
1 /* CS480, Spring 2016
2 *
3 * Simple UDP client, to demonstrate use of the sockets API
4 * Compile with:
5 * gcc −Wall −o udp−client udp−client.c
6 * or
7 * gcc −g −Wall −o udp−client udp−client.c # to support debugging
8 */
9

10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <sys/socket.h>
13 #include <netinet/in.h>
14 #include <string.h>
15 #include <assert.h>
16 #include <arpa/inet.h>
17 #include <netdb.h>
18 #include <limits.h>
19

20 void handle_error(const char * s)
21 {
22 perror(s);
23 exit(1);
24 }
25

26 int main(int argc, char ** argv)
27 {
28 int sock_fd;
29 struct sockaddr_in addr;
30 struct hostent* hostentp;
31 char * endptr;
32 unsigned int portl;
33 unsigned short port;
34 size_t num_to_send;
35 size_t num_sent;
36

37 if (argc != 4) {
38 fprintf(stderr, " usage: %s <hostname> <port> <message>\n", argv[0]);
39 exit(1);
40 }
41

42 /* convert from string to int */
43 portl = strtol(argv[2], &endptr, 10);
44 if (endptr == NULL || portl == 0)
45 handle_error(" strtol");
46
47 assert(portl < USHRT_MAX);
48 port = (unsigned short)portl;
49

50 /*
51 * Below, we use the C idiom for "assign to a variable
52 * and then check its value"
53 */
54 if (!(hostentp = gethostbyname(argv[1]))) {
55 herror(" gethostbyname");
56 exit(1);
57 }
58

59 /*
60 * Note! This code is not the same as what you need to do in lab1.
61 */
62 if ((sock_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
63 handle_error(" socket");
64

65 memset(&addr, 0, sizeof(addr));
66 addr.sin_family = AF_INET;
67 memcpy(&addr.sin_addr.s_addr,
68 hostentp−>h_addr_list[0],
69 sizeof(struct in_addr));
70 addr.sin_port = htons(port);
71

72 printf(" I am about to send %s to IP address %s and port %d\n",
73 argv[3], inet_ntoa(addr.sin_addr), atoi(argv[2]));

Jan 29, 16 9:17 Page 1/2udp−client.c
74

75 num_to_send = strlen(argv[3]);
76

77 num_sent = sendto(sock_fd, /* socket */
78 argv[3], /* buffer to send */
79 num_to_send, /* number of bytes to send */
80 0, /* flags=0: bare−bones use case*/
81 (const struct sockaddr*)&addr, /* the destination */
82 sizeof(addr)); /* size of the destination struct */
83

84 /*
85 * this is for education/demo purposes (there’s a simpler way to
86 * write this error−checking code.) sendto() "commits" to sending
87 * the whole packet or nothing, so if less than the whole thing was
88 * sent, it better have been because there was an error (indicated
89 * by returning < 0).
90 */
91 if (num_sent != num_to_send) {
92 assert(num_sent < 0);
93 handle_error(" sendto");
94 }
95
96 printf(" I just sent the bytes!\n");
97

98 exit(0);
99 }

Jan 29, 16 9:17 Page 2/2udp−client.c

Printed by Michael Walfish

Friday January 29, 2016 1/2demo/udp−client.c

1 /* CS480, Spring 2016
2 *
3 * Simple UDP server, to demonstrate use of the sockets API
4 * Compile with:
5 * gcc −Wall −o udp−server udp−server.c
6 * or
7 * gcc −g −Wall −o udp−server udp−server.c # for debugging support
8 */
9

10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <sys/types.h>
13 #include <sys/socket.h>
14 #include <netinet/in.h>
15 #include <string.h>
16 #include <assert.h>
17 #include <arpa/inet.h>
18 #include <netdb.h>
19 #include <limits.h>
20

21 void handle_error(const char * s)
22 {
23 perror(s);
24 exit(1);
25 }
26

27 int main(int argc, char ** argv)
28 {
29 int sock_fd;
30 struct sockaddr_in my_addr, my_peer_addr;
31 char * endptr;
32 unsigned int portl;
33 unsigned short port;
34 int num_received;
35 char msg[1024];
36 socklen_t addrlen;
37

38 if (argc != 2) {
39 fprintf(stderr, " usage: %s <port>\n", argv[0]);
40 exit(1);
41 }
42

43 /* convert from string to int */
44 portl = strtol(argv[1], &endptr, 10);
45 if (endptr == NULL || portl == 0)
46 handle_error(" strtol");
47
48 assert(portl < USHRT_MAX);
49 port = (unsigned short)portl;
50

51 /*
52 * Note! This code is not the same as what you need to do in lab1.
53 */
54 if ((sock_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
55 handle_error(" socket");
56

57 memset(&my_addr, 0, sizeof(my_addr));
58 my_addr.sin_family = AF_INET;
59 my_addr.sin_addr.s_addr = INADDR_ANY;
60 my_addr.sin_port = htons(port);
61

62 if (bind(sock_fd,
63 (struct sockaddr*)&my_addr,
64 sizeof(struct sockaddr_in)) < 0)
65 handle_error(" bind");
66

67 while (1) {
68

69 addrlen = sizeof(struct sockaddr_in);
70

71 if ((num_received = recvfrom(sock_fd, /* socket */
72 msg, /* buffer */
73 sizeof(msg), /* size of buffer */

Jan 29, 16 9:17 Page 1/2udp−server.c
74 0, /* flags = 0 */
75 /* who’s sending */
76 (struct sockaddr*)&my_peer_addr,
77 /* length of buffer to receive peer info */
78 &addrlen)) < 0)
79

80 handle_error(" recvfrom");
81

82 assert(addrlen == sizeof(struct sockaddr_in));
83

84 printf(" I got message %.*s from host %s, src port %d\n",
85 num_received, msg,
86 inet_ntoa(my_peer_addr.sin_addr),
87 ntohs(my_peer_addr.sin_port));
88

89

90 }
91

92 exit(0);
93 }

Jan 29, 16 9:17 Page 2/2udp−server.c

Printed by Michael Walfish

Friday January 29, 2016 2/2demo/udp−server.c

