the total computational complexity of this algorithm is O(Nk log k). This
assumes that the k-nearest neighbors have been precomputed for each location, since this
is a one-time operation; otherwise, computation of the k-nearest neighbors of each location
can be done naively in O(N2 logN ) or more quickly using space-partitioning data struc-
tures. PFSS was able to identify the highest scoring penalized subset for a single day of
our Emergency Department data described in Section 7 (with N = 97 locations) in 40–50
milliseconds for all values of k = 5, . . . , 50, which is comparable to the runtimes of the
original FSS and the circular spatial scan.

6. RELATED WORK

PFSS with soft proximity constraints combines penalized likelihood ratio statistics, spa-
tial data, and subset scanning to increase detection power for irregularly shaped spatial
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PENALIZED FAST SUBSET SCANNING 395

clusters. The subset scanning approach is unique in separating this present work from
methods that also use spatial information and attempt to optimize a penalized likelihood
ratio statistic. For example, Yiannakoulias, Rosychuk, and Hodgson (2005) penalized
nonconnected search regions, while Duczmal et al. (2007) and Kulldorff et al. (2006)
computed the geometric regularity of the search region and penalized more elongated and
irregularly shaped clusters. More sophisticated methods combine geometric and noncon-
nectivity penalties in a multi-objective framework (Cancado et al. 2010). However, most
of these methods rely on a heuristic search to optimize the penalized scan statistic, which
is computationally expensive and not guaranteed to identify the highest-scoring cluster,
while Kulldorff et al. (2006) limited their search to elliptical clusters, reducing detection
power, and spatial accuracy for any subsets that are not well approximated by an ellipse.
In contrast, our PFSS approach is extremely computationally efficient and scalable while
guaranteeing that the highest-scoring penalized subset will be found. It is also worth noting
that the previously proposed methods focus on penalizing or rewarding properties of the re-
gion as a whole rather than individual data elements, while our penalties at the data-element
level have a direct interpretation as the prior log-odds for each element’s inclusion in the
optimal subset. Either of these types of penalty could be preferable for a given application
domain.

We note that the ALTSS property is distinct from prior work in submodular function
optimization (Nemhauser, Wolsey, and Fisher 1978; Leskovec et al. 2007), which has been
used for sensor placement among many other applications. As shown by Neill (2012),
the expectation-based Poisson statistic does not satisfy submodularity. Further, methods
based on submodularity typically find approximate rather than exact solutions, while our
approach is guaranteed to find the optimal subset that maximizes the penalized statistic.

7. EVALUATION

We provide an example for the PFSS method with soft proximity constraints in the pub-
lic health surveillance domain. Emergency Department data from 10 Allegheny County,
Pennsylvania hospitals from January 1, 2004, to December 31, 2005, serves as the back-
ground data for both validation of the PFSS framework and a performance evaluation for
detecting aerosolized anthrax bio-attacks. Through processing of each case’s International
Classification of Diseases (ICD-9) code and the free text in its “chief complaint” string, a
count dataset was created recording the number of patient records with respiratory symp-
toms (such as cough or shortness of breath) for each day and each zip code in Allegheny
County. The dataset had a daily mean of 44.0 cases, and a standard deviation of 12.1 cases.
The latitude and longitude coordinates of the centroid of the N = 97 zip codes formed the
spatial component of the dataset.

To validate the PFSS approach, we examine a simulation that varies the size and spatial
density of the affected region (i.e., subset of zip codes with additional counts injected into
the background data) and thus understand the effects of these parameters on the relative
performance of the competing methods. We then evaluate the detection performance of
PFSS using state-of-the-art dispersion models of an aerosolized anthrax release (Hogan
et al. 2007). Both experiments and their results are discussed in their respective sections
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396 S. SPEAKMAN ET AL.

below. We use the expectation-based Poisson likelihood ratio statistic throughout, and
compare three methods in each setting:

• Kulldorff’s circular spatial scan statistic (circles), which returns the highest scoring
circular region, searching over all N distinct circles with neighborhood size k centered
at the N locations (Kulldorff 1997).

• Fast subset scan (FSS) that returns the highest scoring unpenalized subset within
a region consisting of a center location and its k − 1 nearest neighbors for a fixed
parameter k (Neill 2012). This can be considered a special case of PFSS with the
strength of the soft proximity constraint h = 0.

• Penalized fast subset scan (PFSS) with soft proximity constraints, which returns the
highest scoring penalized subset within a region consisting of a center location and
its k − 1 nearest neighbors for a fixed parameter k. The soft proximity constraints
reward spatial compactness while penalizing sparse regions. We provide results for
both weaker (h = 1) and stronger (h = 2) constraints. Choice of h is discussed below.

We consider two evaluation metrics: detection power (proportion of outbreaks detected)
at a fixed false positive rate of 1 per year and spatial accuracy measured by the “overlap
coefficient” between true and detected clusters. Overlap is a combination of precision and
recall and requires two sets, Strue of affected locations and S∗ of detected locations. Then the
overlap coefficient is defined as: Overlap= |Strue

⋂
S∗|/|Strue

⋃
S∗|. An overlap coefficient

of 1 (or 100%) represents perfect precision and recall, while an overlap of 0 corresponds
to disjoint sets Strue and S∗.

For the three methods considered here, Type I error can be controlled by the use of
randomization testing or empirical calibration to set the threshold score for detection. For
example, for a fixed false positive rate of 1/year, we would set the threshold score at the
100(1− 1

365 ) ≈ 99.7th percentile of the distribution of daily maximum scores under the
null. We can then compare the methods’ detection power for the given Type I error rate.

7.1 VALIDATION ON SIMULATED OUTBREAKS

We create a large set of simple simulated outbreaks for validation to compare the relative
performance of PFSS, FSS, and the circular spatial scan (circles) as a function of outbreak
size, spatial density, and neighborhood size k. For each simulated outbreak, the simulator
selects the affected subset of zip codes Strue uniformly at random (between 5 and 10 affected
zip codes). Then Poisson(wi |Strue|) additional cases are injected into each location in Strue,
where wi = ci/(

∑
sj∈Strue

cj ) represents the relative “weight” of zip code si , proportional to
the total number of cases in that zip code for the entire 2 years of Emergency Department
data. The simulated outbreaks are categorized by spatial density, measured by the ratio of
the number of affected locations to the total number of locations in the smallest circle that
contains all affected locations and size measured by the total number of affected locations.
Figure 4 provides two examples. Results for nine scenarios are provided; three categories
of density (0.1–0.4 for “low,” 0.4–0.7 for “medium,” and 0.7–1.0 for “high”) and three
categories of size based on the number of affected zip codes (5–6 for “small,” 7–8 for
“medium,” and 9–10 for “large”).
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PENALIZED FAST SUBSET SCANNING 397

Figure 4. Two examples of inject density. Figure (a) is a region with a density of 5/6 and (b) is a region with
density 7/14.

Figures 5 and 6 have the same layout with spatial density increasing between panels
from left to right and outbreak size increasing between panels from bottom to top. The
lower left panel of few, highly dispersed affected zip codes represents the most difficult
detection scenario while the upper right panel of many, highly compact affected zip codes
reflects the easiest scenario.

Figure 5 provides a comparison of detection power (proportion of outbreaks detected at 1
false positive per year). As expected, the overall performance for all methods increases with
the number and spatial density of the affected zip codes. We note the poor performance of
the spatial scan statistic (circles) for the low density outbreaks. This is due to only scanning
over circular regions, which results in much lower detection power for irregularly shaped
clusters. The spatial scan statistic performs comparably in the high density outbreaks that
are compact and close to circular in shape. We also examine the effect that the neighborhood
size k has on the methods and note that the detection power of FSS is heavily influenced
by the choice of k. The influence of k is more pronounced in outbreaks composed of few,
compact affected zip codes (lower right panel). In contrast, we note that the detection power
of PFSS remains strong for a wide range of neighborhood sizes, densities, and numbers
of affected locations. Despite the lack of spatial structure in the low density outbreaks, the

Figure 5. Comparison of detection power for multiple methods at a fixed false positive rate of 1 per year. Each
panel represents different outbreak spatial density and size. Neighborhood sizes from k = 5, . . . , 50 are provided
within each panel.
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398 S. SPEAKMAN ET AL.

Figure 6. Comparison of spatial accuracy (overlap coefficient) for multiple methods. Each panel represents
different outbreak spatial density and size. Neighborhood sizes from k = 5, . . . , 50 are provided within each
panel.

penalized methods (which reward spatially compact subsets) outperform the unpenalized
method, FSS. We attribute this strong performance to PFSS’s robustness to noise in the
background data, increasing overall detection power. For large values of k, FSS is more
likely to give high scores to spatially dispersed subsets in the background data, increasing
the threshold needed to detect the simulated events, while PFSS will only identify such
spurious clusters if they happen to be spatially localized.

Figure 6 provides a comparison of spatial accuracy. We note that larger, more spatially
compact outbreaks result in higher spatial accuracy for all methods. The circular spatial
scan statistic consistently underperforms FSS and PFSS, particularly for the low density
clusters. It tended to return overly large circular regions with high recall but low precision,
resulting in a low overlap coefficient. The robustness of the PFSS methods is shown again
for the low density outbreaks. Although low density injects have a relative lack of the
spatial structure that PFSS is designed to reward, the ability of PFSS to penalize sparse
regions increases spatial precision while maintaining reasonably high recall, resulting in
spatial accuracy that is comparable to FSS.

7.2 EVALUATION ON BARD ANTHRAX ATTACKS

The anthrax attacks are based on a state-of-the-art, highly realistic simulation of an
aerosolized anthrax release, the Bayesian Aerosol Release Detector (BARD) simula-
tor (Hogan et al. 2007). These complex simulations take into account weather data when
creating the affected zip codes, Strue, and demographic information when calculating the
number of additional Emergency Department cases within each affected zip code. Wind
direction, wind speed, and atmospheric stability all influence the elongated shape and size
of the affected area. Although the simulator produces data for a 10-day period after the
spores are released, we simplify the temporal component by using only the data from the
midpoint (day 5) of the simulation.

We consider two coverage scenarios. In the 100% coverage case, we assume that all of the
anthrax victims present at an Emergency Department with a functioning bio-surveillance
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PENALIZED FAST SUBSET SCANNING 399

Figure 7. Comparison of detection power for multiple methods on simulated anthrax bio-attacks at a fixed
false positive rate of 1 per year, for 50% and 100% coverage scenarios, respectively. Neighborhood sizes from
k = 5, . . . , 75 are provided within each panel.

program and are appropriately accounted for. This assumption is extremely optimistic, so
we provide a possibly more realistic 50% coverage case where half of the population of
anthrax victims seek medical attention from institutions that do not collect or share this
type of data, creating a more difficult detection problem.

Figure 7 provides a comparison of detection power for anthrax attacks. Intuitively,
the optimistic 100% coverage scenario has higher detection rates for all methods. In the
more difficult 50% coverage setting, the penalized scoring functions show higher detection
rates and greater robustness to the choice of neighborhood size parameter, k. The unpe-
nalized FSS method struggles for improperly chosen k even in the easier 100% coverage
scenario.

Figure 8 provides a comparison of spatial accuracy for anthrax attacks. The strong
performance of the subset scanning methods compared to the circular spatial scan is due to
the elongated, noncircular regions (based on assumed, randomly generated wind direction
and speed) of affected zip codes produced by the BARD simulation. The performance of
“circles” is similar in the 100% and 50% coverage scenarios, suggesting that it is limited
by the geometry of the circular spatial scan.

Figure 8. Comparison of spatial accuracy (overlap coefficient) for multiple methods on simulated anthrax bio-
attacks, for 50% and 100% coverage scenarios, respectively. Neighborhood sizes from k = 5, . . . , 75 are provided
within each panel.
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400 S. SPEAKMAN ET AL.

Figure 9. Comparison of detection power (averaged over all neighborhood sizes) for multiple methods on
simulated bio-attacks, for 50% and 100% coverage scenarios. Soft proximity constraint strengths from h =
0, . . . , 7 are provided within each panel. The black marker represents the h that maximized average detection
power for a separate training dataset. Note different y-axis scales.

Figure 9 demonstrates PFSS’s robustness to the choice of the proximity constraint
strength, h, by comparing average detection power of the anthrax bio-attacks (averaged
over neighborhood sizes k = 5, 10, . . . , 75) for varying h = 0, . . . , 7. For this analysis,
the 82 BARD-simulated anthrax attacks were split into separate training and test groups.
The black cross represents the value of h that maximized average detection power for the
training dataset.

In both coverage scenarios, we note the strong performance of PFSS as compared to
FSS for all values of h = 0, . . . , 7. This increased performance is a combination of the
robustness of PFSS to choice of h and the sensitivity of FSS to poorly chosen neighborhood
size, k. The circular scan is also robust to neighborhood size k and therefore performs
comparably to PFSS in the 100% coverage scenario. We note that near-optimal values of h
can be learned from a small number of labeled training examples. The learned h = 1.8 and
h = 1.7, for 50% and 100% scenarios, respectively, out-performed circles and FSS when
evaluated on held out test data.

8. CONCLUSIONS

This work introduced and formalized the additive linear-time subset scanning (ALTSS)
property, which allows exact and efficient optimization of penalized likelihood ratio scan
statistics over all subsets of data elements. We demonstrated that this property holds for
expectation-based scan statistics from the exponential family, thus providing flexibility
to incorporate other parametric scan statistic models such as the Gaussian, exponential,
binomial, and negative binomial scans. We note that this result is more general than Neill
(2012) in two aspects: the incorporation of penalty terms and the extension to the entire
exponential family (rather than the “separable” exponential family defined by Neill).

We incorporated this property into a penalized fast subset scan (PFSS) framework, which
enables the scan statistics to be efficiently optimized including additional, element-specific
penalty terms. Our critical insight is that the scoring function F (S) may be written as an
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additive function, summing over all data elements si ∈ S, when conditioning on the relative
risk q. This form provides two advantages. First, additional terms may be added to the
statistic to represent the prior log-odds of each data element being included, while main-
taining the additive structure of the scoring function. Second, optimization of either the
unpenalized scan statistic F (S | q) or the penalized scan statistic Fpen(S | q) over subsets
can be performed very efficiently, by including all and only those records making a positive
contribution to the score. Moreover, we demonstrated that only a small (linear rather than
exponential) number of values of the relative risk q must be considered, making the com-
putation of the highest scoring penalized subset S∗ = arg maxS maxq>1 Fpen(S | q) com-
putationally tractable. Unpenalized likelihood ratio statistics from the exponential family
can be optimized while only considering N subsets; penalized likelihood ratio statistics
can be optimized while considering at most 2N subsets, and finding the exact solution is
guaranteed in both cases. If the alternative hypothesis H1(S) is true for some subset S, the
highest scoring penalized subset can be interpreted as a MAP estimate of the true affected
subset.

As a straightforward application of our PFSS framework, we developed “soft” constraints
on spatial proximity (i.e., for a given local neighborhood under consideration, locations
closer to the center are assumed to be more likely to have been affected). We then applied
PFSS with soft proximity constraints to the task of detecting anthrax bio-attacks, comparing
its detection power and spatial accuracy to the current state of the art. PFSS demonstrated
strong results, outperforming the traditional, circular spatial scan statistic (Kulldorff 1997),
and the FSS (Neill 2012) in both detection power and spatial accuracy. Compared to fast
subset scan (FSS), PFSS showed remarkable robustness to selection of the neighborhood
size k, and this robustness extended even to low density outbreaks designed to challenge
the use of soft proximity constraints.

Our PFSS framework with soft constraints introduced a parameter h for the strength of
the spatial proximity constraint. The extreme cases of h = 0 and h→∞ correspond to the
unpenalized FSS and a fixed-radius circular scan, respectively. In this work, we showed that
near-optimal values of h can be learned from a small number of labeled training examples
(∼40). Additionally, PFSS demonstrated robustness to the choice of h, outperforming FSS
for all values h = 0, . . . , 7.

Soft proximity constraints serve as one example of many different applications that can
take advantage of including additional prior information in the subset scanning framework.
Another is to incorporate “temporal consistency constraints,” which use prior information
based on records that were included in the highest scoring subset at a previous time step, to
increase detection power for dynamic patterns where the affected subset changes over time.
Incorporating these constraints that penalize abrupt, unrealistic changes can be applied to
detecting a contaminant spreading in a water distribution system (Speakman, Zhang, and
Neill 2013).

APPENDIX: MINIMIZING ERROR WITH �i

We show that if we can correctly estimate the prior probability pi for location si to be in the
affected subset Strue, then setting �i = log( pi

1−pi ) (the prior log-odds) minimizes the total probability
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of error, including both Type I errors (including location si in the detected subset S∗ when si /∈ Strue)
and Type II errors (failing to include a location si ∈ Strue in the detected subset S∗).

Assume si ∈ Strue with probability pi , and that we observe xi ∼ Dist1 if si ∈ Strue and xi ∼ Dist0 if
si �∈ Strue. Moreover, assume that λi and �i are the log-likelihood ratio and penalty for loca-
tion si , respectively, where λi = log(p(xi | Dist1)/p(xi | Dist0)) and �i can be any real num-
ber. The (unconstrained) penalized subset scan will include si in the detected subset S∗ if and
only if λi +�i > 0. We now show that the total probability of error is minimized for �i = log
( pi

1−pi ):

Pr(error |�i) = Pr(si ∈ S∗ | si �∈ Strue,�i)Pr(si �∈ Strue)

+ Pr(si �∈ S∗ | si ∈ Strue,�i)Pr(si ∈ Strue)

= (1− pi)Pr((λi +�i > 0) | si �∈ Strue)+ piPr((λi +�i < 0) | si ∈ Strue)

= (1− pi)(1− CDF0(−�i))+ piCDF1(−�i),

where the cumulative density functions CDF0 and CDF1 are defined as follows:

CDFj (z) =
∫ z

−∞
p(λi = k | xi ∼ Distj ) dk, j ∈ {0, 1},

and we also define the corresponding probability density functions PDF0 and PDF1:

PDFj (z) = p(λi = z | xi ∼ Distj ), j ∈ {0, 1}.

Furthermore, we note the key property PDF1(z)/PDF0(z) = exp(z), since PDF1(z) and
PDF0(z) are, respectively, sums of p(xi) for all xi with corresponding λi = z, and for each such
xi , we know that p(xi | Dist1)/p(xi | Dist0) = exp(z).

We proceed by setting the first derivative of Pr(error) equal to 0:

dPr(error)

d�i

= (1− pi)PDF0(−�i)− piPDF1(−�i)

= (1− pi − pi exp(−�i))PDF0(−�i) = 0.

This expression has a single zero at �i = log (pi/(1− pi)). The second derivative at this point is

− (1− pi − pi exp(−�i)) dPDF0(−�i)+ pi exp(−�i)PDF0(−�i)

=
(

1

1+ exp(�i)

)
PDF0(−�i) ≥ 0,

so this is the value of �i that minimizes the probability of error.
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