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Abstract 

We introduce Generalized Activity Monitoring 

Operating Characteristic (G-AMOC) curves, a new 

framework for evaluation of outbreak detection 

systems. G-AMOC curves provide a new approach to 

evaluating and improving the timeliness of disease 

outbreak detection by taking the user’s response 

protocol into account and considering when the user 

will initiate an investigation in response to the 

system’s alerts. The standard AMOC curve is a 

special case of G-AMOC curves that assumes a 

trivial response protocol (initiating a new and 

separate investigation in response to each alert 

signal). Practical application of a surveillance 

system is often improved, however, by using more 

elaborate response protocols, such as grouping 

alerts or ignoring isolated signals. We present results 

of experiments demonstrating that we can use G-

AMOC curves as 1) a descriptive tool, to provide a 

more accurate comparison of systems than the 

standard AMOC curve, and 2) as a prescriptive tool, 

to choose appropriate response protocols for a 

detection system, and thus improve its performance.  

Introduction 

Activity Monitoring Operating Characteristic 

(AMOC) curves1 are commonly used to measure the 

performance of event surveillance systems, evaluating 

the tradeoff between timeliness of detection and the 

false positive rate. These two measures are important 

when evaluating the performance of systems designed 

for the automatic detection of disease outbreaks. 

Public health officials must detect an emerging 

outbreak as early as possible, thus enabling a rapid 

response to reduce the spread and impact of disease, 

while keeping the number of false alerts (due to noise 

in the data or non-outbreak events) to a minimum.  

An AMOC curve is a graphical display of the 

relationship between detection time (e.g., mean days 

to detection) and false positive rate (e.g., number of 

false alerts per year).  Figure 1 shows example 

AMOC curves for three detection methods.  In this 

example, Method 1 outperforms Methods 2 and 3, 
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achieving lower mean days to detection for the entire 

range of false positives considered. Method 2 

outperforms Method 3 for low false alert rates (less 

than 6 per year) but performs worse for higher false 

alert rates.  
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Figure 1. Example AMOC curves for three methods. 

To construct an AMOC curve, let us assume that the 

detection system derives a real-valued signal st 

(which we call a score) for each day of data t, and 

produces an alert (notifying the user of a potential 

event to be investigated) whenever st exceeds some 

threshold Z. A lower threshold value will cause the 

system to produce more frequent alerts, increasing the 

false positive rate, but will also typically reduce the 

time to detect a true event. We assume that the 

background data contains no true events worthy of an 

alert, and any alerts produced by the system are 

assumed to be false positives.  Thus we compute the 

false positive rate for a given alert threshold Z as the 

proportion of background days with st > Z.  For a 

given threshold Z, we compute the number of days 

needed to detect each simulated event by injecting 

that event into the background data, computing the 

score st for each day of the event’s duration, and 

determining the first day when st > Z.  If st ≤ Z for the 

entire duration of the event, we treat that event as 

requiring D + P days to detect, where D is the event 

duration and P ≥ 0 is an optional penalty for failure to 

detect an event. We then average over all simulated 
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events to compute the average number of days to 

detection for the given alert threshold.  Each alert 

threshold Z defines a point (x, y) on the AMOC curve, 

where x is the false positive rate and y is the mean 

days to detection. The curve is produced by varying Z 

over a range of false positive rates that might be 

acceptable to a public health user. 

VUTROCS2 are related to AMOC curves. These 

curves are 3 dimensional with sensitivity, specificity, 

and mean day to detection plotted. Another related 

method3 involves plotting on the y axis the time 

between an alert and when practitioners are expected 

to detect a given outbreak on their own.  

Generalizing the AMOC curve 

While the standard AMOC curve is a useful tool for 

evaluating event detection systems, it does not 

account for the way in which public health officials 

use a disease surveillance system when they are 

investigating a possible disease outbreak based on the 

system's outputs. Typically public health officials will 

follow some (implicit or explicit) response protocol 

in which they look at certain features of the time 

series of system outputs s1…st (where t is the current 

time step), and only investigate an alert if certain 

criteria are met.  For example, they may only 

investigate if the output signal is high for two 

consecutive days, or if the score is high and has 

increased from the previous day.  
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Figure 2. One possible way isolated jumps in scores 

could occur when there is no outbreak. 

As an example where the standard AMOC does not 

present an adequate picture of detection performance, 

consider the case in which the background data has 

several highly anomalous scores (e.g., due to data 

entry errors), and the system produces alerts on two 

consecutive days in response to each anomaly (Figure 

2).  For example, a space-time scan statistic4 might 

produce an alert for each day that the score falls 

within its temporal window.  The standard AMOC 

curve would count these alerts as six distinct false 

positives.  However, most public health practitioners, 

having investigated the first alert and concluded that 

there is no real outbreak, would ignore the second 
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alert. Thus only three investigations would be 

initiated in response to these incorrect alerts. In such 

a case, standard AMOC curves do not provide a fair 

evaluation of the detection system because they 

overstate the number of meaningful false positives.   
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Figure 3. An outbreak starts on about the 45
th

 day. 

A second example is when an outbreak detection 

system produces many isolated (single day) alerts 

corresponding to noise in the background data, 

whereas a true outbreak produces sustained (multiple 

day) alerts (Figure 3).  If a public health user chooses 

to investigate each of the isolated alerts, the system 

will produce a large number of false positives, and 

the standard AMOC curve correctly reports a high 

false positive rate for the given alert threshold.  

However, public health officials, based on their 

experience using a surveillance system, may ignore 

isolated signals and wait for a sustained signal before 

initiating an investigation. For example, Shaffer et al.5 

defined an alert as at least two consecutive days of a 

score exceeding a threshold. In this case, the 

combination of the system and user response protocol 

is able to eliminate the false positives while 

successfully detecting the true outbreak. If we used 

this protocol, none of the isolated spikes in Figure 3 

would be considered an alert, and an investigation 

would only be initiated several days into the true 

outbreak. Again the AMOC curve does not accurately 

depict the system’s performance in practice. 

Thus a system that performs poorly according to a 

standard AMOC curve may actually be more useful in 

day-to-day practice, and an evaluation method that 

directly accounts for user response is warranted.   

Our solution is to assume that users follow a simple 

response protocol in which they compute some 

function f(s1…st) based on the most recent t signals 

s1…st, where st represents the current day’s signal and 

s1 represents the signal t-1 days earlier.  Typically, the 

function f returns a real number, and the user initiates 

an investigation when the value of f exceeds some 

threshold value Z.  In this case, we then compute the 

false positive rate for a given alert threshold Z to be 

the proportion of background (non-outbreak) days in 

which f(s1…st) > Z, that is, the fraction of days where 
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an investigation was initiated in response to false 

positive alerts.  Similarly, the time to detect a given 

outbreak for a given alert threshold Z is measured by 

finding the first outbreak day t such that f(s1…st) > Z, 

that is, the first outbreak day where an investigation 

was initiated in response to the system’s alerts.  We 

determine a curve by varying the threshold Z and 

computing the false positive rate and average days to 

detection for each threshold value. We call this graph 

a generalized AMOC (G-AMOC) curve.  

Some simple examples of response protocols and 

corresponding response functions follow. We note 

that these examples are not meant to be exhaustive, 

and many other response protocols are possible: 

Example 1: “Initiate an investigation if the score 

exceeds threshold Z.”  This is the response protocol 

represented by the standard AMOC curve, which only 

takes the current day’s score into account.  This 

corresponds to the function f(s1…st) = st, and our 

criterion for an investigation is f  > Z.  

Example 2: “Initiate an investigation only if the score 

exceeds threshold Z for k straight days.”  This 

corresponds to the function f(s1…st) = min(st-k+1…st),  

and our criterion for an investigation is f  > Z. 

Example 3: “Initiate an investigation if the score 

exceeds threshold Z and the score has not exceeded 

threshold Z for the past k days.” This corresponds to 

the function f(s1…st) = (f1, f2), where f1 = st and f2 = 

max(st-k…st-1). Our criterion for an investigation is f1 

> Z and f2 ≤ Z.    

These examples, although not exhaustive of possible 

response protocols, demonstrate that we can use G-

AMOC curves to evaluate detection performance of a 

system in real-world scenarios where the user must 

choose whether or not to investigate each alert, 

assuming a variety of non-trivial, but realistic, 

response protocols. Thus, one use of generalized 

AMOC curves is as a descriptive tool to evaluate the 

performance of a detection method, or to compare the 

performance of multiple methods.  A second use is as 

a prescriptive tool to compare several different 

response protocols (represented by different functions 

f) for a given surveillance system, in order to suggest 

an appropriate protocol which enables timely 

detection with few false positives. We present 

experiments illustrating both these potential benefits. 

Experiments 

Example 2 showed that we can use G-AMOC curves 

to evaluate the performance of a system when an 
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investigation is not initiated until a score has 

exceeded a threshold for several consecutive days. 

Next we present the results of experiments showing 

how we can use G-AMOC curves which assume these 

simple, but non-trivial, response protocols as 1) a 

descriptive tool, to provide a more accurate 

comparison of two systems than that obtained only by 

showing a standard AMOC curve, and 2) a 

prescriptive tool, to choose an appropriate response 

protocol for a system by optimizing the number of 

days we should require a threshold be exceeded 

before initiating an investigation.  

Three Systems Involved: In these experiments, we 

investigated the performance of three systems when 

detecting simulated outbreaks that occurred in small 

spatial subregions of a monitored region. All the 

methods perform spatial event surveillance. That is, 

they individually monitor both small and large 

subregions of a large region.  

The first system is a frequentist method for spatial 

cluster detection called the spatial scan statistic6, 

which was implemented in the SaTScan software 

package7. This system investigates whether there is a 

cluster of occurrences of some event of interest in any 

subregion. For example, it may look for clusters of 

patients visiting the emergency department (ED) with 

respiratory symptoms. The system finds the subregion 

that maximizes a Poisson likelihood ratio statistic.  

The second system is the Bayesian spatial scan 

statistic (BSS)8. The Bayesian spatial scan statistic is 

a Bayesian method for spatial cluster detection, which 

allows us to incorporate prior information and to 

calculate the posterior probability of each spatial 

subregion. Furthermore, this statistic assumes a 

hierarchical Bayesian model in which the disease 

rates are drawn from Gamma distributions. 

The third system is the outbreak detection system 

PCS9, which was derived from a system called PC10. 

PC is a disease outbreak detection system that uses a 

Bayesian network to model the relationships among 

the events of interest and those observed. PC 

monitors each individual patient case in the 

population. PC is a multiple-disease outbreak 

detection system, which monitors simultaneously 12 

outbreak diseases and their variations. PCS is a 

spatial extension of PC which monitors spatial 

subregions of a larger region. 

We configured SaTScan and BSS to look for a cluster 

of individuals arriving in the ED with one of the three 

chief complaints that are the best indicators of the 

outbreak disease based on the probabilities in PCS.  
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We compared the performance of PCS and BSS when 

an investigation was initiated each day the score 

exceeded a threshold (as in a standard AMOC curve), 

and when we waited to initiate an investigation until a 

threshold was exceeded on two consecutive days. We 

investigated the performance of SaTScan when an 

investigation was initiated as soon as the score 

exceeded a threshold once, and when we waited for 

two consecutive alerts, three consecutive alerts, and 

four consecutive alerts. The probability of an 

outbreak was used as the score for PCS and BSS, and 

the likelihood ratio of the most likely subregion was 

used as the score for SaTScan.  

Datasets: We used real ED admission data that we 

collected from Allegheny County, Pennsylvania in the 

year 2004 as the background data. This data set 

contains all 110 zip codes in Allegheny County. The 

average daily number of ED visits included in this 

date set is about 580. We added simulated outbreak 

cases to this background data to create semi-synthetic 

outbreaks. The outbreaks were semi-synthetic 

because the background data is real and the outbreak 

data is synthetic. Influenza and Cryptosporidium 

outbreak cases were simulated. The observed data for 

each outbreak consisted of chief complaints presented 

by patients in the ED. For each disease, we generated 

240 outbreaks with varying durations (60 outbreaks 

each of 30, 40, 50, and 60 days duration). 

We developed the outbreaks by injecting simulated 

outbreak cases into small subregions of Allegheny 

County. This county, which covers 730 square miles, 

was modeled using a 1616 ×  grid. Each grid element 

is one cell. A zip code was mapped to a cell if the zip 

code's centroid was in the cell. The outbreaks were 

simulated to occur in zip codes mapped to rectangles 

that are 2 cells by 1 cell, 2 cells by 2 cells, and 3 cells 

by 2 cells. There were 80 outbreaks with each shape.  

To control the severity of the outbreaks, we 

determined the number of daily injected cases using 

the standard deviation 
cellσ  of the number of real 

background daily ED visits in each cell in the injected 

subregion. We simulated outbreaks by setting the 

average daily number of injected ED visits in each 

outbreak cell to 
cellσ×2 . We then computed the total 

number 
celltot  of injected ED visits during the 

duration dur of the outbreak to be 
celldur σ2× . 

We assumed that half of the injected ED visits 

occurred during the first half of the outbreak, and that 

∆  of them occurred on day one of the outbreak, ∆2  

occurred on day two of the outbreak, and so on. 
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Therefore, to determine the value of ∆  we solved 

( ) .2/2/2 celltotdur =∆++∆+∆ L   

To determine the chief complaint of each injected 

case, we generated the chief complaint at random 

using the probability distribution of the chief 

complaints given the outbreak disease (influenza or 

Cryptosporidium), according to the PCS model. 

Results: Figure 4 presents G-AMOC curves showing 

the performance of PCS and BSS when detecting 

influenza outbreaks. The curve labeled “1 Day” 

concerns the case where an investigation was initiated 

after the score exceeded the threshold once, and the 

curve labeled “2 Days” concerns the case where an 

investigation was initiated after the score exceeded 

the threshold on two consecutive days.  
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Figure 4. G-AMOC curves showing the performance 

of PCS and BSS when detecting influenza outbreaks.      

We see from these curves that if we only compared 

PCS and BSS using standard AMOC curves (1 Day), 

BSS would have compared most unfavorably to PCS, 

particularly for low false alert rates. However, the 2-

Day curves indicate that, by waiting for two alerts, 

BSS exhibits better performance relative to its own 1-

Day performance, and also that its performance 

relative to PCS is improved. G-AMOC curves are 

only as meaningful as the protocols that are used to 

generate them. Nonetheless, this experiment shows 

that we can obtain a more insightful comparison of 

alternative systems by evaluating which system 

performs best under different response protocols. 

Figure 5 presents G-AMOC curves showing the 

performance of SaTScan when detecting both 

influenza and Cryptosporidium outbreaks. These 

curves indicate that we obtain better performance for 

2 Days than for 1 Day for all false alert rates in the 

case of influenza and for small false alert rates in the 

case of Cryptosporidium. Based on this analysis, in 
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an outbreak-detection setting we should wait for two 

consecutive alerts before initiating an investigation 

for influenza outbreaks, regardless of the tolerated 

false alert rate.  If a very low false alert rate is 

desired, we should also wait for two alerts in the case 

of Cryptosporidium outbreaks. Using only an AMOC 

curve, we would not learn that a two-day wait is best. 
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Figure 5. G-AMOC curves showing the performance 

of SaTScan when detecting outbreaks. 

Discussion 

We introduced a framework for evaluation of 

detection systems called Generalized Activity 

Monitoring Operating Characteristic (G-AMOC) 

curves. A G-AMOC curve, which is a generalization 

of the AMOC curve, takes the user’s response 

protocol into account, assuming that the user applies 

some function f(s1…st) based on the current day’s 

score st and past scores s1…st-1 and initiates an 

investigation when the value of f meets some 

criterion. Typically, the criterion for investigation is 

that f exceeds some threshold Z, and the G-AMOC 

curve is generated by varying Z over an acceptable 

range of false positive rates.  A standard AMOC 

curve is a special case of a G-AMOC curve assuming 

the response protocol function f(s1…st) = st. 
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We showed the results of several experiments 

illustrating the usefulness of G-AMOC curves. Using 

G-AMOC curves as a descriptive tool, we compared 

the systems BSS and PCS assuming several different 

response protocols. Using G-AMOC curves as a 

prescriptive tool, we compared several response 

protocols for SaTScan, and found that its 

performance is best when we wait for two consecutive 

alerts before initiating an investigation. 
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