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Appendix A: List of abbreviations

Table 1 List of abbreviations

API Application programming interface
BN Bayesian network

CCL Complication and co-morbidity level
CF Confidence factor

CFS Correlation-based feature selection
CI Conditional independence
CT Computer tomography scanner

DAG  Directed acyclic graph

DDC  Decomposition-based DRG classification
DRG  Diagnosis-related group

GS Grow-shrink

GSWL Grow-shrink with whitelisting

1A Incremental association

TAWL Incremental association with whitelisting
ICD International Statistical Classification of Diseases and Related Health Problems
1G Information gain

LOS Length of stay

MAD  Mean absolute deviation

MB Markov blanket

MDC  Major diagnostic category

MI Minimum instances per leaf

ML Machine learning

MRI Magnetic resonance imaging scanner
NB Naive Bayes

OR Operating room

PA Probability averaging

PCCL Patient clinical complexity level

Prec.  Precision

RND  Random-based DRG classification
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Appendix B: Notation

Table 2 Notation for the attribute selection and classification
Parameter Description
a,b,c,e,g,le A Distinct attributes in the attribute set A available at admission
a* €A An attribute selected out of A which has the highest information gain with
respect to the class D
A Optimal attribute subset for the CFS attribute selection
C Array of classifiers
deD A specific DRG out of the set of DRGs D which is the target to classify
D The DRG variable included in the vertices of the DAG
d? DRG calculated by using the DRG grouper
d; The DRG of instance i € 7
d; The classified DRG of instance 1 € 7
dj DRG calculated by using the DRG grouper for instance i € Z

diﬁi,j € {Oa . 7|A|}

diﬁi,j,a € {07 1}
F

Difference function for two instances ¢,j € 7
Difference function for two instances ¢, j € Z with respect to attribute a € A
Number of folds

G=V,¢) Directed acyclic graph

H(D) Entropy of the set of DRGs

H(D|a) Conditional entropy of the class DRG D given attribute a € A
Hi(k)CZT Set of k-nearest hits for instance ¢ € Z such that |H,;(k)| <k
i,€T Instances out of the set of instances 7

Tpan Tt C T Subset of training and testing instances for fold f=1,..., F
IG(a) Information gain of attribute a € A

k Number of nearest hits or misses

m & Mdyz(k) C I

Set of k-nearest misses for instance ¢ € Z and DRG d € D \ d; such that
|IMai(k)| <k

MB(v) Markov blanket of the vertex v eV
n Number of cases of DRGs in the data or in a specific MDC
11, Parents of the given attribute a € A

Prior probability of a DRG d € D, of a DRG d; € D of an instance ¢ € Z, or of
an attribute value v € V

Conditional prior probability of DRG d € D given value v € V, of attribute
aceA

De.d Probability distribution of classifier c € C

Q. Function for estimating the quality of an attribute a € A considering k-nearest
hits H;(k), k-nearest misses M, ,; (k) for instance ¢ and DRG d € D\ d;, sampling
number m, and k-nearest neighbors

U(a,b) Symmetrical uncertainty of two nominal attributes

vEV, A specific value out of the set of attribute values V, for attribute a € A

Via,Vj,a € Ve The value of attribute a € A with respect to instance i,j € Z

% Set of vertices in graph G




Gartner, Kolisch, Neill and Padman: Online Supplement to “ML Approaches for Early DRG Classification and Resource Allocation”
INFORMS Journal on Computing; manuscript no. JOC-2013-12-OA-246

Table 3 Notation for the resource allocation model

Set, parameter and Description
decision variable

P Set of patients

pdiscp Subset of patients that can but do not necessarily have to be discharged
pemCP Subset of patients that represent emergency patients and must be admitted
pru-el ¢ p Subset of patients that represent non-urgent elective patients

Ppu-el Subset of patients that represent urgent elective patients

R Set of resources

R,CP Subset of resources relevant for patient p € P

RICR Subset of day resources

R°CR Subset of overnight resources

R4 CRY Subset of day resources relevant for patient p € P

R, CR° Subset of overnight resources relevant for patient p € P

Tk Contribution margin when patient p € P is assigned to overnight resource k € R;
Cr Overbooking costs for resource k € R

o Amount of extra capacity required for resource k € R

Tpk Resource requirement of patient p € P from resource k € R

R Capacity of resource k € R

R, Maximum overtime capacity of resource k € R

Tp ke 1, if patient p € P is assigned to resource k € R,,, otherwise 0
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Appendix C: Attributes evaluated

Table 4 provides a detailed overview about all attributes available for our study. The six admission diagnoses
were coded by the referring physician and inserted by the admission nurses into the hospital information
system employing ICD codes. Each code contains at least three characters in which the first character is the
so-called “medical partition” and the first three characters represent the so-called “category code” (see Bowie
and Schaffer (2010)). The inpatient’s weight is only documented for newborns. The same is true for the
attribute “age in days in case of newborns”. For each instance, i.e., for each inpatient in each dataset, we
generated the additional attributes “DRG calculated by using the DRG grouper”, “first three characters of the
DRG calculated by using the DRG grouper” and “patient clinical complexity level (PCCL)” calculated at 1%
contact and at admission, respectively. PCCL can be determined by taking into account the complication and
co-morbidity level (CCL) of each secondary diagnosis with respect to the primary diagnosis (see Schulenburg
and Blanke (2004)). The motivation for employing PCCL as an additional attribute is because DRG-grouping
is sensitive to the clinical complexity of a patient. The more severe secondary diagnoses are documented,
with respect to the primary diagnosis, the more likely it is that a “severe DRG” is assigned to a patient. In
addition, we consider the DRG, MDC and the first three DRG characters as classified by the DRG for 25,
50 and 75% of each patients LOS as additional attributes, see Appendix E.9. in this Online Supplement. We
treated the name of the referring physician as a free-text attribute because when the patient seeks admission,
he communicates the name of the referring physician via telephone (and not the care provider ID). As a
consequence, for the nurse who documents the admission request, the exact provider may be unclear if

e.g. one cardiologist ‘Dr. Smith’ and one internist ‘Dr. Smith’ refers the patient to the hospital.

Attribute Data type Distinct attribute val- Documentation
ues or bins
at 1% at ad- after
contact mission admission

Admission priority nominal 3 (non-urgent, admission v
within next 5 days, admis-
sion within next 48 hours)

Age in years documented at 1%*  continuous 88 (e.g. 11 years) v
contact

Contact month nominal 12 (e.g. December) v
Contact via central bed man- nominal 2 (yes, no) v
agement

Contact via hotline nominal 2 (yes, no) v
Contact via outpatient clinic =~ nominal 2 (yes, no) v
Contact weekday nominal 7 (e.g. Monday) v
Department documented at 15° nominal 15 (e.g. department of v/
contact surgery)

Diagnosis string e.g. “ct”, “stent” v
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Attribute Data type Distinct attribute val- Documentation
ues or bins
at 1%  at ad- after
contact mission admission

DRG calculated by using the nominal 10-341, depending on Vv

DRG grouper at 15 contact dataset (e.g. L68B — Other
moderate illnesses of the
urinary tract)

First three characters of the nominal 10-263, depending on v
DRG calculated by using the dataset (e.g. F72)

DRG grouper at 15¢ contact

Gender nominal 2 (male, female) v
MDC of the DRG calculated by nominal 27 (e.g. R — symptoms, v
using the DRG grouper at 15 signs, and abnormal clini-
contact cal and laboratory findings,

not elsewhere classified)

Month of admission docu- nominal 12 (e.g. December) v
mented at 15% contact
Nurse ID nominal 8 (unique personnel num- v’
ber used in the hospital)
Outpatient nominal 2 (yes, no) v
PCCL calculated at 15¢ contact ordinal 1-5, depending on VvV
using the DRG grouper dataset (no complexity,

..., severe complexity)

Referring physician string e.g. “Dr.  Miiller”, v
“Dr.Miller”  (with  or
without blanks)

Weekday of admission docu- nominal 7 (e.g. Monday) v
mented at 15¢ contact

Postal code of the referring nominal 32 (e.g. 85435) v
physician

Admission diagnosis 1 nominal 2,251 (e.g. R55 — syncope v

and collapse, R10.4 — other
and unspecified abdominal
pain)

Admission diagnosis 2 nominal 1,668 (e.g. see admission v
diagnosis 1)

Admission diagnosis 3 nominal 1,052 (e.g. see admission v
diagnosis 1)

Admission diagnosis 4 nominal 700 (e.g. see admission v
diagnosis 1)

Admission diagnosis 5 nominal 498 (e.g. see admission v
diagnosis 1)

Admission diagnosis 6 nominal 360 (e.g. see admission v
diagnosis 1)
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Attribute Data type Distinct attribute val- Documentation
ues or bins
at 1%*  at ad- after
contact mission admission
Age in days in case of newborns continuous 8 (0 days, 1 day, 2 days, 3 v
days, 4 days, 5 days, 8 days,
238 days)
Age in years documented at continuous 101 (0 years, 1 year, ..., v
admission 99 years, 102 years)
Category code of admission nominal 823 (e.g. H60 — otitis v
diagnosis 1 externa)
Category code of admission nominal 731 (e.g. see category code v
diagnosis 2 of admission diagnosis 1)
Category code of admission nominal 565 (e.g. see category code v
diagnosis 3 of admission diagnosis 1)
Category code of admission nominal 415 (e.g. see category code v
diagnosis 4 of admission diagnosis 1)
Category code of admission nominal 208 (e.g. see category code v
diagnosis 5 of admission diagnosis 1)
Category code of admission nominal 226 (e.g. see category code v
diagnosis 6 of admission diagnosis 1)
Days in hospital before admis- continuous 10 (0 days, ..., 9 days) v
sion
Department documented at nominal 40 (e.g. department of v
admission surgery, intensive care unit)
DRG calculated by using the nominal 202-503, depending on v
DRG grouper at admission dataset (e.g. F72B — Unsta-
ble angina pectoris)
First three characters of the nominal 142-363, depending on v
DRG calculated by using the dataset (e.g. “F72”)
DRG grouper at admission
Hour of admission nominal 24 (e.g. 10 a.m.) v
MDC of the DRG calculated nominal 27, equal number for all v
by using the DRG grouper at datasets (e.g. R — symp-
admission toms, signs, and abnormal
clinical and laboratory find-
ings, not elsewhere classi-
fied)
Medical partition of admission nominal 21 (e.g. R — symptoms, v
diagnosis 1 signs, and abnormal clini-
cal and laboratory findings,
not elsewhere classified)
Medical partition of admission nominal 26 (e.g. see medical par- v

diagnosis 2

tition of admission diagno-
sis 1)
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Attribute Data type Distinct attribute val- Documentation
ues or bins
at 1%  at ad- after
contact mission admission
Medical partition of admission nominal 25 (e.g. see medical par- v
diagnosis 3 tition of admission diagno-
sis 1)
Medical partition of admission nominal 23 (e.g. see medical par- v
diagnosis 4 tition of admission diagno-
sis 1)
Medical partition of admission nominal 22 (e.g. R — symptoms, v
diagnosis 5 signs, and abnormal clini-

cal and laboratory findings,
not elsewhere classified)

Medical partition of admission nominal 20 (e.g. see medical par- v
diagnosis 6 tition of admission diagno-

sis 1)
Month of admission nominal 12 (e.g. December) v
PCCL calculated at admission ordinal 5 (equal number for all v
using a DRG grouper datasets) (no complexity,

..., severe complexity)

Reason for admission nominal 5 (complete inpatient v
treatment, inpatient treat-
ment with preliminary
outpatient treatment,
delivery, childbirth, pre-
inpatient treatment)

Type of admission nominal 4 (referral, emergency v
admission, transferring
from another hospital,
childbirth)
Weekday of admission nominal 7 (e.g. Monday) v
Weight at admission in case of continuous 290 (e.g. 2,100 g) v
newborns
Procedure section of procedure nominal 0-6, depending on data v
codes set (e.g. b — surgeries)
First three-digits of procedure nominal 0-169, depending on data v
codes set (e.g. 542 — esophagus
surgeries)
Procedure codes nominal 0-2,468, depending on data v

set (e.g. 5423 — partial
esophagus resection)

DRG (class attribute) nominal 635 (e.g. F72B — Unstable  calculated after discharge
angina pectoris)

Table 4: Attributes assessed for the early DRG classification
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Appendix D: Attribute ranking and selection techniques
D.1. Information gain attribute ranking

Given the prior probability p(d) for each DRG d € D, we can compute the information entropy H (D) by
Equation (1).

H(D)=->p(d)Inp(d) (1)

deD
The negative sign ensures that H (D) is positive or zero. The more uniformly an attribute value is distributed
over all instances, the higher is its entropy (see Bishop (2006)). Using Equation (2), we can compute the
conditional information entropy H(D|a) of D given an attribute a € A. Here, p(v) is the prior probability
of attribute value v € V, for attribute a € A and p(d|v) is the conditional probability of a DRG d given an

attribute value v € V, of attribute a € A.

H(Dla) =~ p(v) Y p(dfv) lnp(dfv) (2)

vEV, deD

The information gain IG(a) of each attribute a € A is then computed by Equation (3).

G (a) = H(D) — H(D|a) (3)

D.2. Relief-F attribute ranking
In order to describe the algorithm we first define the “k-nearest hits” and “k-nearest misses” for a sampled
instance i € Z. Let the set of k-nearest hits H;(k) C Z\ i of an instance i € Z contain at most k instances
j € Z,j # 1 which have the same DRG as instance i. More precisely, we choose those instances with d; = d;
which have the lowest diff; ;-values as defined by Eqs. (4) and (5).

diff,; =>  diff ;. (4)

acA

0,if v0=2j4

diff s 5.0 = { 1, otherwise ©)

Furthermore, for each DRG d # d;, let the set of k-nearest misses M ;(k) CZ\ i of instance ¢ contain at
most k instances j € Z,j # i. More precisely, we choose those instances with d; = d which have the lowest
diff ; ;-values as defined by Eqgs. (4) and (5). Both the k-nearest hits and the k-nearest misses for each DRG
d € D are used by Equation (6) which computes the quality measure @, for attribute a € A.

1 . p(d) )
Qa—rmz — Z dlﬁiyh,a‘F Z m Z dlﬁi,m,a (6)

i€l heH (k) deD\d; meMg (k)
For each instance ¢ € Z the k-nearest hits and k-nearest misses for each sampled instance i € Z are selected
and used in Equation (6). Then, the attributes with highest values of the quality measure are considered

most relevant for classification.
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D.3. Markov blanket attribute selection

In order to introduce Markov blanket attribute selection, we first provide the necessary notation of Bayesian
networks, a type of probabilistic graphical model. A Bayesian network is a directed acyclic graph (DAG)
G = (V,&) with vertices V and edges &, where the vertices represent variables and the edges encode the
conditional independence relationships between these variables (each variable is conditionally independent
of its non-descendants in the graph given its parents). Pearl (2000) and Wasserman (2004) provide further
theoretical properties of Bayesian networks and other probabilistic graphical models. The Markov blanket
of a vertex v € V, denoted by MB(v), is a minimal subset of vertices containing vertex v, its direct parents
and direct children as well as all direct parents of the children of v. The Markov blanket of vertex v contains
all the variables needed to predict the value of that variable, since v is conditionally independent of all
other variables given its Markov blanket. An example Markov blanket DAG is given in Appendix D of the
Online Supplement. In our application of early DRG classification, the vertices of the graph include the DRG
variable (D) as well as all attributes a € A. We wish to select the subset of attributes which are relevant for

predicting D and thus can select those and only those variables in the Markov blanket of D.

D.4. Correlation-based feature selection

For the correlation-based feature selection, we first have to compute the symmetrical uncertainty U(a,b) €

[0;1] by employing the following equation (see, e.g. Hall and Holmes (2003)):

H(a)+ H(b) — H(alb)

Ula,b)=2- OEY:ORER (7)

Again, H(a) is the entropy of attribute a (see Equation (1)) while H(a|b) is the conditional entropy of
attribute a given attribute b using Equation (2). The attribute subset A} which maximizes the following

expression is selected:

. U(a,D)

A; = arg max acA . (8)
Alca [0 Y Ula,b)
ac A be A \a

D.5. Wrapper attribute subset evaluation

Table 5 provides an example for the wrapper attribute subset selection using A := {a,b,c} as a set of

attributes (for details, see Kohavi and John (1997)).

Table 5 Wrapper attribute subset evaluation in order to produce a ranked list of attributes
(a) Iteration 1 (b) Iteration 2 (c) Iteration 3
Attribute  Acc. Best Attribute  Acc. Best Attribute  Acc. Best
set attribute set, attribute set, attribute
a 0.1 a b 0.3 a b c 0.35
b 0.3 b b c 0.4 c b c 0.4 -

c 0.2
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Starting with an empty subset of attributes, in each iteration one (best) single attribute is added to the
list of attributes. In the example, we choose in the first iteration attribute b since it has the highest gain in
accuracy (see Table 5(a)). In the second iteration (see Table 5(b)) we check whether attribute a or ¢ can
improve classification accuracy. Since the additional attribute ¢ results in the highest increase of accuracy, it
is added to the set of attributes. Finally, based on attributes b and ¢ during the third iteration (see Table 5(c))
accuracy is evaluated again to check whether attribute a can improve accuracy. Since accuracy cannot be

improved, the subset {b,c} C A is selected as the best subset of attributes.

D.6. Naive Bayes classification

We assign a new instance ¢ to the DRG d} by employing Equation (9).

| Al
d; = argmax {p(d) I1 p(vi,ald)} (9)

The prior probability p(d) of each DRG d is learned from the training data by maximum likelihood estimation,
i.e. p(d) is set equal to the proportion of training examples which belong to class d. Similarly, the conditional
likelihood of each attribute value v;, given each DRG d is learned from the training data by maximum
likelihood estimation, i.e. p(v; 4|d) is set equal to the proportion of training examples of class d which have

value v; , for attribute a.

D.7. Bayesian networks

Similar to the Naive Bayes classification, we assign a new instance ¢ to the DRG d; by employing Equa-

tion (10).

[A]|
d; = arg max {p(d) llp(vi,a|d, Ha)} . (10)

D.8. Decision trees

In a DRG grouper, a tree-structured set of rules is implemented as required by the legal restrictions of a
healthcare system. A DRG grouper deterministically computes each inpatient’s DRG given his attribute
values. In our context, a classification tree is a hierarchical data structure that consists of a root node which

¢

represents an attribute. Additional nodes that represent further attributes except the “root attribute” are
linked with the root node directly or indirectly. Leaf nodes represent the DRGs. Arcs between nodes represent
the values of the attributes located in the predecessor hierarchy.

The decision tree-learning works as follows. In the first step, the attribute a* with the maximum information
gain is selected out of the set of attributes 4. Based on a*, which becomes the root node, Z is divided into
subsets; each one contains different values v € V,- of attribute a*. Each value is represented by an edge. If
in any subset Z, only one DRG d exists, the attribute value v is assigned to that DRG. Else, the attribute
with the next higher IG is selected from the attribute set and linked to that DRGs by an edge. Recursively,
it is split further on each subset of attribute values.

The decision tree growing process usually results in an unnecessarily large and highly specific structure and

therefore, the decision tree should be pruned. In this study, we employ the C4.5 pruning strategy (see Witten
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and Frank (2011)). For alternative pruning strategies see, e.g. Li et al. (2001). Initially, we determine for each
node the subset of training instances that is represented by the node. In a second step, we identify the DRG
that represents the majority of instances reaching the node. Then, an error rate which is the number of
instances not represented by this DRG is calculated. Next, by specifying a confidence level (see Section ?7? for
an evaluation of different confidence levels) we calculate the node’s upper error bound. Finally, we compare
this bound with its children’s error rates. If the children’s combined error rates are greater than the bound,

the children are pruned from the node and replaced by a leaf.
Appendix E: Figures and tables
E.1. An example Markov blanket

Figure 1 shows an example Markov Blanket DAG. All vertices in the graph are part of the Markov blanket
of vertex D, since a and b are direct parents of D, [ and g are direct children of D, and ¢ and e are direct

parents of the children of D.

Figure 1 Markov blanket of the vertex D

frequency
8
|
frequency
8
|

mp

DRG DRG

(a) (b)

Figure 2  DRG frequency distribution for elective patients (a) and for all patients (b)

E.2. Information documented before and at admission

E.3. Results of the attribute ranking techniques
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Table 6

Information documented before admission

# attributes

Description

79

149

Appointment-specific and demographic information (e.g. age, referring physician,
admission priority)
Clinical information (free-text)

DRG information predicted by the DRG grouper (DRG, 2 DRG substrings, CCL)

Table 7

Information documented at admission

# attributes

Description

10 Demographic information (e.g. type of and reason for admission, age in days in case
of newborns)
18 Diagnostic information (6 admission diagnoses coded by ICD and the corresponding
medical partition and category code)
4 DRG information predicted by the DRG grouper (DRG, 2 DRG substrings, CCL)
Table 8 Results of the top three attributes of the IG attribute ranking for each dataset before admission
Data- Rank 1 IG Rank 2 IG Rank 3 1G
set
1 DRG calculated by using 6.555 First three characters of 6.264 Admission diagnosis 1 5.929
the DRG grouper at 15 the DRG calculated by
contact using the DRG grouper
at 1%* contact
2 DRG calculated by using 6.532 First three characters of 6.246 Admission diagnosis 1 5.929
the DRG grouper at 15 the DRG calculated by
contact using the DRG grouper
at 15* contact
3 Department docu- 3.027 Postal code of the refer- 0.873 Contact month 0.778
mented at 15 contact ring physician
4 DRG calculated by using 6.266 First three characters of 5.981 Admission diagnosis 1 5.929
the DRG grouper at 15 the DRG calculated by
contact using the DRG grouper
at 15* contact
5 DRG calculated by using 6.238 First three characters of 5.962 Admission diagnosis 1 5.929
the DRG grouper at 15 the DRG calculated by
contact using the DRG grouper
at 15* contact
6 Department docu- 3.027 Postal code of the refer- 0.873 Contact month 0.778
mented at 15° contact ring physician
7 Admission diagnosis 1 5.929 Category code of admis- 5.444 DRG calculated by using 4.607
sion diagnosis 1 the DRG grouper at 15
contact
8 Admission diagnosis 1 5.929 Category code of admis- 5.444 DRG calculated by using 4.585
sion diagnosis 1 the DRG grouper at 15¢
contact
9 Department docu- 3.027 Postal code of the refer- 0.873 Contact month 0.778

mented at 15* contact

ring physician
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Table 9 Results of the top three attributes of the Relief-F attribute ranking for each dataset before admission
Data- Rank 1 Q. Rank?2 Q. Rank3 Q.
set
1 First three characters of 0.804 DRG calculated by using 0.793 Department docu- 0.754

the DRG calculated by the DRG grouper at 15¢ mented at 15¢ contact
using the DRG grouper contact
at 1% contact
2 First three characters of DRG calculated by using 0.795 Department docu- 0.756
the DRG calculated by the DRG grouper at 15 mented at 15% contact
using the DRG grouper contact
at 15 contact
3 Department docu- 5 0.383 8 0.309
mented at 15° contact
4 Department docu- First three characters of 0.731 DRG calculated by using 0.721
mented at 15° contact the DRG calculated by the DRG grouper at 15
using the DRG grouper contact
at 15* contact
5 Department docu- First three characters of 0.735 DRG calculated by using 0.725
mented at 15 contact the DRG calculated by the DRG grouper at 15
using the DRG grouper contact
at 15* contact
6 Department docu- 5 0.374 Contact via hotline 0.243
mented at 15 contact
7 Department docu- MDC of the DRG calcu- 0.715 First three characters of 0.685
mented at 15 contact lated by using the DRG the DRG calculated by
grouper at 15 contact using the DRG grouper
at 15* contact
8 Department docu- MDC of the DRG calcu- 0.715 First three characters of 0.69
mented at 15 contact lated by using the DRG the DRG calculated by
grouper at 1% contact using the DRG grouper
at 1% contact
9 Department docu- Contact via hotline 0.24 Postal code of the refer- 0.212
mented at 15° contact ring physician
Table 10 Results of the top three attributes of the IG attribute ranking for each dataset at admission
Data- Rank 1 IG Rank 2 IG Rank 3 1G
set
10 DRG calculated by using 5.85 Admission diagnosis 1 5.65 First three characters of 5.642
the DRG grouper at the DRG calculated by
admission using the DRG grouper
at admission
11 Admission diagnosis 1 5.6 DRG calculated by using 5.493 First three characters of 5.3
the DRG grouper at the DRG calculated by
admission using the DRG grouper
at admission
12 Admission diagnosis 1 5.65 Category code of admis- 5.182 DRG calculated by using 4.61

sion diagnosis 1

the DRG grouper at
admission
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Table 11 Results of the top three attributes of the Relief-F attribute ranking for each dataset at admission

Data- Rank 1 Q. Rank?2 Q. Rank3 Q.
set
10 First three characters of 0.735 MDC of the DRG calcu- 0.722 DRG calculated by using 0.718
the DRG calculated by lated by using the DRG the DRG grouper at
using the DRG grouper grouper at admission admission

at admission
11 MDC of the DRG calcu- 0.716 First three characters of 0.691 DRG calculated by using 0.675
lated by using the DRG the DRG calculated by the DRG grouper at
grouper at admission using the DRG grouper admission
at admission
12 MDC of the DRG calcu- 0.717 First three characters of 0.69 DRG calculated by using  0.67
lated by using the DRG the DRG calculated by the DRG grouper at
grouper at admission using the DRG grouper admission
at admission

E.4. Computational results

Table 12 Run time (seconds) for generating the attribute rankings and for the Markov blanket attribute
selection before admission

Dataset Attribute ranking Markov blanket attribute selection
1G Relief-F 1G Relief-F

GS ITA GSWL IAWL GS IA GSWL TAWL

1 0.89 18.58 3.88 8.02 3995 39.02 3.81 7.56 41.12 39.95

2 0.59 16.57 7.33 6.09 32.56 31.62 6.69 6.55 34.79 33.60

3 041 14.26 233 2.2 1463 146 2.68 2.64 17.45 17.58

4 0.39 16.68 2.01 1.97 32.01 31.45 2.34 229 3440 33.30

5 0.34 14.65 1.91 1.79 2538 24.22 2.14 211 27.66 26.55

6 0.30 12.40 1.66 1.68 8.46  8.42 1.91 2.01 11.21 11.22

7 0.11 12.56 0.52 0.5 9.61  8.58 0.52 0.55 9.22  8.50

8 0.08 10.55 0.37 0.48 3.95 4.05 0.37 0.39 391  4.07

9 0.05 8.33 0.38 0.25 0.42 041 0.3 0.28 0.39 0.44
Avg. 0.35 13.84 2.27 255 1855 18.04 2.31 2.71 20.02 19.47

The lowest computation times for each dataset and on average within the group of attribute ranking or
Markov blanket attribute selection are in bold.
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Table 13 Run time (seconds) for the CFS and for the wrapper attribute
selection before admission

Dataset CFS Wrapper
1G Relief-F
NB PA NB PA
1 844 522.48 3,609.38 541.80 4,217.89
2 9.16 472.99 4,845.09 509.12  4,277.59
3 9.24 3,217.57 7,818.02 4,847.70  9,175.77
4 549 337.35 3,301.92 365.70  3,848.47
5 5.12  348.86 2,792.67 362.26 2,787.44
6 7.19 1,792.62 8,129.05 4,096.42  9,093.80
7 0.81 672.82 15,425.09 1,493.73 20,710.98
8 0.9 1,121.74 17,070.54 1,121.64 23,585.11
9 0.83 2,724.43 3,375.44 4,519.56  7,352.71

Avg. 521 1,245.65 7,374.13 1,984.21 9,449.97

The lowest computation times within the group of wrapper approaches
using different rankings are in bold.

Table 14 Run time (seconds) for the classification techniques without
attribute selection before admission

Dataset Rule NB BN Tree Vote PA

6.99 219.74 493.68 49.66 778.81  524.36
6.29 205.50 627.87 50.20 876.11 723.14
5.93 189.56 513.10 396.30 1,181.54 1,004.12
5.30 165.13 256.91 45.63 601.05 423.69
4.93 156.94 262.56 39.81 576.29  426.17
4.70 146.72 243.04 280.63 801.03 644.09
0.86 22.12 39.32 119.48 202.95 177.28
0.76 19.38 34.34 8393 15642 135.11
0.66 17.32 3194 24.13 91.64 71.92

Avg. 4.05 126.93 278.08 121.09 585.09  458.88

© 00 3O Uk Wi+

The lowest computation times for each dataset and on average are in
bold.

Table 15 Run time (seconds) for generating the attribute rankings and for the Markov blanket attribute
selection at admission

Dataset Attribute ranking Markov blanket attribute selection
1G Relief-F 1G Relief-F
GS TA GSWL TAWL GS ITIA GSWL TAWL
10 2.67 430.41 6.22 5.69 14.60 14.46 4.75 4.71 1545 15.00
11 2.32 376.68 149 1.35 11.31 11.53 1.51 1.45 12.20 12.38
12 0.66 327.15 0.66 0.69 515 5.08 0.82 0.75 5.06  5.09
Avg. 1.88 378.08 2.79 2,58 10.35 10.36 236 2.30 10.90 10.82

The lowest computation times for each dataset and on average within the group of attribute ranking or
Markov blanket attribute selection are in bold.
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Table 16 Run time (seconds) for the CFS and for the wrapper attribute
selection at admission

Dataset CFS Wrapper
1G Relief-F
NB PA NB PA

10 104.37 7,323.68 76,221.00 25,011.80 103,261.68
11  85.22 5,874.40 91,421.20 29,563.98 102,045.79
12 8.39 5,718.79 115,569.92  30,311.59 87,626.10

Avg. 65.99 6,305.62 94,404.04  28,295.79  97,644.52

The lowest computation times for each dataset and on average within the group
of wrapper approaches are in bold.

Table 17 Run time (seconds) for the classification techniques without attribute
selection at admission
Dataset  Rule NB BN Tree Vote PA

10 111.48 2,281.32 6,234.92 1,649.05 9,604.11 9,614.42
11 109.12 1,870.29 3,298.93  948.98 7,454.78 7,319.35
12 13.20 210.32  314.09 247.87 939.73  T712.37

Avg. 77.93 1,453.98 3,282.65 948.63 5,999.54 5,882.05

The lowest computation times for each dataset and on average are in bold.
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E.5. Results of the decision tree learner parameter optimization

Table 18 Optimal parameter values for the decision tree learner before admission
Dataset  before after attribute selection
MB CFS NB Wrapper PA Wrapper
1G Relief-F 1G Relief-F

CF MI CF MI CF MI CF MI CF MI CF MI CF MI
1 0.05 11 0.001 6 0.001 1 0.5 1 0.001 6 0.001 6 0.001 6
2 0.5 11 0.001 6 0.001 1 0.001 6 0.001 6 0.01 1 0.001 6
3 0.005 1 0.1 1 0005 1 0.006 1 0005 1 0.05 6 0.005 1
4 0.5 11 0.001 1 0.05 1 0.5 1 0.5 1 0.1 1 0.05 1
5 0.001 11 0.000 6 0.5 1 0001 6 0.001 6 0.05 1 0.05 1
6 0.005 1 0.005 1 0.01 1 0.1 1 0.01 1 0.005 1 0.05 6
7 0.05 1 0.1 1 0.5 1 0.1 1 0.05 1 0.5 1 0.1 1
8 0.01 1 0.1 1 0.5 1 0.5 1 0.1 1 0.1 1 0.05 1
9 0.005 1 0.1 11 0.01 1 0.01 1 0.001 1 0.5 1 0.001 1

Table 19 Optimal parameter values for the decision tree learner at admission
Dataset  before after attribute selection
MB CFS NB Wrapper PA Wrapper

1G Relief-F 1G Relief-F
CF MI CF MI CF MI CF MI CF MI CF MI CF MI

10 056 10 05 10 05 10 05 10 05 10 01 10 0.5 10
1 01 10 05 15 05 10 05 10 05 10 05 10 0.1 10
12 056 10 05 10 01 10 05 10 05 10 01 10 0.5 10
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E.6. Classification accuracies

Table 20 Overall accuracy of the DDC, DDC*
and DDC' approaches before attribute selection
and before admission

k DDC DDC* DDC'

1 100 (5.7) 7.8(3.2) 7.9 (3.3)
2 103 (6.1) 9.4 (7.7) 9.5 (7.8)
3 98(53) 6.3(19) 6.4 (2.0)
4 101 (5.7) 8.9 (7.9 9.0 (7.7)
5 11.0 (4.9) 10.6 (5.6) 10.8 (5.5)
6 9.8(53) 6.1(1.9) 6.2(1.9)
7 11.9 (4.3) 10.6 (6.4) 11.2 (5.9)
8 13.9 (5.7) 12.7(6.4) 13.7 (6.0)
9 106 (52) 6.9 (2.7) 7.2(2.6)
Avg. 10.8 (5.4) 8.8 (4.9) 9.1 (4.7)

The best performance figures for each dataset
and on average are in bold.

Table 21 Overall accuracy of the DDC, DDC*
and DDC' approaches before attribute selection
and at admission

k DDC DDC* DDCf

10 20.4 (2.4) 185 (1.8) 19.2 (1.9)
11 20.8 (2.7) 18.6 (2.2) 19.4 (2.4)
12 26.0 (2.3) 21.8 (1.7) 23.6 (1.6)
Avg. 224 (25) 19.6 (1.9) 20.7 (2.0)

The best performance figures for each dataset
and on average are in bold.

Table 22 Overall accuracy of the different classification techniques after Markov blanket (CFS)
attribute selection before admission

Dataset BN PA NB Rules Tree Vote
1 71.7 (72.2) 79.1 (79.2) 49.7 (57.3) 75.8 (75.8) 76.6 (76.8) 76.6 (76.6)
2 72.1(62.0) 78.5(78.0) 56.0 (57.3) 75.2 (75.2) 76.0 (76.1) 76.2 (74.4)
3 50.0 (36.8) 49.4 (29.3) 45.2 (38.2) 20.1 (20.1) 54.5 (40.6) 50.4 (39.1)
4 67.5(70.0) 73.3 (72.6) 46.2 (60.1) 70.2 (70.2) 70.6 (70.4) 71.2 (70.8)
5 67.3(69.4) 72.2(71.9) 52.9 (59.5) 69.7 (69.7) 70.0 (70.0) 70.5 (70.3)
6 46.6 (31.7) 41.1 (22.9) 41.1 (32.7) 20.1 (20.1) 51.8 (36.6) 46.7 (34.6)
7 52.1(52.2) 49.7 (51.1) 38.8 (49.0) 45.2 (45.2) 51.8 (52.9) 53.2 (52.8)
8 51.3 (52.3) 47 8 (51.1) 45.8 (49.0) 45.2 (45.2) 51.0 (53.2) 51.5(52.8)
9 21.6 (23.0) 8 (11.2) 26.9 (26.2) 20.1 (20.1) 27.6 (26.7) 25.3 (26.9)
Avg. 55.6 (52.2) 55.5 (51.9) 44.7 (47.7) 49.1 (49.1) 58.9 (55.9) 58.0 (55.4)

The best performance figures for each dataset and on average are in bold.
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Table 23 Overall accuracy of the different classification techniques after naive Bayes wrapper attribute
selection with IG (Relief-F) ranking before admission
Dataset BN PA NB Rules Tree Vote
1 75.6 (75.9) 78.0 (78.2) 71.0 (71.0) 75.8 (75.8) 76.0 (75.8) 76.1 (76.0)
2 75.1(75.1) 77.6 (77.6) 70.8 (70.8) 75.2 (75.2) 75.2(75.2) 75.3 (75.3)
3 39.3(39.9) 29.3(31.5) 41.2(44.3) 20.1 (20.1) 41.6 (45.2) 41.5 (44.0)
4 701 (70.1) 72.2 (72.2) 65.7 (65.7) 70.2 (70.2) 70.5 (70.5) 70.6 (70.6)
5 69.1 (69.1) 71.6 (71.6) 65.6 (65.6) 69.7 (69.7) 69.7 (69.7) 69.8 (69.8)
6 37.0 (34.4)  20.1(26.4) 37.1 (41.7) 20.1 (20.1) 37.6 (41.5) 37.4 (39.8)
7 514 (51.8) 50.8 (50.9) 50.4 (51.0) 45.2 (45.2) 52.2 (52.5) 52.8 (53.7)
8 51.9 (52.5) 51.0 (50.9) 50.9 (51.1) 45.2 (45.2) 52.3 (52.6) 53.4 (53.6)
9 32.0(32.4) 17.6 (20.0) 34.2 (37.8) 20.1 (20.1) 33.1(35.9) 33.8(36.5)
Avg. 55.7 (55.7) 52.0 (53.3) 54.1 (55.4) 49.1 (49.1) 56.5 (57.7) 56.7 (57.7)

The best performance figures for each dataset and on average are in bold.

Table 24 Overall accuracy of the different classification techniques after Markov blanket (CFS)
attribute selection at admission
Dataset BN PA NB Rules Tree Vote
10 62.5 (63.5) 65.0 (63.5) 43.9 (57.4) 61.7 (61.7) 64.7 (62.8) 64.6 (63.1)
11 58.1(58.4) 59.9 (58.7) 40.6 (51.9) 57.3 (57.3) 59.5 (57.9) 59.5 (58.4)
12 49.7 (49.4) 47.8 (48.0) 36.2 (47.0) 45.2 (45.2) 49.7 (48.0) 50.0 (49.4)
Avg. 56.8 (57.1) 57.6 (56.7) 40.2 (52.1) 54.7 (54.7) 58.0 (56.2) 58.0 (57.0)

The best performance figures for each dataset and on average are in bold.

Table 25 Overall accuracy of the different classification techniques after naive Bayes wrapper
attribute selection with IG (Relief-F) ranking at admission
Dataset BN PA NB Rules Tree Vote
10 63.4 (63.4) 64.4 (64.6) 61.5 (61.7) 61.7 (61.7) 63.5 (63.6) 64.1 (64.3)
11 58.8 (58.7) 59.5 (59.6) 57.1 (57.5) 57.3 (57.3) 58.5 (58.7) 59.2 (59.4)
12 49.1 (49.2) 48.4 (48.6) 49.0 (49.4) 452 (45.2) 49.1 (49.7) 50.3 (50.6)
Avg. 57.1 (57.1) 57.4 (57.6) 55.9 (56.2) 54.7 (54.7) 57.0 (57.3) 57.9 (58.1)

The best performance figures for each dataset and on average are in bold.
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E.7. Major diagnostic categories

Table 26 The five most frequent major diagnostic categories in the data
sets before admission

MDC

number Description n

4 Respiratory system 101

5 Circulatory system 544

6 Digestive system 334

8 Musculoskeletal system and connective tissue 1,169

11 Kidney and urinary tract 300

Table 27 The five most frequent major diagnostic categories in the data

sets at admission

MDC

number Description n

1 Nervous system 1,017

4 Respiratory system 1,121

5 Circulatory system 2,741

6 Digestive system 2,374

8 Musculoskeletal system and connective tissue 2,741

11 Kidney and urinary tract 989

14 Pregnancy and childbirth 914

15 Newborn and other neonates 515
MDC Rule NB BN Tree Vote PA
Respiratory system < < = < = =
Circulatory system > < > > > >
Digestive system < < < = = =
Musculoskeletal system and connective tissue = < < =
Kidney and urinary tract > = > > > >

Table 28  Significant improvement (>), decrease (<) and non-significant difference (=) of the ML approaches

as compared to the DRG grouper before admission
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MDC Rule NB BN Tree Vote PA
Nervous system > = > > > >
Respiratory system < = = = = =
Circulatory system > > > > > >
Digestive system > > > > > >
Musculoskeletal system and connective tissue > > > > > >
Kidney and urinary tract > > > > > >
Pregnancy and childbirth > > > > > >
Newborn and other neonates < < > > = =

Table 29  Significant improvement (>), decrease (<) and non-significant difference (=) of the ML approaches

as compared to the DRG grouper at admission
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E.8. Selected DRGs

Table 30 Selected DRGs and number of cases (n) in the data set before admission
DRG Description n
F59B Medium complex cardiovascular incision 80
G247 Hernia repair 66
121Z  Hip replacement 58
I53B  Spine column incision 73

I68C Non-surgical therapy of the spine column, age > 65 years 183
168D Non-surgical therapy of the spine column, age < 65 years 119
L20C Transurethral incision 65
L64A Urinary stones and obstruction of the urinary system 80

Table 31 Selected DRGs and number of cases (n) in the
data set at admission

DRG Description n

B04D Extra-cranial surgery 43
B77Z Headache 87
B80Z Head injury 267
F39B Vein stripping 80
F62C Heart failure 245
F73Z Collapse or heart disease 321
G67D Esophagitis 688

144B  Prosthetic enhancement of the knee 44
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E.9. Temporal DRG classification

To generate the datasets for the temporal DRG classification, we chose for the 25, 50 and 75% datasets current
information about procedure codes. Each code represents a binary attribute and is 1 if the procedure was
performed and 0, otherwise. We assumed that at 25% of the LOS, the primary diagnosis is known and at 75%
of the LOS all diagnoses are known. For the attribute selection, we used all 20 attributes as determined by
the PA wrapper attribute selection from dataset 12 (at admission). Then, we added the attributes ‘Grouper
DRG’, ‘MDC’, ‘three characters of the DRG’ and ‘CCL’ at 25% LOS as determined by the DRG grouper.
Moreover, we added the binary procedure code attributes. Afterwards, we re-run the ReliefF-based PA
wrapper attribute selection which then came up to a set of 18 attributes. We proceeded simlarly for the
50% and 75% LOS data for which the number of attributes was 15 and 8, respectively. Similarly to the
classification before and at admission, we performed a parameter optimization for the decision tree learner
after admission.

In order to show the way in which classification errors are distributed, Figure 3-4 provide plots of the
confusion matrices of the best performing classifiers broken down by temporal progress in the length of stay
(LOS). We randomly selected 200 out of the more than 600 DRGs. The DRG labels of the x- and y-axes are

exactly the same in each plot.

Confusion matrix Confusion matrix Confusion matrix

400

300

actual DRG
actual DRG
actual DRG

predicted DRG predicted DRG predicted DRG

(a) (b) ()

Figure 3  Plots of the confusion matrices before admission (a), at admission (b) and at 25% LOS (c)
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Confusion matrix Confusion matrix Confusion matrix

actual DRG
actual DRG
actual DRG

predicted DRG predicted DRG predicted DRG

(a) (b) (c)
Figure 4  Plots of the confusion matrices at 50% (a), 75% (b) and 100% LOS (c)

The figures reveal that before admission, dots which are not spread on the diagonal are typically labeled
black, rather than being labeled yellow or green which would represent very high false positive numbers.
This observation leads to the conclusion that if classification errors occur, the error pattern is spread rather
randomly over the alternative DRGs instead of being concentrated on the same DRGs. We claim that this
result is positive since if error patterns would be concentrated on only one DRG (with high frequencies), the
classifier would always make the same structural error by high false positive numbers. Another observation
is that classification errors are remedied towards the 100% LOS by increasingly populating the diagonal of

the confusion matrix.
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