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Abstract

We present a revision of Maynard Smith’s evolutionary stability criteria for populations which are very large (though technically

finite) and of unknown size. We call this the large population ESS, as distinct from Maynard Smith’s infinite population ESS and

Schaffer’s finite population ESS. Building on Schaffer’s finite population model, we define the large population ESS as a strategy

which cannot be invaded by any finite number of mutants, as long as the population size is sufficiently large. The large population

ESS is not equivalent to the infinite population ESS: we give examples of games in which a large population ESS exists but an

infinite population ESS does not, and vice versa. Our main contribution is a simple set of two criteria for a large population ESS,

which are similar (but not identical) to those originally proposed by Maynard Smith for infinite populations.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The concept of an evolutionarily stable strategy
(ESS), proposed by John Maynard Smith (Maynard
Smith and Price, 1973; Maynard Smith, 1974, 1982) has
been perhaps more influential than any other notion in
the field of evolutionary games. As has been established
by a number of papers in the 1970s and 1980s, the
original mathematical definition of an ESS (Maynard
Smith and Price, 1973, p. 17) is only correct under the
assumption of an infinite population size. Riley (1979)
and Vickery (1987) show that a finite population that is
ESS in the Maynard Smith sense can be invaded by a
mutant (see also Maynard Smith’s (1988) response to
Vickery and Vickery’s (1988) reply). These results led to
the concept of a finite population ESS (Schaffer, 1988). In
a finite population, the probability that a mutant plays
against another mutant is smaller than the probability that
a player of the common strategy plays against a mutant,
since the mutant player cannot face itself in a contest.
Thus the ESS for a finite population game will not be
identical to the ESS for an infinite population game, and
this is the source of Riley’s and Vickery’s results.
Current work that applies the ESS concept typically

falls into two camps: either the population size is small
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and known (in which case, Schaffer’s ESS concept is
used) or the population size is large and unknown. In the
latter, more common case, the population is assumed to
be infinite, and Maynard Smith’s ESS concept is used.
The general rationale behind this approximation is that,
if the population is sufficiently large, Schaffer’s correction
will not affect the results of the evolutionary process.
This is a common argument in the evolutionary games
literature: for example, see the discussion of the well-
known Kandori–Mailath–Rob model of stochastic
stability (Kandori et al., 1993) in the textbook of
Fudenberg and Levine (1998, p. 142). Fudenberg and
Levine note that the KMR model assumes a finite
population of N players, and they argue that if players
only play against the others in the population (and do
not play against themselves), the distribution of
opponents’ play should depend on which strategy the
player is currently using. However, they go on to claim
that, ‘‘for reasonably large N this should not matter.’’
This assumption, that Schaffer’s correction can be

neglected for finite but large enough populations, is
suggested by his results on the hawk–dove game
(Schaffer, 1988). Schaffer calculates the infinite popula-
tion and finite population ESS strategies for the hawk–
dove game, and finds that ‘‘in finite populations the ESS
is to play hawk more often than in infinite populations,
and that the smaller the population the greater the
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probability of playing hawk.’’ However, he notes that as
the population size increases, the difference between the
infinite and finite population mixed strategy ESS goes to
zero.
In cases where the finite population ESS converges in

the limit to the infinite population ESS, as in the hawk–
dove game, it makes sense to treat a large and unknown
population as infinite: in these cases, we can use
Maynard Smith’s criteria to test for evolutionary
stability. However, there exist some games in which a
strategy that meets Maynard Smith’s criteria is not
evolutionarily stable for any finite population, no matter
how large; in these cases, Schaffer’s correction cannot
be neglected. However, Schaffer’s criteria cannot be
applied when the population size is unknown, and thus
neither concept applies to a population that is very large
(though technically finite) and of unknown size. This
requires a revision of Maynard Smith’s ESS criteria for
large but finite populations, which we call the large

population ESS.
Table 1

X is an infinite population ESS, but not a large population ESS

vs. X vs. A

X 2 0

A 2 �1

Table 2

X is an infinite population ESS, but not a large population ESS

vs. X vs. A1 vs. A2

X 2 0 0

A1 2 �1 1000

A2 2 1000 �1
2. The model

We consider a monomorphic population of a strategy
X ; which is visited periodically by a small number of
mutants who play an alternative strategy AaX : We
assume that the population is well mixed: the payoff to a
given player is his average payoff against all other
players in the population. If the payoff to players of the
common strategy X is higher than the payoff to players
of the alternative strategy A; then X resists invasion by
A; and the mutant strain cannot invade the population.
If X can resist invasion by any alternative strategy, we
say that X is evolutionarily stable.
For any given strategies P and Q; we define wðP j QÞ

as the payoff to a player of strategy P against a player of
strategy Q: We can then define an evolutionarily stable
strategy in terms of four quantities: the self-payoff
wðX j X Þ of the common strategy, the self-payoff wðA j AÞ
of the alternative strategy, the payoff wðX j AÞ of the
common strategy against the alternative strategy, and
the payoff wðA j X Þ of the alternative strategy against the
common strategy.
The invasion criteria of Maynard Smith (Maynard

Smith and Price, 1973; Maynard Smith, 1974, 1982)
state that strategy X is evolutionarily stable if and only
if, for any alternative strategy AaX :

1. wðA j X ÞpwðX j X Þ:
2. If wðA j X Þ ¼ wðX j X Þ; then wðX j AÞ > wðA j AÞ:

We call a strategy meeting these criteria an infinite

population ESS. This is because Maynard Smith’s
criteria assume a continuum of individuals playing each
strategy: thus an individual of type X and an individual
of type A play against an identical mixture of strategies
X and A: Moreover, they assume that the population
share of the alternative strategy A is approximately zero.
Thus the payoff to each strategy is approximately its
payoff against the common strategy X ; and the payoff
against the alternative strategy A is only relevant in the
case of a tie.
When populations are large but finite, however, the

Maynard Smith criteria may fail to give the correct
results. Consider a population of N individuals, N � 1
of type X and a single mutant of type A: Let us
assume that wðA j X Þ ¼ wðX j X Þ ¼ 2; wðX j AÞ ¼ 0; and
wðA j AÞ ¼ �1; as shown in Table 1. Clearly, X is an
infinite population ESS as defined above. However, for
a finite population, the single mutant player interacts
only with players of strategy X ; and thus its average
payoff is 2. Players of strategy X ; on the other hand,
interact both with players of X and the mutant, resulting
in a payoff of slightly less than 2. For any finite N; no
matter how large, the payoff to the mutant is higher
than the payoff to the common strategy, and we would
expect the mutant to survive and prosper. In fact, we
find that the ‘‘break-even point’’ in this game is three
mutants: if there are less than three mutants, the
mutants have higher payoffs, and if there are more than
three mutants, players of the common strategy have
higher payoffs. Hence we would expect a small number
of mutants to survive in the population. It is true that as
the population size goes to infinity, the population share
of mutants in the polymorphic population goes to zero;
nevertheless, the important fact is that the mutants
survive. This can make a huge difference if the combined
population is then invaded by a third strategy. Consider
the interaction given in Table 2, where alternative
strategies A1 and A2 achieve high payoffs against each
other. An invasion of X by either alternative strategy
would result in a few mutants surviving; then invasion
by the other alternative strategy would result in the
population being taken over by a mixture of the two
alternative strategies, and X would die off. For the
interaction given in Tables 3 and 4, on the other hand, X

can resist invasion by either alternative strategy, and
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Table 3

X is ESS, for infinite or large populations

vs. X vs. A

X 2 4

A 2 3

Table 4

X is ESS, for infinite or large populations

vs. X vs. A1 vs. A2

X 2 4 4

A1 2 3 1000

A2 2 1000 3
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thus cannot be taken over by a sequence of isolated
mutations.
When is a strategy evolutionarily stable in large but

finite populations? To answer this question, we turn to
the finite population model of Schaffer (1988). Let us
assume a population of N individuals, of which M are
mutants playing the alternative strategy A; and N � M

play the common strategy X : Recall that an individual
plays against all other individuals in the population, not
including himself: a mutant player faces M � 1 mutants
and N � M common players, while a common player
faces M mutants and N � M � 1 common players. Thus
the average payoff to the common strategy X ; given a
population of N players with M mutants, is

pX ðN;MÞ ¼
N � M � 1

N � 1
wðX j X Þ þ

M

N � 1
wðX j AÞ:

The average payoff to the alternative strategy A; given a
population of N players with M mutants, is

pAðN;MÞ ¼
N � M

N � 1
wðA j X Þ þ

M � 1

N � 1
wðA j AÞ:

As in the models of Maynard Smith and Schaffer, we
assume a deterministic population dynamics, neglecting
the effects of random drift due to demographic
stochasticity. Thus the proportion of mutants in the
combined population is assumed to increase when pA >
pX ; decrease when pAopX ; and remain constant (with
possible small fluctuations) when pA ¼ pX : (In real,
finite populations, random drift may cause the propor-
tion of an inferior strategy to increase with some small
but non-zero probability. For very small populations,
this may even allow the inferior strategy to take over the
population; however, this effect can be neglected when
the population is large.)
A strategy is evolutionarily stable, for large but finite

populations, if it cannot be invaded by any finite
number of mutants, as long as the population size is
sufficiently large. Formally:
Definition. Strategy X is a large population ESS if, for
every alternative strategy AaX and every positive
integer M0; there exists a population threshold

N0ðM0;AÞ such that, for all population sizes NXN0

and for all positive integers MpM0; we have
pAðN ;MÞopX ðN;MÞ:

In other words, for a given number of mutants M0

and alternative strategy A; if the population size is large
enough ðNXN0Þ; then the mutants’ payoff is always less
than the payoff to the common strategy, and thus the
number of mutants M will decrease monotonically to
zero. Note that the population threshold N0 is allowed
to depend on the alternative strategy A; we can also
define the stronger notion of a ‘‘uniform large popula-
tion ESS’’ by requiring N0 to apply uniformly to all
AaX ; as follows:

Definition. Strategy X is a uniform large population ESS

if, for every positive integer M0; there exists a population

threshold N0ðM0Þ such that, for all alternative strategies
AaX ; for all population sizes NXN0; and for all
positive integers MpM0; we have pAðN;MÞopX ðN;MÞ:

Note that, if the strategy space is finite, the two
definitions are equivalent: we can set N0ðM0Þ ¼
maxA N0ðM0;AÞ: For an infinite strategy space, every
uniform large population ESS is a large population ESS,
but the converse does not necessarily hold.
Next we provide a simple set of two criteria for a

large population ESS, which are similar (but not identical)
to those originally proposed by Maynard Smith for
infinite populations. These are given by the following
proposition:

Proposition 2.1. A strategy X is a large population ESS

if and only if, for any alternative strategy AaX :
1.
 wðA j X ÞpwðX j X Þ:

2.
 If wðA j X Þ ¼ wðX j X Þ; then wðX j AÞXwðA j AÞ and

wðX j AÞ > wðA j X Þ:

Proof. We first compute the difference pX � pA: Sub-
tracting the two expressions given above (and multi-
plying by N � 1), we find that the payoff for the
common strategy is higher when ðN � M � 1Þ
ðwðX j X Þ � wðA j X ÞÞ þ ðM � 1ÞðwðX j AÞ � wðA j AÞÞ þ
wðX j AÞ � wðA j X Þ > 0: For a given alternative strategy
AaX ; there are three possibilities. If wðX j X Þ >
wðA j X Þ; we know that the inequality holds for all
sufficiently large N: If wðX j X ÞowðA j X Þ; the inequality
fails to hold for large N: Finally, if wðX j X Þ ¼ wðA j X Þ;
the inequality reduces to ðM � 1ÞðwðX j AÞ � wðA j AÞÞþ
wðX j AÞ � wðA j X Þ > 0: For this latter expression to be
true for all positive integers M ; we must have wðX j AÞ >
wðA j X Þ; and wðX j AÞXwðA j AÞ: &
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Table 5

X is a large population ESS, but not an infinite population ESS

vs. X vs. A

X 2 3

A 2 3

D.B. Neill / Journal of Theoretical Biology 227 (2004) 397–401400
For a large population ESS to be a uniform large
population ESS, one additional condition must be met:
for all alternative strategies AaX such that wðX j X Þ >
wðA j X Þ; the quantities ½wðA j X Þ � wðX j AÞ�=½wðX j X Þ�
wðA j X Þ� and ½wðA j AÞ � wðX j AÞ�=½wðX j X Þ � wðA j X Þ�
must be uniformly bounded. As above, this is true for
any finite strategy space, but is not necessarily true when
the strategy space is infinite.
3. Discussion

We now consider the two cases in which the
evolutionary dynamics differ for the infinite population
and large population models. The first case occurs when
wðA j X Þ ¼ wðX j X Þ and wðX j AÞ > wðA j AÞ: For an
infinite population, the Maynard Smith criteria state
that X resists invasion by A: if mutants of type A

attempt to invade a monomorphic population of
strategy X ; then the population will converge (on a
population dynamical time-scale) to a state in which no
mutants survive. For a large but finite population, there
are two possibilities: either wðX j AÞ > wðA j X Þ; in which
case X resists invasion by A (as for an infinite
population), or wðX j AÞpwðA j X Þ; in which case a
finite number of mutants can survive. As discussed
above, Table 1 gives an example where some mutants
survive, and Table 3 gives an example where the mutants
are wiped out. To compute the number of surviving
mutants, we again consider the quantities pX ðN;MÞ and
pAðN;MÞ given above. If wðA j X Þ ¼ wðX j X Þ; we find
that the payoffs to the common and alternative
strategies are equal when MwðX j AÞ � ðM � 1ÞwðA j AÞ�
wðA j X Þ ¼ 0: Solving for M; we find that the number of
mutants at the break-even point is:

M ¼
wðA j X Þ � wðA j AÞ
wðX j AÞ � wðA j AÞ

:

Thus M ¼ 3 for the example in Table 1. It is possible, of
course, that a small number of mutants will be wiped
out eventually by random drift; however, we assume as
above that the amount of drift is negligible as compared
to the selective pressures favoring the mutants’ survival.
The second case where the large population dynamics

differ from the infinite population dynamics occurs
when wðA j X Þ ¼ wðX j X Þ and wðX j AÞ ¼ wðA j AÞ; as in
Table 5. For an infinite population, A and X obtain
exactly the same payoff: hence there is no evolutionary
pressure, and the proportions of A and X either remain
constant, or fluctuate due to random drift. For a large
but finite population, the common strategy X will
have higher payoffs if wðX j AÞ > wðA j X Þ; in this case
it will resist the invasion of the alternative strategy A:
If wðX j AÞowðA j X Þ; on the other hand, strategy A

will have higher payoffs, allowing it to invade and
eventually to replace the common strategy. Finally, if
wðX j AÞ ¼ wðA j X Þ; the payoffs are identical, so (as in
the infinite population case) there is no evolutionary
pressure. It is interesting to note that, in situations
where there is no evolutionary pressure in infinite
populations, the large population results show that the
strategy with lower self-payoff wins. This is again
because a strategy cannot play against itself in an
evolutionary interaction: the strategy with the lower self-
payoff plays more of the high-payoff opponents than
the strategy with the higher self-payoff, and thus
achieves a higher average score.
We also briefly examine three other stability concepts:

neutral stability (Maynard Smith, 1982), collective
stability (Axelrod, 1984), and Boyd and Lorberbaum’s
(1987) stability. All of these concepts assume an infinite
population size, as in Maynard Smith’s infinite popula-
tion ESS. A strategy X is a collectively stable strategy
(CSS) if Maynard Smith’s first criterion is satisfied. A
strategy X is a neutrally stable strategy (NSS) if
Maynard Smith’s first criterion is satisfied, and his
second criterion is satisfied with weak (instead of strict)
inequality. Both of these concepts are weaker than the
large population and infinite population ESS: every
large population or infinite population ESS is an NSS,
and every NSS is also a CSS. Boyd and Lorberbaum
require a stable strategy to satisfy Maynard Smith’s first
criterion, but also a second criterion that, if wðA j X Þ ¼
wðX j X Þ then wðX j Y ÞXwðA j Y Þ for all strategies Y :
This allows a strategy to resist a simultaneous invasion
by mutants of different types, which is a stronger
criterion than resisting isolated invasion by a single type
of mutant. For example, strategy X in Table 4 would
not be stable in the Boyd and Lorberbaum sense.
However, Boyd and Lorberbaum do not require a
strategy to be robust against evolutionary drift, and thus
a strategy that is stable in the Boyd and Lorberbaum
sense could be displaced by another strategy with
identical payoffs.
Thus the large population ESS differs from Maynard

Smith’s infinite population ESS in two ways: in certain
cases, strategies are less resistant to weakly dominated
strategies, and more resistant to evolutionary drift.
Because the two sets of criteria differ, and because
evolutionary biologists are typically interested in models
where the population is finite (though it may be
arbitrarily large), we claim that the large population
ESS is a better test of evolutionary stability in these
interactions. Unlike the original Schaffer model (which
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these results extend to the large population case), neither
the exact size of the population, nor the exact number of
mutants, need to be considered. Instead, we have
proposed two simple criteria (similar, but not identical
to those originally proposed by Maynard Smith for
infinite populations) under which a strategy is evolutio-
narily stable for large populations. We propose that
these criteria be used instead of Maynard Smith’s in
models where the population is technically finite but
arbitrarily large.
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