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ABSTRACT
We propose a new method for detecting patterns of anoma-
lies in categorical datasets. We assume that anomalies are
generated by some underlying process which affects only a
particular subset of the data. Our method consists of two
steps: we first use a “local anomaly detector” to identify in-
dividual records with anomalous attribute values, and then
detect patterns where the number of anomalous records is
higher than expected. Given the set of anomalies flagged
by the local anomaly detector, we search over all subsets of
the data defined by any set of fixed values of a subset of the
attributes, in order to detect self-similar patterns of anoma-
lies. We wish to detect any such subset of the test data
which displays a significant increase in anomalous activity
as compared to the normal behavior of the system (as indi-
cated by the training data). We perform significance testing
to determine if the number of anomalies in any subset of
the test data is significantly higher than expected, and pro-
pose an efficient algorithm to perform this test over all such
subsets of the data. We show that this algorithm is able to
accurately detect anomalous patterns in real-world hospital,
container shipping and network intrusion data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
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1. INTRODUCTION
We consider the problem of detecting patterns of anoma-

lies in large, multidimensional datasets. This problem has
received considerable attention, particularly in the fields of
network intrusion detection [14, 8, 6] and the monitoring of
public health data for disease outbreak detection [15, 13].
Anomalous pattern detection techniques can also be applied
in astrophysical discovery, where astronomers want to de-
tect new and interesting space objects, and in many other
application domains.

In general, anomalies can be defined as any observations
that are different from the normal behavior of the data.
However, rather than finding individually anomalous records
(which may be due to noise), we are interested in detecting
the emergence of new phenomena resulting in patterns of
anomalous observations that cannot be explained by a pre-
vious model. Here we focus on two application domains,
disease surveillance and customs monitoring. In the disease
surveillance task, we wish to detect causes such as epidemics
or bioterrorist attacks which give rise to patterns of unusual
emergency department records. In customs monitoring, we
are interested in detecting possible illegal activity, e.g. at-
tempts to import unwanted illegal or dangerous material
into the country. In each case, we assume that anomalies are
generated by some underlying process which creates records
with attribute values that are unexpected given the normal
behavior of the data. In addition, we assume that the un-
derlying process is constrained such that it only has access
to a fixed (but unknown) subset of the data. For example,
in customs monitoring, a smuggler might be operating only
from a fixed port of arrival, or might have access only to a
particular shipping line. But within that subset, the smug-
gler will try to hide their activities by making them appear
as random as possible. Similarly, in monitoring emergency
department visits, a bioterrorist might have access to only
a particular geographical location, or to only a particular
type of disease causing agent. Thus these activities give rise
to multiple anomalous records which share common values
in some subset of their attributes. In this work, we develop
a new detection method that can efficiently and accurately
detect such patterns.

Many traditional anomaly detection techniques look at
the data records individually, and try to determine whether
each record is anomalous with respect to the historical dis-
tribution of data. Here we consider two such techniques,
using a Bayesian Network likelihood model and a condi-
tional anomaly detection method [4] respectively. While
such methods of local anomaly detection can be used to de-
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tect individually anomalous records, they cannot take ad-
vantage of the fact that there are multiple anomalies from
the same source which have some similarity between them.
Nevertheless, these methods can be incorporated into our
proposed “anomaly pattern detector”, which uses the pres-
ence of many similar anomalous records (generated by a
common process) to improve our detection performance.

“What’s Strange About Recent Events”(WSARE) [16] is a
method designed to detect clusters of anomalies in the data.
WSARE operates under a different set of assumptions than
our proposed method: it tries to detect anomalies evidenced
by differences in the relative counts of records matching par-
ticular rules for the current and historical datasets. This is
not sufficient for our purposes, since in our case, the presence
of anomalies need not necessarily increase the total counts
in certain subsets of the data. Rather, we use the detec-
tion capability of a feature-based local anomaly detector,
and search for patterns by incorporating the output of such
a detector. Here, we are interested in detecting increased
incidence counts of anomalous records (records with unex-
pected attribute values, as determined by the local anomaly
detector) as compared to the total number of records in a
subset of the data. The detection of such patterns with many
anomalies matching certain rules indicates the presence of
anomalous processes.

To formalize our problem, we assume that we have a suf-
ficiently large training dataset which defines the normal be-
havior of the system. We typically have unlabeled training
data, in which we assume that no anomalies are present,
but our methods can tolerate the presence of a small per-
centage of anomalies in the training set. Our goal is to
detect the presence of patterns of anomalies in an unlabeled
test dataset, where each pattern corresponds to a fixed set of
attribute value(s). There might be single or multiple such
anomalous patterns present, possibly generated by several
distinct causes. We want to detect the anomalous records
generated by such patterns, while minimizing the false posi-
tive rate and avoiding detection of irrelevant anomalies due
to noise.

2. ANOMALY PATTERN DETECTION
Our proposed method can be thought of as generalizing

two lines of previous research: the use of standard anomaly
detection methods to detect individually anomalous records,
and the use of WSARE-2 [16] to detect anomalous clus-
ters of counts in categorical data. We generalize the former
method by integrating information from patterns of poten-
tially anomalous records. We extend WSARE by using the
information from a local anomaly detector and determin-
ing if any subset of the data has more anomalous records
than expected. This is distinct from the original formu-
lation of WSARE, which detects subsets with more total
records than expected and does not consider whether each
individual record is anomalous.

2.1 Local Anomaly Detection
In this work, we use two local anomaly detection methods

to score the records individually. Our method of pattern
detection uses the output of either of these algorithms to
search for patterns. We briefly describe both these methods
of local anomaly detection.

Bayesian Network Anomaly Detection. A Bayesian net-
work is a popular representation of a probability model over
the attributes for categorical data because of its parsimo-
nious use of parameters, and efficient learning and infer-
ence techniques. Bayes Nets have been used for detecting
anomalies in network intrusion detection [3, 17], detecting
malicious emails [5] and disease outbreak detection [15]. A
typical anomaly detection approach is to learn the struc-
ture and parameters of a Bayes Net using the training data,
compute the likelihood of each record in the test dataset
given the Bayes Net model, and report test records with
unusually low likelihoods as potential anomalies. For our
experiments, we used the optimal reinsertion algorithm [12]
to learn the structure, and then did a maximum likelihood
estimation of the network parameters. For testing a record,
we compute the likelihood of that record given the Bayesian
Network learned from the training data. A lower value of
the likelihood indicates that the record is more anomalous.
The log-likelihood value is used as the anomalousness score
of each record.

Conditional Anomaly Detection. In our previous work [4]
we described the conditional anomaly detection method of
detecting anomalies in categorical datasets. For any test
record t, and any two disjoint sets of attributes A and B, we

consider the ratio r(at, bt) = P (at,bt)
P (at)P (bt)

where at and bt are

the value combinations taken by A and B in t respectively.
The probability values are estimated from the corresponding
counts in the training dataset. An unusually low value of
this ratio suggests a strong negative dependence between
the occurrences of at and bt in the training data. When we
observe them together in the test record t, we can reasonably
say that it is anomalous. A low value of r(at, bt) also ensures
we have seen enough cases of at and bt in the training data
to support the hypothesis of negative dependence. A score
is then assigned to the record t based on all such r-values
corresponding to all possible pairs of attribute sets. The
score is defined as the maximum product of r-values over
all possible partitions of the attributes for record t. In our
experiments we use the parameter values k = 2 and α = 0.02
for the conditional method in most cases. Here, k is the
maximum set size of A or B. α is the threshold for the r-
values to be significant. For the KDD Cup 99 dataset (§3.3),
we use k = 1 since it has a larger number of attributes.

2.2 WSARE
The WSARE-2 method [16] searches over all possible one

or two component rules in the dataset. Each rule R can be
written as R : A = aj , where A is a subset of attributes and
aj is an assignment of attribute values. WSARE considers
only rules with one component (e.g. Country = Japan) or
two components (e.g. Country = Japan AND Shipper =
ShipCo). It determines whether the count of cases that
match the rule in the test dataset is significantly different
from the expected count determined by the training dataset.
The statistical significance of each rule is determined by us-
ing a Fisher’s exact test on the two by two table (Table
1), where C(R)test and C(R)train represent the numbers of
test records and training records corresponding to rule R,
and Ctest and Ctrain denote the total numbers of test and
training records respectively.

To account for multiple hypothesis testing, these p-values
are adjusted using a randomization test. In a later version of
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Test Train
Match R C(R)test C(R)train

Do not match R Ctest − C(R)test Ctrain − C(R)train

Table 1: 2 × 2 Contingency Table for WSARE

the algorithm (WSARE-3) [15], the authors consider deter-
mining the baseline using a Bayesian Network rather than
directly using the counts from the training dataset. We use
the algorithm WSARE-2 with up to two component rules
for comparing against our methods.

To understand the key difference between our current prob-
lem and that considered in WSARE, let us first look at what
we mean by an anomalous pattern. Here, there are two fac-
tors to consider. The first factor is that each individual
record is individually anomalous with respect to some nor-
mal behavior. The second factor is the pattern formed by
these anomalies (defined by some constraint of similarity be-
tween them) which signifies that the records are generated
by the same underlying anomalous process. WSARE does
not take the anomalousness of each individual record’s at-
tribute values into account, but instead counts the number
of records corresponding to a given rule and reports rules
for which these counts are anomalous. In our current work,
an anomalous process can generate a pattern of anomalous
records that are similar with respect to a particular subset
of the attributes, but which are anomalous due to unusual
values in any (potentially different) random set of attributes.
This definition of a pattern is particularly useful when we
have an adversarial process creating the anomalies. The ad-
versary might try to make the generated records look as
random as possible, but might be restricted to a particular
set of fixed values of some of the attributes. For example, in
customs monitoring, a smuggler wants to smuggle goods us-
ing a variety of methods to avoid detection, but they might
have access to only a particular port or shipping line. In
such a case, detecting increased incidence of suspicious ac-
tivity corresponding to that subset of the data can alert us
to the illegal activity.

2.3 Algorithm
To detect the presence of anomalies in this scenario, we

first make use of a local anomaly detector that can detect
individual anomalies in a dataset. Since anomalies are usu-
ally rare, any such detector may detect many false positives.
In order to successfully determine if a subset of the test data
has a concentration of true anomalies, we compare it to the
corresponding subset in the training data. If the number of
positives in the subset of the test data is significantly larger
than what is expected from the training data, it signals the
presence of true positives clustered in that subset. The out-
line of our anomaly pattern detection algorithm is given in
Figure 1.

While searching for patterns of anomalies, we retain the
concept of anomalousness of individual records. In Step 1
of our algorithm we score all the records of both the test
and training dataset using one of the local anomaly detec-
tion algorithms described in §2.1. In general, any anomaly
detector requires baseline or training examples which corre-

Figure 1: Anomaly Pattern Detection (APD) Al-
gorithm

Input Datasets: test dataset and training dataset

Parameters: PositiveRate, k, α

1. Use any local anomaly detector to score all the
records in test dataset and training dataset.

2. Fix a anomaly score threshold using the parame-
ter PositiveRate. Label all records in the test and
training datasets which are more anomalous than
the threshold to be anomalies.

3. For each possible rule R : A = aj , where aj is
any value combination of any subset of attributes
A containing up to k attributes:

(a) Compute the counts in the 2 × 2 contingency
table shown in Table 2. These correspond to
the number of records matching the rule R and
the number of positives detected in them for
both the training and test datasets.

(b) Use Fisher’s exact test to determine the p-
value of the alternate hypothesis that the
count C(R)+test (number of detected positives
in the test dataset that match the rule R) is
higher than what is expected under the inde-
pendence assumption (null hypothesis).

4. Output all patterns that have significantly higher
test case anomalies. Use FDR method (with pa-
rameter α) to determine the significant patterns.

spond to the normal behavior of the system. While scoring
the test records, the training dataset is used as the baseline.
To score the training records, we use a leave-one-out ap-
proach, where the entire training data excluding the current
record is used as the baseline. We then set a score threshold
(Step 2), and all records that are more anomalous than the
threshold are flagged as anomalies. The threshold score is
set such that a fixed proportion of the records in the training
dataset (PositiveRate) are marked as positives or anoma-
lies. For example, when PositiveRate = 0.1, 10% of the
records are flagged as positives in this step. We use these
“most anomalous records”to detect patterns in the data. We
would like to set the value of PositiveRate such that most of
the true anomalies in the test data are captured within the
top PositiveRate proportion of anomalous records. In the
case of the training dataset (which is assumed to contain no
true anomalies), the flagged anomalies can be thought of as
the false positives reported by the local anomaly detector.
We wish to compare this false positive rate to the number of
anomalies detected in subsets of the test data to determine
the presence of patterns of true anomalies.

In Step 3 we search over all possible rules of the form
R : A = aj . Here A denotes any subset of attributes of size
up to k and aj is the jth value combination of A. For exam-
ple, if A = {Country, Shipper}, aj can correspond to any
fixed combination of Country and Shipper Name. Each rule
R defines subsets of the test and training datasets respec-
tively, corresponding to the records that match the rule. For
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each rule R, we determine the number of records in the corre-
sponding test and training subsets of the data (C(R)test and
C(R)train) and the count of positives detected by the local
anomaly detector in those subsets (C(R)+test and C(R)+train).

Our null hypothesis is that the proportion of detected pos-
itives by the local anomaly detector will be the same in the
test and training datasets. When true positives are present
in the test dataset, the null hypothesis will not hold, since we
would expect to see a higher proportion of detected positives
in the affected subset of the data. To test these hypotheses
we use a one-sided Fisher’s Exact Test [7] (using Stirling’s
approximation to calculate the factorials) on the 2 × 2 ta-
ble (Table 2). We use a one-sided test since our alternate
hypothesis is that C(R)+test is higher than expected. This
gives us a p-value for each such rule tested.

Test Train

Positives C(R)+test C(R)+train

Negatives C(R)test − C(R)+test C(R)train − C(R)+train

Table 2: 2 × 2 Contingency Table for Anomaly Pat-
tern Detection

Since we are searching over all possible anomalous pat-
terns rather than considering isolated anomalies, we are per-
forming multiple hypothesis tests, increasing the expected
number of false positives proportional to the number of tests
performed. To compensate for multiple testing, we use the
False Discovery Rate (FDR) method [2], which guarantees
that the expected proportion of the number of false positives
will be no greater than α. It can be used to find a cutoff
threshold to determine which rules are significant. In our
experiments we use FDR with α = 0.9. We use a high value
of α because we want to compare the different methods over
a wide range of recall values. Using a lower value of α will
give us fewer false positives, but at the cost of a lower recall
rate. In real-world applications, we can use an appropriate
value of α based on our desired false discovery rate.

We note that our anomalous pattern detection algorithm
is similar to running WSARE on a dataset where each record
is augmented by a binary indicator attribute L, denoting the
output of the local anomaly detector. But it differs from
this augmented version of WSARE (WSARE-AUG) in the
following ways:

1. WSARE-AUG searches over all possible rules includ-
ing ones which are not related to the anomaly feature.
The rules we consider always include the feature L.

2. We perform a one-sided significance test since we are
interested only in increases in proportion of anomalies.

3. Our search over rules is different from WSARE-AUG.
We search only over rules of the form {L = 1}|R ({L =
1} conditioned on R), where the rule R can contain
up to k components. WSARE-AUG chooses the best
one component rule C0 and then finds the best two
component rule {C0, C1} where the rules C0 | C1 and
C1 | C0 are both determined to be significant.

In §4 we compare the anomaly detection performance of
our method of pattern detection to both WSARE and WSARE-
AUG.

Step 4 of our algorithm outputs the most anomalous pat-
terns found in Step 3. Additionally, for comparison to the
baseline method of the local anomaly detection that does
not consider patterns, we assign an anomalousness score for
each individual record R in the test data. The score of R is
set equal to the score assigned by the local anomaly detector
if it belongs to one of the detected patterns. The significant
patterns may cover only a small subset of the true anomalies
present, giving a low recall rate. To compare the algorithms
over the entire range of recall values, we append the rest of
the records to our list of detected anomalies. To score these
records we adjust the local anomaly detector score such that
they are less important than the records belonging to a pat-
tern, but retain the original ordering from the local anomaly
detector.

2.4 Computational Speedup
Since we consider all possible attribute sets up to a size k,

and all possible value combinations corresponding to these
sets, the total number of possible rules is O(nkak), where n is
the total number of attributes, and a is the maximum arity.
We can have a large number of such rules for large values of
n or a. k is usually set to 2 or 3 in our experiments. To be
able to efficiently search over all the rules, we employ several
computational speedup techniques as described below:

Using AD Trees for Computing Counts
The required counts (C(R)+test, C(R)+train, C(R)test, and
C(R)train) are conjunctive counting queries on the dataset,
and can be efficiently queried using an AD Tree [11]. The
AD Tree building algorithm scans the dataset once, and pre-
computes information needed to answer every possible query
in time independent of the number of records. The parame-
ter leaflist size can be adjusted to obtain a tradeoff between
the memory used and the query response time. We build
two separate AD-Trees for the training and test datasets re-
spectively. We append an extra Boolean attribute to each
record indicating whether it has been flagged by the local
anomaly detector as a positive. This attribute is used to
retrieve the counts for the positive cases.

Ignoring Rare Values
For computational efficiency we can set a lower bound min size,
on the size of the test subset (C(R)test) corresponding to
a rule R. This means we are only interested in patterns of
anomalies that affect subsets of the data larger than min size.
If C(R)test < min size, we then ignore the rule R. Predefin-
ing the value of min size can save us computational time
and memory, especially if some of the attributes have high
arity. Consider the jth value xj of the attribute X. If xj

occurs less than min size times in the test dataset, then it
is easy to see that any rule R containing xj will be ignored.
We call such values of the attributes which occur less than
min size times in the test dataset as rare values and all
other values are as common values. We can replace all the
rare values of each attribute by a generic rare value. While
considering the possible rules we ignore this generic rare
value for each attribute. This scheme of keeping only the
common values reduces the arity of each attribute and signif-
icantly reduces the memory required to build the AD Tree.
This also reduces the total number of rules that we need to
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consider and hence gives us a computational time saving as
well. In our experiments, we have set min size = 10.

Pruning the Search Space
Since anomalies are usually rare, we use another simple trick
to speed up computation. If a rule R corresponding to some
set of attribute values has no anomalies in the test data
(C(R)+test = 0), then all rules R′ which contain the same
set of attribute values (along with some other attribute val-
ues) will also have C(R′)+test = 0. Hence, once we find a
rule R that does not correspond to any anomalies in the
test dataset, we can prune away all the rules that are an
extension of R.

3. DATASETS
We evaluate the methods on the three datasets described

below.

3.1 PIERS Dataset
Our first dataset consists of records describing contain-

ers imported into the country from various ports in Asia.
Each record consists of 10 attributes. 7 of them are cat-
egorical: the container’s country of origin, departing and
arriving ports, shipping line, shipper name, vessel name and
the commodity being shipped. There are three real valued
attributes, the size, weight and value of the container. We
have categorized these to five discrete levels. Some of the
attributes such as the shipper name and commodity have
very high arity in the order of a few thousand.

Since there were no labeled anomalies in the original data,
we create synthetic anomalies by randomly altering attribute
values for a subset of the data. We first partition the dataset
into training and testing sets. We randomly choose 10,000
records from the data as a test set, and then choose 100,000
of the remaining records to form the training set. We modify
a random NumAnom records of the test set records to be
anomalous patterns, as described below.

Our goal is to identify patterns or groups of anomalies in
the data. A pattern is defined as a set of anomalous records
which belong to a particular subset of the data, character-
ized by one or more fixed values of the attribute(s). To
create such patterns in the dataset, we adopt the following
procedure:

CreatePattern

(Datatest, NumAnom, MinSetSize, PatternRate)

1. Initialize NumGenerated = 0.

2. Select a rule R : A = a where A is a set of up to k

attributes, and a is any combination of values of those
attributes, uniformly at random.

3. Select the set of records Data(R)test that match the
rule R in Datatest.

4. If Size(Data(R)test) < MinSetSize, goto Step 2 and
reselect a rule R.

5. Choose a random PatternRate fraction of records from
Data(R)test. For each record T which is selected (and
as long as NumGenerated < NumAnom):

(a) Choose an attribute Xrand uniformly at random.

(b) Draw a random value valx of attribute Xrand

from the marginal distribution of values of X in
Datatrain.

(c) Replace the value of Xrand in T by valx

(d) Update NumGenerated = NumGenerated + 1.

6. If NumGenerated < NumAnom then goto step 2 else
stop.

This algorithm creates anomalies in particular subsets of
the data corresponding to randomly chosen rules. We have
a restriction on the minimum size of the subset of data since
very small patterns are almost indistinguishable from ran-
domly chosen individual records. We set MinSetSize = 200
for all our experiments. Once we choose a suitable rule R, we
affect a fixed fraction (PatternRate) of them to be anoma-
lous. A high value of PatternRate would mean that a large
fraction of records corresponding to the rule R are anoma-
lous and make such patterns easier to detect by the pattern
detector. Each record in the pattern is anomalous in the
sense that it has an attribute value changed randomly. This
breaks the relationship of that attribute with the rest of the
attributes. Our goal here is to use the similarity pattern in
these anomalies to improve the performance of our detection
algorithm.

Anomalies are injected into this dataset using the method
described above. We consider one possible real world sce-
nario where we might see such anomalous patterns. A smug-
gler can try to smuggle in goods using various means, but
might have access to only a particular US port of arrival.
Hence even if he tries to avoid detection by hiding the smug-
gled containers randomly, the fact that an unusual number
of suspicious cases are seen at a particular port gives a strong
indication of illegal activity.

3.2 Emergency Department Dataset
This real-world dataset contains records of patients visit-

ing emergency departments (ED) from hospitals around Al-
legheny county in the year 2004. Each record consists of six
categorical attributes: the hospital id, prodrome, age decile,
home zip code and the chief complaint class. The dataset
is injected with simulated ED cases resembling an anthrax
release. The simulated cases of anthrax were produced by a
state of art simulator [9] that implements a realistic simula-
tion model of the effects of an airborne anthrax release on
the number and spatial distribution of respiratory ED cases.
We treat the first two days when the attack symptoms be-
gin to appear as the test data, thus evaluating our ability
to detect anthrax attacks within two days of the appearance
of symptoms. We train our model on the previous 90 days’
data.

3.3 KDD Cup 1999 Network Intrusion Detec-
tion Dataset

We have also evaluated AGD on the KDD Cup 1999 data
[1], which contains a wide variety of intrusions simulated in
a military network environment. Each record is a vector of
extracted feature values from a connection record obtained
from the raw network data. In total there are 41 features,
most of them taking real values. The real features were dis-
cretized to 5 levels. The goal of the KDD dataset was to
produce a good training set for learning methods that use
labeled data. Hence, in this case we have labeled anomalies
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Figure 2: PIERS dataset: Detection precision vs. re-
call for baseline methods and WSARE, with 95%
confidence intervals
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Figure 3: PIERS dataset: Performance comparison
between pattern detection and baseline, with 95%
confidence intervals, PatternRate = 0.1

(network attacks) and the proportion of attack instances to
normal ones is very large. To create more realistic data, we
have reduced the number of attack records to 1% of the test
dataset. We have run our algorithms on the 6 most common
types of attacks - apache2, guess password, mailbomb, nep-
tune, smurf and snmpguess. Correspondingly, we created
six different test sets containing 1% records of the particu-
lar attack type, and 99% normal records. We use rest of the
normal records for training our model.

4. RESULTS
We compare the performance of our Anomaly Pattern De-

tection (APD) method to the baseline method of just using
the local anomaly detector. We compare the performance of
both the baseline methods described in section 2.3, choos-
ing the better one to use as the base method for pattern
detection. We also compare the performance of the related
methods: WSARE and WSARE-AUG on these datasets.

The procedure for generating the test and train data and
injecting anomalous patterns is randomly repeated 50 to 100
times for each dataset. We run each algorithm on these
datasets in order to obtain 95% confidence intervals on the
performance measure. The evaluation criteria we use is the
ability of each algorithm to identify each individual anomaly
correctly. We plot the detection precision, i.e. the ratio of
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Figure 4: PIERS dataset: Performance com-
parison between pattern detection and baseline,
PatternRate = 0.2
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Figure 5: ED Dataset: Detection precision vs. recall
for baseline methods and APD

number of true positives to the total number of predicted
positives, against the detection rate, i.e. the proportion of
total true anomalies that are detected. A point on the plot
is obtained by setting a particular threshold score ScoreT

to flag anomalies. Any record having a score greater than
ScoreT is flagged as an anomaly. The corresponding pre-
cision and detection rate are then calculated. By varying
ScoreT we obtain the plot for the entire range of detection
rates. This threshold is varied independently for each of the
methods. Here, a higher curve denotes better performance,
since it corresponds to a higher detection precision for a
given detection rate.

Figures 2 and 3 gives the performance plots using the
PIERS dataset and anomaly patterns generated using
NumAnom = 100 and PatternRate = 0.1. This gives a
nominal detection precision of 0.01 if we randomly select
records. The parameter values used in the Anomaly Pattern
Detection algorithm are: PositiveRate = 0.1, k = 2 and
α = 0.9. All the plots also show the 95% confidence intervals
for the performances.

Figure 2 compares the performance of the two baseline
methods and WSARE on this dataset. We see that the
conditional method performs best. The Bayesian Network
method performs quite poorly in this case. Since our method
of pattern detection relies on the output of a baseline local
detection method, we choose the better performing method
for our experiments. Note that the detection precision of
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Figure 6: KDD Cup 99: guess password; Perfor-
mance comparison between pattern detection and
baseline

WSARE is almost the same as the nominal precision. This
shows that WSARE is unable to detect the kind of anomalies
that we consider here. This is not surprising since we do not
increase (or decrease) the count of any particular subset of
the data, which is what WSARE attempts to detect.

We ran WSARE-AUG (§2.3) on this dataset, augmenting
each record with the output from the local anomaly detector.
In all cases, the most interesting rule detected by WSARE-
AUG is that there is a larger proportion of anomalies in
the entire test dataset as compared to the training dataset.
Also, no other rules were reported containing the component
L = 1, where L is the augmented anomaly attribute. This
gives a degenerate result that all the anomalies detected by
the local anomaly generator are actually anomalies. So, in
effect we do not get any improvement in performance using
WSARE-AUG over the baseline methods. This same effect
is seen when WSARE-AUG is run on the other datasets.

Figure 3 compares the performance of our proposed anomaly
pattern detector (APD) with the baseline method of condi-
tional anomaly detection (§2.1) on the PIERS data, with
anomaly patterns generated using PatternRate = 0.1. In
this case the pattern detection algorithm uses the condi-
tional method as its local anomaly detector. Figure 4 shows
the performances when PatternRate = 0.2. We see that in
both these cases the pattern detection method performs sig-
nificantly better (with a significance level of α = 0.05) than
the baseline. And for the higher value of PatternRate we
see a greater improvement in performance as expected. We
also evaluated the performance of APD with the parameter
PositiveRate varying between 0.05 and 0.3. The detection
performance does not vary much with different values of the
parameter. In general, the value of this parameter can be
set based on our estimation of the proportion of anomalies
that might be present in the dataset.

Our goal in this work is to use the patterns formed by the
anomalies to detect each anomalous record more effectively
(with fewer false positives). However to give a better un-
derstanding of how well our algorithm can correctly identify
the rules that generated the anomaly clusters in the data, we
perform an alternate evaluation. Since our datasets either
have a large number of attributes, or the attributes have
very high arity, the number of possible rules is very large.
Also, due to the strong dependence between different vari-
ables, multiple rules can correspond to very similar subsets
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Figure 7: KDD Cup 99: smurf; Performance com-
parison between pattern detection and baseline

Table 3: Normalized area under the curves for KDD
Cup 99 Dataset comparing Baseline and AGD, with
95% CI

Attack Type Baseline APD

apache2 0.9636 ± 0.0057 0.9668 ± 0.0053
guess passwd 0.7316 ± 0.0133 0.7792 ± 0.0145

mailbomb 0.1782 ± 0.0104 0.2243 ± 0.014
neptune 0.9938 ± 0.003 0.9938 ± 0.003

smurf 0.6758 ± 0.0125 0.7662 ± 0.0131
snmpguess 0.9616 ± 0.0059 0.9773 ± 0.0045

of the data. Hence instead of trying to retrieve the exact
rules, we measure the similarity between the rules detected
by APD and those which were used to generate the anoma-
lies as described in §3.1. We use an intutive similarity index
to calculate the overlap between these two sets of rules. Let
d1 and d2 denote the subsets of the data that matches the
two sets of rules. Then the Jaccard index [10] is defined as
Size(d1∩d2)
Size(d1∪d2)

. A higher value of this index denotes a greater

degree of similarity between the rule sets. For the experi-
ment corresponding to figure 3 the average Jaccard index of
APD is 0.27. We can compare this with the average Jaccard
index of 0.15 for the null rule that matches all records in the
test set. We achieve an improvement by a factor of about 2
in this case.

Figure 5 shows the comparison of APD with the base-
line methods and WSARE on the emergency department
dataset. Note that the WSARE algorithm was originally
developed to detect anomalies in this context. However,
in Wong et.al. [16] the evaluation criteria used was to de-
tect the presence of increased counts of patients rather than
to identify the particular patients showing anomalous be-
havior. We see that the baseline method of using Bayes
Net and WSARE perform very similarly. The conditional
method performs better than both these methods in the re-
call range [0,0.5]. The conditional method does not assign
a score to every record, but only scores the records that it
flags as anomalies. Hence, it does not extend beyond recall
rate 0.5 as the remaining anomalies are not detected by the
method. We see that APD gives a significant improvement
in performance within the same range. The curve for APD
also includes the rest of the records (ones not flagged by the
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conditional method) appended in some random order. This
extends the curve beyond recall rate 0.5, but decreases the
precision rate below the other methods in that range.

Figures 6 and 7 gives the comparison of APD with the con-
ditional method for attack types guess password and smurf
in the KDD Cup 99 dataset. We have summarized the re-
sults for the 6 attack types in table 3. It gives the normalized
area under the curves for the baseline conditional method
and APD for the recall range [0.1,0.9]. We see that APD
gives a significant improvement in the detection precision
for the attack types guess password, mailbomb, smurf and
snmpguess. The remaining two attack types apache2 and
neptune are very easy to detect by the conditional method
and APD does not give a significant increase of precision.

5. CONCLUSION AND FUTURE WORK
We propose a new method to search for patterns of anoma-

lies in large multidimensional categorical datasets. Our method
utilizes the output from a local anomaly detector to locate
subsets of the data that might be affected. We consider two
such local anomaly detectors, the Bayesian Network likeli-
hood method, and conditional anomaly detection method.
We also note the similarity and differences of our proposed
method of anomaly pattern detection (APD) to a rule based
anomaly detector WSARE. We evaluate the performances of
these algorithms on three real world datasets with synthetic
and real anomalies. We show that APD performs signifi-
cantly better at detecting anomalies over the other methods.

We also note that the pattern search in APD is orthogonal
to the local anomaly detection method. We can use any
such local anomaly detector which is more appropriate for
a given domain. Finally, while we believe that the chosen
BARD outbreak simulation is a highly realistic model of
anthrax release, we also plan to evaluate our methods on
real, known disease outbreaks in the future.

6. REFERENCES
[1] The third international knowledge discovery and data

mining tools competition, kdd cup 1999. In The Fifth

International Conference on Knowledge Discovery and

Data Mining, 1999.

[2] Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical

Society Series B, 57:289–300, 1995.

[3] A. Bronstein, J. Das, M. Duro, R. Friedrich,
G. Kleyner, M. Mueller, S. Singhal, and I. Cohen.
Bayesian networks for detecting anomalies in
internet-based services. In Intl. Symposium on

Integrated Network Mgmt., 2001.

[4] K. Das and J. Schneider. Detecting anomalous records
in categorical datasets. In Proc. ACM Knowledge

Discovery and Data Mining, Aug 2007.

[5] S. Dong-Her, C. Hsiu-Sen, C. Chun-Yuan, and B. Lin.
Internet security: malicious e-mails detection and
protection. Industrial Mgmt. and Data Sys., 104:613 –
623, Sep 2004.

[6] E. Eskin. Anomaly detection over noisy data using
learned probability distributions. In Proc. 17th

International Conf. on Machine Learning, pages
255–262. Morgan Kaufmann, San Francisco, CA, 2000.

[7] P. Good. Permutation Tests - A Practical Guide to

Resampling Methods for Testing Hypotheses.

Springer-Verlag, 2nd edition edition, 2000.

[8] P. Helman and J. Bhangoo. A statistically base
system for prioritizing information exploration under
uncertainty. In IEEE Transactions on Systems, Man

and Cybernetics, Part A: Systems and Humans,
volume 27(4), pages 449–466, 1997.

[9] W. R. Hogan, G. F. Cooper, G. L. Wallstrom, M. M.
Wagner, and J.-M. Depinay. The bayesian aerosol
release detector: An algorithm for detecting and
characterizing outbreaks caused by an atmospheric
release of bacillus anthracis. Statistics in Medicine,
26:5225–5252, Sep 2007.

[10] P. Jaccard. The distribution of flora in the alpine
zone. The New Phytologist, 11(2):37–50, 1912.

[11] A. Moore and M. S. Lee. Cached sufficient statistics
for efficient machine learning with large datasets.
Journal of Artificial Intelligence Research, 8:67–91,
March 1998.

[12] A. Moore and W.-K. Wong. Optimal reinsertion: A
new search operator for accelerated and more accurate
bayesian network structure learning. In 20th Intl.

Conf. on Machine Learning, pages 552–559, Aug 2003.

[13] D. B. Neill, A. W. Moore, F. Pereira, and T. Mitchell.
Detecting significant multidimensional spatial clusters.
In Advances in Neural Information Processing

Systems, volume 17, pages 869–876, 2005.

[14] C. Warrender, S. Forrest, and B. A. Pearlmutter.
Detecting intrusions using system calls: Alternative
data models. In IEEE Symposium on Security and

Privacy, pages 133–145, 1999.

[15] W. K. Wong, A. Moore, G. Cooper, and M. Wagner.
Bayesian network anomaly pattern detection for
disease outbreaks. In Twentieth Intl. Conf. on

Machine Learning, pages 808–815, Aug 2003.

[16] W. K. Wong, A. W. Moore, G. Cooper, and
M. Wagner. Rule-based anomaly pattern detection for
detecting disease outbreaks. In Proceedings of the 18th

National Conference on Artificial Intelligence. MIT
Press, 2002.

[17] N. Ye and M. Xu. Probabilistic networks with
undirected links for anomaly detection. In IEEE

Systems, Man, and Cybernetics Information Assurance

and Security Workshop, pages 175–179, June 2000.

176


