
Anomalous Spatial Cluster Detection 
Daniel B. Neill 

School of Computer Science 
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15213 

neill@cs.cmu.edu 

Andrew W. Moore 
School of Computer Science 
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15213 

awm@cs.cmu.edu 
 

ABSTRACT 
We describe a general statistical and computational framework 
for the detection of anomalous spatial clusters, based on the 
spatial scan statistic [1].  Much of this material has been 
adapted from [2], to which we refer the reader for a more 
detailed discussion.  We focus here on the purely spatial cluster 
detection task; for extensions to space-time cluster detection, the 
reader is referred to [3] and the references contained therein. 
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1. INTRODUCTION 
Spatial cluster detection has two main goals: to identify the 
locations, shapes, and sizes of potentially anomalous spatial 
regions, and to determine whether each of these potential 
clusters is more likely to be a “true” cluster or simply a chance 
occurrence.  In other words, we wish to answer the questions, is 
anything unexpected going on, and if so, where?  This task can 
be broken down into two parts: first figuring out what we expect 
to see, and then determining which regions deviate significantly 
from our expectations.  For example, in the application of 
disease surveillance, we examine the spatial distribution of 
disease cases (or some related quantity, such as the number of 
emergency department visits or over-the-counter drug sales of a 
specific type), and our goal is to determine whether any regions 
have sufficiently high case counts to be indicative of an 
emerging disease epidemic in that area.  Thus we first infer the 
expected case count for each spatial location (e.g. zip code), 
typically based on historical data (though simpler approaches, 
such as assuming that number of cases is proportional to census 
population, can also be used).  Then the next step is to 
determine which (if any) regions have significantly more cases 

than expected.  One simple possibility would be to perform a 
separate statistical test for each spatial location under 
consideration, and report all locations that are significant at 
some level α.  However, there are two main problems with this 
simple approach.  First, we cannot use information about the 
spatial proximity of locations: for example, while a single zip 
code with count two standard deviations higher than expected 
might not be sufficiently interesting to trigger an alarm, we 
would probably be interested in a cluster of adjacent zip codes 
where each zip code’s count is two standard deviations higher 
than expected.  Second, multiple hypothesis testing is a problem: 
because we are performing a separate hypothesis test for each 
spatial location, where each hypothesis test has some fixed false 
positive rate α, the total number of false positives that we expect 
is Yα, where Y is the total number of locations tested.  For large 
Y, we are almost certain to get huge numbers of false alarms; 
alternatively, we would have to use a threshold α so low that the 
power of the test would be drastically reduced. 

To deal with these problems, Kulldorff [1] proposed the spatial 
scan statistic.  This method searches over a given set of spatial 
regions (where each region consists of a set of locations), 
finding those regions which are most likely to be generated 
under the “alternative hypothesis” of clustering rather than the 
“null hypothesis” of no clustering.  A likelihood ratio test is 
used to compare these hypotheses, and randomization testing is 
used to compute the p-value of each detected region, correctly 
adjusting for multiple hypothesis testing.  Thus, we can both 
identify potential clusters and determine whether each is 
significant.  Our recent work on spatial scanning has two main 
emphases: first, to generalize the statistical framework to a 
larger class of underlying models, making the spatial scan 
applicable and useful for a wide variety of application domains; 
and second, to make these methods computationally tractable, 
even for massive real-world datasets.  In this paper, we present 
an outline of our generalized spatial scan framework.  We then 
consider each of the steps in more detail, giving some idea of 
the relevant decisions that need to be made when applying the 
spatial scan to a new domain.  In [8], we present our experiences 
in one such domain (outbreak detection using over-the-counter 
drug sales data); here we discuss the method more generally, 
considering those issues which apply to any domain. 

2. THE GENERALIZED SPATIAL SCAN 
Our generalized spatial scan framework consists of the 
following six steps: 

1) Obtain data for a set of spatial locations si. 
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2) Choose a set of spatial regions to search over, where each 
spatial region S consists of a set of spatial locations si. 

3) Choose models of the data under H0 (the null hypothesis of 
no clusters) and H1(S) (the alternative hypothesis assuming 
a cluster in region S). 

4) Derive a “score function” F(S) based on H1(S) and H0. 

5) Find the “most interesting” regions, i.e. those regions S 
with the highest values of F(S). 

6) Determine whether each of these regions is “interesting,” 
either by performing significance testing or calculating 
posterior probabilities. 

We now consider each step of this framework in detail. 

1) Obtain data for a set of spatial locations si. 

For each spatial location si, we are given a count ci and 
optionally a baseline bi.  For example, each si may represent a 
zip code, with location (latitude and longitude) assumed to be at 
the centroid of the zip code; ci may represent the number of 
respiratory disease cases in that zip code, and bi may represent 
the at-risk population.  In any case, the goal of our method is to 
find regions where the counts are higher than expected, given 
the baselines.  Two typical approaches are the population-based 
method, where bi represents the underlying population of 
location si, and we expect each count to be proportional to its 
population under the null hypothesis, and the expectation-based 
method, where bi represents the expected count of location si, 
and thus we expect each count to be equal to its expectation 
under the null.  In either case, the bi for each location may either 
be given (e.g. census population) or may be inferred from the 
time series of past counts.  For example, one simple 
expectation-based approach would be to estimate today’s 
expected count in a zip code by the mean daily count in that zip 
code over the past d days.  For many datasets, more complicated 
methods of time series analysis should be used to infer 
baselines; for example, in the over-the-counter drug sales data, 
we must account for both seasonal and day-of-week effects.  We 
consider various methods of inferring baselines in [3].  

2) Choose a set of spatial regions to search over, where each 
spatial region S consists of a set of spatial locations si. 

We want to choose a set of regions that corresponds well with 
the shape and size of the clusters we are interested in detecting.  
In general, the set of regions should cover the entire space under 
consideration (otherwise we will have no power to detect 
clusters in non-covered areas) and adjacent regions should 
overlap (otherwise we will have reduced power to detect 
clusters that lie partly in one region and partly in another).  We 
typically consider the set of all regions of some fixed shape (e.g. 
circle, ellipse, rectangle) and varying size; what shape to choose 
depends on both statistical and computational considerations.  If 
we search too few regions, we will have reduced power to detect 
clusters that do not closely match any of the regions searched; 
for example, if we search over square or circular regions, we 
will have low power to detect highly elongated clusters.  On the 
other hand, if we search too many regions, our power to detect 
any particular subset of these regions is reduced because of 
multiple hypothesis testing.  Additionally, the runtime of the 
algorithm is proportional to the number of regions searched, and 

thus choosing too large a set of regions will make the method 
computationally infeasible.   

Our typical approach in epidemiological domains is to map the 
spatial locations to a grid, and search over the set of all 
rectangular regions on the grid.  Additionally, non-axis-aligned 
rectangles can be detected by searching over multiple rotations 
of the data.  The two main advantages of this approach are its 
ability to detect elongated clusters (this is important in 
epidemiology because disease clusters may be elongated due to 
wind or water dispersion of pathogens) and also its 
computational efficiency.  Use of a grid structure allows us to 
evaluate any rectangular region in constant time, independent of 
the size of the region, using the well-known “cumulative 
counts” trick [4].  Additionally, we can gain huge computational 
speedups by applying the “fast spatial scan” algorithm [4-6], as 
we discuss below. 

3) Choose models of the data under H0 (the null hypothesis 
of no clusters) and H1(S) (the alternative hypothesis 
assuming a cluster in region S). 

4) Derive a “score function” F(S) based on H1(S) and H0. 

These are perhaps the most difficult steps in our method, as we 
must choose models which are both efficiently computable and 
relevant to the application domain under consideration.  For our 
models to be efficiently computable, the score function F(S) 
should be computable as a function of some additive sufficient 
statistics of the region S being considered (typically these 
statistics are the total count of the region, C(S) = ∑S ci,  and the 
total baseline of the region, B(S) = ∑S bi).  If this is not the case, 
the model may still be useful for small datasets, but will not 
scale well to larger sources of data.  For our models to be 
relevant, any simplifying assumptions that we make must not 
reduce our power to distinguish between the “cluster” and “no 
cluster” cases, to too great an extent.  Of course, any efficiently 
computable model is very unlikely to capture all of the 
complexity of the real data, and these unmodeled effects may 
have either small or large impacts on detection performance.  
Thus we typically use an iterative design process, beginning 
with very simple models, and examining their detection power 
(ability to distinguish between “cluster” and “no cluster”) and 
calibration (number of false positives reported in day-to-day 
use).  If a model has high detection power but poor calibration, 
then we have a choice between increasing model complexity 
and artificially recalibrating the model (i.e. based on the 
empirical distribution of scores); however, if detection power is 
low, then we have no choice but to figure out which unmodeled 
effects are harming performance, and deal with these effects one 
by one.  Some such effects (e.g. missing data) can be dealt with 
by pre-processing, and others (e.g. clusters caused by single 
locations) can be dealt with by post-processing (filtering the set 
of discovered regions to remove those caused by known 
effects), while others must actually be included in the model 
itself.  In [8], we discuss several of these effects present in the 
over-the-counter sales data, and how we have dealt with each; 
here we focus on the general framework and then present two 
simple and efficiently computable models. 

The most common statistical framework for the spatial scan is a 
frequentist, hypothesis testing approach.  In this approach, 
assuming that the null hypothesis and each alternative 



hypothesis are point hypotheses (with no free parameters), we 
can use the likelihood ratio 
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such as in Kulldorff’s statistic [1], this will lead to an 
individually most powerful statistical test under the given model 
assumptions.  We then perform randomization testing using the 
maximum likelihood estimates of the parameters under the null 
hypothesis, as discussed below.  In the marginal likelihood 
framework, on the other hand, we instead average over the 
possible values of each parameter: 
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This, however, makes randomization testing very difficult.  A 
third alternative (discussed in detail in [7]) is a Bayesian 
approach, in which we use the marginal likelihood framework to 
compute the likelihood of the data under each hypothesis, then 
combine these likelihoods with the prior probabilities of an 
cluster in each region S.  Thus our test statistic is the posterior 
probability of a cluster in each region: 
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the data is typically difficult to compute, but in [7], we present 
an efficiently computable Bayesian statistic using Poisson 
counts and conjugate Gamma priors.  Here we instead focus on 
the simpler, maximum likelihood frequentist approach, and give 
an example of how new scan statistics can be derived. 

Let us first consider the expectation-based scan statistic 
discussed above, under the simplifying assumption that counts 
are independently Poisson distributed (i.e. counts are not 
spatially correlated, and neither overdispersed nor 
underdispersed).  In this case, we are given the baseline (or 
expected count) bi and the observed count ci for each spatial 
location si, and our goal is to determine if any spatial region S  
has counts significantly greater than baselines.  Furthermore, let 
us consider a simple cluster model, where we assume a uniform 
multiplicative increase in counts inside the cluster (the amount 
of increase is unknown).  Thus we test the null hypothesis H0 
against the set of alternative hypotheses H1(S), where: 

H0: ci ~ Poisson(bi) for all spatial locations si. 

H1(S): ci ~ Poisson(qbi) for all spatial locations si in S, and ci ~ 
Poisson(bi) for all spatial locations si outside S, for some 
constant q > 1. 

Here, the alternative hypothesis H1(S) has one parameter, q (the 
relative risk in region S), and the null hypothesis H0 has no 

parameters.  Computing the likelihood ratio, and using the 
maximum likelihood estimate for our parameter q, we obtain the 
following expression: 
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We find that the value of q that maximizes the numerator is q = 
max(1, C / B), where C and B are the total count ∑ci and total 
baseline ∑bi of region S respectively.  Plugging in this value of 
q, and working through some algebra, we obtain: 
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Because F(S) is a function only of the sufficient statistics C(S) 
and B(S),  this function is efficiently computable: we can 
calculate the score of any region S by first calculating the 
aggregate count and baseline (in constant time, as noted above) 
and then applying the function F. 

Kulldorff’s spatial scan statistic [1] is a population-based 
method commonly used in disease surveillance, which also 
makes the simplifying assumption of independent, Poisson 
distributed counts.  However, this statistic assumes that counts 
(i.e. number of disease cases) are distributed as ci ~ 
Poisson(qbi), where bi is the (known) census population of si and 
q is the (unknown) underlying disease rate.  We then attempt to 
discover spatial regions where the underlying disease rate q is 
significantly higher inside the region than outside.  Thus we 
wish to test the null hypothesis H0 (“the underlying disease rate 
is spatially uniform”) against the set of alternative hypotheses 
H1(S): “the underlying disease rate is higher inside region S than 
outside S.”  More precisely, we have: 

H0: ci ~ Poisson(qallbi) for all locations si, for some constant qall. 

H1(S): ci ~ Poisson(qinbi) for all locations si in S, and ci ~ 
Poisson(qoutbi) for all locations si outside S, for some constants 
qin > qout. 

In this case, the alternative hypothesis has two free parameters 
(qin and qout) and the null hypothesis has one free parameter 
(qall).  Computing the likelihood ratio, and using maximum 
likelihood parameter estimates, we obtain: 
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We can compute the maximum likelihood estimates qin =        
Cin / Bin, qout = Cout / Bout, and qall = Call / Ball, where “in”, “out”, 
and “all” represent the aggregates of counts and baselines for si 
inside region S, for si outside region S, and for all si respectively.  
Plugging in these values and performing some algebra, we 
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F(S) = 1 otherwise.  Again, the score function can be computed 
efficiently from the sufficient statistics of region S. 

We have also used this general framework to derive scan 
statistics assuming that counts ci are generated from Normal 
distributions with mean (i.e. expected count) μi and variance σi

2; 
these statistics are useful if counts might be overdispersed or 
underdispersed.  In this case, the score function is still 



efficiently computable, as a function of the sufficient statistics 
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statistics are possible, including models with simultaneous 
attacks in multiple regions and models with spatially varying 
(rather than uniform) rates.  We believe that some of these more 
complex model specifications may have more power to detect 
relevant and interesting clusters, while excluding those potential 
clusters which are not relevant to the application domain under 
consideration. 

5) Find the “most interesting” regions, i.e. those regions S 
with the highest values of F(S). 

Once we have decided on a set of regions S to search, and 
derived a score function F(S), the “most interesting” regions are 
those that maximize F(S).  In the frequentist spatial scan 
framework, these are the most significant spatial regions; in the 
Bayesian framework, these are the regions with highest 
posterior probabilities.  The simplest method of finding the most 
interesting regions is to compute the score function F(S) for 
every region.  An alternative to this naïve approach is to use the 
fast spatial scan algorithms of [4-6], which allow us to reduce 
the number of regions searched, but without losing any 
accuracy.  The idea is that, since we only care about the most 
significant regions, i.e. those with the highest scores F(S), we do 
not need to search a region S if we can prove that it will not 
have a high score.  Thus we start by examining large regions S, 
and if we can show that none of the smaller regions contained in 
S can have high scores, we do not need to actually search each 
of these regions.  Thus, we can achieve the same result as if we 
had searched all possible regions, but by only searching a small 
fraction of these.  Further speedups are gained by the use of 
multiresolution data structures, which allow us to efficiently 
move between searching at coarse and fine resolutions; we 
discuss these methods  in detail in [4-6]. 

6) Determine whether each of these regions is “interesting,” 
either by performing significance testing or calculating 
posterior probabilities. 

For the frequentist approach, once we have found the highest 
scoring region S* and its score F* = F(S*), we must still 
determine the statistical significance of this region by 
randomization testing.  To do so, we randomly create a large 
number R of replica grids by sampling under the null 
hypothesis, given our maximum likelihood parameter estimates 
for the null.  For example, for the expectation-based approach 
given above, we generate counts independently from ci ~ 
Poisson(bi), and for the population-based approach given above, 
we generate counts independently from ci ~ Poisson(qallbi), 
using the maximum likelihood estimate qall = Call / Ball.  We then 
find the highest scoring region and its score for each replica 
grid: the p-value of S* is 

1
1

+
+

R
Rbeat , where Rbeat is the number of 

replicas with F* higher than the original grid.  If this p-value is 
less than some threshold (e.g. 0.05), we can conclude that the 
discovered region is unlikely to have occurred by chance, and is 
thus a significant spatial cluster; we can then examine secondary 
clusters.  Otherwise, no significant clusters exist. 

For the Bayesian approach, on the other hand, no randomization 
testing is necessary.  Instead, we can compute the posterior 

probability of each potential cluster by dividing its score 
Pr(Data | H1(S)) Pr(H1(S)) by the total probability Pr(Data) = 
Pr(Data | H0) Pr(H0) + ∑S Pr(Data | H1(S)) Pr(H1(S)).  We can 
then report all clusters with posterior probability greater than 
some predetermined threshold, or simply “sound the alarm” if 
the total posterior probability of all clusters S is sufficiently 
high.  Because we do not need to perform randomization testing 
in the Bayesian method, we need only to search over all regions 
for the original grid, rather than the original grid and a large 
number (typically R = 1000) of replicas.  Thus the Bayesian 
approach is approximately 1000x faster than the (naïve) 
frequentist approach, as we show empirically in [7].  However, 
we can apply the fast spatial scan described above to achieve 
similar speedups for the frequentist approach: in this case, we 
still have to search over all replica grids, but can do a much 
faster search on each.  As a result, the fast frequentist approach 
is faster than the Bayesian approach for sufficiently large grid 
sizes (N > 256) but slower for smaller grids.  Either method can 
search a 256×256 grid, and calculate significance (p-values or 
posteriors respectively) in 10-12 hours, as compared to months 
for the standard (naïve frequentist) approach.  Thus we now 
have two ways to make the spatial scan computationally feasible 
for large datasets: to apply the fast spatial scan of [4-6] or to use 
the Bayesian framework of [7].  For even larger grid sizes, it 
may be possible to extend the fast spatial scan to the Bayesian 
framework: this would give us the best of both worlds, 
searching only a single grid, and using a fast algorithm to do so.  
We are currently investigating this potentially useful synthesis. 
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