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In applied fields, practitioners hoping to apply causal structure learning or causal orientation algorithms
face an important question: which independence test is appropriate for my data? In the case of real-valued
iid data, linear dependencies, and Gaussian error terms, partial correlation is sufficient. But once any of
these assumptions is modified, the situation becomes more complex. Kernel-based tests of independence
have gained popularity to deal with nonlinear dependencies in recent years, but testing for conditional
independence remains a challenging problem. We highlight the important issue of non-iid observations:
when data are observed in space, time, or on a network, “nearby” observations are likely to be similar.
This fact biases estimates of dependence between variables. Inspired by the success of Gaussian process
regression for handling non-iid observations in a wide variety of areas and by the usefulness of the Hilbert-
Schmidt Independence Criterion (HSIC), a kernel-based independence test, we propose a simple framework
to address all of these issues: first, use Gaussian process regression to control for certain variables and to
obtain residuals. Second, use HSIC to test for independence. We illustrate this on two classic datasets, one
spatial, the other temporal, that are usually treated as iid. We show how properly accounting for spatial and
temporal variation can lead to more reasonable causal graphs. We also show how highly structured data,
like images and text, can be used in a causal inference framework using a novel structured input/output
Gaussian process formulation. We demonstrate this idea on a dataset of translated sentences, trying to
predict the source language.
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1. INTRODUCTION

It is common for observational data to violate the typical assumption of independent
and identically distributed (iid) observations. For instance, data about user behav-
ior usually has a temporal structure. Environmental measurements often have both
temporal and spatial structure. This structure poses a particular problem when infer-
ring dependence between random variables. As a motivating example, consider two
independently generated autoregressive time series AR(1) on random variables X and
Y according to the model

xt = 0.9 · xt−1 + εx,t and yt = 0.8 · yt−1 + εy,t where εx,t, εy,t ∼ N (0, 1).

That is, X and Y are independent time series, each of which is corrupted at each step
by adding normally distributed iid random variables. Despite the fact that X and Y
are independent, the Pearson correlation between X and Y may be large in magni-
tude due to the underlying autocorrelation structure of each time series, as shown in
Figure 1. Whereas Fisher’s z-transformation can be used to derive the distribution of
the Pearson correlation statistic under linear independence, this assumes iid observa-
tions. But in the case of X and Y , our observations are neither independent nor identi-
cally distributed. The general guidance in the time series literature is to fit an appropri-
ate autoregressive model to the data and to obtain residuals from this model [Box et al.
2008]. The intuition is that this pre-whitening should yield residuals that are iid, after
which independence testing proceeds as usual. We formalize this notion in this article.

Many algorithmic approaches to causal inference rely on statistical tests of indepen-
dence between variables. The most popular default methods are the Fisher z-score,
Pearson correlation (and partial correlation) [Pearson 1983], and, more recently, the
Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al. 2008]. More generally,
the entire framework of graphical models for causal inference [Pearl 2009] relies cru-
cially on assumptions about d-separation in graphs, and testing these assumptions
with observational data requires applying a valid conditional independence test.

As in the case just described, each of these tests is prone to spuriously reporting large
correlations when used on non-iid data due to the underlying autocorrelation structure.
Furthermore, causal inference tools such as the PC algorithm [Spirtes et al. 2001] rely
on conditional independence tests, asking whether X ⊥⊥ Y |Z. It is not clear a priori what
effect non-iid data will have in this case. If the true model is that X ⊥⊥ Y |Z, underlying
autocorrelation affecting both X and Y might lead us to believe that X�⊥⊥Y |Z.

Example 1.1. Consider the graphical model here: It illustrates the problem of con-
founding due to non-iid data. T represents time. Shaded nodes X, Y , and Z are observed,
and T may be either observed or unobserved.

The true causal relationship is that X ⊥⊥ Y |Z. However, if T is unobserved, it acts as a
latent confounding variable, meaning that a spurious edge may be inferred between X
and Y (i.e., a conditional independence test rejects the hypothesis X ⊥⊥ Y |Z). Once T
is observed and controlled for, a conditional independence test will correctly conclude
that X ⊥⊥ Y |Z.

We are not the first to point out that every scientific observation was generated
at some specific point in time [Cressie and Wikle 2011]. But, in most cases, this
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Fig. 1. Pairs of time series processes were generated 10,000 times, with n = 100 observations for each.
Each time, the Pearson correlation between the two processes was calculated. When both pairs were white
noise (i.e. iid ∼ N (0, 1)), 95% of the correlations were between −0.2 and 0.2. But when the two pairs were
independently generated AR(1) processes, with xt = 0.9xt−1 + εx,t and yt = 0.8yt−1 + εy,t, only 60% of the
correlations were between −0.2 and 0.2. This is an example of the way that temporal autocorrelation can
bias an independence test (in this case, linear independence tested with Pearson correlation) that assumes
iid data: Many more correlations are significant than we would expect by chance. A simple correction is to
first pre-whiten xt and yt by fitting an AR(1) model and obtaining residuals.

information is discarded for convenience. In Section 5, we consider a spatial and a
temporal dataset that are usually analyzed as if the data were iid. We perform tests
(Moran’s I for spatial data and partial autocorrelation for time series data [Moran
1950]) that conclusively reject the hypothesis that the observations are iid, and we
show how causal inference algorithms yield more reasonable results after controlling
for the underlying spatial and temporal autocorrelation. Our framework also opens up
the possibility of causal inference with structured data, and we develop a novel ap-
proach to Gaussian process (GP) regression and independence testing that we apply to
textual data to determine which language is a translation of another for pairs of texts.

We propose a simple framework for using GP regression to reduce questions about
conditional independence with non-iid data to questions about unconditional indepen-
dence with iid data, which can be answered with HSIC. Mechanically, our approach
is similar to that taken in recent papers on bivariate causal orientation [Peters et al.
2013], in which it is termed Regression with Subsequent Independence Test (RESIT),
but the motivation is different. The most similar approach to ours is the conditional
independence tests proposed by Moneta et al. [2011], which are specifically designed for
time series data modeled by a Vector Autoregression (VAR) model and thus not directly
applicable to, for example, spatial data. Insofar as our method combines kernel-based
independence tests with the PC algorithm, it is similar to the Kernel PC algorithm
proposed by Tillman et al. [2009], but our conditional independence tests are different.
The strategy we propose is straightforward, generally applicable wherever GPs can
be used, and it works for both pre-whitening non-iid data and for testing conditional
independence.

2. CONTRIBUTIONS

2.1. Approach

The centerpiece of the approach is to use regression to remove dependence on space,
time, or a set of conditioning variables. We assume that we have random variables
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(X, Y, Z), observed at locations S (in time, space, or on a network). Conditional inde-
pendence testing then proceeds in the following three steps:

(1) We first use separate GP regressions of X|S, Y |S and Z|S to obtain residuals

rx = x − Ê[x|s] and ry = y − Ê[y|s] and rz = z − Ê[z|s], (1)

thus pre-whitening each variable and eliminating its dependence on S.
(2) Next, we again use GP regression to obtain residuals

εxz = rx − Ê[rx|rz] and εyz = ry − Ê[ry|rz] (2)

from regressing both rx and ry on rz separately.
(3) Finally, we use HSIC to test for independence:

εxz ⊥⊥ εyz. (3)

At a mechanical level, in each step we use GP regression to obtain residuals for which
we have controlled for variation—in the case of the dependence structure of the data, we
are controlling for, say, temporal variation. In the case of conditional independence, we
are controlling for the variation due to variable Z.

Strategies like these are standard practice in statistical modeling. In econometrics,
this approach is justified by the Frisch-Waugh-Lovell theorem [Frisch and Waugh 1933]
(which was originally stated in a time series context), which proves that in the case
of linear regression, partial correlations can be calculated by finding the correlations
between residuals. In the spatial statistics and time series literature, pre-whitening by
fitting models and obtaining residuals, removing trends, and taking first differences are
all standard approaches [Box et al. 2008]. However, to our knowledge, a full formulation
of this strategy, combining a nonparametric regression and independence test, has not
been stated explicitly before. Moreover, beyond the case of linear models with Gaussian
noise, the conditions under which it holds are not known. In Section 4.1, we state precise
conditions under which our test is valid.

We believe that our method can serve as a default template when testing for con-
ditional independence with non-iid data. It is equally useful as a simple method for
testing for conditional independence even when observations are iid, in which case
the pre-whitening step can be skipped. We highlight a few reasons for relying on GP
regression for pre-whitening and conditioning rather than using parametric tests or
relying solely on kernel-based tests:

(1) GPs provide a principled Bayesian approach. Yet, for regression, their convenient
analytic form means that hyperparameters can be learned much more efficiently
than in many other fully Bayesian models since we can integrate out additive
noise. This provides considerable computational savings and increased numerical
accuracy.

(2) A variety of packages already exist to fit GP regression [Rasmussen and Nickisch
2010; Kalaitzis et al. 2013; Vanhatalo et al. 2013; Karatzoglou et al. 2004], and these
perform inference using either optimization methods, grid search, or sampling
(MCMC) strategies.1

(3) In the case of time series and especially spatial data, the GP framework is a long-
standing, proven method, typically referred to as “kriging” in geostatistics [Salka-
uskas 1982]. In applied fields where it has been used, practitioners are adept at de-
signing appropriate covariance functions (Mercer kernels) adapted to their problem
domains. For instance, the Matérn kernel is a popular choice. With spatiotemporal

1See also http://www.gaussianprocess.org/#code for more details.
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data, much recent work has focused on designing classes of sophisticated nonsepa-
rable and nonstationary covariance functions for capturing complex dependencies
[Gneiting et al. 2007]. These covariance functions could be directly imported into
the kernel-based statistical tests, but their use requires model-checking and di-
agnostics. Recent work suggests that complicated time series dynamics can be
automatically fit through combinations of covariances [Wilson and Adams 2013;
Duvenaud et al. 2013].

(4) By design, GPs allow for easy graphical model-checking: Diagnostic plots can be
inspected to check for autocorrelation and overfitting.

(5) Our new GP formulation for structured inputs and outputs, as introduced in
Section 4.4, opens up the possibility of conditional independence and causal in-
ference with structured data such as text, images, and anything else on which a
Mercer kernel can be defined.

(6) In the case of real-valued data, our formulation allows for testing conditional in-
dependence without first discretizing the conditioning set. This is useful because
discretization is fraught with information loss—we may lose the relevant time scale
or we might even introduce dependence due to the quantization level inherent in
binning.

2.2. Related Work

We are aware of only one general test [Zhang et al. 2008] for unconditional indepen-
dence with non-iid data. It requires precisely specifying the dependence structure of
the data as a graphical model and then decomposing this model into cliques, exploit-
ing the connection between the exponential family of distributions and kernels over
graphical models. The analysis is by no means simple—for instance, it has not been
extended to a lattice structure; this is unfortunate because assuming that points are
on a lattice is a basic starting point in the spatial statistics literature.

In the case of conditional independence, several tests have been proposed, including
a test based on characteristic functions [Su and White 2007], the Normalized Con-
ditional Cross-Covariance Operator (NOCCO) [Fukumizu et al. 2007], Kernel-based
Conditional Independence (KCI) [Zhang et al. 2011], a scale-invariant measure [Reddi
and Póczos 2013], a scalable method called Conditional Correlation Independence (CCI)
[Ramsey 2014], and a permutation-based conditional independence test [Doran et al.
2014]. However, these tests will all be biased for non-iid data, just like the unconditional
tests. Although CCI does not address the non-iid case, for conditional independence, it
takes an approach with a similar flavor to our method and makes similar asymptotic
claims. However, CCI is based on a finite basis expansion, so consistency only holds in
the limit as the number of basis functions goes to infinity along with the number of
samples, whereas we use a consistent nonparametric regression method, so consistency
holds in the large-sample limit.

A few works focus specifically on the time series domain, but it is not clear if they
can be generalized to spatial or continuous/partially observed time series data. Moneta
et al. [2011] proposed a conditional independence test, appropriate for time series
data that can be modeled as a VAR process, based on calculating divergence between
density estimates using smoothing kernels. Besserve et al. [2013] proposed a powerful
kernel cross-spectral density operator for characterizing independence between time
series and Chwialkowski and Gretton [2014] explored the behavior of HSIC for random
processes (e.g., time series data), showing a new consistent estimate of the p-value for
non-iid data, but neither of these works address the conditional independence case.

Even with iid data, these tests have not found widespread application. Closed-form
distributions under the null are not available, except in the cases of KCI and the test
in Su and White [2007], so permutation testing is required. Valid permutation testing
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Fig. 2. Three draws from a GP prior with mean 0 and Gaussian RBF covariance function.

of X ⊥⊥ Y |Z must preserve the marginal structure X ⊥⊥ Z and Y ⊥⊥ Z. Assuming that
Z is categorical, for each value of Z, one can consider permuting X. But when Z is
real-valued, discretization is necessary first. Clustering is a common approach, as in
Tillman et al. [2009]. By contrast, our regression-based approach naturally handles
categorical, real-valued, and even structured (image or text) data.

3. BACKGROUND

3.1. Gaussian Processes

A GP is a stochastic process over an index set X . It is entirely defined by a mean
function μ : X → R and a covariance function k : X × X → R. These two functions are
chosen such as to jointly define a normal distribution whenever we draw f |X from a
GP(μ, k) on a finite set of locations X := {x1, . . . xn}. More specifically, we have

f |X ∼ N (μ(X), k(X, X)) where μ(X)i = μ(xi) and [K(X, X)]i j = k(xi, xj). (4)

By its very construction this means that μ(X) is an m dimensional vector, and k(X, X) ∈
Rd×d is a positive semidefinite matrix. In other words, k generates symmetric matrices
with nonnegative eigenvalues.

Note that this does not introduce a function over X. In fact, although there are some
kernels leading to smooth processes [Wahba 1990], this is in general not the case. In
particular, quite often the realization f (x) is nonsmooth whereas its prior is smooth. A
well-known example is the Brownian Bridge.

Note that there is a subtle difference between functions and function values in the
construction of a GP. For any infinite-dimensional GP (i.e., where the rank of k(X, X) is
unbounded), it is only possible to evaluate the GP pointwise. The technical challenge is
that distributions over infinite-dimensional objects are nontrivial to define. Evaluating
a GP on a finite number of locations sidesteps the entire problem.

As an illustration, consider a GP with mean function μ = 0 and Gaussian Radial
Basis Function (RBF) kernel k(xi, xj) = e−‖xi−xj‖2

. These parameters give a GP from
which we can draw a realization. Since we want to know its value for a range of
locations, we draw f for a grid of points. By construction, they are drawn from a
multivariate Gaussian distribution with mean μ = 0 and covariance K.

Three different draws are shown in Figure 2. In a Bayesian framework, these should
be thought of as draws from the prior distribution over joint values f (x) before see-
ing any data. How do we update our prior given observations Z = (X, Y )? We start
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Fig. 3. Draws from a Gaussian Process posterior with Gaussian RBF kernel after observations at
{(−1, 1), (0, 0), (1, 1)}. Left: Noise-free observations. Right: Noisy observations with σ 2 = 0.2. Notice the
difference in terms of uncertainty at the locations of measurement and the relative similarity otherwise.

by specifying the joint distribution over both observed outputs Y and unobserved
outputs Y ∗: [

Y Y ∗ ] ∼ N (μ(	x), K),

where we can calculate K(xi, xj) for any pair of x’s, observed or unobserved; that is:

K =
[

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

]
.

Since we’ve observed (X, Y ), we can find the conditional distribution using the proper-
ties of multivariate Gaussian distributions (see, e.g., Rasmussen and Williams [2006]):

Y ∗|Y ∼ N (K(X∗, X)K(X, X)−1Y, K(X∗, X∗) − K(X∗, X)K(X, X)−1K(X, X∗))

We give an illustration in Figure 3, where the observations (−1, 1), (0, 0), (1, 1) are
shown in black circles and 10 posterior function draws f ∗ are plotted. Notice that there
is no uncertainty at the observed points.

In some cases, like modeling computer simulations, this noise-free behavior might
be desirable, but for real data generated by nature we need to include an extra noise
term. If we believe our noise is iid, we can use the following covariance function:

k(xi, xj) = e−‖xi−xj‖2 + σ 2δi, j .

What does this extra variance σ 2 (called the “nugget” in geostatistics) do? It only
appears when i = j, meaning that the diagonal of the covariance matrix has entries
1 + σ 2 instead of 1. If we use the same K as before, we have:

Y ∗|Y ∼ N (μ̄, K̄) (5)

where μ̄ = K(X∗, X)(K(X, X) + σ 2 I)−1Y

K̄ = K(X∗, X∗) − K(X∗, X)(K(X, X) + σ 2 I)−1K(X, X∗).

Here, K̄ is the well-known Schur complement of the joint covariance matrix over X and
X′. Note that the noise term σ 2 is only used for observed data Y . If we use this prior, we
can draw 10 posterior functions as before. In Figure 3 (right), we plotted these function
draws. Notice that there is now some uncertainty, controlled by the parameter σ 2, at
the observed points: Even if we were to observe y|x at the same location repeatedly, we
would have no assurance that the observations would be identical.
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3.2. Hilbert-Schmidt Independence Criterion

Given observations from a joint distribution P(X, Y ), the HSIC [Gretton et al. 2005,
2008] is a statistical test for the null hypothesis of independence: X ⊥⊥ Y . It uses kernel
embeddings of probability distributions to compare the joint distribution P(X, Y ) to the
product of the marginal distributions P(X)P(Y ). After specifying kernels k(x, x′) with
Hilbert space HX and �(y, y′) with Hilbert space HY , HSIC maximizes a kernelized
covariance or, equivalently, the distance between the mean embedding of the joint
distribution in Hilbert space and the product of the mean embeddings of the marginal
distributions [Smola et al. 2007]:

sup
‖ f ‖,‖g‖≤1

Ex,y[ f (X)g(Y )] − Ex[ f (X)]Ey[g(Y )].

For general f, g, this expression is 0 if and only if P(X, Y ) = P(X)P(Y ), which is
equivalent to X ⊥⊥ Y .

The test statistic that maximizes this expression if f ∈ HX and g ∈ HY is given by

HSIC = ∥∥Ex,y
[
k(x, ·)�(y, ·)] − Ex

[
k(x, ·)Ey�(y, ·)]∥∥2

.

For so-called characteristic kernels [Sriperumbudur et al. 2010], such as the RBF
kernel, this statistic is 0 if and only if P(X, Y ) = P(X)P(Y ). An estimator can be
derived:

ĤSIC = 1
n2

∑
i, j

k(xi, xj)�(yi, yj) − 2
n3

∑
i, j,q

k(xi, xj), �(yi, yq) + 1
n4

∑
i, j,q,r

k(xi, xj)�(yq, yr).

This estimator can be written compactly in terms of Gram matrices K and L:

ĤSIC = 1
n2 tr(KHLH),

where Kij = k(xi, xj), Lij = �(yi, yj), and H = I − 1
n11T is a centering matrix. More

details are in Gretton et al. [2012].
The distribution of HSIC under the null can be obtained by randomization testing:

Given pairs (xi, yi), we shuffle the y’s and recompute ĤSIC. Gretton et al. [2008] gives
an asymptotic result based on the Gamma distribution; Zhang et al. [2011] gives a test
based on the eigenvalues of the kernel matrices.

HSIC has been used to test for independence between structured data. In Gretton
et al. [2008], a string kernel was used to test for independence between French and
English sentences. Inspired by this approach, we develop a novel input/output GP
regression method in Section 4.4, testing for independence with HSIC using residuals
in feature space.

3.3. Causal Inference Methods

We focus on two classes of causal inference methods: constraint-based causal structure
learning algorithms exemplified by the PC algorithm and bivariate causal orientation
methods (i.e., the Additive Non-Gaussian (ANG) framework [Hoyer et al. 2008] and
the Continuous Additive Noise Model (CANM) framework [Peters et al. 2013]).

The PC algorithm learns an equivalence class of Partially Directed Acyclic Graphs
(PDAGs), which are consistent with the conditional independencies entailed by the
data, as tested with statistical tests for conditional independence. After learning this
“skeleton,” the algorithm finds V-structures, also known as colliders, of the form A →
B ← C that are consistent with the learned conditional independencies and orients
edges accordingly. For example, a V structure A → B ← C would be implied by A ⊥⊥ C
and A �⊥⊥ C|B. Finally, the algorithm orients any other edges it can to be consistent

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 2, Article 22, Publication date: November 2015.



Gaussian Processes for Independence Tests with Non-iid Data in Causal Inference 22:9

with the edges it has already oriented, so long as these orientations do not introduce
any new V structures or cycles. Once a PDAG is learned, independence relations can
be read off the graph using the rules of d-separation. For a detailed discussion of the
PC algorithm, see Spirtes et al. [2001] and for causal DAGs and d-separation see, Pearl
[2009].

The bivariate causal orientation methods compare two models, a forward model:
Y = f1(X) + ε1 and a backwards model: X = f2(Y ) + ε2. After fitting nonparametric
regressions to obtain residuals ε̂1 and ε̂2, an independence test such as HSIC is used
to test whether ε̂1 ⊥⊥ X and ε̂2 ⊥⊥ Y . If, for example, ε̂1 ⊥⊥ X but ε̂2 �⊥⊥ Y, we reject the
backward model and retain the forward model, X → Y . For a detailed discussion see
Peters et al. [2013].

4. THEORETICAL DEVELOPMENT

4.1. Testing Conditional Independence by Regression and Unconditional Independence

We start by assuming both faithfulness and the Markov condition, the same assump-
tions made for the PC algorithm:

Faithfulness. There exists a causal DAG G and a probability distribution over
random variables X, Y, Z such that if X ⊥⊥ Y |Z, then X and Y are d-separated by
Z in graph G
Markov. If X and Y are d-separated by Z in G, then X ⊥⊥ Y |Z.

Second, we assume that we have access to a conditional regression estimator to remove
the dependence on Z from X and Y . More specifically, we assume that this can be done
in an additive fashion:

Consistent Regressors. We assume that we have consistent nonparametric regres-
sors m̂x(Z) and m̂y(Z) that converge to E[X|Z] and E[Y |Z], respectively, such as GP
regression.
Additive Noise Model. If Z is the cause of Xor Y , we assume an additive independent
noise model. That is, if Z causes X (respectively Y ), then X = f (Z)+ε where Z ⊥⊥ ε.
Notice that we are not assuming in this case that Y ⊥⊥ ε or that the noise is
always additive. For example, if the true structure is X ← Z ← Y, then we assume
X = f (Z) + ε, but we do not assume Y = g(Z) + ε2 or Z = g(Y ) + ε2.

Finally, we assume that we have a valid method for testing unconditional independence
between random variables, such as HSIC. Given these assumptions, our method can
be summarized in the following simple algorithm:

(1) Obtain residuals εxz = X − m̂x(Z) and εyz = Y − m̂y(Z)
(2) Test whether εxz ⊥⊥ εyz.

We claim that εxz ⊥⊥ εyz ⇐⇒ X ⊥⊥ Y |Z.
We remark upon the assumptions underlying our method. As explained here, Choi

and Schervish [2007] demonstrate almost sure convergence for GP regression under
mild conditions, whereas Van Der Vaart and Van Zanten [2011] provide convergence
rates for GP regression. Additive noise models underlie many standard regression
techniques such as linear regression, kernel ridge regression, GP regression, and gen-
eralized additive models. Furthermore, it is straightforward to test this assumption in
our framework: If we assume that X = f (Z)+ε, we can check this assumption by using
GP regression to regress X on Z to estimate ε̂. Then we use HSIC to check whether
ε̂ ⊥⊥ Z.

As discussed in Section 4.3, an application of our method to synthetic data is illus-
trated in Figure 5 in the case where Z represents time.
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Fig. 4. Three cases of dependence between (X, Y, Z), corresponding to the cases in the proof of Theorem 4.1
that X ⊥⊥ Y |Z if and only if X − E[X|Z] ⊥⊥ Y − E[Y |Z]. We define auxiliary variables A := X − E[X|Z] and
B := Y −E[Y |Z], which are uniquely determined by their parents. Case 1: we have a V-structure X → Z ← Y ,
so we see that X�⊥⊥Y |Z ⇒ X − E[X|Z] �⊥⊥Y − E[Y |Z] because A and B are d-connected. Case 2: If there is
no edge between X and Z, any path from X to B must go through Y . Case 3: Z and ε cause X, so the only
possible path from ε to B is through Y.

THEOREM 4.1. Given structural assumptions of faithfulness and the Markov assump-
tions, and assuming that we have consistent regressors with an additive noise model,
whenever Z is a cause of X or Y , it follows that

X ⊥⊥ Y |Z if and only if X − E[X|Z] ⊥⊥ Y − E[Y |Z].

PROOF. We consider three cases for the structure of the causal graph G corresponding
to the joint distribution of X, Y , and Z here. For each, we prove both the forward
and reverse directions of the theorem. The associated graphical models are given in
Figure 4. Our three cases are exhaustive due to symmetry (i.e., given three variables,
we might need to switch the variables called X and Y ) and the fact that they cover all
possible dependencies in a DAG between X and (Y, Z) and all possible dependencies
between Z and Y .

Case 1. Assume that we have a graph G with V-structure as in Figure 4

X → Z ← Y.

This immediately implies X�⊥⊥Y |Z, so we do not need to prove anything for the forward
direction. We prove the reverse direction by contradiction. Thus, we assume

X − E[X|Z] ⊥⊥ Y − E[Y |Z] but X�⊥⊥ Y |Z,

and specifically this is because we have the V-structure X → Z ← Y . Adding a new set
of variables A := X−E[X|Z] with parents X and Z and B := Y −E[Y |Z] with parents Y
and Z to the DAG, as shown in Figure 4, does not change the model since these random
variables are entirely determined by (X, Z) and (Y, Z) respectively. Now we see that the
path A ← Z → B d-connects A and B. By the faithfulness assumption, it follows that
A�⊥⊥B, which is a contradiction.

Case 2. If there is no edge between Z and X or between Z and Y or both, the test
reduces to that of testing unconditional independence between X and Y . Without loss
of generality, let us assume there is no edge between X and Z. E[X|Z] is a constant, call
it c, so X − E[X|Z] = X − c. As before, add the auxiliary variable B := Y − E[Y |Z] with
parents Y and Z to the DAG, as in the Figure 4, Case 2. Then we are testing whether
X − c ⊥⊥ B. Since c is constant, this holds if and only if X ⊥⊥ B. Finally, X ⊥⊥ B if and
only if X ⊥⊥ Y : If X and Y are d-connected by a path p, then we can add the edge from
Y to B to the path p to make X and B d-connected. If instead X and Y are d-separated,
then so are X and B because any path from X to B must go through Y .

Case 3. Z is a cause of X or Y or both, so assume without loss of generality that
Z is a cause of X. Then, by assumption, we can write X = f (Z) + ε with Z ⊥⊥ ε
where ε = X − E[X|Z] and check ε ⊥⊥ Y − E[Y |Z]. Once again, we add a variable
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B := Y − E[Y |Z] with parents Y and Z to the DAG, as shown in Figure 4, Case 3. Now
we prove X ⊥⊥ Y |Z ⇐⇒ ε ⊥⊥ B by considering two subcases.

Subcase 1. If there is an edge in either direction between ε and Y in Figure 4, Case 3,
then X and Y are d-connected by the path X ← ε − Y and ε and B are d-connected by
the path ε − Y → B, so we conclude X�⊥⊥Y |Z and ε �⊥⊥B by faithfulness. Thus, we have
proved the forward and reverse directions for this subcase.

Subcase 2. If there is no edge between ε and Y in Figure 4, then ε and B are d-
separated, since X is a collider in the path ε → X ← Z → B, which is thus blocked.
Moreover X and Y are d-separated given Z, since Z blocks the path X ← Z− Y . By the
Markov assumption, this implies X ⊥⊥ Y |Z and ε ⊥⊥ B. This proves the forward and
reverse directions for this subcase.

4.2. Testing Conditional Independence with Gaussian Process Regression and HSIC

Based on the preceding general framework, we propose the use of GP regression, which
is almost surely consistent assuming Gaussian errors [Choi and Schervish 2007] with
good rates of convergence [Van Der Vaart and Van Zanten 2011], and the HSIC for
testing for independence.2 Neither of these choices is crucial—we picked GP regression
because of its long history in spatial statistics and widespread use as a convenient
nonparametric regression method. We picked HSIC because it is equal to 0 if and
only if the distributions under consideration are independent, whenever the kernel is
characteristic. But in cases where domain knowledge could be used to guide the choice
of independence test or pre-whitening method, these will, of course, be preferable to
generic choices.3

In the following, we assume without loss of generality that X (and Y ) is embedded in
a vector space. That is, we assume that regression on X is well-defined. Hence, given
observations (X, Y, Z) = {xi, yi, zi}, we use GP regression to fit the models X = f (Z)+ ε1
and Y = g(Z) + ε2. This requires specifying (possibly different) covariance functions
over Z. If k(z, z′) is a covariance function (Mercer kernel) over Z, then we could sample
directly from the GP prior, where we follow general practice and set the mean to 0:

f ∼ GP(0, k).

Let K be the Gram matrix where Kij = k(zi, zj). Conditional on the observations (X, Z),
our data follow a multivariate Gaussian distribution. For a new location

x∗|X, Z, z∗ ∼ N (K∗(K + σ 2 I)−1 X, K∗∗ − K∗(K + σ 2 I)−1(K∗)T ),

where K∗ = [k(z∗, z1), . . . , k(z∗, zn)], and the σ 2 term is added because we assume that
our observations are noisy, as discussed earlier.

We are not actually interested in observations at new locations but in making point
predictions at the existing locations. In other words, we use the GP as a smoother.
Hence, we replace K∗ by K and find a vector of mean predictions: X̂ = K(K + σ 2 I)−1 X.
The residuals are:

εxz = X − X̂ = X − K(K + σ 2 I)−1 X = (I + σ−2K)−1 X. (6)

Using a possibly different kernel, say l with kernel matrix L, we obtain residuals from
smoothing Y via εyz = Y − Ŷ = (I + σ−2L)−1Y in exactly the same way.

2Since GP regression is a.s. consistent, it is possible that our estimated residuals will not converge to their
true values on a set of measure 0; but, in the worst case, all that this could do is bias our estimate of HSIC
on a set of measure 0, so the standard estimate of HSIC will still be consistent.
3Note that guarantees about consistency and convergence for GP regression apply in the large sample limit.
It is entirely possible that for misspecified models and/or small samples, generic methods like GP regression
will fail to remove all dependence.
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Now, as just proved, εxz ⊥⊥ εyz if and only if X ⊥⊥ Y |Z. To test the hypothesis εxz ⊥⊥ εyz,
we use HSIC, which requires specifying kernels on the residuals, say p̃ and q̃ on εxz
and εyz, respectively. This leads to the kernel matrices P and Q. The associated HSIC
test statistic is 1

n2 tr(PHQH) for the centering matrix H = I − 1
n11T .

4.3. Pre-whitening with Gaussian Processes

Given observations (X, S) = {xi, si} where si is a location in space or time, we consider
the model:

f ∼ GP(0, K)

with observation model:

X = f (S) + ε,

where ε ∼ N (0, σ 2). Thus, we want an estimator:

f̂ = E[ f |(x1, s1), . . . , (xn, sn)]

so that we can obtain residuals εxs = X − f̂ (S). Notice that because we are using
GP regression, all our observations (x1, s1) . . . , (xn, sn) are used to estimate f, and we
explicitly account for the non-iid nature of our spatial or temporal observations by
learning f . An intuitive way to think about this is as smoothing. All the observations
play a role in our posterior prediction of f at a new or existing location s∗ as seen in the
algebra: Our posterior prediction at location s∗ is given by E[ f (s∗)|s∗, X, S] = K∗(K +
σ 2 I)−1 X. Note further that whereas for small samples some residual dependence may
remain, we have a consistent method; so, as our sample size increases, this dependence
will go to 0.4

Because we consider S to be an environmental variable, we make the same assump-
tions as previously, of independent, additive noise. In other words, if S is a cause of
X, we assume X = f (S) + εxs with S ⊥⊥ εxs. Similarly, if S is a cause of Y , we assume
Y = f (S)+εys with S ⊥⊥ εys. Notice that we are not restricting ourselves to deterministic
functions f . Any time series model, such as an autoregressive time series, with additive
errors fits these requirements. Thus, we can use εxs and εys in subsequent independence
tests, continuing to assume independent, additive noise for causes and Markov and
faithfulness without worrying about bias due to an underlying correlation structure.

This pre-whitening process, which follows standard practice in the spatial statistics
and time series literature, is illustrated in Figure 5 using the same setup described

4A proof of this fact uses the result in Van Der Vaart and Van Zanten [2011] that, for our model, there is
some sequence rn → 0 for sample size n such that f̂ converges to f with:

Ef ‖ f̂ − f ‖2
2 ≤ r2

n (7)

where the convergence rate of rn depends on our choice of kernel. But, under a variety of conditions given in
Van Der Vaart and Van Zanten [2011], we are guaranteed that it decreases to 0 in n. Since residuals are given
by the vector f̂ − f , we would like a bound on the covariance off the diagonal (i.e., Cov(( f̂ − f )i, ( f̂ − f ) j )),
for all i and j. This is bounded above by the covariance on the diagonal:

Cov(( f̂ − f )i, ( f̂ − f ) j ) (8)

≤ V ar(( f̂ − f )i) (9)

≤ E
[
( f̂ − f )2

i
] − E[( f̂ − f )i]2 (10)

≤ E
[
( f̂ − f )2

i
]

(11)

≤ r2
n (12)

The last step follows because the sum of the squared residuals are ≤ r2
n by Equation (7), so any particular

squared residual is also ≤ r2
n .
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Fig. 5. X is a realization of an AR(1) process with xt = 0.9 · xt−1 + εx,t and Y is a realization of an AR(1)
process with yt = 0.8 · yt−1 + εy,t. X and Y are independent and εx,t, εy,t ∼ N (0, 1). As shown in Figure 1, it
is likely that there will be a spurious correlation between X and Y . We chose a specific realization, plotted
as the black dots in the top left plot (for visual clarity, X + 2 and Y − 2 are shown), in which the correlation
is 0.61 with highly significant p-value from HSIC ≤ 7.7 × 10−18 (top right plot). We used GP regression with
an RBF covariance function to obtain the fitted curves shown in red and blue in the top left. The residuals
are shown in the bottom left and compared in the bottom right: The correlation between the residuals is 0.01
with insignificant p-value from HSIC = 0.40.

in the Introduction, where X and Y are independent AR(1) time series. We choose a
particular realization with a large (but spurious) correlation of 0.61 between X and Y
and a correspondingly highly significant value from HSIC (p ≤ 7.7×10−18) for rejecting
the null hypothesis of independence. We apply GP regression to X and Y separately, as
shown in Figure 5, to estimate pre-whitened residuals εX and εY . These residuals have
a very low correlation of 0.01 and a correspondingly insignificant p-value from HSIC
of 0.405.

5We note that the correct choice of kernel and method for obtaining residuals matters. We used a Gaussian
RBF kernel and obtained residuals by smoothing. If we had been more concerned with trying to exactly mimic
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In the case of the PC algorithm, an alternative approach would be to always include
S in the conditioning set when testing for conditional independence. With enough data,
this should be equivalent to the two-stage process we proposed. But because we believe
that there is the potential for an important autocorrelation structure that we need
to worry about, we think it is better to explicitly adjust for it in every variable first.
This approach saves on computational time and modeling complexity: For moderately
sized datasets, we can use a fully Bayesian analysis and carefully inspect the results
of our pre-whitening step for each variable. By contrast, the PC algorithm could entail
many conditional independence tests, so we need these to be automatic and relatively
fast. Many conditional independence tests also rely on categorical conditioning sets,
which are often obtained by first discretizing; this approach will be very difficult since
observations are usually not repeated in space or time.

Finally, for the two-variable causal orientation task (e.g., as addressed by the RESIT
framework), space or time would need to be included as part of the regression and
again as part of the independence test, turning what was a simple univariate regres-
sion followed by unconditional independence test into two more complicated steps, a
multivariate regression followed by conditional independence test.

4.4. Gaussian Processes for Structured Data

Since GPs depend on defining a kernel between observations, they can be used for
highly structured data such as images and text. Given domains X ,Y, we can define a
joint GP over both domains; that is, using a kernel k : (X × Y) × (X × Y) → R such
that random variables f , indexed by (x, y) ∈ X × Y, are drawn from a multivariate
Gaussian distribution with covariance matrix given by k, as evaluated on the index set
and with mean function μ : (X × Y) → R as evaluated on the index set.

A special but particularly interesting case arises whenever the kernel function k is
given by a product over kernels on X and Y respectively; that is, whenever

k((x, y), (x′, y′)) = kx(x, x′)ky(y, y′).

Such a situation occurs, for example, in multivariate GP regression whereY = {1, . . . , d}
(i.e., where Y denotes the coordinate index of the regression problem and where ky
denotes the correlation between the coordinate-wise regressions). Likewise, when Y
is the domain of images or documents, we therefore end up modeling the similarity
between structured objects in Y using their covariates in X .

We now exploit the duality discussed by Williams [1998] between feature space
representations and GPs to introduce estimates of feature functions on Y. That is,
we adhere to the GP treatment for the covariate-dependent part of the kernel via
kx(x, x′) and use a feature space representation for the label-dependent part l(y, y′) =
〈ψ(y), ψ(y′)〉. The main motivation is that this will allow us to efficiently reason about
feature space embeddings of distributions and of conditional probability distributions.

Before we do so, recall scalar GP regression as introduced in Section 3.1. There, one
assumes that the random variable f , as indexed by x ∈ X , follows a normal distribution
with covariance function k and mean function μ. The idea is to extend the predictive

the behavior of a classical autoregressive fit, we would instead need to use the Ornstein-Uhlenbeck process,
which is a GP with exponential kernel given by k(t, t′) = 1

1−φ2 exp(log(φ)|t−t′|) where φ = 0.9 for x and φ = 0.8
for y, and we would also have performed one-step-ahead forecasting rather than smoothing in order to obtain
the residuals. Ultimately, if the practitioner has domain knowledge supporting the use of a particular class of
models, such as AR(1), we would absolutely recommend incorporating this knowledge, rather than relying on
a generic choice like GP regression with a Gaussian RBF kernel. We advocate GP regression as a generally
applicable method, especially in cases for which there is little domain expertise, and we further advocate
carefully checking residuals for structure and refining one’s modeling choices accordingly.
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distribution Y ∗|Y, X, X∗, as captured by Equation (5). We now extend this to vector-
valued functions and, subsequently, to general index sets. In the standard treatment,
we assume that:

f (X), f (X∗)|X, x∗ ∼ N (0, K),

where Kij = k(xi, xj) + δi jσ
2. So conditioning, we find:

f (X∗)|Y, X, x∗ = N (K(x∗, X)(K + σ 2 I)−1y, K(x∗, x∗) − K(x∗, x)(K + σ 2 I)−1K(x, x∗)).

What if f (X) isn’t in R, such as Y ∈ Rd or whenever Y is a string or an image?
We begin with Y = {1, . . . , d}; thus, we could view the scalar case as Y = {1} and
therefore with estimates in RY = R1. In general, the challenge is to deal with possible
normalization problems of distributions over infinite-dimensional objects. The trick
is to consider evaluating the GP on Y only on relevant points y ∈ Y rather than
considering a possibly infinite dimensional set of evaluations.

For computational convenience of derivation, we adopt the argument of Williams
[1998], which states that f (y) = 〈v,ψ(y)〉 is a linear function in the space of the
features ψ(y), where v ∼ N (0, 1) and therefore f ∼ GP(0, l). It is understood that the
kernel satisfies l(y, y′) = 〈ψ(y), ψ(y′)〉. This is entirely consistent whenever ψ is finite-
dimensional. For the purpose of evaluation on a finite number of terms, we can always
assume that ψ denotes the Cholesky factors of the covariance matrix L.

We now assume that we are given features ψ(y1), . . . ψ(yn), which are drawn from a GP
with kernel k and mean 0. That is, we assume that this holds for any one-dimensional
projection of ψ(y) onto a unit-vector. Using Equation (5), we have that

ψ(Y ∗)|Y ∼ N (μ̄, K̄), (13)

where μ̄ = K(X∗, X)(K(X, X) + σ 2 I)−1ψ(Y )

K̄ = K(X∗, X∗) − K(X∗, X)(K(X, X) + σ 2 I)−1K(X, X∗).

In it, we used the shorthand ψ(Y ) = (ψ(y1), . . . ψ(yn)) and, analogously, ψ(Y ∗) =
(ψ(y∗

1), . . . , ψ(y∗
n∗ )), whenever Y ∗ is a set. For instance, whenever Y = {1, . . . d} and

ψ(y) = ey, this simply decomposes into d decoupled GPs. More generally, we can eval-
uate by taking inner products with test functions ψ(y). At this point, the evaluation
reduces to kernel computations l(y, y′).

As before, we employ the GP not for prediction but for smoothing only; that is, we are
mostly interested in the residuals ψ̂i − ψ(yi) at locations xi rather than the predictions
ψ̂i themselves. Since we will ultimately use HSIC, we do not need to explicitly compute
the residuals; rather, we need to compute the Gram matrix R of the residuals with

Rij = Eψ̂

[〈
ψ̂i − ψ(yi), ψ̂ j − ψ(yj)

〉]
. (14)

= Cov
ψ̂

[〈
ψ̂i, ψ̂ j

〉] + 〈
Eψ̂

[
ψ̂i

] + ψ(yi), Eψ̂

[
ψ̂ j

] − ψ(yj)
〉
.

The second line follows from the fact that Cov(A, B) = E[AB] − E[A][B]. To evaluate
this expression, we use the fact that the covariance is given in Equation (13). Its
contribution to the entire matrix R is

K − K(K + σ 2 I)−1K = K(I + σ−2K)−1, (15)

where we used the Woodbury matrix identity.6 Next, we use the fact that

Eψ̂

[(
ψ̂1, . . . ψ̂n

)] − ψ(Y ) = K(K + σ
2
I)−1ψ(Y ) − ψ(Y ) = −(I + σ−2K)−1ψ(Y ), (16)

6(A+ B)−1 = A−1 − A−1(B−1 + A−1)−1 A−1.
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again using the Woodbury matrix identity. Taking inner products and plugging this
back into Equation (14), we obtain

R = K(I + σ−2K)−1 + (I + σ−2K)−1L(I + σ−2K)−1. (17)

Note that R decomposes into two parts: The first is the contribution of the residuals
due to smoothing in K. This converges to σ 2 I for small σ 2 (i.e., whenever we assume
that there is little additive noise associated with y|x, the contribution to the residuals
matrix is very small off-diagonal and equal to σ 2 on the diagonal). Second, we have an
appropriately smoothed term between K and L. Again, this vanishes for small additive
noise but it also vanishes whenever K and L are coherent.

Once we have access to R, we can use HSIC to test independence: ĤSIC(R, X) =
1
n2 trRHKH. If we choose characteristic kernels for K (possibly a different K relative to
the one used in the GP regression) and L, then we do not need to consider doing either
a further embedding of the residuals or solving the pre-image problem and applying a
different embedding because we only care about testing the independence between the
residuals and X. Although we do not have access to the residuals, calculating HSIC
only requires access to the Gram matrices corresponding to the feature space repre-
sentation of the residuals and X. This is exactly what we have in the form of R and K
respectively.

5. EXPERIMENTS

Source code for reproducing our experiments is provided in our supplementary
materials.7

5.1. Spatial Data

The Boston Housing dataset, originally investigated in Harrison Jr and Rubinfeld
[1978], has been widely used in statistics and machine learning. In the original paper,
data were collected in 1970 and used in an analysis of the willingness of Boston area
residents to pay for better air quality based on an economic model and regression
analysis. As discussed in Pace and Gilley [1997], it is usually analyzed without taking
into consideration the fact that the data are spatially observed.

There is significant spatial clustering in every single variable in the dataset, as
revealed by Moran’s I test (using a similarity matrix calculated as the reciprocals of
the spatial distances between observations, p-values for each variable were significant,
thus rejecting the null hypothesis of no spatial clustering) and confirmed by HSIC,
which was used to test for independence between the locations in space (using an
RBF kernel) and each variable separately. In addition to adding spatial coordinates
to each observation, Pace and Gilley [1997] also corrected a few errors in the original
dataset.

The variables in the dataset are crime rate (crim), proportion of residential land
zoned for lots over 25,000 sq. ft (zn), proportion of nonretail business acres per town
(indus), indicator variable for whether tract bounds the Charles River (chas), nitric
oxides concentration (nox), average number of rooms per dwelling (rm), proportion
of owner-occupied units built prior to 1940 (age), weighted average of distances to
five Boston employment centers (dis), index of accessibility to radial highways (rad),
full-value property-tax rate (tax), pupil-teacher ratio by town (ptratio), polynomial
transformation of proportion of blacks by town (b), percentage of lower status peo-
ple in the population (lstat), and median value of owner-occupied homes (medv).

7http://www.bitbucket.org/flaxter/tist-supporting-materials.
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Fig. 6. Boston Housing data. Left: The PC algorithm was run on the data without pre-whitening (the data
exhibit spatial autocorrelation), using GP/HSIC for conditional independence tests. The outcome variable of
interest, median house value (medv), is caused by the number of rooms (rm) and the parent teacher ratio
(ptratio), and it is a cause of the percentage of lower status people in the population (lstat). Other edge
orientations seem dubious: Nitric oxide concentration (nox), a measure of pollution that causes industrial
business activitity (indus), residential land zoned for large lots (zn), distance to employment centers (dis),
and crime (crim). The substantive question in the original paper [Harrison Jr and Rubinfeld 1978] was about
the effect of pollution (nox) on house value (medv), but, in the graph shown, there is no direct causal effect
of pollution on house value. Right: After pre-whitening the data to remove spatial autocorrelation, the PC
algorithm was run on it. The resulting causal graph has many fewer edges than the graph on the left. The
outcome variable of interest, median house value (medv), is caused by percentage of lower status people
in the population (lstat), number of rooms (rm), whether the tract bounds the Charles River (chas), and
nitric oxide concentration (nox), a measure of pollution and the predictor variable of interest in the original
paper [Harrison Jr and Rubinfeld 1978]. The graph shows that nitric oxide concentration (nox) is caused by
industrial business activity (indus) (the opposite was found in the graph on the left), which is reasonable,
but also by crime (crim), which seems unlikely.

The usual task with this dataset is to predict the median value of owner-occupied
homes.

In the original analysis [Harrison Jr and Rubinfeld 1978], the authors carefully
state their prior theoretical beliefs about the statistical (but not necessarily causal)
relationship between each of the predictors in the dataset and the dependent variable.
They included two “structural” variables that they expect to be related to home value,
number of rooms and proportion of owner units built prior to 1940, eight neighborhood
variables, two accessibility (in terms of transportation) variables, and two air pollution
variables. Zhang et al. [2011] demonstrated KCI with the PC algorithm on these data.
For the variable of interest, median value of house (medv), they found that number of
rooms (rm), percentage of lower status people in the population (lstat), proportion of
owner-occupied units built prior to 1940 (age), and crime rate (crim) are all parents
of house value, with directed edges implying that these variables all cause house value.

We used the corrected dataset given in Pace and Gilley [1997]. We ran the PC al-
gorithm as implemented in the R package pcalg [Kalisch et al. 2012] using our new
GP/HSIC approach for conditional independence with α = 0.001. The results are shown
in Figure 6. Throughout, we use the Gamma approximation to calculate p-values from
HSIC. In this case, the outcome variable of interest, median house value, is caused
by the number of rooms and pupil-teacher ratio, and it is a cause of the percentage of
lower status people in the population. There is no direct causal effect of pollution on
house value.
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Fig. 7. Left: We used the PC algorithm with a dataset of environmental observations related to ozone in
Upland, California, without first pre-whitening the time series data. The inferred causal CPDAG says that
the temperature at the temperature inversion in the atmosphere (InvTmp) directly causes ozone, which
causes visibility (Vis). Right: We pre-whitened the data using GP regression. Then we used the PC algorithm
with the same dataset as previously. Ozone is still a cause of visibility (Vis), but no variables in the dataset
were found to be a cause of ozone.

Next, we pre-whitened each variable using the spatial coordinates with a GP re-
gression in which the hyperparameters of the squared exponential (RBF) covariance
function are learned by maximizing the marginali likelihood using gradient descent
(the default in GPStuff [Vanhatalo et al. 2013]). Using this new dataset, we ran the
PC algorithm again with α = 0.001, as shown in Figure 6 (right). The resulting causal
graph has many fewer edges. The percentage of lower status people in the population
and number of rooms cause house value, as in Zhang et al. [2011]. In addition, an
indicator variable for whether the house is near the Charles River (which was not
considered in Zhang et al. [2011]) also causes house value. Unlike the original graph in
Figure 6 (left), we find that nitric oxide concentration, an indicator of air pollution, is
a direct cause of house value, which addresses the original hypothesis explored by the
authors in Harrison Jr and Rubinfeld [1978]. Furthermore, nitric oxide concentration
is now found to be caused by industrial business activity, rather than the converse when
using unwhitened data. But we see that nitric oxide concentration is also apparently
caused by crime, which seems unlikely.

5.2. Time Series Data

We consider the ozone dataset used in Breiman and Friedman [1985]. These daily data
clearly exhibit temporal autocorrelation, with 330 observations made over the course
of 358 days. In Figure 7 (left), we show the results of the PC algorithm run on the data
as-is, with conditional independence tests using GP regression for conditioning and
HSIC for independence testing. We set α = .05 and used the standard version of the PC
algorithm implemented in Kalisch et al. [2012]. We used the Gamma approximation to
calculate p-values for HSIC.

The ozone variable is directly caused by the temperature at the temperature in-
version in the atmosphere (InvTmp) and is a cause of visibility. Figure 7 (right) con-
tains the results of the PC algorithm run on the data after each variable has first
been pre-whitened. To pre-whiten, we used GP regression with an exponential co-
variance function for time (which is analogous to an autoregressive fit), learning the
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Fig. 8. Ozone and temperature data from Switzerland. A partial autocorrelation plot reveals significant
temporal autocorrelation in both the ozone and temperature data. Before pre-whitening, bivariate causal
orientation suggests incorrectly that ozone causes temperature. After pre-whitening, bivariate causal orien-
tation correctly concludes that temperature causes ozone.

hyperparameters from the data by maximizing the marginal likelihood with gradient
descent. Now we see that the ozone variable has no parents and is still a cause of
visibility. Wind is no longer connected to any nodes, and two edges that were directed
are no longer directed.

Next, we turn to the causal orientation (RESIT) framework for edge orientation and
consider one of the pairs of data8 that our replication of Peters et al. [2013] showed was
misoriented using the same method considered in that paper, GP regression followed
by HSIC, comparing a forward and backward model. Pair 51 consists of daily ozone
and temperature data from Switzerland, where the ground truth is that temperature
causes ozone. As shown in Figure 8, there is an underlying time trend, and a partial
autocorrelation plot reveals temporal autocorrelation. Considering the data as-is, the
p-value of the forward model (“ozone causes temperature”) is 0.002 and the p-value
of the backwards model (“temperature causes ozone”) is 4 × 10−7. Thus, the causal
orientation method fails, incorrectly predicting the forward model because it fits better.

8http://webdav.tuebingen.mpg.de/cause-effect.
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After pre-whitening, the p-values change. The forward model is still 0.002, but the
backwards model is 0.34. The backwards model thus fits better, and the edge is correctly
oriented.

5.3. Textual Data

We consider a novel causal orientation problem: Given pairs of translated sentences in
two languages X and Y , determine whether X “causes” Y (meaning that the sentence in
language Y was translated from the sentence in language X) or vice versa. We use the
OpenOffice documentation corpus [Tiedemann 2009] that consists of sentence-aligned
documentation in English, French, Spanish, Swedish, German, and Japanese. We use
our GP formulation for structured data to calculate residuals, and then we test whether
these residuals are independent of the predictor, as in the RESIT framework. We use
a spectrum kernel (also called a string kernel, the default in Karatzoglou et al. [2004])
that matches substrings of length m = 3.

The corpus is relatively large, with 30,000–40,000 observations, so we use a bootstrap
approach: For a pair of languages X, Y , we take a small sample (n = 400) and calculate
a Gram matrix for the residuals R for the forward model X causes Y for half the sample
(n = 200). Then we use HSIC to test whether R is independent of X on the other half
of the sample (n = 200). We do the same for the reverse direction. We repeat this
process 500 times with different subsets of the data and report the fraction of times
that we predict the forward direction based on comparing the p-values of the forward
and reverse directions. (Larger p-values indicate better fits, so we accept the direction
with the larger p-value.)

The results are shown in Figure 9. The OpenOffice documentation was originally
written in German for its predecessor, StarOffice. When it was purchased by Sun Mi-
crosystems, the documentation was translated into English. Subsequently, translations
were made from English to other languages, and new additions to the documentation
were made in English.9 Thus, we consider English to be the “cause” of every other
language except German. The algorithm correctly orients forward edges from English
to every other language except German. The algorithm also orients forward edges from
German to every language, which makes sense since German is a cause (though not
direct) of every other language.

6. CONCLUSION

We proposed a simple, unified framework for coherently addressing the problem of
algorithmic causal inference with non-iid observations (e.g., when data points are dis-
tributed in space and time), and we demonstrated its use on two real datasets. When
using the PC algorithm or any other method based on independence tests, non-iid data
presents a problem, and we showed how a pre-whitening step, using GP regression, can
address this problem. We further showed how this same idea, of obtaining residuals
from a GP regression, can be used to turn an unconditional independence test like
HSIC into a conditional independence test.

We also showed that highly structured data, like text, can be considered in a causal
framework, again using GP regression. In this case, we presented a novel formula-
tion of a GP for structured inputs and outputs. The key derivation was that of the
Gram matrix of the residuals because, once this is calculated, we can use HSIC to test
independence.

HSIC is but one of the many measures of statistical independence that have been
proposed. It might be fruitful to consider other measures instead, such as mutual

9Uwe Fischer, personal communication, 9 July 2014.
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Fig. 9. Causal orientation with text: Given pairs of sentences in two languages, the task is to determine
which language is a translation of the other. We used a bootstrapping approach to repeatedly apply a causal
orientation algorithm based on Gaussian processes for structured data and HSIC for independence testing
to determine which language “causes” the other language. Shown are the fraction of times that the algorithm
selected the forward causal direction, along with 95% confidence intervals. The top line, for example, means
that in comparing German and Spanish, the algorithm concluded that German caused Spanish 77% of
the time. The sentences come from OpenOffice documentation, portions of which were originally written in
German and translated into English. After this one-time translation, which occurred when Sun Microsystems
bought what was then StarOffice, new documentation was written in English, and English became the source
language for translations into Spanish, Swedish, French, Japanese, and back into German. The algorithm
thus correctly orients edges such that German and English are the cause of every other language. The
algorithm definitively concludes that German causes English.

information or distance correlation [Székely et al. 2009] or to determine whether the
consistency results in Kpotufe et al. [2014] hold for our method. We do believe that GP
regression is the most flexible and general tool for the purposes of pre-whitening non-iid
data due to its long-standing use in the spatial statistics and time series literature. In
future work, we intend to look more deeply at the connections between GP regression
and kernel-based measures of independence.
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Sashank Reddi and Barnabás Póczos. 2013. Scale invariant conditional dependence measures. In Proceedings
of the 30th International Conference on Machine Learning (ICML’13). Atlanta, GA, USA, 1355–1363.

K. Salkauskas. 1982. Some relationships between surface splines and kriging. In Multivariate Approximation
Theory II, W. Schempp and K. Zeller (Eds.). Birkhauser, Basel, 313–325.

A. J. Smola, A. Gretton, L. Song, and B. Schölkopf. 2007. A hilbert space embedding for distributions. In
Proceedings of the International Conference on Algorithmic Learning Theory, Vol. 4754. Springer, 13–31.

P. Spirtes, C. Glymour, and R. Scheines. 2001. Causation, Prediction, and Search. Vol. 81. MIT Press.
Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R. G. Lanckriet.

2010. Hilbert space embeddings and metrics on probability measures. The Journal of Machine Learning
Research 99 (2010), 1517–1561.

Liangjun Su and Halbert White. 2007. A consistent characteristic function-based test for conditional inde-
pendence. Journal of Econometrics 141, 2 (2007), 807–834.

Gábor J. Székely, Maria L. Rizzo, et al. 2009. Brownian distance covariance. The Annals of Applied Statistics
3, 4 (2009), 1236–1265.

Jörg Tiedemann. 2009. News from OPUS - A collection of multilingual parallel corpora with tools and
interfaces. In Recent Advances in Natural Language Processing, N. Nicolov, K. Bontcheva, G. Angelova,
and R. Mitkov (Eds.). Vol. V. John Benjamins, Amsterdam/Philadelphia, Borovets, Bulgaria, 237–248.

Robert E. Tillman, Arthur Gretton, and Peter Spirtes. 2009. Nonlinear directed acyclic structure learning
with weakly additive noise models. In NIPS. 1847–1855.

Aad Van Der Vaart and Harry Van Zanten. 2011. Information rates of nonparametric Gaussian process
methods. The Journal of Machine Learning Research 12 (2011), 2095–2119.
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