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ABSTRACT 

This paper describes a bio-surveillance system designed to detect 
anomalous patterns in pharmacy retail data.  The system monitors 
national-level over-the-counter (OTC) pharmacy sales on a daily 
basis.  Fast space-time scan statistics are used to detect disease 
outbreaks, and user feedback is incorporated to improve system 
utility and usability.  
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1. INTRODUCTION 
Bio-surveillance systems have recently gained a lot of attention 
and are growing more and more complex.  Multiple sources of 
data (pharmacy sales, emergency department visits, weather 
indicators, census information, etc.) are now available, and these 
sources can be used to identify both natural disease outbreaks 
(e.g. influenza) and outbreaks resulting from bio-terrorist attacks 
(e.g. anthrax release).  The bio-surveillance research community is 
actively developing intelligent algorithms to detect outbreaks in a 
timely manner, in order to save lives and costs.  However, though 
many of these algorithms show impressive results under simulated 
environments, their performance tends to degrade when applied to 
real-world datasets.  Seasonal and day-of-week trends, missing 
data, lack of known disease outbreaks, difficulties in designing 
test beds, and high costs associated with processing false positives 
are some of the many reasons that hinder development of a 
successful practical bio-surveillance system.  We believe that 
incorporating expert knowledge from public health officials will 
provide valuable insight to this complex process of disease 
outbreak detection.  An immediate goal is to provide a tool that 
not only shows the alarms to the expert users, but also allows 
them to provide feedback on the alarms. This feedback loop is 

essential for iterative refinement of outbreak detection tools. This 
paper highlights our experiences with developing such a bio-
surveillance system that currently monitors national level 
pharmacy sales of over-the-counter (OTC) drugs on a daily basis. 

Our system searches for spatio-temporal patterns in the OTC data 
from pharmacies, grocers and other stores that sell OTC products 
throughout the United States.  Given some search region (which 
can be a city, county, state, or even the entire country), the 
algorithm first maps this search region to a uniform, rectangular 

N×N grid.  It then searches over all axis-aligned rectangular 
regions on the grid, in order to find regions that have shown a 
recent anomalous increase in sales.  The regions that show high 
deviation in sales from the estimated baselines are labeled as 
alerts–clusters of OTC sales that may indicate disease outbreaks.  
A detailed description of the algorithm is available in [1-3].  
Given our limited ability to distinguish clusters caused by 
outbreaks from clusters with other causes, we present selected 
alerts to public health officials only after they have been filtered 
by some simple rules to remove unimpressive anomalies.  Their 
feedback is then used to improve the performance of the 
algorithm.  The following sections describe this system in detail. 

2. SYSTEM OVERVIEW 
The National Retail Data Monitor, developed and operated by the 
RODS (Real-time Outbreak and Disease Surveillance) Laboratory 
at the University of Pittsburgh, receives the OTC data from the 
national and local vendors [4, 5].  The data consists of daily store 
level sales of 9000 OTC products used for the symptomatic 
treatment of infectious diseases.  The NRDM groups individual 
product sales into 18 groups of similar products (e.g.,  Baby/Child 
electrolytes, Cough/Cold, Thermometers, Stomach remedies, and 
Internal analgesics).  We process the past three months of data 
(around 5.5 million records) to estimate recent baselines (i.e. the 
number of sales we would expect to see in each store).  Each 
record includes the store ID, its corresponding zip code, date of 
sale, and units sold for a particular syndrome.  There are more 
than 10,000 unique stores present in the data.  This data is 
received on a daily basis, with one-day delay from the date of sale.  
There are various challenges with estimating the store baseline 
sales.  First, there are strong seasonal and weekly trends in the 
OTC data.  Figure 1 shows a sample weekly trend in Baby/Child 
electrolyte sales.  Sales on a typical Monday and Tuesday tend to 
be higher than on Friday and Saturday.  This trend depends on 
many factors: region location, urban or rural community, etc.  
Figure 2 shows the seasonal trends in Cough/Cold sales.  Average 
daily sales in the month of March were ~5000 units higher than in 
April.  We have also noticed a sudden rise in sales for days 
following a national holiday.  We address the seasonal and day-
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of-week trends by incorporating them into the baseline time-series 
analysis.  The current data storage schema does not differentiate 
between missing data (i.e. stores that have not reported sales for a 
specific date by the time of analysis) and zero counts (i.e. stores 
that sold zero units on that date).  To deal with this limitation, we 
assume that data are missing only if a store reports no sales for all 
product categories; if a store has zero counts for some product 
categories and non-zero counts for others, the zero counts are 
assumed to result from zero sales rather than from missing data.  
We infer all missing data points from the time series of counts for 
that location, using an exponentially weighted moving average 
technique.  Once the time series has no missing data, any 
reasonable univariate time series algorithm that accounts for day-
of-week and seasonal trends can be applied to estimate recent 
baseline sales. 

After we receive the past three months of national OTC data, we 
define multiple search regions with differing resolution (some 
states, some counties, and others that cover the entire country).  
This ensures that we detect large-scale anomalies, and not just 
daily fluctuations at the store or zip code level.  As noted above, 
the search region is mapped to a rectangular two-dimensional grid 

of size N×N.  We need to know the store locations in order to map 
them onto the grid cells; however, due to data privacy concerns, 
we do not have access to the exact longitude and latitude of each 
store.  Instead, we are given the zip code containing each store, 
and use the longitude and latitude of the zip code centroid to 
populate the grid cells.  The search algorithm then scores every 
possible axis-aligned rectangular region using the recent baselines 
(expected counts) and observed counts in the region.  Baseline 
values can be aggregated either for individual stores (the 
“building-aggregated time series” method, or BATS) for 
individual grid cells (the “cell-aggregated time series” method, or 
CATS), or on-the-fly for an entire search region (the “region-
aggregated time series” method, or RATS).  Additionally, a 
variety of methods are used for time-series analysis.  For details 
on aggregation techniques and time series algorithms tested on the 
OTC data, please refer to [3].  The scoring function assumes that 
baseline sales follow a Poisson distribution.  We also perform 
significance testing on the score of each region by randomization.  
This helps us remove anomalous regions that could be explained 
as being generated by chance.  The k-best regions (i.e. those 
significant regions with the highest scores, and therefore the 
lowest p-values) are reported as possible disease outbreaks. 

3. SYSTEM EVOLUTION 
The primitive versions (version 1.X) of the current spatial scan 
statistics (SSS) system involved reporting significant regions via 
e-mail.  Each day, a set of states and counties was scanned for 
anomalous regions, and the alert results for each state/county were 
sent as an e-mail attachment to the appropriate public health 
officials.  Though the users were given the latitude, longitude, 
syndrome, score, and p-value of each alert region, it was difficult 
for them to get a feel of where exactly the outbreak occurred, or to 
interpret the probable cause of the alert (i.e. whether it was a real 
outbreak or a false positive).  To deal with these issues, we 
developed a SSS viewer application tool with a dual purpose. 
First, it allows end users to browse the data that led to an alert. 
Second, it provides easy feedback opportunities in which they can 
tell us which alerts were genuine and which were uninteresting or 
due to non-outbreak reasons.  Figures 4 and 5 show sample screen 

shots of our viewer tool.  Salient features of this tool include 
showing alert-region time series, showing store-level data in the 
region, and navigating in and around the alert region on the GIS 
map to help further investigate the alert.  We released this tool 
during our version 2 release.  In this version, all alerts were 
displayed on the website rather than via e-mails.  The current 
version 3.0 (to be released in June 2005) has enhanced 
capabilities on the web.  Now users can not only view alerts, but 
they can also rank them, add feedback comments, and give 
suggestions.  Users can also search for alerts using different 
criteria, such as zip code, score, observed counts, expected counts, 
etc.  We are trying to extract user expertise in identifying features 
of the clusters that may discriminate between clusters likely due to  
disease outbreaks and clusters likely due to other causes.  Another 
powerful tool that we have given to users is to add their custom-
defined input scripts to the pool of scripts that run daily.  Users 
can set their own grid resolution, change baseline evaluation time 
series method, set aggregation level, etc.  By enabling users to 
create their own input scripts, we can learn what results and 
settings are most relevant to real users in the surveillance task.  
This feedback will help us better manage these alerts and 
distinguish true outbreaks more efficiently.  Figure 3 shows a 
sample screen shot of the user home page.  In the future, we also 
plan to provide more features (e.g. providing store locations, 
tracking of previously reported alerts for post analysis purposes, 
etc.) to the end users so that they can give better feedback. 

We have been running this system daily on OTC data for over one 
year.  Initially the algorithm reported a large number of false 
positives: regions that were statistically significant according to 
our model but clearly did not correspond to actual outbreaks.  
Some of these false positives resulted from “single store” 
anomalies: individual stores with large spikes in sales on a given 
day.  Two possible explanations for these single store anomalies 
are bulk purchases by a single buyer (e.g. restocking by a hotel, 
clinic, etc.) or promotional sales.  We address this issue by only 
reporting those regions that have shown increased counts due to 
multiple stores: in other words, we filter out a region if removing 
any single store from that region would cause its score to become 
insignificant.  In order to make a simple adjustment for potentially 
unmodeled fluctuations in day-to-day counts, we also apply a 
conservative “threshold” filter, which assumes that the baselines 
were underestimated by some amount (e.g. 15%).  If both the 
“single-store” adjusted score and the “threshold” adjusted score 
are still significant, we report the region as a potential outbreak.  
Figure 4 shows a recent potential Baby/Child Electrolyte disease 
outbreak at the border of Alabama and Georgia.  There are 16 
stores in this area, and at least five of these stores have shown 
high deviations from baseline in electrolyte sales.  The alert 
region is not shown in the figure due to data privacy concerns. 

We have already observed a number of unique and interesting 
trends in the OTC data using this system.  For example, people 
tend to buy some products just before inclement weather (such as 
snowstorms or hurricanes), presumably to stockpile them.  There 
is also typically a rise in OTC sales immediately after a national 
holiday.  Another interesting effect recently observed was 
increased sales in tourist destinations during long weekends.  
Figure 5 illustrates this trend during the recent Memorial Day 
weekend.  Since the NRDM has highest coverage in the eastern 
United States, a large number of tourist destinations (gray 
highlighted regions on the map) produced alerts resulting from the 



change in population distribution around these areas.  Again, due 
to data privacy concerns, we have not shown the location of the 
region whose time series is shown below the map.  Although these 
are interesting results, they underscore the difficulty of 
determining which increases in sales are due to real outbreaks, 
and which increases are due to a variety of other unmodeled 
factors.  In the near future, we intend to increase the number of 
outbreak indicators: adding more algorithms and data sources to 
the system.  We are planning to add emergency department data 
and include more independent univariate time-series algorithms to 
improve our confidence when alerting outbreaks.  This system is 
helping us to understand the real-world OTC data and to improve 
our detection models and methods.  Continued feedback from 
public health users will increase our ability to differentiate true 
outbreaks from yet unknown natural causes for increased OTC 
sales, thus enabling us not only to find “significant” regions, but 
also to determine which of these clusters are most relevant for 
public health investigation. 
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Figure 1. Weekly trend in Baby/Child electrolyte sales 

 

Figure 2. Seasonal trend in Cough/Cold sales 

 

 

Figure 3. Screen shot of SSS user home page on the Web 



 
 

Figure 4. Potential disease outbreak at the border of Alabama and Georgia 

 

 
 

Figure 5. Long weekend trend showing the tourist spots in the country 


