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Fast Bayesian scan statistics for multivariate
event detection and visualization
Daniel B. Neill∗†

The multivariate Bayesian scan statistic (MBSS) is a recently proposed, general framework for event detection and charac-
terization in multivariate space–time data. MBSS integrates prior information and observations from multiple data streams
in a Bayesian framework, computing the posterior probability of each type of event in each space–time region. MBSS has
been shown to have many advantages over previous event detection approaches, including improved timeliness and accuracy of
detection, easy interpretation and visualization of results, and the ability to model and accurately differentiate between multiple
event types. This work extends the MBSS framework to enable detection and visualization of irregularly shaped clusters in
multivariate data, by defining a hierarchical prior over all subsets of locations. While a naive search over the exponentially
many subsets would be computationally infeasible, we demonstrate that the total posterior probability that each location has
been affected can be efficiently computed, enabling rapid detection and visualization of irregular clusters. We compare the run
time and detection power of this ‘Fast Subset Sums’ method to our original MBSS approach (assuming a uniform prior over
circular regions) on semi-synthetic outbreaks injected into real-world Emergency Department data from Allegheny County,
Pennsylvania. We demonstrate substantial improvements in spatial accuracy and timeliness of detection, while maintaining the
scalability and fast run time of the original MBSS method. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

This work focuses on the task of disease surveillance, in which we monitor electronically available public health data
sources, such as hospital visits and medication sales, to automatically detect emerging outbreaks of disease. Our goal
is to develop disease surveillance systems which can identify outbreaks in the very early stages (typically, before a
definitive diagnosis of the outbreak disease can be obtained), enabling a timely and effective public health response.

The multivariate Bayesian scan statistic (MBSS) [1] is a recently proposed Bayesian framework for detection and
characterization of emerging outbreaks. MBSS integrates information from multiple data streams, enabling more timely
and more accurate event detection, and can model and differentiate between multiple event types. MBSS can be used
to detect emerging outbreaks of disease, pinpoint the affected spatial region, distinguish between different outbreak
diseases, and reduce the number of ‘false-positive’ alerts due to irrelevant anomalies in the data [1]. By detecting and
characterizing outbreaks in their early stages, MBSS can provide public health users with sufficient situational awareness
to enable a rapid and informed response.

MBSS has been shown to have numerous advantages over the frequentist spatial scan statistics approach [1]. By
integrating information from multiple data streams and incorporating prior knowledge of an outbreak’s effects on the
monitored data streams, MBSS can achieve more timely and more accurate detection, detecting an average of 1.3 days
faster than Kulldorff’s multivariate scan statistic [2]. MBSS can model and accurately differentiate between multiple
event types, thus distinguishing between patterns due to different outbreak diseases and those due to other irrelevant
events in the data. Outbreak models can be specified by a domain expert or learned automatically from a small number of
labeled training examples. Randomization testing is not necessary in the Bayesian framework: since 999 or more Monte
Carlo replications must typically be performed to obtain accurate p-values for the frequentist approach, we can obtain a
1000× speedup by avoiding the need for randomization. Finally, the results produced by MBSS (the posterior probability
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that each event type has affected each spatial region) are easy to interpret, visualize, and use for decision-making. MBSS
computes the posterior probability Pr (H1(S, Ek)|D) that each outbreak type Ek has affected each spatial region S, and
these results can be visualized as a ‘posterior probability map’, showing the total probability

Pr (H1(si )|D)=∑
Ek

∑
S:si ∈S

Pr (H1(S, Ek)|D)

that each location si has been affected.
The primary limitation of MBSS is a computational issue common to many spatial scan statistic methods: to compute

the posterior probabilities, we must evaluate a huge number of spatial regions S. If we place no constraints on the search
region, all 2N subsets of the N locations must be considered, which is computationally infeasible for even moderately
large N . MBSS, like other typical scan statistic approaches, solves this problem by only considering a reduced set of
regions, placing restrictions on the region shape. As in Kulldorff’s original spatial scan statistic approach [3], MBSS
restricts the search space to the set of O(N 2) distinct circular regions centered at one of the N spatial locations. While
this limitation of the search space makes MBSS computationally feasible, the assumption of circular outbreaks causes
it to lose detection power for elongated or irregular outbreaks, as well as reducing its ability to accurately pinpoint the
affected region.

Here we propose a new extension of the MBSS framework, ‘Fast Subset Sums’ (FSS), which enables timely and
accurate detection and visualization of irregularly shaped clusters in multivariate data. FSS can efficiently compute the
posterior probability map, as well as the total posterior probability of an outbreak, without computing the individual
posterior probabilities of each spatial region. It defines a hierarchical prior distribution over regions which assigns non-
zero prior probability to each of the 2N subsets of locations, and efficiently computes the summed posterior probabilities
using this distribution.

2. Methods

We briefly review the recently proposed MBSS framework, discuss its limitations, and then present our new ‘FSS’
method.

2.1. Multivariate Bayesian scan statistics

In the multivariate disease surveillance problem, our goal is to detect and characterize outbreaks based on their effects
on the monitored data sources. We typically monitor aggregated count data for multiple spatial locations, time steps,
and data streams. For example, to detect an influenza outbreak, we could monitor hospital Emergency Department (ED)
visits, with each data stream representing the number of ED visits with a different symptom type (e.g. ‘cough’ or
‘fever’).

The MBSS framework [1] assumes a dataset D consisting of multiple data streams Dm , for m =1 . . . M . Each data
stream consists of spatial time series data collected at a set of spatial locations si , for i =1 . . . N . For each stream Dm
and location si , we have a time series of observed counts ct

i,m and a time series of expected counts bt
i,m , where t =0

represents the current time step and t =1 . . . T represent the counts from 1 to T time steps ago respectively. For example,
a given observed count ct

i,m might represent the total number of ED visits with fever symptoms, for a given zip code on
a given day. The corresponding expected count bt

i,m would be the expected number of ED visits with fever symptoms in
that zip code on that day, estimated from the time series of historical fever counts for that zip code. Here we calculate
expected counts using a simple, 28-day moving average, but other time series analysis methods can be also be applied,
in order to adjust for seasonal and day-of-week trends.

MBSS is designed to detect emerging outbreaks, identify the type of outbreak (e.g. distinguishing between anthrax and
influenza), and pinpoint the affected locations. To do so, it compares the set of alternative hypotheses H1(S, Ek), each
representing the occurrence of some outbreak type Ek in some subset of locations S, against the null hypothesis H0 that
no outbreaks have occurred. These hypotheses are assumed to be mutually exclusive, and thus compound events (where
multiple outbreaks are occurring simultaneously) must be modeled as separate hypotheses. The posterior probability of
each hypothesis (given the dataset D) is computed using Bayes’ theorem:

Pr (H1(S, Ek)|D) = Pr (D|H1(S, Ek))Pr (H1(S, Ek))

Pr (D)

Pr (H0|D) = Pr (D|H0)Pr (H0)

Pr (D)
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Figure 1. Bayesian network representation of the MBSS method. Solid ovals represent observed quantities, and dashed ovals
represent hidden quantities that are modeled. The counts ct

i,m are directly observed, whereas the baselines bt
i,m and the parameter

priors for each stream (�m,�m) are estimated from historical data.

In this expression, the posterior probability of each hypothesis is normalized by the total probability of the data,

Pr (D)= Pr (D|H0)Pr (H0)+ ∑
S,Ek

Pr (D|H1(S, Ek))Pr (H1(S, Ek)).

The standard MBSS method [1] assumes a uniform prior Pr (H1(S, Ek)) over all event types Ek and all circular spatial
regions S. As discussed below, nonuniform priors can also be incorporated. In some cases, the prior distribution can be
learned from a small number of labeled training examples [4].

The likelihood of the data given each hypothesis, Pr (D|H ), is computed using the hierarchical Gamma–Poisson
model shown in Figure 1. Each count ct

i,m is assumed to be Poisson distributed: ct
i,m ∼Poisson(qt

i,mbt
i,m), where bt

i,m is the
expected count (computed by time series analysis of historical data) and qt

i,m is the relative risk. Under the null hypothesis
of no outbreaks, each relative risk qt

i,m is assumed to be generated from a Gamma distribution: qt
i,m ∼Gamma(�m,�m),

where �m and �m are estimated from the historical data for stream Dm , as described in [1]. Under the alternative
hypothesis H1(S, Ek), the expected value of each relative risk is increased by a multiplicative factor xt

i,m , the ‘impact’ of
the outbreak for the given spatial location si , data stream Dm , and time step t : qt

i,m ∼Gamma(xt
i,m�m,�m). For a given

set of impacts X ={xt
i,m}, the likelihood of the data can be computed from the Gamma–Poisson model as follows [1]:

Pr (D|X ) = ∏
i,m,t

Pr (ct
i,m |bt

i,m, xt
i,m,�m,�m)

∝ ∏
i,m,t

(
�m

�m +bt
i,m

)xt
i,m�m �(xt

i,m�m +ct
i,m)

�(xt
i,m�m)

In this expression, terms not dependent on the xt
i,m have been removed, since these are constant for all hypotheses under

consideration. For the null hypothesis H0, no events have occurred, and thus we assume xt
i,m =1 everywhere:

Pr (D|H0)∝ ∏
i,m,t

(
�m

�m +bt
i,m

)�m �(�m +ct
i,m)

�(�m)

For the alternative hypothesis H1(S, Ek), we must marginalize over the values of xt
i,m :

Pr (D|H1(S, Ek))=∑
X

Pr (D|X )Pr (X |H1(S, Ek))

The distribution of the impacts xt
i,m is conditional on the outbreak type Ek , the affected region S, and two additional

parameters: the outbreak severity � and the temporal window W . The outbreak is assumed to affect those and only
those locations in region S, for the most recent W time steps (t =0 . . . W −1). Thus we assume xt

i,m =1 for unaffected
locations (si �∈ S) and for time steps before the start of the outbreak (t�W ). For affected locations and time steps (si ∈ S
and t<W ), the impact xt

i,m is computed as a function of the ‘average impact’ xkm,avg of outbreak type Ek on data stream
Dm , and the outbreak severity �:

xt
i,m =1+�(xkm,avg −1).

For example, if xkm,avg was equal to 1.4, an outbreak of typical severity (�=1) would increase counts by 40 per cent
(xt

i,m =1.4), and an outbreak with severity �=2 would increase counts by 80 per cent (xt
i,m =1.8).
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The average effects of each outbreak type on each stream, xkm,avg, can either be specified by a domain expert or
learned from training data, as described in [1]. For the experiments below, we assume a simple, fixed set of three outbreak
models E1 . . . E3 for two data streams D1 and D2. E1 assumes that only stream D1 is affected (x11 =1.5 and x12 =1),
E2 assumes that only stream D2 is affected (x21 =1 and x22 =1.5), and E3 assumes that the outbreak has equal impact
on both data streams (x31 = x32 =1.5).

We assume a discrete uniform distribution � for �, and assume that W is drawn uniformly between 1 and Wmax, where
Wmax is the maximum temporal window size. Wmax is an important parameter for detection: larger values of Wmax improve
detection power for more gradually emerging outbreaks, whereas smaller values of Wmax improve detection power for
more rapidly emerging outbreaks [5]. We consider two typical values, Wmax =3 and Wmax =7, in our experiments below.
The total likelihood of the data given in the hypothesis H1(S, Ek) can be computed by marginalizing over � and W :

Pr (D|H1(S, Ek))= 1

Wmax|�|
∑
�∈�

∑
W∈1.. .Wmax

Pr (D|H1(S, Ek),�,W )

As described in [1], the posterior probability map can be computed by MBSS in seven steps: loading the count data,
computing baselines, computing parameter priors, computing location likelihood ratios, computing region likelihood
ratios, computing region posterior probabilities, and computing the posterior probability map. The first three steps can be
performed in time proportional to the size of the dataset, O(N MT ), where N , M , and T are the numbers of locations,
streams, and time steps, respectively. The fourth step is to pre-compute the likelihood ratios

LRi =
∏

m=1.. .M

∏
t=0.. .W−1

Pr (ct
i,m |bt

i,m ,xm�m ,�m )

Pr (ct
i,m |bt

i,m ,�m ,�m )

for each location si , for each combination of the outbreak type Ek , temporal window W , and severity �. Then the
likelihood ratio for a given region S (given Ek , W , and �) can be computed by multiplying the likelihood ratios LRi
for all si ∈ S. This formulation has the benefit that the expensive likelihood ratio computations are only performed a
number of times proportional to the number of locations, rather than the much larger number of regions. The fifth
step of the MBSS framework is to multiply the location likelihood ratios (or add log-likelihood ratios) to obtain the
likelihood ratio for each spatial region S, for each combination of Ek , W , and �. The sixth step requires computation of
posterior probabilities for each combination of outbreak type Ek and spatial region S, marginalizing over W and �, and
the seventh step computes the posterior probability map by summing the posterior probabilities of all regions containing
each spatial location. Each of the last three steps requires computation time proportional to the number of regions S,
and thus MBSS is computationally expensive when the number of regions is large.

The standard MBSS method deals with this computational issue by considering only a small fraction of the O(2N )
possible subsets of the N spatial locations, limiting its search to circular regions S and assuming that all non-circular
regions have zero prior probability. As in Kulldorff’s original spatial scan statistic [3], MBSS examines the set of
O(N 2) circular regions S, each containing a ‘center’ location sc and its k−1 nearest neighbors (as measured by distance
between the zip code centroids), for k =1 . . . N . As noted above, MBSS typically assumes a uniform region prior
Pr (H1(S, Ek)|Ek)=1/NS , where NS is the total number of space–time regions, but nonuniform priors can also be
incorporated, and various methods for learning these priors from data [1, 4] have been explored.

2.2. Fast subset sums

As noted above, the primary limitation of the standard MBSS method is its exhaustive computation over spatial regions
S, requiring us to restrict the set of spatial regions considered to only a small fraction of the O(2N ) possible subsets of
locations, e.g. only considering circular regions. This restriction prevents MBSS from searching over the huge number of
irregularly shaped regions, reducing its detection power and spatial detection accuracy for highly elongated or irregular
regions.

However, two key insights enable us to circumvent this limitation. First, both the total posterior probability of an
outbreak and the posterior probability map are sums of the posterior region probabilities Pr (H1(S, Ek)|D), where the
total posterior probability Pr (H1|D) is a sum over all spatial regions, and the posterior probability of each spatial
location si is a sum over all spatial regions which contain si . We show that each of these sums can be calculated
efficiently without computing the individual posterior probabilities of each spatial region S. Second, we define a specific,
nonuniform prior distribution Pr (H1(S, Ek)|Ek) over all 2N subsets of the data. This prior distribution has non-zero
prior probabilities for any given subset of the data S, but more compact clusters have larger priors, thus enforcing a
soft constraint on spatial proximity. Most importantly, as we demonstrate below, the prior distribution has a hierarchical
structure which enables us to efficiently compute sums of posterior probabilities over exponentially many regions in
linear time.
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We consider a hierarchical region prior conditioned on two latent variables: the ‘center’ location sc and the ‘neighbor-
hood size’ k. We assume a two-stage process in which sc and k are drawn from their respective distributions, and then
the subset S is chosen conditional on sc and k. As in the original MBSS method (searching over circular regions), we can
assume that sc is drawn uniformly at random from the set of spatial locations, and that the neighborhood size k is drawn
uniformly at random between 1 and some constant kmax (the maximum neighborhood size). We typically use kmax = N ,
the number of spatial locations, but smaller values of kmax can be used to reduce computation time, as shown below.
Nonuniform distributions for the center sc and neighborhood size k can easily be incorporated into our method, but the
experiments described below assume uniform distributions. Once we have drawn the center location sc and neighborhood
size k, we then consider location sc and its k−1 nearest neighbors, and choose a subset of locations uniformly at random
from the 2k possible subsets of these k locations. Thus the probability of a given center sc, neighborhood k, and region S
is Pr (sc,k, S)= Pr (sc)Pr (k)/2k , if all locations si ∈ S are contained in the k-neighborhood of sc, and 0 otherwise. The
total prior probability of a given region S can be computed by marginalizing over sc and k. For uniform distributions of
sc and k, with kmax = N , we can compute

Pr (S)=
∑

sc
2N−kc+1−1

N 22N ,

where kc is the minimum neighborhood size such that the k-neighborhood of sc contains all elements of S. This expression
is roughly proportional to 2−kmin , where kmin =minsc kc is a measure of the compactness of region S.

The advantage of this formulation is that, for a given center location sc and a given neighborhood size k, we can
compute the total posterior probability of the 2k spatial regions in O(k) time. As we must consider O(N ) center locations
and O(kmax) neighborhood sizes, this approach enables us to compute the total posterior probability in time O(Nk2

max).
To do so, we define Sck as the k-neighborhood of center location sc (i.e. sc and its k−1 nearest neighbors). Then,
conditioning on the outbreak type Ek , severity �, temporal window W , center location sc, and neighborhood size k, we
can compute the total posterior probability that any region S ⊆ Sck has been affected.

First, we know ∑
S⊆Sck

Pr (S|D)∝ ∑
S⊆Sck

Pr (S)LR(S),

where Pr (S) is the prior probability of region S, conditioned on Ek , sc, and k, and LR(S) is the likelihood ratio of
region S, Pr (D|H1(S, Ek))/Pr (D|H0), conditioned on Ek , �, and W . Second, we know that

∑
S⊆Sck

Pr (S)LR(S)= 1

2k

∑
S⊆Sck

LR(S),

as we are assuming a uniform prior over the 2k subsets of Sck. Third, we know that∑
S⊆Sck

LR(S)= ∑
S⊆Sck

∏
si ∈S

LRi ,

where LRi is the likelihood ratio of location si , conditioned on Ek , �, and W . Fourth, as we are summing over all 2k

subsets of Sck, we can write the sum of 2k products as a product of k sums:∑
S⊆Sck

∏
si ∈S

LRi =
∏

si ∈Sck

(1+LRi ).

Fifth, we obtain the final result, ∑
S⊆Sck

Pr (S|D)∝ 1

2k

∏
si ∈Sck

(1+LRi )=
∏

si ∈Sck

(
1+LRi

2

)
.

Thus the posterior probability of an outbreak, conditioned on the outbreak type Ek , temporal window W , severity �,
center location sc, and neighborhood size k, is proportional to the product of the smoothed likelihood ratios (1+LRi )/2
for all locations si ∈ Sck. This is very similar to the case of circular regions, where the posterior probability of an outbreak
(again, conditioned on Ek , W , �, sc, and k) was proportional to the product of the unsmoothed likelihood ratios LRi . In
each case, we must compute the total posterior probability of an outbreak by marginalizing over Ek , W , �, sc, and k.

Finally, we consider how the posterior probability map can be efficiently computed. To do so, we can efficiently
compute the posterior probability of an outbreak affecting a given location s j , conditioned on the outbreak type Ek ,
temporal window W , severity �, center location sc, and neighborhood size k, using a procedure very similar to the above.
The only difference is that we must compute∑

S⊆Sck:s j ∈S
Pr (S|D)∝ 1

2k

∑
S⊆Sck:s j ∈S

∏
si ∈S

LRi .
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In this case, we are summing over all 2k−1 subsets of Sck that contain s j , and can write the sum of 2k−1 products as the
product of k−1 sums:

∑
S⊆Sck:s j ∈S

∏
si ∈S

LRi =LR j
∏

si ∈Sck−{s j }
(1+LRi ),

and thus

∑
S⊆Sck:s j ∈S

Pr (S|D)=
(

LR j
1+LR j

) ∑
S⊆Sck

Pr (S|D).

We can compute the total posterior probability of an outbreak containing each location s j by marginalizing over Ek , W ,
�, sc, and k, thus enabling efficient computation of the posterior probability map.

2.3. Related work

This work describes FSS, an extension of our recently proposed MBSS framework [1] which enables computationally
efficient detection of irregularly shaped outbreaks. MBSS extends our Bayesian event detection framework [6] to integrate
information from multiple data streams, improving detection power and reducing false positives, and also enables us to
accurately model and distinguish between multiple outbreak types. The Bayesian scan statistic is a variant of the more
traditional, hypothesis testing approach to spatial scan statistics, developed by Kulldorff and Nagarwalla [3, 7]. While
Kulldorff’s original spatial scan statistic [3] did not take the time dimension into account, later work generalized this
method to the ‘space–time scan statistic’ by scanning over variable size temporal windows [8, 9]. Recent extensions,
such as the expectation-based scan statistic [10] and model-based scan statistic [11], use historical data to model the
expected distribution of counts in each spatial location, and the expectation-based scan statistic approach is also applied
in the present work to obtain the expected counts bt

i,m .
Many other variants of the spatial and space–time scan statistics have been proposed, differing in both the set of

regions to be searched and the underlying statistical models. Various statistical models have been proposed for the spatial
scan, ranging from simple Poisson and Gaussian statistics [10, 12] to robust and nonparametric models [13, 14]. While
Kulldorff’s original method [3] assumed circular search regions, other methods have searched over rectangles [15],
ellipses [16], and various sets of irregularly shaped regions [17--19]. We note that previous spatial scan methods for
detecting irregularly shaped regions either restrict the search space (reducing power for any outbreak regions which do
not fit the assumed distribution) or perform a heuristic search, in which case they are not guaranteed to find an optimal
or near-optimal region; our FSS method, on the other hand, performs an exact computation over all O(2N ) subsets of
locations, though it computes the posterior probability map rather than identifying the specific subset of greatest interest.

Two multivariate extensions of the frequentist spatial scan have recently been proposed: Kulldorff’s parametric scan
[2], which directly extends the original spatial scan statistic to multiple data streams by assuming that all data streams are
independent, and the nonparametric scan [14], which combines empirical p-values from multiple data streams without
relying on an underlying parametric model. Unlike MBSS and FSS, neither of these two methods can differentiate
between multiple outbreak types.

Several other multivariate disease surveillance methods have been proposed, including multivariate extensions of
traditional time series analysis methods [20--22] and network-based methods [23] that detect anomalous ratios of counts
between streams. These purely temporal methods do not take spatial information into account: they may be used to
detect anomalous increases in the aggregate time series of the entire area being monitored, rather than detecting and
pinpointing a spatial cluster of affected locations. Additionally, these methods cannot model and differentiate between
multiple event types. PANDA [24, 25] uses Bayesian network models to differentiate between multiple outbreak types
(e.g. the Centers for Disease Control (CDC) Category A diseases), assuming an underlying entity-based model of ED
visits. We have recently developed a multivariate model that incorporates spatial information into PANDA, using ED
chief complaint data as evidence [26].

We have recently developed other efficient search methods based on ‘linear-time subset scanning’ (LTSS), which
allow us to efficiently perform unconstrained maximization of certain univariate likelihood ratio statistics over the 2N

subsets of the data [27]. These methods cannot be easily applied to the MBSS because of the added complications of
non-uniform prior probabilities, multivariate data, and (most of all) the need to calculate the denominator of the posterior
probability, which requires evaluation and summation of the posterior probabilities of all hypotheses under consideration.
Additionally, LTSS methods do not guarantee a solution to constrained maximization problems, and thus are difficult to
apply in spatial detection scenarios where we wish to enforce spatial proximity constraints on the detected regions.

460

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 455--469



D. B. NEILL

3. Evaluation

We now compare the run time, detection power, and spatial accuracy of the FSS method to the original MBSS. While
FSS and MBSS both rely on the Bayesian probabilistic framework [1] described briefly above, MBSS assumes a uniform
prior over the set of O(N 2) circular regions, whereas FSS assumes a nonuniform, hierarchical prior which is nonzero
for all O(2N ) subsets of the data. Thus we expect FSS to improve timeliness and accuracy of detection for elongated or
irregular outbreak regions, as these are not modeled well by the assumption of circular regions. However, since a much
larger set of regions must be considered, we expect the run time of FSS to be slower than the original MBSS method.
However, we expect the run time of FSS to be much faster than a naive search over all O(2N ) subsets, which would be
computationally infeasible for even moderate values of N . The following subsections describe our test dataset (ED data
from Allegheny County), compare the run time of FSS to the MBSS and naive subset sums methods, describe our outbreak
simulations, and compare the detection power and spatial accuracy of FSS and MBSS for these simulated outbreaks.

3.1. Description of emergency department data

We obtained a dataset of 612 713 de-identified ED visit records collected from 10 Allegheny County hospitals from
January 1, 2004 to December 31, 2005. Each record contains fields for the patient’s date of admission to the ED, home
zip code, chief complaint (free text), and International Classification of Diseases (ICD9) code (numeric). We removed
records where the home zip code or admission date was missing, or where the home zip code was outside Allegheny
County, leaving 397 134 records (64.8 per cent). The free-text chief complaint was present for all remaining records,
and the ICD9 code was present for 336 338 (84.7 per cent) of the remaining records.

From this data, we created two distinct streams of count data (cough/dyspnea (CD) and nausea/vomiting (NV)) by
recording the number of patient records matching the given symptoms in each zip code for each day. A patient record
was determined to match a given set of symptoms if its chief complaint string contained certain substrings, or if its ICD9
code matched certain values: for the CD stream, we included records with chief complaints containing the substrings
‘cough’, ‘dyspnea’, ‘shortness’, or ‘sob’, or with ICD9 codes matching 786.2 (cough) or 786.05 (shortness of breath).
For the NV stream, we included records with chief complaints containing the substrings ‘naus’, ‘vom’, or ‘n/v’, or with
ICD9 codes matching 787.01–787.03 (nausea and/or vomiting) or 536.2 (persistent vomiting). Each set of records was
manually refined to remove spurious substring matches.

The time series of daily counts (aggregated over all 97 Allegheny County zip codes) for each data stream is shown
in Figure 2. The CD stream had a mean daily count of 44.0 cases, with a standard deviation of 12.1, and the NV stream
had a mean daily count of 25.9 cases, with a standard deviation of 7.0. As these cases were spread over the 97 Allegheny
County zip codes, many zip codes had zero counts on any given day. Both streams were weakly overdispersed, with
index of dispersion (ratio of variance to mean) 3.31 for the CD data and 1.88 for the NV data, and daily counts of the two
streams were positively correlated (r =0.338). Both streams exhibited slight (but statistically significant) day-of-week
trends, with counts peaking on Mondays, and clear seasonal trends, with counts peaking in February and March for the
CD and NV datasets, respectively.

3.2. Comparison of run times

Our first experiment compared the run times of FSS, Naive Subset Sums (searching exhaustively over all subsets of
locations), and the original MBSS method (searching over circular regions), as a function of the maximum neighborhood

Figure 2. Daily counts for two streams of Allegheny County Emergency Department data (cough/dyspnea and
nausea/vomiting) from January 1, 2004 to December 31, 2005: (a) CD and (b) NV.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 455--469
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Figure 3. Total run times for 100 days of data, for Fast Subset Sums (FSS), naive subset sums, and the original MBSS
approach, as a function of the maximum neighborhood size kmax.

size kmax. Increasing the neighborhood size requires a larger number of regions to be searched: the number of search
regions with neighborhood size k ∈{1 . . .kmax} scales linearly with kmax if only circular regions are considered, and
exponentially with kmax if we consider all subsets of the center and its k−1 nearest neighbors.

We computed the time required by each method to compute the posterior probability maps for the first 100 days of
Allegheny County ED data, for each value of kmax. For each method, we used the same two data streams (CD and NV),
the same three outbreak models (assuming one outbreak type that affects only CD, one outbreak type that affects only
NV, and one that affects both streams equally), and the same maximum temporal window size of three days (Wmax =3).

As shown in Figure 3, the run time of the original MBSS method increased gradually with increasing kmax, up to
a maximum of 116.90 s (to process 100 days of data) for kmax =90. The run time of the Naive Subset Sums method
increased exponentially, making it computationally infeasible for kmax�25. Run times were 5.02 h for 100 days of data
for kmax =15, and 161 h for 100 days of data for kmax =20; for kmax =30, the naive method would have required an
estimated 68.5 days to process a single day of data, and for kmax =90, it would have required an estimated 2×1017

years. Finally, we observe that the run time of FSS scales quadratically with increasing kmax, up to a maximum of
876.25 s (to process 100 days of data) for kmax =90. Thus, while FSS is approximately 7.5× slower than the original
MBSS method, it is still extremely fast, computing the posterior probability map for each day of data in under 9 s.

We also considered a fixed kmax =10, and examined the effects of doubling the number of data streams (from 2 to
4), doubling the number of event models (from 3 to 6), and doubling the maximum temporal window size (from 3 to
6), respectively. Each of these three changes increased the run time of each method by 30–80 per cent, demonstrating
linear dependence of run time on these three parameters as expected.

3.3. Simulation of outbreaks

Next we used a semi-synthetic testing framework (injecting simulated multivariate outbreaks into the real-world ED
data) to compare the detection power and spatial accuracy of the FSS and MBSS methods. We considered a simple
class of simulated outbreaks with a linear increase in the expected number of cases over the duration of the outbreak.
More precisely, our outbreak simulator takes three parameters: the outbreak duration T , the outbreak severity �, and
the subset of affected zip codes Sinject. Then for each injected outbreak, the outbreak simulator chooses the start date
of the outbreak tstart uniformly at random. On each day t of the outbreak, t =1 . . . T , the outbreak simulator injects
Poisson(twi,m�m) cases into each stream of each affected zip code, where wi,m is the ‘weight’ of the zip code for that
stream,

wi,m =
∑

t ct
i,m∑

i

∑
t ct

i,m

.

We considered 10 differently shaped outbreak regions Sinject , as shown in Figures 5–14 (left panels). All outbreaks
were assumed to be two weeks in duration (T =14), and we assumed �CD =�NV =1. For each outbreak region, we
considered 200 different, randomly generated outbreaks, giving a total of 2000 outbreaks for evaluation.

We note that simulation of outbreaks is an active area of ongoing research in biosurveillance. The creation of realistic
outbreak scenarios is important because of the difficulty of obtaining sufficient labeled data from real outbreaks, but
is also very challenging. State-of-the-art outbreak simulations, such as those of Buckeridge et al. [28], and Wallstrom
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Table I. Comparison of MBSS and FSS methods, using maximum temporal window size Wmax =3.

Outbreak region MBSS FSS

1 8.275 (96.0 per cent) 7.550 (98.0 per cent)
2 8.045 (96.0 per cent) 7.480 (96.5 per cent)
3 10.275 (71.5 per cent) 9.095 (85.0 per cent)
4 9.780 (83.5 per cent) 8.880 (90.5 per cent)
5 10.425 (68.5 per cent) 8.310 (95.0 per cent)
6 7.865 (97.5 per cent) 6.810 (99.5 per cent)
7 7.400 (100 per cent) 6.515 (100 per cent)
8 4.230 (100 per cent) 3.975 (100 per cent)
9 5.900 (100 per cent) 5.205 (100 per cent)
10 7.440 (99.0 per cent) 5.930 (100 per cent)
Average 7.964 (91.2 per cent) 6.975 (96.5 per cent)

Average days to detection, and proportion of outbreaks detected, at a fixed false-positive rate of 1/month.

Table II. Comparison of MBSS and FSS methods, using maximum temporal window size Wmax =7.

Outbreak region MBSS FSS

1 8.860 (97.0 per cent) 8.995 (97.0 per cent)
2 8.200 (99.0 per cent) 8.265 (99.0 per cent)
3 11.380 (65.0 per cent) 10.835 (79.0 per cent)
4 10.530 (78.5 per cent) 10.195 (83.5 per cent)
5 11.665 (62.5 per cent) 9.470 (94.5 per cent)
6 8.310 (99.0 per cent) 7.845 (100 per cent)
7 7.555 (100 per cent) 7.245 (100 per cent)
8 4.700 (100 per cent) 4.610 (100 per cent)
9 6.295 (100 per cent) 5.920 (100 per cent)
10 7.600 (100 per cent) 6.340 (100 per cent)
Average 8.510 (90.1 per cent) 7.972 (95.3 per cent)

Average days to detection, and proportion of outbreaks detected, at a fixed false-positive rate of 1/month.

et al. [29], combine disease trends observed from past outbreaks with information about the current background data
into which the outbreak is being injected, as well as allowing the user to adjust parameters, such as outbreak duration
and severity. While the simple linear outbreak model that we use here is not a realistic model of the temporal progression
of an outbreak, it enables precise comparison of the detection power of different methods, gradually ramping up the
severity of the outbreak until it is detected.

3.4. Comparison of detection power

We compared the detection power of the FSS and MBSS methods for each of the 10 outbreak regions, considering
two values of the maximum temporal window size (Wmax =3 and Wmax =7) for each method. We fixed the value of
kmax = N , i.e. the MBSS method considers all O(N 2) circular regions and the FSS method considers all O(2N ) subsets
of the data. For each combination of method and outbreak region, we computed the method’s proportion of outbreaks
detected and average number of days to detect as a function of the allowable false-positive rate. To do this, we first
computed the maximum region score F∗ =maxS F(S) for each day of the original dataset with no outbreaks injected
(the first 84 days of data are excluded, since these are used to calculate baseline estimates for our methods). Then for
each injected outbreak, we computed the maximum region score for each outbreak day, and determined what proportion
of the days for the original dataset have higher scores. Assuming that the original dataset contains no outbreaks, this is
the proportion of false positives that we would have to accept in order to have detected the outbreak on day t . For a
fixed false-positive rate r , the ‘days to detect’ for a given outbreak is computed as the first outbreak day (t =1 . . .14)
with proportion of false positives less than r . If no day of the outbreak has proportion of false positives less than r , the
method has failed to detect that outbreak: for the purposes of our ‘days to detect’ calculation, these are counted as 14
days to detect, but could also be penalized further.

The detection performance of the MBSS and FSS methods is presented in Tables I and II. For each of the 10 outbreak
regions, we present each method’s average detection time and percentage of outbreaks detected at a fixed false-positive
rate of 1/month. We also show the AMOC curves (average detection time as a function of false-positive rate) for
MBSS and FSS, averaged over all 10 outbreak regions, in Figure 4.
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Figure 4. AMOC curves for FSS and MBSS, for maximum temporal window sizes 3 and 7. Average days to detection as a
function of false-positive rate.

Figure 5. Outbreak region #1 (compact cluster, downtown Pittsburgh). Left: true outbreak region. Center: average posterior
probability map for MBSS. Right: average posterior probability map for FSS.

From the AMOC curves, we see that FSS consistently achieves more timely detection than MBSS across a range of
false-positive rates. For a fixed false-positive rate of 1/month, FSS detected an average of one day earlier than MBSS for
a maximum temporal window size Wmax =3, and 0.54 days earlier for Wmax =7, with fewer than half as many missed
outbreaks in each case. Comparing the detection performance of FSS and MBSS for each of the 10 outbreak regions, we
observe that both methods achieve very similar detection times for compact outbreak regions (#1, #2, and #8). For highly
elongated outbreak regions (#5 and #10), FSS detected between 1.3 and 2.2 days earlier. For moderately elongated and
irregularly shaped regions, the difference between methods was smaller: FSS detected 0.7–1.2 days earlier for Wmax =3
and 0.3–0.6 days earlier for Wmax =7. Both methods achieved more timely detection when Wmax =3, suggesting that
the given outbreaks did not emerge gradually enough for the increased temporal window size to improve performance.

3.5. Comparison of spatial accuracy

For each of the 10 outbreak regions, we compared the spatial accuracy of the MBSS and FSS methods. The center
panels of Figures 5–14 show the average posterior probability maps for the original MBSS method for each of the 10
outbreak regions at the midpoint of the outbreak, averaged over the 200 randomly generated outbreaks affecting that
region. The right panels of Figures 5–14 show the average posterior probability maps for FSS for each outbreak region at
the midpoint of the outbreak. We used a maximum temporal window size Wmax =7 for both methods. Comparing each
averaged map to the true affected regions (left panels of Figures 5–14), we observe that FSS more accurately estimates
the spatial extent of the outbreak region. The detected regions were very similar for the compact outbreaks (#1, #2, and
#8). For the elongated outbreaks (#4, #5, #9, and #10), FSS closely approximated the true outbreak region, whereas
MBSS was not able to accurately distinguish the true region. Finally, for the irregular and disjoint outbreaks (#3, #6,
and #7), FSS was better able to fit the irregular shape, whereas MBSS typically reported a compact cluster containing
the irregular shape and several additional (incorrect) zip codes.

To quantify these differences in spatial detection accuracy, we computed the average overlap coefficient, precision,
and recall for each method for each of the 10 outbreak types, as a function of the outbreak day. To compute the overlap
coefficient for a given day of a given outbreak, we first compute the set of ‘detected’ zip codes. To do so, we find the
zip code with largest posterior outbreak probability p, and consider any zip code with posterior probability greater than
p/2 to have been detected. We compare the ‘detected’ zip codes to the set of ‘true’ zip codes containing injected cases,
and count the number of ‘hits’ (zip codes which are both true and detected). The overlap coefficient is then defined as
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Figure 6. Outbreak region #2 (compact cluster, southeast of Pittsburgh). Left: true outbreak region. Center: average posterior
probability map for MBSS. Right: average posterior probability map for FSS.

Figure 7. Outbreak region #3 (two disjoint clusters). Left: true outbreak region. Center: average posterior probability map for
MBSS. Right: average posterior probability map for FSS.

Figure 8. Outbreak region #4 (elongated cluster, downtown Pittsburgh). Left: true outbreak region. Center: average posterior
probability map for MBSS. Right: average posterior probability map for FSS.

Figure 9. Outbreak region #5 (highly elongated cluster, downtown Pittsburgh). Left: true outbreak region. Center: average posterior
probability map for MBSS. Right: average posterior probability map for FSS.

Figure 10. Outbreak region #6 (irregular cluster, Pittsburgh North and South Sides). Left: true outbreak region. Center: average
posterior probability map for MBSS. Right: average posterior probability map for FSS.

Nhits/(Ntrue + Ndetected− Nhits). The precision is defined as Nhits/Ndetected, and the recall is defined as Nhits/Ntrue. Finally,
we compute the average overlap coefficient, precision, and recall for each outbreak region (#1–10) for each outbreak
day (1–14), averaging over all 200 outbreaks of the given type.
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Figure 11. Outbreak region #7 (irregular cluster, Monroeville area). Left: true outbreak region. Center: average posterior probability
map for MBSS. Right: average posterior probability map for FSS.

Figure 12. Outbreak region #8 (compact cluster, west of Pittsburgh). Left: true outbreak region. Center: average posterior
probability map for MBSS. Right: average posterior probability map for FSS.

Figure 13. Outbreak region #9 (elongated cluster, south of Pittsburgh). Left: true outbreak region. Center: average posterior
probability map for MBSS. Right: average posterior probability map for FSS.

Figure 14. Outbreak region #10 (highly elongated cluster, north Allegheny County). Left: true outbreak region. Center: average
posterior probability map for MBSS. Right: average posterior probability map for FSS.

Figure 15 shows the average overlap coefficients (averaged over all 10 outbreak regions) for each method as a function
of the outbreak day. Tables III and IV show the average overlap coefficient, precision, and recall for each outbreak
region for each method, at the midpoint of the outbreak. From the figure, we observe that FSS increased the average
overlap coefficient by 6–15 per cent when compared with MBSS, for a given outbreak day and a given value of the
maximum temporal window size Wmax. Both methods had higher overlap coefficients for Wmax =7: as many of the
affected locations may have had no counts injected on a given time step, a longer temporal window enabled the methods
to observe a larger number of injected counts, thus improving their ability to pinpoint the affected region.

At the midpoint of the outbreak, FSS increased the average overlap coefficient by 7.3 per cent for Wmax =3 and
10.0 per cent for Wmax =7. However, we observe from the tables that the overlap coefficients were similar for the more
compact outbreaks (#1, #2, and #7), while FSS substantially improved the overlap coefficients for the more elongated
outbreaks (#5, #9, and #10). FSS obtained substantially higher precision than MBSS for all 10 outbreak regions, whereas
MBSS obtained substantially higher recall for 8 of 10 outbreak regions. Increasing Wmax from 3 to 7 improved both
precision and recall for FSS, whereas only improving precision for MBSS. FSS tended to miss affected zip codes with
very small numbers of injected counts, whereas MBSS tended to include these zip codes if they were spatially proximate
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Figure 15. Spatial detection accuracy for FSS and MBSS, for maximum temporal window sizes 3 and 7. Average overlap
coefficient between true and estimated regions for each outbreak day.

Table III. Comparison of MBSS and FSS methods, using maximum temporal window size Wmax =3.

Precision Recall Overlap

Outbreak region MBSS (per cent) FSS (per cent) MBSS (per cent) FSS (per cent) MBSS (per cent) FSS (per cent)

1 51.4 67.0 95.4 71.4 49.7 50.1
2 62.6 66.3 91.1 64.8 57.9 44.9
3 36.5 51.9 79.2 53.6 29.6 31.3
4 40.4 52.2 90.5 70.1 35.7 37.0
5 18.4 45.0 84.6 73.2 14.9 35.8
6 40.4 59.0 93.4 76.5 38.6 48.8
7 65.9 78.1 98.2 81.4 65.5 65.8
8 57.3 82.2 93.8 81.1 55.1 68.3
9 61.2 80.6 71.0 76.4 40.7 62.9
10 37.5 64.2 60.4 59.8 24.9 40.9
Average 47.2 64.7 85.8 70.8 41.3 48.6

Average overlap coefficient, precision, and recall at the midpoint of the outbreak.

Table IV. Comparison of MBSS and FSS methods, using maximum temporal window size Wmax =7.

Precision Recall Overlap

Outbreak region MBSS (per cent) FSS (per cent) MBSS (per cent) FSS (per cent) MBSS (per cent) FSS (per cent)

1 66.0 73.0 97.4 76.5 64.3 58.5
2 68.7 80.3 90.4 65.9 63.2 54.7
3 33.9 50.8 84.6 56.2 28.8 34.5
4 40.9 58.9 89.8 68.8 35.9 42.9
5 24.1 53.1 82.7 75.6 18.7 41.4
6 50.0 66.0 95.1 83.4 48.5 58.0
7 77.8 90.9 99.3 86.3 77.7 79.2
8 61.2 85.2 94.2 86.3 58.8 74.3
9 66.9 83.6 65.8 84.0 41.4 71.1
10 44.1 69.5 56.9 68.4 29.0 51.3
Average 53.4 71.1 85.6 75.1 46.6 56.6

Average overlap coefficient, precision, and recall at the midpoint of the outbreak.

to other affected zip codes; on the other hand, MBSS often detected additional spatially proximate zip codes which were
not part of the affected region. The most likely reason for these differences is that FSS picks out the (possibly irregularly
shaped) subset of locations with sufficiently many injected cases without including the surrounding locations, whereas
MBSS typically detects a larger, circular region containing these locations. When the true outbreak region is compact
(circular or nearly circular), the circular region chosen by MBSS may better approximate its true extent; for elongated
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or irregular regions, the circular region chosen by MBSS is a poor approximation, and the greater flexibility of FSS is
needed to improve spatial accuracy.

4. Conclusions

The FSS method is an extension of our MBSS framework [1] which allows the computationally efficient detection of
irregular clusters. By defining a hierarchical prior over all O(2N ) subsets of the N monitored locations, rather than
considering only the O(N 2) circular regions, FSS can achieve more timely detection of elongated or irregularly shaped
clusters, and can more accurately pinpoint the affected subset of locations. Our experiments demonstrate substantial
improvements in detection time (1.3–2.2 days) and spatial accuracy (more than doubling the overlap coefficient between
true and detected regions) for highly elongated clusters, while achieving similar detection time and spatial accuracy
for compact clusters. Most importantly, while a naive approach to computing the posterior probability map (requiring
likelihood computations for each of the exponentially many subsets of the data) would be computationally infeasible,
our computationally efficient FSS method scales up to the approximately 100 zip codes in Allegheny County, requiring
less than 9 s to compute the posterior probability map for a given day of data.

Our continuing exploration of the FSS approach will extend the present work in two main directions. First, while our
evaluation of detection power and spatial accuracy assumed a maximum neighborhood size kmax equal to the number of
locations N , kmax can also be set to less than N if we wish to rule out highly elongated clusters, improving detection
power for compact and nearly compact clusters, and reducing computation time. Similarly, while we assumed that each
subset of the chosen neighborhood (a center location sc and its k−1 nearest neighbors) was equally likely, we can
also generalize to the case where we independently choose (with some probability p) whether each location in the
neighborhood is affected. Our current method is equivalent to assuming p= 1

2 , and searching over circles is equivalent
to assuming p=1, but we can also choose a value of p between 1

2 and 1. This generalization still allows us to consider
elongated and irregular regions, but gives a higher weight to more compact regions. Our future work will perform a
detailed analysis of the detection power of the generalized FSS method as a function of kmax, p, and the compactness
of the outbreak region.

Finally, we propose to incorporate incremental model learning into the FSS approach. As in our original MBSS
method, the average effects of each outbreak type on each data stream can be learned from a small number of labeled
training examples using a smoothed maximum likelihood approach [1]. Learning the hierarchical prior over subsets of
the data is more challenging, as we must infer the distributions over center locations sc and neighborhood size k (and
optionally, the location probability p) from partially labeled training examples. Typically, the subset of affected locations
S is labeled, but the values of sc, k, and p are unknown. We will apply a generalized expectation-maximization (GEM)
approach to estimate the distributions of these values, assuming multinomial distributions for sc and k, and a fixed (but
unknown) parameter p. This model is very similar to the ‘latent center’ model described in [4], but conditions on the
neighborhood size k rather than the radius r , and assumes that the conditional probability that a location is affected is
uniform (within the chosen neighborhood) rather than decreasing as a function of distance from the center. We believe
that incorporation of learning into the FSS approach will enable efficient optimization of the hierarchical prior from a
small number of training examples, further improving the timeliness and accuracy of outbreak detection.
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