
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Download by: [Carnegie Mellon University] Date: 23 December 2015, At: 14:18

Journal of Computational and Graphical Statistics

ISSN: 1061-8600 (Print) 1537-2715 (Online) Journal homepage: http://www.tandfonline.com/loi/ucgs20

Scalable Detection of Anomalous Patterns With
Connectivity Constraints

Skyler Speakman, Edward McFowland III & Daniel B. Neill

To cite this article: Skyler Speakman, Edward McFowland III & Daniel B. Neill (2015) Scalable
Detection of Anomalous Patterns With Connectivity Constraints, Journal of Computational and
Graphical Statistics, 24:4, 1014-1033, DOI: 10.1080/10618600.2014.960926

To link to this article: http://dx.doi.org/10.1080/10618600.2014.960926

Accepted author version posted online: 07
Oct 2014.
Published online: 10 Dec 2015.

Submit your article to this journal

Article views: 54

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
http://www.tandfonline.com/loi/ucgs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2014.960926
http://dx.doi.org/10.1080/10618600.2014.960926
http://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10618600.2014.960926
http://www.tandfonline.com/doi/mlt/10.1080/10618600.2014.960926
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2014.960926&domain=pdf&date_stamp=2014-10-07
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2014.960926&domain=pdf&date_stamp=2014-10-07

Scalable Detection of Anomalous Patterns
With Connectivity Constraints

Skyler SPEAKMAN, Edward MCFOWLAND III, and Daniel B. NEILL

We present GraphScan, a novel method for detecting arbitrarily shaped connected
clusters in graph or network data. Given a graph structure, data observed at each node,
and a score function defining the anomalousness of a set of nodes, GraphScan can effi-
ciently and exactly identify the most anomalous (highest-scoring) connected subgraph.
Kulldorff’s spatial scan, which searches over circles consisting of a center location and
its k − 1 nearest neighbors, has been extended to include connectivity constraints by
FlexScan. However, FlexScan performs an exhaustive search over connected subsets
and is computationally infeasible for k > 30. Alternatively, the upper level set (ULS)
scan scales well to large graphs but is not guaranteed to find the highest-scoring subset.
We demonstrate that GraphScan is able to scale to graphs an order of magnitude larger
than FlexScan, while guaranteeing that the highest-scoring subgraph will be identified.
We evaluate GraphScan, Kulldorff’s spatial scan (searching over circles) and ULS in
two different settings of public health surveillance. The first examines detection power
using simulated disease outbreaks injected into real-world Emergency Department data.
GraphScan improved detection power by identifying connected, irregularly shaped spa-
tial clusters while requiring less than 4.3 sec of computation time per day of data. The
second scenario uses contaminant plumes spreading through a water distribution system
to evaluate the spatial accuracy of the methods. GraphScan improved spatial accuracy
using data generated from noisy, binary sensors in the network while requiring less than
0.22 sec of computation time per hour of data.

Key Words: Biosurveillance; Event detection; Graph mining; Scan statistics; Spatial
scan statistic.

1. INTRODUCTION

The ability to detect patterns in massive datasets has multiple applications in policy
domains such as public health, law enforcement, and security. The “subset scan” approach
to pattern detection treats the problem as a search over subsets of data, with the goal of
finding the most anomalous subsets. One major challenge of the “subset scan” approach
is the computational problem that arises from attempting to search over the exponentially
many subsets of the data. Linear time subset scanning (LTSS; Neill 2012) is a novel

Skyler Speakman, Edward McFowland III, and Daniel B. Neill, Event and Pattern Detection Laboratory, Carnegie
Mellon University, Pittsburgh, PA 15213 (E-mail: neill@cs.cmu.edu).

C© 2015 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 24, Number 4, Pages 1014–1033
DOI: 10.1080/10618600.2014.960926
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/jcgs.

1014

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

http://www.amstat.org
http://www.galaxy.gmu.edu/stats/IFNA7.html
http://www.amstat.org/publications/jcgs
http://dx.doi.org/10.1198/jcgs.10.1080/10618600.2014.960926
http://www.tandfonline.com/jcgs

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1015

approach to anomalous pattern detection that addresses this issue by identifying the most
anomalous subset of the data without requiring an exhaustive search, reducing computation
time from years to milliseconds. Although LTSS provides a valuable speed increase, there
are applications where LTSS by itself will provide less than ideal results as it is focused on
detecting the most anomalous subset without additional constraints.

This work proposes GraphScan, a new method for event and pattern detection in massive
datasets that have an underlying graph structure. Given a graph structure with vertices and
edges G = (V,E), and a time series of counts ct

i for each vertex Vi in G, GraphScan detects
emerging patterns by finding connected subgraphs S ⊆ G such that the recent counts of
the vertices Vi in S are significantly higher than expected. This process will be described
in more detail below.

As one concrete example of the application of GraphScan, we consider the problem of
disease outbreak detection. In this setting, LTSS with proximity constraints (Neill 2012)
can be used to quickly detect spatially compact clusters of anomalous locations. However,
consider an outbreak from a waterborne illness that leads to an increased number of hospital
visits from patients that live in zip codes along a river or coastline. This noncompact
spatial pattern would be hard to detect using proximity constraints. Taking advantage of
an underlying graph structure based on zip code adjacency allows GraphScan to consider
connected subsets of zip codes and therefore have increased power to detect these irregularly
shaped clusters.

A second motivating example focuses on identifying contaminant plumes in a water
distribution system equipped with noisy, binary sensors. We demonstrate that GraphScan’s
ability to exactly identify the most anomalous connected subset of sensors (nodes) increases
spatial accuracy compared to heuristic methods such as the upper level set (ULS) scan
statistic.

To clarify, our approach differs in both form and function from other recent work in
graph mining. We are not attempting “community” or cluster detection (Flake, Lawrence,
and Giles 2000). Also, unlike Wang et al. (2008), the anomalousness of the connected
subsets we wish to identify is not based on the density of edges within the subgraph, but
rather on properties of the nodes. We simply require that the detected subset of nodes
be connected rather than looking for an anomalous collection of edges. Recent work by
Leskovec et al. (2007) is also concerned with detecting events in networked data. Their goal
is to determine the optimal placement of sensors within the network, while we address the
complementary problem of fusing noisy data from multiple sensors for a given placement.
Once these sensors are placed, scalable methods are still needed to detect events in the
resulting large datasets with an underlying network structure.

1.1 SPATIAL EVENT DETECTION

This work applies GraphScan to the spatial event detection domain, using the additional
connectivity constraints defined by the graph structure to detect irregularly shaped but
connected subsets of locations. Our goal is to find the most interesting spatial (or spa-
tiotemporal) subset of locations S, subject to the connectivity constraints, by maximizing
the score function F (S).

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1016 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

In particular, let the domain of interest, D = {R1 . . . RN }, be a set of N locations (or data
records in a more general setting) and let F (S) be a function mapping a subset of locations
S ⊆ D to a real number. These scoring functions are typically likelihood ratio statistics,
assuming a parametric model such as Poisson- or Gaussian-distributed counts. The null
hypothesis H0 assumes that all counts are generated from the expected distribution (which
can be spatially and temporally varying), while the alternative hypothesis H1(S) assumes
that the recent counts for locations in subset S are increased by a multiplicative factor.
Therefore, the ratio of the likelihoods of these two hypotheses, F (S) = P (D | H1(S))

P (D | H0) , provides
the “score” of a region S, and we are interested in detecting the most anomalous (highest-
scoring) connected region.

Spatial event detection methods in disease surveillance monitor a data stream (such as
Emergency Department visits with respiratory complaints, or over-the-counter medication
sales) across a collection of spatial locations and over time. These streams are represented
as a series of counts ct

i , from location si , and time step t. These counts are also used
to determine the historical baseline (expected count) bt

i for each location si at each time
step t. Our goal is to determine the spatial or spatiotemporal region (subset of locations
within a time window consisting of the past W days, for some W = 1 . . . Wmax) that has
an elevated level of activity indicating the early stages of a potential disease outbreak.
The counts and baselines for each location in a region S are aggregated to form the count
C(S) = ∑

si∈S

∑
t=1...W ct

i and baseline B(S) = ∑
si∈S

∑
t=1...W bt

i . The amount of activity
is quantified by the scoring function, F (S) = F (C(S), B(S)). For the expectation-based
Poisson (EBP) statistic used here, the log-likelihood ratio is FEBP(S) = C log(C

B
) + B − C,

if C > B, and FEBP(S) = 0 otherwise (Neill et al. 2005).
Previous methods have approached spatial event detection by reducing the search space

of possible subsets, only considering regions that correspond to a particular shape such
as circles (Kulldorff and Nagarwalla 1995; Kulldorff 1997), rectangles (Neill and Moore
2004), or ellipses (Kulldorff et al. 2006). Kulldorff’s original spatial scan approach uses a
circular (spatial) or cylindrical (space-time) window to detect regions of increased activity.
While these approaches reduce the computational complexity from exponential to polyno-
mial time, they have reduced power to detect clusters that do not correspond to the given
shape.

Our work is not the first to address detecting events in graph or network data. The flexible
scan statistic (FlexScan) has shown the utility of using adjacency constraints when detecting
irregularly shaped spatial clusters (Tango and Takahashi 2005). FlexScan considers all
subsets formed by a center node and a connected subset of its k − 1 nearest neighbors.
Unfortunately, the run time of FlexScan scales exponentially with the neighborhood size
k, and thus FlexScan becomes computationally infeasible for neighborhoods larger than
30 nodes. A more efficient method is required to scale to even moderately sized datasets.
This increase in efficiency does not have to come at the price of a using a heuristic; our
GraphScan method makes larger problems tractable while guaranteeing that the highest-
scoring connected subset will be identified.

Other approaches rely on heuristics to accelerate the subset selection process. These
are not guaranteed to find the most anomalous subset, and in some cases may perform
arbitrarily badly as compared to the true optimum. For example, Duczmal and Assuncao
(2004) detected clusters of homicides in a large urban dataset using simulated annealing

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1017

to search over the space of connected subgraphs. The upper level set scan statistic (ULS)
by Patil and Taillie (2004) has impressive speed and scalability, but can fail to detect the
highest-scoring connected subset even in a simple four-node graph, as shown by Neill
(2012).

Neill (2012) proposed a method that exploits a property of scoring functions called
linear-time subset scanning (LTSS). This property allows us to find the highest-scoring
subset of N locations without exhaustively searching over the exponentially many subsets.
However, it is highly nontrivial to extend LTSS to detect connected subsets of locations,
and thus LTSS will often return disconnected clusters. This is the limitation addressed by
our current work. We demonstrate that our GraphScan algorithm can efficiently and exactly
detect the highest-scoring connected subset. This is different than both FlexScan (which is
computationally intractable for large neighborhoods) and ULS (which does not guarantee
an exact solution).

2. FAST SUBSET SCANNING WITH CONNECTIVITY
CONSTRAINTS

Our approach to event detection is based on both efficiently and exactly identifying the
highest-scoring connected subset of the data, thus providing high detection power while
being able to scale to large datasets. For score functions satisfying the LTSS property
(Neill 2012), the highest-scoring subset of records can be found by ordering the records
according to some priority function G(Ri) and searching over groups consisting of the
top-j highest priority records for some (unknown) value of j. Formally, for a given dataset
D, the scoring function F (S) and priority function G(Ri) satisfy the LTSS property if
and only if maxS⊆D F (S) = maxj=1...N F ({R(1) . . . R(j)}), where R(j) represents the j th-
highest priority record. For clarification, we consider R(1) to be the highest priority record,
G(R(1)) ≥ G(R(i)) for all i > 1, and R(N) to the be lowest priority record. In other words,
the highest-scoring subset is guaranteed to be one of the linearly many subsets composed
of the top-j highest priority records, for some j ∈ {1 . . . N}. Therefore, in the search for the
highest-scoring subset, we only need to consider these N subsets instead of the exponentially
many possible subsets. The sorting of the records by priority requires O(N log N) time.
However, if the priority sorting has already been completed, searching over subsets requires
only O(N) computation time.

For any subset of locations S, Neill (2012) showed that, if there exist locations
Rin ∈ S and Rout �∈ S such that G(Rin) ≤ G(Rout), then F (S) ≤ max(F (S \ {Rin}), F (S ∪
{Rout})), and thus subset S is suboptimal. This property extends intuitively from single
records to subsets of records. As above, let C(S) = ∑

si∈S ct
i and B(S) = ∑

si∈S bt
i , and

we define the priority of subset S to be G(S) = C(S)
B(S) , the ratio of the total count within

S to the total baseline within S. Then if there exist subsets of locations Sin ⊆ S and Sout,
S ∩ Sout = ∅, such that G(Sin) ≤ G(Sout), then F (S) ≤ max(F (S \ Sin), F (S ∪ Sout)), and
thus subset S is suboptimal.

When connectivity constraints are introduced, the above inequality between subsets S,
S \ Sin, and S ∪ Sout still holds. However, for a connected subset S, the subsets S \ Sin and
S ∪ Sout may not be connected. Thus S is only guaranteed to be suboptimal if two conditions

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1018 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

hold: (i) simultaneously removing all records Ri ∈ Sin would not disconnect S; and (ii) at
least one of the records in Sout is adjacent to S, and therefore simultaneously adding all
records Ri ∈ Sout would allow the subset to remain connected. Thus we can state the LTSS
GraphScan logic as follows: “If subset Sin is included in the highest-scoring connected
subset S, and removing Sin would not disconnect S, then no connected subset Sout adjacent
to S can have higher priority than Sin.”

We now consider the various types of scoring functions that satisfy LTSS and hence
can be optimized by the GraphScan algorithm. Neill (2012) proved that any function
F (C,B) which is quasi-convex, increases with C, and is restricted to positive values of B
will satisfy the LTSS property. Kulldorff’s original spatial scan statistic (Kulldorff 1997),
also used as the score function for the FlexScan algorithm (Tango and Takahashi 2005),
satisfies LTSS. Therefore, GraphScan could be used in place of the circular scan, to scan
over connected clusters instead of circles, in any of the large number of application domains
to which Kulldorff’s approach and FlexScan have been applied. The corresponding priority
function for Kulldorff’s spatial scan statistic is G(Ri) = ci

bi
.

Additionally, LTSS holds for expectation-based scan statistics (Neill 2009b) in the sepa-
rable exponential family, including but not limited to the Poisson, Gaussian, and exponential
distributions. In these cases, the additive sufficient statistics C and B may be different: for ex-

ample, ci = xiμi

σ 2
i

and bi = μ2
i

σ 2
i

for the expectation-based Gaussian scan statistic with means

μi , standard deviations σi , and observed values xi . The priority function G(Ri) = ci

bi
also

applies to expectation-based scan statistics. Typically, scan statistics are used to detect
increased activity where counts are higher than expected. However, the expectation-based
scan statistics can also be used to detect decreased counts while still satisfying LTSS.
Intuitively, the corresponding priority function in this setting is G(Ri) = bi

ci
, reversing the

original ordering. Finally, LTSS can also be applied to a variety of nonparametric scan
statistics, as described in McFowland, Speakman, and Neill (2013), and GraphScan can be
used to detect connected clusters in these settings as well.

3. GRAPHSCAN ALGORITHM

Operating naively, identifying the highest-scoring connected subset for a graph of N
nodes requires an exhaustive search over all O(2N) possible connected subsets. GraphScan
performs this search over connected subsets using a depth-first search with backtracking,
but gains speed improvements by ruling out subsets that are provably suboptimal. First,
we rule out subsets violating the LTSS GraphScan property. If there exist two subsets
Sin and Sout as defined above, with the priority of Sout exceeding the priority of Sin, then S
is suboptimal. Second, we apply a “branch-and-bounding” technique to rule out groups of
subsets that are guaranteed to be lower scoring than the best connected subset found thus
far.

3.1 SUBGRAPH CREATION AND DEFINITIONS OF COMMON TERMS

We define seed records as records that have higher priority than all of their neighbors. Let
seeds ⊆ D be the set of all seed records in G. For each seed record R(j) ∈ seeds, GraphScan
forms a subgraph Gj such that all records with higher priority than R(j), and the neighbors

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1019

Figure 1. A graph broken into three subgraphs, one for each seed record (darkened). Nodes with dashed bevels
are not included in a given subgraph. In G2, R(6) has been removed because it is a neighbor of R(1). We remove
R(4) and R(5) because they can no longer be reached from R(2). Subgraphs G1, G2, and G4, respectively, represent
32, 2, and 2 of the 64 subsets under consideration. The remaining 28 subsets have been ruled out by the subgraph
creation process.

of these higher-priority records, are excluded from Gj . Additionally, records that are no
longer reachable from R(j) are excluded. An example is provided in Figure 1.

To conduct a depth-first search within each subgraph, we define a route to be a data
structure with five components. First is the subset of records included and excluded from
the route. These are stored in a priority-ordered Nj -bit string, where Nj is the number of
nodes remaining in that subgraph. The kth bit, Xk , represents the inclusion or exclusion
of the kth highest priority record R(k). All records included in the route are represented
as Xk = 1 and excluded records are represented as Xk = 0. Any records that have yet to
be considered are marked with Xk = ?. Second is the route’s current path, which ends
at its current location. This is a sparse representation of records ordered by inclusion in
the route, and allows for backtracking. Third are the route’s current sidetracks. Sidetracks
are connected subsets of records which have been backtracked through by the depth-first
search procedure; they are included in the route’s subset but are not on the current path and
no longer have potential for further exploration. Note that removal of any sidetrack will
not disconnect the current subset, and thus a route’s Sin is defined as the lowest priority
sidetrack contained in that route. Finally, a route’s Sout is the highest priority excluded
neighbor of the route; alternatively, we can consider a broader definition of Sout as detailed
below.

GraphScan keeps track of all candidate routes for a given subgraph using a priority
queue. New routes under consideration will either be ruled out by the LTSS GraphScan
property, ruled out by “branch and bounding,” or added back to the queue for further
processing. Any connected subset S which is not pruned will have its score F (S) computed,
and GraphScan keeps track of the highest-scoring connected subset found during its search.

3.2 PROCESSING A SUBGRAPH

After identifying seed records and forming a subgraph for each seed record, the task
is to efficiently process each subgraph to identify its highest-scoring connected subset.
The highest score over all subgraphs is returned as the final solution. At each step of the
GraphScan algorithm, a route is removed from the queue and multiple child routes are
propagated as either an extension or backtrack of the current path. Cycles are avoided
by not considering child nodes that are also neighbors of the current path. Assuming that

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1020 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

Figure 2. A possible route for an 8-node subgraph. The number in each node represents the node’s priority
ranking. The current subset is [1, ?, 1, ?, 1, 1, 0, ?] , and the current path is [1, 6, 5]. Sin = {R(3)} with priority
3.5, because R(3) is included in the subset and removing it would not disconnect the subset. Sout = {R(7)} with
priority 0.25. Four child routes must be considered: extending the path to R(2); excluding R(2) and extending to
R(4); excluding R(2) and R(4) and extending to R(8); excluding R(2), R(4), and R(8) and backtracking to R(6). All
but the first route are provably suboptimal and would not be reinserted into the queue. Specifically, excluding
R(2) from the route would increase the route’s Sout priority to 9

2 = 4.5, higher than the priority of Sin.

the current location is R(i) with C child nodes R(j1) . . . R(jC) in priority order, we consider
C + 1 child routes for reinsertion into the queue: one route extending the path to each child
node R(jc), and one backtracked route.

When extending the current path from record R(i) to record R(jc), 1 < c ≤ C, we exclude
the c − 1 neighbors of R(i) that have a higher priority than R(jc). The route’s Sout is updated
if one of the newly excluded neighboring records has a higher priority than the route’s
current Sout. If the priority of the route’s Sout exceeds that of Sin then this new route is not
reinserted into the queue because it represents a provably suboptimal subset of records. See
Figure 2 for an example.

When backtracking, we exclude all of the C neighbors of R(i) and change the current
location to the previous node on the current path. In addition to potentially updating a
route’s Sout, backtracking may also change the route’s Sin and requires some additional
attention. When backtracking, GraphScan must recalculate the priority of the entire current
sidetrack. To that end, the new current location aggregates the counts and baselines of the
backtracked record with its own. This is done for every backtrack, and therefore the new
current location inherits the counts and baselines (and therefore, the priority as well) of the
entire current sidetrack. It is this priority that we must consider when updating a route’s
Sin. See Figure 3 for an example.

If this ratio of aggregated counts and baselines is lower than the priority of the route’s
current Sin, then we update the route’s Sin before attempting to reinsert it into the queue.
If Sin has lower priority than the route’s Sout then it is not reinserted to the queue because
it represents a provably suboptimal subset. This updating and comparing of Sin and Sout as
each route propagates allows GraphScan to prune a large number of subsets from its search
space.

Further speed improvements can be made by including an additional check before a
route is inserted into the queue. Recall that the route contains information about which
records have yet to be included or excluded, that is, the records with Xk = ?. If the highest
priority of all such records is lower than the priority of Sout, then we may also prune this
route after scoring the current subset.

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1021

Figure 3. A possible route for an 8-node subgraph. This example demonstrates aggregating counts and baselines
during the backtracking step of the GraphScan algorithm. Currently, Sout = {R(4)}, with a priority of 3, and
Sin = {R(2), R(6), R(5)}, with a priority of 11

5 = 2.2. Note that R(5) has a priority of 3
3 = 1 when considered by

itself. However, we cannot assign Sin = {R(5)} because removing only R(5) would disconnect the subset. If we
remove R(5) we must also remove the rest of the sidetrack. Thus Sin is the minimum priority of R(2) alone (priority
= 7), R(2) and R(6) (priority = 4), and R(2), R(5), and R(6) (priority = 2.2). This particular route would not be
reinserted into the queue because the priority of Sin is less than that of Sout (2.2 < 3).

Algorithm 1 presents GraphScan without “branch and bounding” or proximity con-
straints. These additional extensions to the GraphScan algorithm are discussed below. Note
that steps 8 and 13 prune any subsets that are provably suboptimal by not reinserting them
into the queue.

Algorithm 1 GraphScan
1: Identify seed records as records with higher priority than their neighbors.
2: for each seed record do
3: Form subgraph and initialize priority queue with route originating at seed record.
4: while priority queue not empty do
5: Remove highest priority route from queue and note its current location, Sin, and

Sout.
6: for each neighbor of current location not on or adjacent to the path do
7: Extend the path by setting the current location to that neighbor, and exclude

higher priority neighbors.Update Sout if necessary.
8: if priority of Sout < priority of Sin then
9: Score the subset and insert route into priority queue for further processing.

10: end if
11: end for
12: Backtrack the path by setting the current location to the previous location on the

path, and exclude all neighbors. Update Sout and Sin if necessary.
13: if priority of Sout < priority of Sin then
14: Score the subset and insert route into priority queue for further processing.
15: end if
16: end while
17: end for
18: Return highest scoring subset across all subgraphs.

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1022 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

3.3 PROOF OF GRAPHSCAN’S EXACTNESS

We now prove that the GraphScan algorithm is guaranteed to identify the highest-
scoring connected subset despite the large reduction in the search space. Since GraphScan
performs a depth-first search over the space of all connected subsets, it is clear that the
highest-scoring connected subset would be found if no pruning was performed. Thus we
must show that, for all connected subsets S pruned at each step of the algorithm, there exists
some connected subset S ′ which is not pruned and has F (S ′) ≥ F (S). Our first proof will
focus on partitioning the problem into subgraphs based on seed records, and our second
proof will focus on the exclusion of routes within each subgraph. Let IN(S) denote the set of
all nonempty subsets Sin ⊆ S such that S \ Sin is connected (or empty), and OUT(S) denote
the set of all nonempty subsets Sout such that S ∩ Sout = ∅ and S ∪ Sout is connected. We
can then prove the following theorems:

Lemma 1. For any connected subset S, if there exist Sin ∈ IN(S) and Sout ∈ OUT(S) such
that G(Sin) ≤ G(Sout), then subset S is suboptimal.

Proof. This follows directly from the facts that F (S) ≤ max(F (S \ Sin), F (S ∪ Sout)) and
that the subsets S \ Sin and S ∪ Sout are connected.

�

Theorem 1. (Exactness of Subgraph Creation). For any connected subset S that is pruned
by the subgraph creation process described in Section 3.1, there exists some connected
subset S ′ which is not pruned and has F (S ′) ≥ F (S).

Proof. Let S be the set of all possible connected subsets and let Sj represent all connected
subsets in which record R(j) is the highest priority included record. Note that S =

⋃N
j=1 Sj ,

and thus we can reduce the problem to finding the highest-scoring subset for each Sj .
However, GraphScan only forms subgraphs for each seed record, pruning all subsets for
which the highest-priority record is not a seed record. Also, for a given subgraph Gj ,
GraphScan prunes all subsets in Sj which contain a neighbor of any record with higher
priority than R(j). In either case, for all pruned subsets S, there exists a record Rout �∈ S which
is adjacent to S and has higher priority than all records in S. The suboptimality of region S
follows from applying Lemma 1 with Sin = S and Sout = {Rout}. More precisely, we know
that F (S) ≤ F (S ∪ {Rout}) and that S ∪ {Rout} is connected. Finally, the exclusion of nodes
which are no longer reachable from R(j) during subgraph formation does not prune any
subsets in Sj , since all such subsets would be disconnected.

�

Theorem 2. (Exactness of Route Propagation). For any connected subset S that is pruned
by the route propagation process described in Section 3.2, there exists some connected
subset S ′ which is not pruned and has F (S ′) ≥ F (S).

Proof. For a given route Z, let Sincl denote the set of all “included” records R(k) (i.e., records
with Xk = 1), and let Sexcl denote the set of all “excluded” records R(k) (i.e., records with

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1023

Xk = 0). Let S denote the set of all subsets still under consideration for the current route,
that is, all subsets S such that Sincl ⊆ S and S ∩ Sexcl = ∅. When route Z is propagated, C
child routes Z1 . . . ZC are formed by conditioning on the highest-priority included child
node R(jc), and an additional child route Z0 is formed assuming that all child nodes are
excluded. Let Sc denote the set of all subsets still under consideration for child route Zc.
We first note that

⋃C
c=0 Sc = S, and thus if no pruning was performed, GraphScan would

search exhaustively over all connected subsets.
However, GraphScan will prune any route Z which has G(Sin) ≤ G(Sout), where Sin ⊂

Sincl is a sidetrack and Sout ⊆ Sexcl is a subset that is excluded from, but adjacent to, Sincl. For
any subset S ∈ S which is still under consideration for the route, we know that Sin ∈ IN(S),
since Sin ⊂ Sincl ⊆ S and removal of the sidetrack Sin will not disconnect S. Also, we know
that Sout ∈ OUT(S), since Sout ∈ OUT(Sincl) and S ∩ Sout = ∅. These facts imply that S is
suboptimal by Lemma 1, as its score would be improved by either excluding Sin or including
Sout.

GraphScan also compares each route’s Sout to the highest-priority record R(k) yet to be
included in the subset (i.e., the smallest k such that Xk = ?). If the priority G({R(k)}) ≤
G(Sout), then the route’s currently included subset Sincl is scored but the route is not
reinserted into the queue. In this case, for any other subset S ∈ S which is still under
consideration for the route, we know that G(S \ Sincl) ≤ G(Sout). Since Sincl is connected, we
know that S \ Sincl ∈ IN(S). Also, we know that Sout ∈ OUT(S), since Sout ∈ OUT(Sincl) and
S ∩ Sout = ∅. Thus S is suboptimal by Lemma 1, as its score would be improved by either
excluding S \ Sincl or including Sout.

�

3.4 SPEEDING UP SUBGRAPH PROCESSING WITH BETTER ESTIMATION OF SOUT

We have introduced the GraphScan algorithm with an effective but simplistic understand-
ing of a route’s Sout by restricting it to be a single record (the highest priority neighboring
record excluded from a route). We now allow for Sout to be a connected subset of records
that have all been excluded from a given route. To do so, recall that Sout is a connected
subset of records not contained in S such that at least one of the records in Sout is adjacent
to S, and therefore simultaneously adding all records Ri ∈ Sout would allow the subset to
remain connected.

Consider a subgraph Gj , for j > 1. This subgraph excludes all records with priority
higher than R(j) as well as the neighbors of these higher priority records. GraphScan uses
records that have been excluded from Gj to expand a route’s Sout. Let R(i) be a record
contained in Gj which has a neighbor R(k), k < i, that has been excluded from Gj . If
R(i) is excluded from a route in Gj , then it benefits us to consider the priority of the subset
Sout = {R(i), R(k)}, which will be higher than the priority of R(i). Even if k > i, R(k) may
have high-priority neighbors that have also been excluded from Gj . This insight leads to
a goal of establishing a high-priority subset Sout of connected records that have all been
excluded from Gj but include at least one record adjacent to potential routes contained in
Gj . It is this subset’s priority that is used when determining the route’s highest-priority
excluded subset, rather than the priority of a single excluded record.

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1024 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

Figure 4. A possible route for a 5-node subgraph with additional information from records excluded from the
subgraph. Naively, we would use Sout = R(3) with a priority of 3

3 = 1. During the creation of the subgraph, it is
noted that nodes Ry and Rz (their priority ranking does not matter because they are excluded from the subgraph)
are connected to R(3) in the original graph. Therefore, when excluding R(3) from the route we may actually set
the highest excluded priority of the route to 3+2+5

3+1+1 = 2 and Sout = {R(3), Ry, Rz}. This operation is not limited to
excluding records from the subgraph. Consider extending the current path to R(2). By including R(2), we are able
to further increase the highest excluded priority to 9

2 = 4.5 and set Sout = R(x).

Although finding a high priority Sout is preferred, the exactness of the GraphScan
algorithm does not require us to find the highest priority Sout. Therefore, a simple greedy
heuristic is used to aggregate the counts and baselines of connected records that have
been excluded from Gj . Searching over only records that have been excluded from Gj , the
heuristic iteratively adds the highest-priority neighbor until either there are no more records
to add or the priority of the subset begins to decrease. This extension can substantially
increase the priority of Sout for a given route, resulting in much more pruning of the
search space. Finally, we note that these priorities are precalculated during the creation of
the subgraph. During route propagation, when extending the current path by including a
neighboring record and excluding higher priority neighbors, the priority of Sout is established
by referencing these precalculated priorities rather than relying solely on the single highest
priority excluded record. See Figure 4 for more details.

3.5 BRANCH AND BOUNDING WITH UNCONSTRAINED LTSS

The unconstrained LTSS property of scoring functions is applied in the GraphScan
algorithm through branch and bounding (Land and Doig 1960). Branch and bounding is
intelligently enumerating candidate solutions by systematically ruling out large subsets of
fruitless ones. In practice, branch and bounding allows the algorithm to interrupt the route
propagation when all subsets represented in a route are guaranteed to be lower scoring than
a currently known connected subset. This is possible because we can quickly determine
the “upper bound” (unconstrained score) of a route through the property of LTSS. Since
the set of records is already sorted by priority, the unconstrained score can be calculated
in linear time. This process involves consecutively adding the next highest priority record
with Xk = ? (ignoring connectivity constraints) and then scoring all records contained in
the (now, possibly disconnected) subset. The highest-scoring subset from this process is
guaranteed by the LTSS property to be the highest-scoring unconstrained subset in that
route. If this bound is less than or equal to the current high score, then the maximum score

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1025

of all connectivity-constrained subsets within the route cannot be greater than the current
high-scoring connected subset, and thus we do not need to continue processing the route.

We define two scoring functions which map a route to real numbers LBound(route)
and UBound(route). LBound(route) is the score of the connected subset formed by only
including the records in the current subset. UBound(route) is the score of the highest-
scoring unconstrained subset of the route, efficiently determined by the LTSS property as
described above.

Before being inserted into the queue, the upper and lower bounds of the route are found
and compared to the current best score of a connected subset with the following outcomes:

• Current best score < LBound(route) < UBound(route): This signifies that route’s
current subset is the new current best scoring connected subset. The subset is noted
and the new best score updated before inserting the route back into the queue.

• Current best score < LBound(route) = UBound(route): This signifies that the current
subset is the new current best scoring connected subset as well as the highest-scoring
subset in the entire route. The subset is noted and the new best score is updated but
the route is not reinserted into the queue.

• UBound(route) < Current best score: This signifies that all of the route’s subsets (even
without enforcing connectivity constraints) are lower scoring than the highest-scoring
connected subset found so far. The route is not reinserted into the queue.

• LBound(route) < Current best score < UBound(route): This signifies that no new
information is gained through branch and bounding. The route is reinserted into the
queue.

The order in which the routes are processed within a branch and bounding framework
can affect the runtime of the algorithm. We sort the queue based on the LBound(route)
value. This ordering had minor but noticeable improvement in runtime (∼23% faster than
random ordering).

3.6 INCORPORATING PROXIMITY CONSTRAINTS

The major contribution of GraphScan is combining connectivity constraints with the
LTSS property to efficiently determine the highest-scoring connected subset of records.
However, if the dataset has spatial information as well, then we may use both proximity
and connectivity constraints simultaneously. Given a metric which specifies the distance
d(Ri, Rj) between any two records Ri and Rj , we may identify a “local neighborhood” of
records around a central record Rc. For example, in the disease surveillance domain, we use
the latitude and longitude coordinates of the centroid of each zip code. GraphScan forms
“local neighborhoods” by considering a central record Rc and its k − 1 nearest neighbors
for a fixed constant k. There are N of these neighborhoods formed with each one centered
around a different record Rc. GraphScan finds the highest-scoring connected cluster within
each neighborhood by forming and processing a connectivity graph consisting of only the
records in that neighborhood, and then reports the single highest-scoring connected subset
found from these N searches.

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1026 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

Figure 5. Performance of GraphScan on Erdös-Renyi random graphs of varying size and edge probability.
Labeled data points are the proportion of graphs where run time exceeded 1 hr.

The implementation of proximity constraints within GraphScan is similar to the con-
straints used in FlexScan (Tango and Takahashi 2005), with a slight difference. FlexScan
uses an identical approach to form the neighborhoods of each data record, but it only consid-
ers the connected subsets that include the central record Rc. In other words, it determines
the highest-scoring connected cluster consisting of Rc and a subset of its k − 1 nearest
neighbors. GraphScan does not require the central record to be in the subset and considers
all possible connected subsets for each group of k records. In practice, this minor difference
has negligible impact on detection power, and thus the only substantial difference between
FlexScan and GraphScan is in runtime.

4. EVALUATION OF RUN TIME ON RANDOM GRAPHS

We first evaluate the average amount of time taken for GraphScan to identify the highest-
scoring connected subgraph for Erdös-Renyi random graphs of varying size n and edge
probability p. Erdös-Renyi graphs are formed by placing each of the

(
n

2

)
possible edges in

the graph with probability p. Figure 5 provides the average run times for graphs of size
25, 50, 100, and 200 nodes with varying edge probability. For each combination of n and
p, at least 1000 different Erdös-Renyi graphs were created, processed with GraphScan,
and the average run time was reported. Some of the 200-node graphs resulted in runtimes
exceeding 1 hr. In these instances, the excessive run times were not used in the calculation
of the mean, but the proportion of runs that exceeded this 1-hr threshold are provided as
a reference on the point. For example, for 200-node graphs with an edge probability of
p = 0.05, 97.8% of the runs finished with an average of 135.2 sec each. However, 2.2%
of the graphs exceeded 1 hr of processing time and had their run times removed from the
overall calculation.

Not surprisingly, increased graph size resulted in longer run times; however, the role of
edge probability is interesting and worthy of further discussion. In Erdös-Renyi graphs, the
edge probability p has theoretical thresholds that change the nature of the graph (Erdös and
Renyi 1959). For example, when p < 1

n
, the entire graph is composed of smaller subgraphs

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1027

that are disconnected from each other. As p increases beyond 1
n

, a single giant component
begins to emerge which contains the majority of the nodes. This giant component increases
in size with increasing p, until p = ln n

n
. At this point the giant component will (almost

surely) contain all of the n nodes in the graph, resulting in a single component graph.
Increasing p beyond this threshold increases the overall connectedness of the graph and
decreases its diameter. These stages are evident in the performance of GraphScan. The peak
in run time occurs near p = ln n

n
for each of the various graph sizes. As edge probability

drops below this threshold value, we see improved performance because the majority of
calculation time is spent on the giant cluster that is decreasing in size. As edge probability
increases above the threshold, the giant component is no longer increasing in size but is
now decreasing in diameter, also resulting in improved performance.

5. EVALUATION ON SPATIAL DISEASE SURVEILLANCE

We present empirical results of GraphScan’s run time performance, time to detect
(average number of days needed to detect an outbreak) and detection power using a set
of simulated respiratory disease outbreaks injected into real-world Emergency Department
data from Allegheny County, Pennsylvania. We compare results for multiple methods:
“Circles” (traditional approach introduced by Kulldorff; returns the highest-scoring circular
cluster of locations), “All subsets” (LTSS implemented without proximity or connectivity
constraints; returns the highest-scoring unconstrained subset of locations), “ULS” (returns
a high-scoring connected subset based on the ULS scan statistic within a neighborhood size
of k) and “GraphScan” (returns the highest-scoring connected subset within a neighborhood
size of k).

The Emergency Department data come from 10 Allegheny County hospitals from
January 1, 2004 to December 31, 2005. By processing each case’s ICD-9 code and free text
“chief complaint” string, a count dataset was created by recording the number of patient
records with respiratory symptoms (such as cough or shortness of breath) for each day and
each zip code. The resulting dataset had a daily mean of 44.0 cases, and standard deviation
of 12.1 cases. There were slight day-of-week and seasonal trends, with counts peaking on
Mondays and in February.

In Figure 6, we present the average run times per day of Emergency Department data
for three different algorithms. The FlexScan algorithm naively enumerates all 2k−1 subsets
containing the center record for each group of k records. GraphScan’s speed improvements
come from two different sources: reduction of the search space by applying the LTSS prop-
erty with connectivity constraints, and by branch and bounding (direct application of LTSS
without connectivity constraints). We provide run times for GraphScan with and without
branch and bounding for values of k = 10, 15, . . . , 70. For k = 30, GraphScan achieves
over 450,000x faster computation time than FlexScan, and FlexScan was computationally
infeasible for k > 30. The addition of branch and bounding to GraphScan results in a further
50x speed increase for k = 50. ULS, like GraphScan, required only seconds to process each
day of data. However, while GraphScan is guaranteed to find the highest-scoring subset,
ULS was only able to find the highest-scoring subset 1.1% of the time, while 14.2% of the
time ULS returned a subset with score less than half of the maximum.

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1028 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

Figure 6. Run time analysis for FlexScan and GraphScan with and without branch and bounding. The x-axis
denotes the “neighborhood size” as various values of k.

We note that the worst case complexity of GraphScan is exponential in the neighbor-
hood size. If no pruning was performed, GraphScan would evaluate all connected subsets,
requiring O(2k) run time; however, GraphScan is able to rule out many connected subsets
as provably suboptimal, reducing complexity to O(qk) for some constant 1 < q < 2, where
q is dependent on the proportion of subsets that are pruned. For the Emergency Department
data, we empirically estimate q ≈ 1.2. For graphs that are sufficiently dense, runtime of
GraphScan becomes linear in k as in the unconstrained LTSS case, while for sufficiently
sparse graphs, few subsets are connected.

5.1 SIMULATING AND DETECTING OUTBREAKS

Our semisynthetic testing framework for evaluating the performance of disease outbreak
detection algorithms artificially increases the number of disease cases in the affected region
by injecting simulated counts into real-world background data. This allows us to simulate
disease outbreaks of varying duration and severity while taking into account the noisy
nature of real world data. The simulation of realistic disease outbreak scenarios is a large
and active research area. Simulators such as those used in Buckeridge et al. (2004) and
Wallstrom, Wagner, and Hogan (2005) combine current background data with that of past
outbreaks to create a realistic new outbreak injected into current data. In this work, we
implement a much simpler outbreak model that linearly increases the number of cases
over the duration of the outbreak. We acknowledge that this is not a realistic model of the
temporal progression of an outbreak. However, it allows for a precise comparison of the
different detection methods under consideration, by gradually increasing the severity of the
outbreak over its duration. On each day t of the outbreak t = 1 . . . 14, the simulator injects
Poisson(t) cases over the affected zip codes.

We created six spatial injects that correspond to natural or man-made geographical
features of Allegheny County, Pennsylvania, shown in Figure 7. Three of the regions
are formed with zip codes along the Allegheny and Monongahela rivers, simulating a
waterborne disease outbreak. The other three regions follow the path of two major U.S.
interstates that traverse the county.

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1029

Figure 7. Outbreak regions used in the semisynthetic tests. Regions #1 and #2 follow rivers and #4 and #5 follow
interstates. #3 is the union of #1 and #2; #6 is the union of #4 and #5.

Once the simulated cases have been created and injected into the real-world background
data, our focus turns to detecting the outbreak. First, we obtain a score F ∗ = maxS F (S) (us-
ing the same search space and scoring function as the method under consideration) for each
day in the original dataset without any injected cases. This provides a background distribu-
tion of scores which is used to provide a realistic false positive rate that is more accurate
than those obtained through Monte Carlo simulation (Neill 2009a). Then for every day t
of the simulated outbreak, we compute the day’s maximum region score and determine
the proportion of background days for which F ∗ exceeds it. Therefore, for a fixed false
positive rate r, the number of days required to detect a gradually increasing outbreak is a
good measure of detection power. We allow a false positive rate of 1 per month, a level
considered to be acceptable by many public health departments (Neill 2006).

We provide results for detection power for the four different methods under consid-
eration: circles, all subsets, ULS, and GraphScan, with the last two considering various
neighborhood sizes, k. For each of the six different Sinject regions, 200 simulated injects
were created and randomly inserted in the two-year time frame of our data. At the fixed false
positive rate of 1 per month, the total number of outbreaks detected and the average number
of days to detection (counting missed outbreaks as 14 days to detect) were recorded.

Figure 8 provides the time to detect and overall detection rate for the outbreaks along
rivers. GraphScan with a neighborhood size of k = 15 detects 2.00 days earlier than circular
scan and detects 29.1% more of the outbreaks. ULS has similar performance to GraphScan
for k = 5 and k = 10, but GraphScan delivers the overall best performance at k = 15, and
outperforms ULS for almost all values of k. Similarly, Figure 9 provides the time to detect
and overall detection rate for the outbreaks along the interstate corridors. GraphScan with
a neighborhood size of k = 15 detects 1.97 days earlier than circles with fewer than half as
many missed outbreaks.

Figure 8. Detection time (average number of days to detect) and power at a fixed false positive rate of 1 per
month for outbreaks along the rivers.

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1030 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

Figure 9. Detection time (average number of days to detect) and power at a fixed false positive rate of 1 per
month for outbreaks along the highways.

6. LOCATING CONTAMINANTS IN A WATER
DISTRIBUTION SYSTEM

Our second application of GraphScan focuses on locating contaminant plumes in a
water distribution system equipped with noisy, binary sensors. The “Battle of the Water
Sensor Networks” (BWSN) (Ostfeld et al. 2008) provided real-world data to teams tasked
with placing perfect sensors to locate contaminants in the network of water pipes. Our
work focuses on the complementary problem of fusing data collected from noisy sensors
assuming a given placement and network structure to identify which locations have been
contaminated.

We proceed by modeling simple, binary sensors at each of the 129 pipe junctions
(graph nodes) in the system. We assume that a fixed false positive rate (e.g., FPR =
0.1) and true positive rate (e.g., TPR = 0.9) are known and that each sensor operates
independently of the others in the network. This makes the expectation-based binomial
(EBB) scan statistic (Kulldorff 1997) a logical scoring function to optimize. For fixed false
and true positive rates, the EBB scan statistic becomes an additive function over the subset
S. More specifically, FEBB(S) = ∑

Ri∈S(ci log(TPR
FPR) + (1 − ci) log(1−TPR

1−FPR)) where sensor
Ri produces a “trigger” ci ∼ Bernoulli (FPR) under H0 or ci ∼ Bernoulli (TPR) under
H1. It can be trivially shown that additive functions satisfy LTSS with priority function
G(Ri) = F (Ri), and hence GraphScan can efficiently and exactly identify the highest
scoring or most positive connected subgraph.

We use a graph radius r to define “local neighborhoods” of sensors (nodes). For example,
a neighborhood with r = 3 would include the center node and all nodes within three edges
of the center node. For a neighborhood radius of r = 12, GraphScan’s average processing
time on the water distribution network was 0.21 sec. With no neighborhood constraints,
GraphScan was able to process the entire 129-node network in 0.04 sec.

We used 400 contaminant plumes provided in the BWSN data to generate sensor readings
over the course of 12 one-hour intervals. As above, we present results for four competing
methods: “Circles,” “All Subsets,” “ULS,” and “GraphScan.” In this setting, we note that
All Subsets returns the subset consisting of all “triggered sensors” with ci = 1, while
ULS returns the largest connected subset of triggered sensors contained within a local
neighborhood. For GraphScan and ULS, we report results as a function of the neighborhood

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1031

Figure 10. Spatial accuracy for contaminant plumes in a water distribution system. The left panel is accuracy
as a function of neighborhood radius. The right panel is accuracy as a function of time since the beginning of the
plume in hours.

radius r. The fast-spreading contaminant plumes in this setting provide an easy detection
task: all four methods detected the plumes very early with no significant differences in time
to detect. Thus, we instead compare the spatial accuracy of the methods as measured by the

“overlap coefficient,” Overlap = |Affected⋂Detected|
|Affected⋃Detected| . Overlap = 1 corresponds to perfect

agreement between the affected and detected subsets, while Overlap = 0 means that the
affected and detected subsets are disjoint. Figure 10 presents the average spatial accuracy
for each of the methods. The left panel shows accuracy as a function of neighborhood radius
r at a fixed point in time (6 hr after the plume began). The right panel shows accuracy as a
function of time, assuming a fixed neighborhood radius of r = 10.

We see that both GraphScan and ULS have higher spatial accuracy for larger neigh-
borhood sizes, since the smaller neighborhoods fail to capture the entire plume. The con-
nectivity constraints in GraphScan and ULS allow for relatively high precision (i.e., few
noncontaminated sensors are included in the detected subset) even for larger neighborhood
sizes. As compared to ULS, GraphScan’s higher accuracy stems from its ability to correctly
include contaminated sensors that did not trigger (false negatives) to connect clusters of
true positives. ULS is unable to “bridge” these false negatives without also including all
other sensors in the given neighborhood.

We note that the choice of neighborhood size k (or neighborhood radius r) substantially
affects detection power and spatial accuracy. In practice, choice of k can be either based on
prior knowledge of the expected size of the event of interest or based on labeled training
data. In the former case, we recommend choosing the lowest k such that the event of interest
is typically contained within a neighborhood of size k. In the latter case, the value of k can
be chosen to maximize the metric of interest (detection power or accuracy) on the set of
labeled training examples.

7. CONCLUSIONS

This work has provided a theoretical basis and practical implementation for scalable
pattern detection in graph or network data. Linear-time subset scanning is a versatile tool
able to speed up algorithms in many applications. However, in the spatial event detection
domain, unconstrained LTSS performs poorly because it may return dispersed sets of

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

1032 S. SPEAKMAN, E. MCFOWLAND III, AND D. B. NEILL

locations which we do not believe to be significant events. Therefore, we have implemented
connectivity constraints allowing LTSS to scan over connected subsets of locations and
increasing its power to detect irregularly shaped clusters of activity. Although similar to
the previously proposed FlexScan algorithm, GraphScan is able to scale to much larger
graphs, with a 450,000-fold increase in speed compared to FlexScan for neighborhoods of
size k = 30.

These speed improvements come from two sources. First, we reduce the search space by
excluding any subset that is provably suboptimal through the LTSS GraphScan property:
“If subset Sin is included in the highest-scoring connected subset S, and removing Sin would
not disconnect S, then no connected subset Sout adjacent to S can have higher priority than
Sin.” Second, we apply the unconstrained LTSS property to quickly compute an upper
bound for the score of a route. If this bound is less than the score of an already known
connected subset, then the entire route may be ignored. Branch and bounding improved the
run time of GraphScan by an additional factor of 50x for moderately sized neighborhoods
(e.g., k = 50).

We tested the GraphScan algorithm against the circular scan statistic proposed by
Kulldorff (1997) and the upper level set scan statistic proposed by Patil and Taillie (2004) in
two different scenarios. The first setting used synthetic disease outbreaks injected into real-
world Emergency Department data from 97 zip codes in Allegheny County, Pennsylvania.
Compared to the competing methods, GraphScan had higher detection power with shorter
time required to detect the events, as well as fewer missed events overall. The second set-
ting compared spatial accuracy of the methods for locating contaminant plumes spreading
through a water distribution system equipped with 129 noisy, binary sensors. GraphScan
demonstrated improved spatial accuracy and increased robustness to the occurrence of false
negatives, when sensors failed to trigger.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation grants IIS-0916345, IIS-0911032, and
IIS-0953330. Edward McFowland III was also supported by NSF Graduate Research Fellowship GRFP-0946825
and an AT&T Labs Fellowship.

[Received March 2013. Revised July 2014.]

REFERENCES

Buckeridge, D. L., Burkom, H. S., Moore, A. W., Pavlin, J. A., Cutchis, P. N., and Hogan, W. R. (2004),
“Evaluation of Syndromic Surveillance Systems: Development of an Epidemic Simulation Model,” Morbidity

and Mortality Weekly Report, 53, 137–143. [1028]

Duczmal, L., and Assuncao, R. (2004), “A Simulated Annealing Strategy for the Detection of Arbitrary Shaped
Spatial Clusters,” Computational Statistics and Data Analysis, 45, 269–286. [1016]

Erdös, P., and Renyi, A. (1959), “On Random Graphs I,” Publicationes Mathematicae, 6, 290–297. [1026]

Flake, G. W., Lawrence, S., and Giles, C. L. (2000), “Efficient Identification of Web Communities,” in Proceedings
of the 6th International Conference on Knowledge Discovery and Data Mining, pp. 150–160. [1015]

D
ow

nl
oa

de
d

by
 [

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

]
at

 1
4:

18
 2

3
D

ec
em

be
r

20
15

SCALABLE DETECTION OF ANOMALOUS PATTERNS WITH CONNECTIVITY CONSTRAINTS 1033

Kulldorff, M. (1997), “A Spatial Scan Statistic,” Communications in Statistics: Theory and Methods, 26, 1481–
1496. [1016,1018,1030,1032]

Kulldorff, M., Huang, L., Pickle, L., and Duczmal, L. (2006), “An Elliptic Spatial Scan Statistic,” Statistics in
Medicine, 25, 3929–3943. [1016]

Kulldorff, M., and Nagarwalla, N. (1995), “Spatial Disease Clusters: Detection and Inference,” Statistics in

Medicine, 14, 799–810. [1016]

Land, A. H., and Doig, A. G. (1960), “An Automatic Method of Solving Discrete Programming Problems,”
Econometrica, 28, 497–520. [1024]

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., and Glance, N. (2007), “Cost-Effective Out-
break Detection in Networks,” in Proceedings of the 13th International Conference on Knowledge Discovery
and Data Mining, pp. 420–429. [1015]

McFowland, E., Speakman, S., and Neill, D. B. (2013), “Fast Generalized Subset Scan for Anomalous Pattern
Detection,” Journal of Machine Learning Research, 14, 1533–1561. [1018]

Neill, D. B. (2006), “Detection of Spatial and Spatio-Temporal Clusters,” Technical Report CMU-CS-06-142,
Ph.D. thesis, Carnegie Mellon University, School of Computer Science. [1029]

——— (2009a), “An Empirical Comparison of Spatial Scan Statistics for Outbreak Detection,” International
Journal of Health Geographics, 8, 20. [1029]

——— (2009b), “Expectation-Based Scan Statistics for Monitoring Spatial Time Series Data,” International

Journal of Forecasting, 25, 498–517. [1018]

——— (2012), “Fast Subset Scan for Spatial Pattern Detection,” Journal of the Royal Statistical Society, Series
B, 74, 337–360. [1014,1015,1017,1018]

Neill, D. B., and Moore, A. W. (2004), “Rapid Detection of Significant Spatial Clusters,” in Proceedings of the
10th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 256–265. [1016]

Neill, D. B., Moore, A. W., Sabhnani, M. R., and Daniel, K. (2005), “Detection of Emerging Space-Time Clusters,”
in Proceedings of the 11th International Conference on Knowledge Discovery and Data Mining, pp. 218–227.
[1016]

Ostfeld, A., Uber, J., and Salomons, E., et al. (2008), “The Battle of Water Sensor Networks: A Design Challenge
for Engineers and Algorithms,” Journal of Water Resources Planning and Management, 134, 556–568. [1030]

Patil, G. P., and Taillie, C. (2004), “Upper Level Set Scan Statistic for Detecting Arbitrarily Shaped Hotspots,”
Environmental and Ecological Statistics, 11, 183–197. [1017,1032]

Tango, T., and Takahashi, K. (2005), “A Flexibly Shaped Spatial Scan Statistic for Detecting Clusters,” Interna-

tional Journal of Health Geographics, 4, 11. [1016,1018,1026]

Wallstrom, G. L., Wagner, M. M., and Hogan, W. R. (2005), “High-Fidelity Injection Detectability Experiments:
A Tool for Evaluation of Syndromic Surveillance Systems,” Morbidity and Mortality Weekly Report, 54,
85–91. [1028]

Wang, B., Phillips, J. M., Schrieber, R., Wilkinson, D., Mishra, N., and Tarjan, R. (2008), “Spatial Scan Statistics
for Graph Clustering,” in Proceedings of the 8th SIAM International Conference on Data Mining, pp. 727–738.
[1015]D

ow
nl

oa
de

d
by

 [
C

ar
ne

gi
e

M
el

lo
n

U
ni

ve
rs

ity
]

at
 1

4:
18

 2
3

D
ec

em
be

r
20

15

	Scalable Detection of Anomalous Patterns With Connectivity Constraints
	INTRODUCTION
	Spatial Event Detection

	FAST SUBSET SCANNING WITH CONNECTIVITY CONSTRAINTS
	GRAPHSCAN ALGORITHM
	Subgraph Creation and Definitions of Common Terms
	Processing a Subgraph
	Proof of GraphScan’s Exactness
	Speeding Up Subgraph Processing With Better Estimation of <0:inlinematheqn ><0:equation ><0:texstructure ><?xmlpublish	$S_{mathchoice {hbox {�ontsize {10}{10}selectfont out}}{hbox {�ontsize {10}{10}selectfont out}}{hbox {�ontsize {7}{7}selectfont out}}{hbox {�ontsize {5}{5}selectfont out}}}$?></0:texstructure></0:equation></0:inlinematheqn>@empty
	Branch and Bounding With Unconstrained LTSS
	Incorporating Proximity Constraints

	EVALUATION OF RUN TIME ON RANDOM GRAPHS
	EVALUATION ON SPATIAL DISEASE SURVEILLANCE
	Simulating and Detecting Outbreaks

	LOCATING CONTAMINANTS IN A WATER&break; DISTRIBUTION SYSTEM
	CONCLUSIONS
	ACKNOWLEDGMENTS

