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Appendix A: List of abbreviations

Table 1 List of abbreviations

API Application programming interface
BN Bayesian network
CCL Complication and co-morbidity level
CF Confidence factor
CFS Correlation-based feature selection
CI Conditional independence
CT Computer tomography scanner
DAG Directed acyclic graph
DDC Decomposition-based DRG classification
DRG Diagnosis-related group
GS Grow-shrink
GSWL Grow-shrink with whitelisting
IA Incremental association
IAWL Incremental association with whitelisting
ICD International Statistical Classification of Diseases and Related Health Problems
IG Information gain
LOS Length of stay
MAD Mean absolute deviation
MB Markov blanket
MDC Major diagnostic category
MI Minimum instances per leaf
ML Machine learning
MRI Magnetic resonance imaging scanner
NB Naive Bayes
OR Operating room
PA Probability averaging
PCCL Patient clinical complexity level
Prec. Precision
RND Random-based DRG classification
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Appendix B: Notation

Table 2 Notation for the attribute selection and classification

Parameter Description

a, b, c, e, g, l∈A Distinct attributes in the attribute set A available at admission
a∗ ∈A An attribute selected out of A which has the highest information gain with

respect to the class D
A∗

i Optimal attribute subset for the CFS attribute selection
C Array of classifiers
d∈D A specific DRG out of the set of DRGs D which is the target to classify
D The DRG variable included in the vertices of the DAG
dg DRG calculated by using the DRG grouper
di The DRG of instance i∈ I
d∗
i The classified DRG of instance i∈ I

d
g
i DRG calculated by using the DRG grouper for instance i∈ I

diff i,j ∈ {0, . . . , |A|} Difference function for two instances i, j ∈ I
diff i,j,a ∈ {0,1} Difference function for two instances i, j ∈ I with respect to attribute a∈A
F Number of folds
G = (V ,E) Directed acyclic graph
H(D) Entropy of the set of DRGs
H(D|a) Conditional entropy of the class DRG D given attribute a∈A
Hi(k)⊂ I Set of k-nearest hits for instance i∈ I such that |Hi(k)| ≤ k

i, j ∈ I Instances out of the set of instances I
Itrain
f ,Itest

f ⊂ I Subset of training and testing instances for fold f = 1, . . . , F
IG(a) Information gain of attribute a∈A
k Number of nearest hits or misses
m∈Md,i(k)⊂ I Set of k-nearest misses for instance i ∈ I and DRG d ∈ D \ di such that

|Md,i(k)| ≤ k

MB(v) Markov blanket of the vertex v ∈ V
n Number of cases of DRGs in the data or in a specific MDC
Πa Parents of the given attribute a∈A
p(d), p(di), p(v) Prior probability of a DRG d ∈D, of a DRG di ∈D of an instance i ∈ I, or of

an attribute value v ∈V
p(d|v) Conditional prior probability of DRG d ∈ D given value v ∈ Va of attribute

a∈A
pc,d Probability distribution of classifier c ∈ C
Qa Function for estimating the quality of an attribute a∈A considering k-nearest

hitsHi(k), k-nearest missesMd,i(k) for instance i and DRG d ∈D\di, sampling
number m, and k-nearest neighbors

U(a, b) Symmetrical uncertainty of two nominal attributes
v ∈ Va A specific value out of the set of attribute values Va for attribute a∈A
vi,a, vj,a ∈Va The value of attribute a∈A with respect to instance i, j ∈ I
V Set of vertices in graph G
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Table 3 Notation for the resource allocation model

Set, parameter and
decision variable

Description

P Set of patients
Pdis ⊂P Subset of patients that can but do not necessarily have to be discharged
Pem ⊂P Subset of patients that represent emergency patients and must be admitted
Pnu-el ⊂P Subset of patients that represent non-urgent elective patients
Pu-el Subset of patients that represent urgent elective patients
R Set of resources
Rp ⊂P Subset of resources relevant for patient p∈P
Rd ⊂R Subset of day resources
Ro ⊂R Subset of overnight resources
Rd

p ⊂Rd Subset of day resources relevant for patient p∈P
Ro

p ⊂Ro Subset of overnight resources relevant for patient p∈P
πp,k Contribution margin when patient p∈P is assigned to overnight resource k ∈Ro

p

ck Overbooking costs for resource k ∈R
ok Amount of extra capacity required for resource k ∈R
rp,k Resource requirement of patient p∈P from resource k ∈R
Rk Capacity of resource k ∈R
Rk Maximum overtime capacity of resource k ∈R
xp,k 1, if patient p∈P is assigned to resource k ∈Rp, otherwise 0
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Appendix C: Attributes evaluated

Table 4 provides a detailed overview about all attributes available for our study. The six admission diagnoses

were coded by the referring physician and inserted by the admission nurses into the hospital information

system employing ICD codes. Each code contains at least three characters in which the first character is the

so-called “medical partition” and the first three characters represent the so-called “category code” (see Bowie

and Schaffer (2010)). The inpatient’s weight is only documented for newborns. The same is true for the

attribute “age in days in case of newborns”. For each instance, i.e., for each inpatient in each dataset, we

generated the additional attributes “DRG calculated by using the DRG grouper”, “first three characters of the

DRG calculated by using the DRG grouper” and “patient clinical complexity level (PCCL)” calculated at 1st

contact and at admission, respectively. PCCL can be determined by taking into account the complication and

co-morbidity level (CCL) of each secondary diagnosis with respect to the primary diagnosis (see Schulenburg

and Blanke (2004)). The motivation for employing PCCL as an additional attribute is because DRG-grouping

is sensitive to the clinical complexity of a patient. The more severe secondary diagnoses are documented,

with respect to the primary diagnosis, the more likely it is that a “severe DRG” is assigned to a patient. In

addition, we consider the DRG, MDC and the first three DRG characters as classified by the DRG for 25,

50 and 75% of each patients LOS as additional attributes, see Appendix E.9. in this Online Supplement. We

treated the name of the referring physician as a free-text attribute because when the patient seeks admission,

he communicates the name of the referring physician via telephone (and not the care provider ID). As a

consequence, for the nurse who documents the admission request, the exact provider may be unclear if

e.g. one cardiologist ‘Dr. Smith’ and one internist ‘Dr. Smith’ refers the patient to the hospital.

Attribute Data type Distinct attribute val-
ues or bins

Documentation

at 1st

contact
at ad-
mission

after
admission

Admission priority nominal 3 (non-urgent, admission
within next 5 days, admis-
sion within next 48 hours)

X

Age in years documented at 1st

contact
continuous 88 (e.g. 11 years) X

Contact month nominal 12 (e.g. December) X

Contact via central bed man-
agement

nominal 2 (yes, no) X

Contact via hotline nominal 2 (yes, no) X

Contact via outpatient clinic nominal 2 (yes, no) X

Contact weekday nominal 7 (e.g. Monday) X

Department documented at 1st

contact
nominal 15 (e.g. department of

surgery)
X

Diagnosis string e.g. “ct”, “stent” X
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Attribute Data type Distinct attribute val-
ues or bins

Documentation

at 1st

contact
at ad-
mission

after
admission

DRG calculated by using the
DRG grouper at 1st contact

nominal 10–341, depending on
dataset (e.g. L68B – Other
moderate illnesses of the
urinary tract)

X

First three characters of the
DRG calculated by using the
DRG grouper at 1st contact

nominal 10–263, depending on
dataset (e.g. F72)

X

Gender nominal 2 (male, female) X

MDC of the DRG calculated by
using the DRG grouper at 1st

contact

nominal 27 (e.g. R – symptoms,
signs, and abnormal clini-
cal and laboratory findings,
not elsewhere classified)

X

Month of admission docu-
mented at 1st contact

nominal 12 (e.g. December) X

Nurse ID nominal 8 (unique personnel num-
ber used in the hospital)

X

Outpatient nominal 2 (yes, no) X

PCCL calculated at 1st contact
using the DRG grouper

ordinal 1–5, depending on
dataset (no complexity,
. . . , severe complexity)

X

Referring physician string e.g. “Dr. Müller”,
“Dr.Müller” (with or
without blanks)

X

Weekday of admission docu-
mented at 1st contact

nominal 7 (e.g. Monday) X

Postal code of the referring
physician

nominal 32 (e.g. 85435) X

Admission diagnosis 1 nominal 2,251 (e.g. R55 – syncope
and collapse, R10.4 – other
and unspecified abdominal
pain)

X

Admission diagnosis 2 nominal 1,668 (e.g. see admission
diagnosis 1)

X

Admission diagnosis 3 nominal 1,052 (e.g. see admission
diagnosis 1)

X

Admission diagnosis 4 nominal 700 (e.g. see admission
diagnosis 1)

X

Admission diagnosis 5 nominal 498 (e.g. see admission
diagnosis 1)

X

Admission diagnosis 6 nominal 360 (e.g. see admission
diagnosis 1)

X
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Attribute Data type Distinct attribute val-
ues or bins

Documentation

at 1st

contact
at ad-
mission

after
admission

Age in days in case of newborns continuous 8 (0 days, 1 day, 2 days, 3
days, 4 days, 5 days, 8 days,
238 days)

X

Age in years documented at
admission

continuous 101 (0 years, 1 year, . . . ,
99 years, 102 years)

X

Category code of admission
diagnosis 1

nominal 823 (e.g. H60 – otitis
externa)

X

Category code of admission
diagnosis 2

nominal 731 (e.g. see category code
of admission diagnosis 1)

X

Category code of admission
diagnosis 3

nominal 565 (e.g. see category code
of admission diagnosis 1)

X

Category code of admission
diagnosis 4

nominal 415 (e.g. see category code
of admission diagnosis 1)

X

Category code of admission
diagnosis 5

nominal 298 (e.g. see category code
of admission diagnosis 1)

X

Category code of admission
diagnosis 6

nominal 226 (e.g. see category code
of admission diagnosis 1)

X

Days in hospital before admis-
sion

continuous 10 (0 days, . . . , 9 days) X

Department documented at
admission

nominal 40 (e.g. department of
surgery, intensive care unit)

X

DRG calculated by using the
DRG grouper at admission

nominal 202–503, depending on
dataset (e.g. F72B – Unsta-
ble angina pectoris)

X

First three characters of the
DRG calculated by using the
DRG grouper at admission

nominal 142–363, depending on
dataset (e.g. “F72”)

X

Hour of admission nominal 24 (e.g. 10 a.m.) X

MDC of the DRG calculated
by using the DRG grouper at
admission

nominal 27, equal number for all
datasets (e.g. R – symp-
toms, signs, and abnormal
clinical and laboratory find-
ings, not elsewhere classi-
fied)

X

Medical partition of admission
diagnosis 1

nominal 21 (e.g. R – symptoms,
signs, and abnormal clini-
cal and laboratory findings,
not elsewhere classified)

X

Medical partition of admission
diagnosis 2

nominal 26 (e.g. see medical par-
tition of admission diagno-
sis 1)

X
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Attribute Data type Distinct attribute val-
ues or bins

Documentation

at 1st

contact
at ad-
mission

after
admission

Medical partition of admission
diagnosis 3

nominal 25 (e.g. see medical par-
tition of admission diagno-
sis 1)

X

Medical partition of admission
diagnosis 4

nominal 23 (e.g. see medical par-
tition of admission diagno-
sis 1)

X

Medical partition of admission
diagnosis 5

nominal 22 (e.g. R – symptoms,
signs, and abnormal clini-
cal and laboratory findings,
not elsewhere classified)

X

Medical partition of admission
diagnosis 6

nominal 20 (e.g. see medical par-
tition of admission diagno-
sis 1)

X

Month of admission nominal 12 (e.g. December) X

PCCL calculated at admission
using a DRG grouper

ordinal 5 (equal number for all
datasets) (no complexity,
. . . , severe complexity)

X

Reason for admission nominal 5 (complete inpatient
treatment, inpatient treat-
ment with preliminary
outpatient treatment,
delivery, childbirth, pre-
inpatient treatment)

X

Type of admission nominal 4 (referral, emergency
admission, transferring
from another hospital,
childbirth)

X

Weekday of admission nominal 7 (e.g. Monday) X

Weight at admission in case of
newborns

continuous 290 (e.g. 2,100 g) X

Procedure section of procedure
codes

nominal 0–6, depending on data
set (e.g. 5 – surgeries)

X

First three-digits of procedure
codes

nominal 0–169, depending on data
set (e.g. 542 – esophagus
surgeries)

X

Procedure codes nominal 0–2,468, depending on data
set (e.g. 5423 – partial
esophagus resection)

X

DRG (class attribute) nominal 635 (e.g. F72B – Unstable
angina pectoris)

calculated after discharge

Table 4: Attributes assessed for the early DRG classification
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Appendix D: Attribute ranking and selection techniques

D.1. Information gain attribute ranking

Given the prior probability p(d) for each DRG d ∈ D, we can compute the information entropy H(D) by

Equation (1).

H(D) =−
∑

d∈D

p(d) lnp(d) (1)

The negative sign ensures that H(D) is positive or zero. The more uniformly an attribute value is distributed

over all instances, the higher is its entropy (see Bishop (2006)). Using Equation (2), we can compute the

conditional information entropy H(D|a) of D given an attribute a ∈ A. Here, p(v) is the prior probability

of attribute value v ∈ Va for attribute a ∈ A and p(d|v) is the conditional probability of a DRG d given an

attribute value v ∈Va of attribute a∈A.

H(D|a) =−
∑

v∈Va

p(v)
∑

d∈D

p(d|v) lnp(d|v) (2)

The information gain IG(a) of each attribute a∈A is then computed by Equation (3).

IG(a) =H(D)−H(D|a) (3)

D.2. Relief-F attribute ranking

In order to describe the algorithm we first define the “k-nearest hits” and “k-nearest misses” for a sampled

instance i ∈ I. Let the set of k-nearest hits Hi(k) ⊂ I \ i of an instance i ∈ I contain at most k instances

j ∈ I, j 6= i which have the same DRG as instance i. More precisely, we choose those instances with dj = di

which have the lowest diff i,j-values as defined by Eqs. (4) and (5).

diff i,j =
∑

a∈A

diff i,j,a (4)

diff i,j,a =

{

0, if vi,a = vj,a
1, otherwise

(5)

Furthermore, for each DRG d 6= di, let the set of k-nearest misses Md,i(k) ⊂ I \ i of instance i contain at

most k instances j ∈ I, j 6= i. More precisely, we choose those instances with dj = d which have the lowest

diff i,j-values as defined by Eqs. (4) and (5). Both the k-nearest hits and the k-nearest misses for each DRG

d∈D are used by Equation (6) which computes the quality measure Qa for attribute a∈A.

Qa =
1

k · |I|

∑

i∈I



−
∑

h∈Hi(k)

diff i,h,a +
∑

d∈D\di

p(d)

1− p(di)

∑

m∈Md,i(k)

diff i,m,a



 (6)

For each instance i∈ I the k-nearest hits and k-nearest misses for each sampled instance i∈ I are selected

and used in Equation (6). Then, the attributes with highest values of the quality measure are considered

most relevant for classification.
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D.3. Markov blanket attribute selection

In order to introduce Markov blanket attribute selection, we first provide the necessary notation of Bayesian

networks, a type of probabilistic graphical model. A Bayesian network is a directed acyclic graph (DAG)

G = (V ,E) with vertices V and edges E , where the vertices represent variables and the edges encode the

conditional independence relationships between these variables (each variable is conditionally independent

of its non-descendants in the graph given its parents). Pearl (2000) and Wasserman (2004) provide further

theoretical properties of Bayesian networks and other probabilistic graphical models. The Markov blanket

of a vertex v ∈ V , denoted by MB(v), is a minimal subset of vertices containing vertex v, its direct parents

and direct children as well as all direct parents of the children of v. The Markov blanket of vertex v contains

all the variables needed to predict the value of that variable, since v is conditionally independent of all

other variables given its Markov blanket. An example Markov blanket DAG is given in Appendix D of the

Online Supplement. In our application of early DRG classification, the vertices of the graph include the DRG

variable (D) as well as all attributes a∈A. We wish to select the subset of attributes which are relevant for

predicting D and thus can select those and only those variables in the Markov blanket of D.

D.4. Correlation-based feature selection

For the correlation-based feature selection, we first have to compute the symmetrical uncertainty U(a, b) ∈

[0; 1] by employing the following equation (see, e.g. Hall and Holmes (2003)):

U(a, b) = 2 ·
H(a)+H(b)−H(a|b)

H(a)+H(b)
. (7)

Again, H(a) is the entropy of attribute a (see Equation (1)) while H(a|b) is the conditional entropy of

attribute a given attribute b using Equation (2). The attribute subset A∗
i which maximizes the following

expression is selected:

A∗
i = arg max

A
′
⊂A

∑

a∈A
′

U(a,D)

√

∑

a∈A
′

∑

b∈A
′
\a

U(a, b)
. (8)

D.5. Wrapper attribute subset evaluation

Table 5 provides an example for the wrapper attribute subset selection using A := {a, b, c} as a set of

attributes (for details, see Kohavi and John (1997)).

Table 5 Wrapper attribute subset evaluation in order to produce a ranked list of attributes

(a) Iteration 1

Attribute
set

Acc. Best
attribute

a 0.1
b 0.3 b

c 0.2

(b) Iteration 2

Attribute
set

Acc. Best
attribute

a b 0.3
b c 0.4 c

(c) Iteration 3

Attribute
set

Acc. Best
attribute

a b c 0.35
b c 0.4 –
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Starting with an empty subset of attributes, in each iteration one (best) single attribute is added to the

list of attributes. In the example, we choose in the first iteration attribute b since it has the highest gain in

accuracy (see Table 5(a)). In the second iteration (see Table 5(b)) we check whether attribute a or c can

improve classification accuracy. Since the additional attribute c results in the highest increase of accuracy, it

is added to the set of attributes. Finally, based on attributes b and c during the third iteration (see Table 5(c))

accuracy is evaluated again to check whether attribute a can improve accuracy. Since accuracy cannot be

improved, the subset {b, c}⊂A is selected as the best subset of attributes.

D.6. Naive Bayes classification

We assign a new instance i to the DRG d∗
i by employing Equation (9).

d∗
i =argmax

d∈D

{

p(d)

|A|
∏

a=1

p(vi,a|d)

}

(9)

The prior probability p(d) of each DRG d is learned from the training data by maximum likelihood estimation,

i.e. p(d) is set equal to the proportion of training examples which belong to class d. Similarly, the conditional

likelihood of each attribute value vi,a given each DRG d is learned from the training data by maximum

likelihood estimation, i.e. p(vi,a|d) is set equal to the proportion of training examples of class d which have

value vi,a for attribute a.

D.7. Bayesian networks

Similar to the Naive Bayes classification, we assign a new instance i to the DRG d∗
i by employing Equa-

tion (10).

d∗
i = argmax

d∈D

{

p(d)

|A|
∏

a=1

p(vi,a|d,Πa)

}

. (10)

D.8. Decision trees

In a DRG grouper, a tree-structured set of rules is implemented as required by the legal restrictions of a

healthcare system. A DRG grouper deterministically computes each inpatient’s DRG given his attribute

values. In our context, a classification tree is a hierarchical data structure that consists of a root node which

represents an attribute. Additional nodes that represent further attributes except the “root attribute” are

linked with the root node directly or indirectly. Leaf nodes represent the DRGs. Arcs between nodes represent

the values of the attributes located in the predecessor hierarchy.

The decision tree-learning works as follows. In the first step, the attribute a∗ with the maximum information

gain is selected out of the set of attributes A. Based on a∗, which becomes the root node, I is divided into

subsets; each one contains different values v ∈ Va∗ of attribute a∗. Each value is represented by an edge. If

in any subset Iv only one DRG d exists, the attribute value v is assigned to that DRG. Else, the attribute

with the next higher IG is selected from the attribute set and linked to that DRGs by an edge. Recursively,

it is split further on each subset of attribute values.

The decision tree growing process usually results in an unnecessarily large and highly specific structure and

therefore, the decision tree should be pruned. In this study, we employ the C4.5 pruning strategy (see Witten
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and Frank (2011)). For alternative pruning strategies see, e.g. Li et al. (2001). Initially, we determine for each

node the subset of training instances that is represented by the node. In a second step, we identify the DRG

that represents the majority of instances reaching the node. Then, an error rate which is the number of

instances not represented by this DRG is calculated. Next, by specifying a confidence level (see Section ?? for

an evaluation of different confidence levels) we calculate the node’s upper error bound. Finally, we compare

this bound with its children’s error rates. If the children’s combined error rates are greater than the bound,

the children are pruned from the node and replaced by a leaf.

Appendix E: Figures and tables

E.1. An example Markov blanket

Figure 1 shows an example Markov Blanket DAG. All vertices in the graph are part of the Markov blanket

of vertex D, since a and b are direct parents of D, l and g are direct children of D, and c and e are direct

parents of the children of D.

D

a b

c e

l g

Figure 1 Markov blanket of the vertex D
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Figure 2 DRG frequency distribution for elective patients (a) and for all patients (b)

E.2. Information documented before and at admission

E.3. Results of the attribute ranking techniques
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Table 6 Information documented before admission

# attributes Description

79 Appointment-specific and demographic information (e.g. age, referring physician,
admission priority)

149 Clinical information (free-text)
4 DRG information predicted by the DRG grouper (DRG, 2 DRG substrings, CCL)

Table 7 Information documented at admission

# attributes Description

10 Demographic information (e.g. type of and reason for admission, age in days in case
of newborns)

18 Diagnostic information (6 admission diagnoses coded by ICD and the corresponding
medical partition and category code)

4 DRG information predicted by the DRG grouper (DRG, 2 DRG substrings, CCL)

Table 8 Results of the top three attributes of the IG attribute ranking for each dataset before admission

Data-
set

Rank 1 IG Rank 2 IG Rank 3 IG

1 DRG calculated by using
the DRG grouper at 1st

contact

6.555 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

6.264 Admission diagnosis 1 5.929

2 DRG calculated by using
the DRG grouper at 1st

contact

6.532 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

6.246 Admission diagnosis 1 5.929

3 Department docu-
mented at 1st contact

3.027 Postal code of the refer-
ring physician

0.873 Contact month 0.778

4 DRG calculated by using
the DRG grouper at 1st

contact

6.266 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

5.981 Admission diagnosis 1 5.929

5 DRG calculated by using
the DRG grouper at 1st

contact

6.238 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

5.962 Admission diagnosis 1 5.929

6 Department docu-
mented at 1st contact

3.027 Postal code of the refer-
ring physician

0.873 Contact month 0.778

7 Admission diagnosis 1 5.929 Category code of admis-
sion diagnosis 1

5.444 DRG calculated by using
the DRG grouper at 1st

contact

4.607

8 Admission diagnosis 1 5.929 Category code of admis-
sion diagnosis 1

5.444 DRG calculated by using
the DRG grouper at 1st

contact

4.585

9 Department docu-
mented at 1st contact

3.027 Postal code of the refer-
ring physician

0.873 Contact month 0.778
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Table 9 Results of the top three attributes of the Relief-F attribute ranking for each dataset before admission

Data-
set

Rank 1 Qa Rank 2 Qa Rank 3 Qa

1 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

0.804 DRG calculated by using
the DRG grouper at 1st

contact

0.793 Department docu-
mented at 1st contact

0.754

2 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

0.806 DRG calculated by using
the DRG grouper at 1st

contact

0.795 Department docu-
mented at 1st contact

0.756

3 Department docu-
mented at 1st contact

0.755 5 0.383 8 0.309

4 Department docu-
mented at 1st contact

0.755 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

0.731 DRG calculated by using
the DRG grouper at 1st

contact

0.721

5 Department docu-
mented at 1st contact

0.756 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

0.735 DRG calculated by using
the DRG grouper at 1st

contact

0.725

6 Department docu-
mented at 1st contact

0.755 5 0.374 Contact via hotline 0.243

7 Department docu-
mented at 1st contact

0.754 MDC of the DRG calcu-
lated by using the DRG
grouper at 1st contact

0.715 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

0.685

8 Department docu-
mented at 1st contact

0.756 MDC of the DRG calcu-
lated by using the DRG
grouper at 1st contact

0.715 First three characters of
the DRG calculated by
using the DRG grouper
at 1st contact

0.69

9 Department docu-
mented at 1st contact

0.757 Contact via hotline 0.24 Postal code of the refer-
ring physician

0.212

Table 10 Results of the top three attributes of the IG attribute ranking for each dataset at admission

Data-
set

Rank 1 IG Rank 2 IG Rank 3 IG

10 DRG calculated by using
the DRG grouper at
admission

5.85 Admission diagnosis 1 5.65 First three characters of
the DRG calculated by
using the DRG grouper
at admission

5.642

11 Admission diagnosis 1 5.65 DRG calculated by using
the DRG grouper at
admission

5.493 First three characters of
the DRG calculated by
using the DRG grouper
at admission

5.3

12 Admission diagnosis 1 5.65 Category code of admis-
sion diagnosis 1

5.182 DRG calculated by using
the DRG grouper at
admission

4.61
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Table 11 Results of the top three attributes of the Relief-F attribute ranking for each dataset at admission

Data-
set

Rank 1 Qa Rank 2 Qa Rank 3 Qa

10 First three characters of
the DRG calculated by
using the DRG grouper
at admission

0.735 MDC of the DRG calcu-
lated by using the DRG
grouper at admission

0.722 DRG calculated by using
the DRG grouper at
admission

0.718

11 MDC of the DRG calcu-
lated by using the DRG
grouper at admission

0.716 First three characters of
the DRG calculated by
using the DRG grouper
at admission

0.691 DRG calculated by using
the DRG grouper at
admission

0.675

12 MDC of the DRG calcu-
lated by using the DRG
grouper at admission

0.717 First three characters of
the DRG calculated by
using the DRG grouper
at admission

0.69 DRG calculated by using
the DRG grouper at
admission

0.67

E.4. Computational results

Table 12 Run time (seconds) for generating the attribute rankings and for the Markov blanket attribute
selection before admission

Dataset Attribute ranking Markov blanket attribute selection
IG Relief-F IG Relief-F

GS IA GSWL IAWL GS IA GSWL IAWL

1 0.89 18.58 3.88 8.02 39.95 39.02 3.81 7.56 41.12 39.95
2 0.59 16.57 7.33 6.09 32.56 31.62 6.69 6.55 34.79 33.60
3 0.41 14.26 2.33 2.2 14.63 14.6 2.68 2.64 17.45 17.58
4 0.39 16.68 2.01 1.97 32.01 31.45 2.34 2.29 34.40 33.30
5 0.34 14.65 1.91 1.79 25.38 24.22 2.14 2.11 27.66 26.55
6 0.30 12.40 1.66 1.68 8.46 8.42 1.91 2.01 11.21 11.22
7 0.11 12.56 0.52 0.5 9.61 8.58 0.52 0.55 9.22 8.50
8 0.08 10.55 0.37 0.48 3.95 4.05 0.37 0.39 3.91 4.07
9 0.05 8.33 0.38 0.25 0.42 0.41 0.3 0.28 0.39 0.44

Avg. 0.35 13.84 2.27 2.55 18.55 18.04 2.31 2.71 20.02 19.47

The lowest computation times for each dataset and on average within the group of attribute ranking or
Markov blanket attribute selection are in bold.
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Table 13 Run time (seconds) for the CFS and for the wrapper attribute
selection before admission

Dataset CFS Wrapper
IG Relief-F

NB PA NB PA

1 8.44 522.48 3,609.38 541.80 4,217.89
2 9.16 472.99 4,845.09 509.12 4,277.59
3 9.24 3,217.57 7,818.02 4,847.70 9,175.77
4 5.49 337.35 3,301.92 365.70 3,848.47
5 5.12 348.86 2,792.67 362.26 2,787.44
6 7.19 1,792.62 8,129.05 4,096.42 9,093.80
7 0.81 672.82 15,425.09 1,493.73 20,710.98
8 0.59 1,121.74 17,070.54 1,121.64 23,585.11
9 0.83 2,724.43 3,375.44 4,519.56 7,352.71

Avg. 5.21 1,245.65 7,374.13 1,984.21 9,449.97

The lowest computation times within the group of wrapper approaches
using different rankings are in bold.

Table 14 Run time (seconds) for the classification techniques without
attribute selection before admission

Dataset Rule NB BN Tree Vote PA

1 6.99 219.74 493.68 49.66 778.81 524.36
2 6.29 205.50 627.87 50.20 876.11 723.14
3 5.93 189.56 513.10 396.30 1,181.54 1,004.12
4 5.30 165.13 256.91 45.63 601.05 423.69
5 4.93 156.94 262.56 39.81 576.29 426.17
6 4.70 146.72 243.04 280.63 801.03 644.09
7 0.86 22.12 39.32 119.48 202.95 177.28
8 0.76 19.38 34.34 83.93 156.42 135.11
9 0.66 17.32 31.94 24.13 91.64 71.92

Avg. 4.05 126.93 278.08 121.09 585.09 458.88

The lowest computation times for each dataset and on average are in
bold.

Table 15 Run time (seconds) for generating the attribute rankings and for the Markov blanket attribute
selection at admission

Dataset Attribute ranking Markov blanket attribute selection
IG Relief-F IG Relief-F

GS IA GSWL IAWL GS IA GSWL IAWL

10 2.67 430.41 6.22 5.69 14.60 14.46 4.75 4.71 15.45 15.00
11 2.32 376.68 1.49 1.35 11.31 11.53 1.51 1.45 12.20 12.38
12 0.66 327.15 0.66 0.69 5.15 5.08 0.82 0.75 5.05 5.09

Avg. 1.88 378.08 2.79 2.58 10.35 10.36 2.36 2.30 10.90 10.82

The lowest computation times for each dataset and on average within the group of attribute ranking or
Markov blanket attribute selection are in bold.
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Table 16 Run time (seconds) for the CFS and for the wrapper attribute
selection at admission

Dataset CFS Wrapper
IG Relief-F

NB PA NB PA

10 104.37 7,323.68 76,221.00 25,011.80 103,261.68
11 85.22 5,874.40 91,421.20 29,563.98 102,045.79
12 8.39 5,718.79 115,569.92 30,311.59 87,626.10

Avg. 65.99 6,305.62 94,404.04 28,295.79 97,644.52

The lowest computation times for each dataset and on average within the group
of wrapper approaches are in bold.

Table 17 Run time (seconds) for the classification techniques without attribute
selection at admission

Dataset Rule NB BN Tree Vote PA

10 111.48 2,281.32 6,234.92 1,649.05 9,604.11 9,614.42
11 109.12 1,870.29 3,298.93 948.98 7,454.78 7,319.35
12 13.20 210.32 314.09 247.87 939.73 712.37

Avg. 77.93 1,453.98 3,282.65 948.63 5,999.54 5,882.05

The lowest computation times for each dataset and on average are in bold.
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E.5. Results of the decision tree learner parameter optimization

Table 18 Optimal parameter values for the decision tree learner before admission

Dataset before after attribute selection
MB CFS NB Wrapper PA Wrapper

IG Relief-F IG Relief-F
CF MI CF MI CF MI CF MI CF MI CF MI CF MI

1 0.05 11 0.001 6 0.001 1 0.5 1 0.001 6 0.001 6 0.001 6
2 0.5 11 0.001 6 0.001 1 0.001 6 0.001 6 0.01 1 0.001 6
3 0.005 1 0.1 1 0.005 1 0.005 1 0.005 1 0.05 6 0.005 1
4 0.5 11 0.001 1 0.05 1 0.5 1 0.5 1 0.1 1 0.05 1
5 0.001 11 0.001 6 0.5 1 0.001 6 0.001 6 0.05 1 0.05 1
6 0.005 1 0.005 1 0.01 1 0.1 1 0.01 1 0.005 1 0.05 6
7 0.05 1 0.1 1 0.5 1 0.1 1 0.05 1 0.5 1 0.1 1
8 0.01 1 0.1 1 0.5 1 0.5 1 0.1 1 0.1 1 0.05 1
9 0.005 1 0.1 11 0.01 1 0.01 1 0.001 1 0.5 1 0.001 1

Table 19 Optimal parameter values for the decision tree learner at admission

Dataset before after attribute selection
MB CFS NB Wrapper PA Wrapper

IG Relief-F IG Relief-F
CF MI CF MI CF MI CF MI CF MI CF MI CF MI

10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.1 10 0.5 10
11 0.1 10 0.5 15 0.5 10 0.5 10 0.5 10 0.5 10 0.1 10
12 0.5 10 0.5 10 0.1 10 0.5 10 0.5 10 0.1 10 0.5 10
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E.6. Classification accuracies

Table 20 Overall accuracy of the DDC, DDC∗

and DDC† approaches before attribute selection
and before admission

k DDC DDC∗ DDC†

1 10.0 (5.7) 7.8 (3.2) 7.9 (3.3)
2 10.3 (6.1) 9.4 (7.7) 9.5 (7.8)
3 9.8 (5.3) 6.3 (1.9) 6.4 (2.0)
4 10.1 (5.7) 8.9 (7.9) 9.0 (7.7)
5 11.0 (4.9) 10.6 (5.6) 10.8 (5.5)
6 9.8 (5.3) 6.1 (1.9) 6.2 (1.9)
7 11.9 (4.3) 10.6 (6.4) 11.2 (5.9)
8 13.9 (5.7) 12.7 (6.4) 13.7 (6.0)
9 10.6 (5.2) 6.9 (2.7) 7.2 (2.6)

Avg. 10.8 (5.4) 8.8 (4.9) 9.1 (4.7)

The best performance figures for each dataset
and on average are in bold.

Table 21 Overall accuracy of the DDC, DDC∗

and DDC† approaches before attribute selection
and at admission

k DDC DDC∗ DDC†

10 20.4 (2.4) 18.5 (1.8) 19.2 (1.9)
11 20.8 (2.7) 18.6 (2.2) 19.4 (2.4)
12 26.0 (2.3) 21.8 (1.7) 23.6 (1.6)

Avg. 22.4 (2.5) 19.6 (1.9) 20.7 (2.0)

The best performance figures for each dataset
and on average are in bold.

Table 22 Overall accuracy of the different classification techniques after Markov blanket (CFS)
attribute selection before admission

Dataset BN PA NB Rules Tree Vote

1 71.7 (72.2) 79.1 (79.2) 49.7 (57.3) 75.8 (75.8) 76.6 (76.8) 76.6 (76.6)
2 72.1 (62.0) 78.5 (78.0) 56.0 (57.3) 75.2 (75.2) 76.0 (76.1) 76.2 (74.4)
3 50.0 (36.8) 49.4 (29.3) 45.2 (38.2) 20.1 (20.1) 54.5 (40.6) 50.4 (39.1)
4 67.5 (70.0) 73.3 (72.6) 46.2 (60.1) 70.2 (70.2) 70.6 (70.4) 71.2 (70.8)
5 67.3 (69.4) 72.2 (71.9) 52.9 (59.5) 69.7 (69.7) 70.0 (70.0) 70.5 (70.3)
6 46.6 (31.7) 41.1 (22.9) 41.1 (32.7) 20.1 (20.1) 51.8 (36.6) 46.7 (34.6)
7 52.1 (52.2) 49.7 (51.1) 38.8 (49.0) 45.2 (45.2) 51.8 (52.9) 53.2 (52.8)
8 51.3 (52.3) 47.8 (51.1) 45.8 (49.0) 45.2 (45.2) 51.0 (53.2) 51.5 (52.8)
9 21.6 (23.0) 8.8 (11.2) 26.9 (26.2) 20.1 (20.1) 27.6 (26.7) 25.3 (26.9)

Avg. 55.6 (52.2) 55.5 (51.9) 44.7 (47.7) 49.1 (49.1) 58.9 (55.9) 58.0 (55.4)

The best performance figures for each dataset and on average are in bold.
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Table 23 Overall accuracy of the different classification techniques after naive Bayes wrapper attribute
selection with IG (Relief-F) ranking before admission

Dataset BN PA NB Rules Tree Vote

1 75.6 (75.9) 78.0 (78.2) 71.0 (71.0) 75.8 (75.8) 76.0 (75.8) 76.1 (76.0)
2 75.1 (75.1) 77.6 (77.6) 70.8 (70.8) 75.2 (75.2) 75.2 (75.2) 75.3 (75.3)
3 39.3 (39.9) 29.3 (31.5) 41.2 (44.3) 20.1 (20.1) 41.6 (45.2) 41.5 (44.0)
4 70.1 (70.1) 72.2 (72.2) 65.7 (65.7) 70.2 (70.2) 70.5 (70.5) 70.6 (70.6)
5 69.1 (69.1) 71.6 (71.6) 65.6 (65.6) 69.7 (69.7) 69.7 (69.7) 69.8 (69.8)
6 37.0 (34.4) 20.1 (26.4) 37.1 (41.7) 20.1 (20.1) 37.6 (41.5) 37.4 (39.8)
7 51.4 (51.8) 50.8 (50.9) 50.4 (51.0) 45.2 (45.2) 52.2 (52.5) 52.8 (53.7)
8 51.9 (52.5) 51.0 (50.9) 50.9 (51.1) 45.2 (45.2) 52.3 (52.6) 53.4 (53.6)
9 32.0 (32.4) 17.6 (20.0) 34.2 (37.8) 20.1 (20.1) 33.1 (35.9) 33.8 (36.5)

Avg. 55.7 (55.7) 52.0 (53.3) 54.1 (55.4) 49.1 (49.1) 56.5 (57.7) 56.7 (57.7)

The best performance figures for each dataset and on average are in bold.

Table 24 Overall accuracy of the different classification techniques after Markov blanket (CFS)
attribute selection at admission

Dataset BN PA NB Rules Tree Vote

10 62.5 (63.5) 65.0 (63.5) 43.9 (57.4) 61.7 (61.7) 64.7 (62.8) 64.6 (63.1)
11 58.1 (58.4) 59.9 (58.7) 40.6 (51.9) 57.3 (57.3) 59.5 (57.9) 59.5 (58.4)
12 49.7 (49.4) 47.8 (48.0) 36.2 (47.0) 45.2 (45.2) 49.7 (48.0) 50.0 (49.4)

Avg. 56.8 (57.1) 57.6 (56.7) 40.2 (52.1) 54.7 (54.7) 58.0 (56.2) 58.0 (57.0)

The best performance figures for each dataset and on average are in bold.

Table 25 Overall accuracy of the different classification techniques after naive Bayes wrapper
attribute selection with IG (Relief-F) ranking at admission

Dataset BN PA NB Rules Tree Vote

10 63.4 (63.4) 64.4 (64.6) 61.5 (61.7) 61.7 (61.7) 63.5 (63.6) 64.1 (64.3)
11 58.8 (58.7) 59.5 (59.6) 57.1 (57.5) 57.3 (57.3) 58.5 (58.7) 59.2 (59.4)
12 49.1 (49.2) 48.4 (48.6) 49.0 (49.4) 45.2 (45.2) 49.1 (49.7) 50.3 (50.6)

Avg. 57.1 (57.1) 57.4 (57.6) 55.9 (56.2) 54.7 (54.7) 57.0 (57.3) 57.9 (58.1)

The best performance figures for each dataset and on average are in bold.
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E.7. Major diagnostic categories

Table 26 The five most frequent major diagnostic categories in the data

sets before admission

MDC
number Description n

4 Respiratory system 101
5 Circulatory system 544
6 Digestive system 334
8 Musculoskeletal system and connective tissue 1,169
11 Kidney and urinary tract 300

Table 27 The five most frequent major diagnostic categories in the data
sets at admission

MDC
number Description n

1 Nervous system 1,017
4 Respiratory system 1,121
5 Circulatory system 2,741
6 Digestive system 2,374
8 Musculoskeletal system and connective tissue 2,741
11 Kidney and urinary tract 989
14 Pregnancy and childbirth 914
15 Newborn and other neonates 515

MDC Rule NB BN Tree Vote PA

Respiratory system < < = < = =

Circulatory system > < > > > >

Digestive system < < < = = =

Musculoskeletal system and connective tissue = < < = < >

Kidney and urinary tract > = > > > >

Table 28 Significant improvement (>), decrease (<) and non-significant difference (=) of the ML approaches

as compared to the DRG grouper before admission
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MDC Rule NB BN Tree Vote PA

Nervous system > = > > > >

Respiratory system < = = = = =

Circulatory system > > > > > >

Digestive system > > > > > >

Musculoskeletal system and connective tissue > > > > > >

Kidney and urinary tract > > > > > >

Pregnancy and childbirth > > > > > >

Newborn and other neonates < < > > = =

Table 29 Significant improvement (>), decrease (<) and non-significant difference (=) of the ML approaches

as compared to the DRG grouper at admission
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E.8. Selected DRGs

Table 30 Selected DRGs and number of cases (n) in the data set before admission

DRG Description n

F59B Medium complex cardiovascular incision 80
G24Z Hernia repair 66
I21Z Hip replacement 58
I53B Spine column incision 73
I68C Non-surgical therapy of the spine column, age > 65 years 183
I68D Non-surgical therapy of the spine column, age ≤ 65 years 119
L20C Transurethral incision 65
L64A Urinary stones and obstruction of the urinary system 80

Table 31 Selected DRGs and number of cases (n) in the
data set at admission

DRG Description n

B04D Extra-cranial surgery 43
B77Z Headache 87
B80Z Head injury 267
F39B Vein stripping 80
F62C Heart failure 245
F73Z Collapse or heart disease 321
G67D Esophagitis 688
I44B Prosthetic enhancement of the knee 44
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E.9. Temporal DRG classification

To generate the datasets for the temporal DRG classification, we chose for the 25, 50 and 75% datasets current

information about procedure codes. Each code represents a binary attribute and is 1 if the procedure was

performed and 0, otherwise. We assumed that at 25% of the LOS, the primary diagnosis is known and at 75%

of the LOS all diagnoses are known. For the attribute selection, we used all 20 attributes as determined by

the PA wrapper attribute selection from dataset 12 (at admission). Then, we added the attributes ‘Grouper

DRG’, ‘MDC’, ‘three characters of the DRG’ and ‘CCL’ at 25% LOS as determined by the DRG grouper.

Moreover, we added the binary procedure code attributes. Afterwards, we re-run the ReliefF-based PA

wrapper attribute selection which then came up to a set of 18 attributes. We proceeded simlarly for the

50% and 75% LOS data for which the number of attributes was 15 and 8, respectively. Similarly to the

classification before and at admission, we performed a parameter optimization for the decision tree learner

after admission.

In order to show the way in which classification errors are distributed, Figure 3–4 provide plots of the

confusion matrices of the best performing classifiers broken down by temporal progress in the length of stay

(LOS). We randomly selected 200 out of the more than 600 DRGs. The DRG labels of the x- and y-axes are

exactly the same in each plot.
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Figure 3 Plots of the confusion matrices before admission (a), at admission (b) and at 25% LOS (c)
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Figure 4 Plots of the confusion matrices at 50% (a), 75% (b) and 100% LOS (c)

The figures reveal that before admission, dots which are not spread on the diagonal are typically labeled

black, rather than being labeled yellow or green which would represent very high false positive numbers.

This observation leads to the conclusion that if classification errors occur, the error pattern is spread rather

randomly over the alternative DRGs instead of being concentrated on the same DRGs. We claim that this

result is positive since if error patterns would be concentrated on only one DRG (with high frequencies), the

classifier would always make the same structural error by high false positive numbers. Another observation

is that classification errors are remedied towards the 100% LOS by increasingly populating the diagonal of

the confusion matrix.
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