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A. Structural Risk Minimization

As discussed in class, the Structural Risk Minimization (SRM) technique
is based on a hypothesis set H defined as a countable union of hypothesis
sets Hn with finite VC-dimension or favorable Rademacher complexity. In
this problem, we study several questions related to such countable union
hypothesis sets.

1. Let H =
⋃+∞
n=1{hn} be a countable hypothesis set and assume that

the target labeling fucntion is in H. In the standard statistical learn-
ing scenario, the learner receives an i.i.d. sample that he uses to train
an algorithm and return a predictor. Here, suppose instead that the
learner can request more labeled samples drawn i.i.d., as needed. Con-
sider the following algorithm: starting from t = 1, at each round t,
sample mt = 1

ε log 1
δt

labeled points; if ht is consistent with mt, return
ht and stop.

(a) Prove that the algorithm terminates.

Solution: Since the Bayes classifier f∗ is in H, there exists t
such that f∗ = ht, thus the algorithm terminates at most after t
rounds.

(b) Fix ε, δ > 0 and choose δt = δ
2t2

. Show that with probability
1 − δ, the algorithm returns a hypothesis with error at most ε.
Suppose we use the samples obtained from previous rounds to
test consistency, then, what is the maximum number of samples
needed by the algorithm?

Solution: The probability that the algorithm stops at round t
while ht has error ε is P[ht consistent|R(ht) ≥ ε] ≤ (1 − ε)mt ≤
e−εmt = δt. Thus, by the union bound,

P[∃t ≥ 1: ht consistent|R(ht) ≥ ε] ≤
+∞∑
t=1

δt =
δ

2

+∞∑
t=1

1

t2
=
δ

2

π2

6
≤ δ.
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Let t∗ be the time at which the algorithm terminates. t∗ is upper
bounded by the index t such that ht = f∗. If we reuse samples,
at most 1

ε log 2t∗2

δ points are needed overall.

(c) Can you generalize these results to the case where H =
⋃+∞
n=1Hn

with VCdim(Hn) = dn < +∞?

Solution: Same algorithm, except at round t a consistent hypoth-
esis in Ht is sought. Assume that the ordering of Hn is such that
Hn ⊂ Hn+1. At each round t, select a sample Smt of size mt and
return ht ∈ Ht if it is consistent with Smt . To derive the error

bound, let δt = δ
2t2

and let mt = O
(
dt
ε log 1

δtε

)
and observe that:

P
(
RD(ht) > ε

)
≤ P

(
∪∞t=0 {∃h ∈ Ht : R̂Smt (h) = 0, RD(h) > 0}

)
≤
∞∑
t=1

δt

=
δ

2

∞∑
t=1

1

t2

≤ δ.

2. Suppose S is an infinite set that can be fully shattered by H. We wish
to show that H cannot be written as a countable union H =

⋃+∞
n=1Hn

with VCdim(Hn) = dn < +∞.

(a) Show that we can define a family of subsets (Xn)n≥1 such that
|Xn| = dn + 1 and Xn ⊆ S −

⋃
1≤k≤n−1Xk.

Solution: This is straightforward since S is an infinite sample and
since dn is finite for any n ≥ 1.

(b) Show that for any n ≥ 1, there exists a labeling X l
n that cannot

be obtained using Hn.

Solution: This follows directly the definition of the VC-dimension:
no set of size dn + 1 can be fully shattered by Hn.

(c) Consider the labeling X l of X =
⋃+∞
n=1Xn obtained using all the

X l
ns. Show that no labeling of S using H can be consistent with

X l. Conclude that that H cannot be written as a countable union
H =

⋃+∞
n=1Hn with VCdim(Hn) = dn < +∞.
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Solution: Note that, by definition, all Xns are disjoint. Thus, the
labeling X l obtained from all X l

ns is well defined. Let Y be a
labeling of T consistent with X l. Then, for any n ≥ 1, Y|Xn is

a labeling of Xn matching X l
n and thus Y is not in Hn. Since

Y is not in Hn for any n ≥ 1, it is not in H. This shows that
the assumption that H cannot be written as a countable union
H =

⋃+∞
n=1Hn with VCdim(Hn) = dn < +∞ does not hold.

3. Suppose you only know an upper bound αn on VCdim(Hn) = dn <
+∞ with

∑+∞
n=1 e

−αn < +∞. Give a generalization bound for the
SRM-type algorithm defined by

f∗ = argmin
k≥1,h∈Hk

R̂S +

√
32αk log(em)

m
,

for a sample S of size m.

Solution: Let Fk(h) = R̂S +

√
32αk log(em)

m . Then using H =
⋃+∞
k=1Hk

P
(

sup
h∈H

R(h)− Fk(h)(h)−
√

2dk(h) log em/dk(h)

m
> ε

)
can be bounded as follows:

≤
∞∑
k=1

P
(

sup
h∈Hk

R(h)− Fk(h)−
√

2dk log em/dk
m

> ε

)

=
∞∑
k=1

P
(

sup
h∈Hk

R(h)− Fk(h)− R̂S(h)−
√

2dk log em/dk
m

> ε+

√
32αk log(em)

m

)

≤
∞∑
k=1

exp

(
− 2m

(
ε+

√
32αk log(em)

m

)2)

≤
∞∑
k=1

exp
(
− 2mε2

)
exp

(
− ak logm

)
≤ Ce−2mε2 .

Applying similar steps and recalling that f? is the minimizer of R̂S +
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√
32αk log(em)

m , we can show that

P

(
sup
h∈H

Fk(f?)(f
?)−R(h?)−

√
32αk(h?) log(em)

m
−
√

2dk(h?) log em/dk(h?)

m
>
ε

2

)
≤ e

−mε2
2 .

Combining the results above and the union bound provides the gener-

alization bound with δ = (1 + C)e
−mε2

2 .

B. Learning kernels

Let K be the family of all Gaussian kernels defined over RN :

K =
{
Kγ : Kγ(x,x′) = e−γ‖x−x

′‖2 , ∀x,x′ ∈ RN , γ > 0
}
.

Consider the hypothesis set defined via the reproducing kernel Hilbert space
of the kernels in K:

H =
{
h : h ∈ HK ,K ∈ K, ‖h‖HK ≤ 1

}
.

1. Let S = (x1, . . . ,xm) be a sample of size m. Show that R̂S(H) =
1
m Eσ

[√
supγ>0 σ

>Kγσ
]
, where Kγ is the Gram matrix of kernel Kγ

for the sample S.
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Solution:

R̂S(H) =
1

m
E
σ

 sup
h∈HK ,‖h‖Hk≤1

K∈K

m∑
i=1

σi〈h,ΦK(xi)〉


=

1

m
E
σ

 sup
h∈HK ,‖h‖Hk≤1

K∈K

〈
h,

m∑
i=1

σiΦK(xi)

〉
=

1

m
E
σ

 sup
K∈K

∥∥∥∥∥
m∑
i=1

σiΦK(xi)

∥∥∥∥∥
HK


=

1

m
E
σ

 sup
K∈K

√√√√∥∥∥∥∥
m∑
i=1

σiΦK(xi)

∥∥∥∥∥
2

HK


=

1

m
E
σ

[
sup
γ>0

√
σ>Kγσ

]
=

1

m
E
σ

[√
sup
γ>0

σ>Kγσ

]
.

2. Suppose ‖xi − xj‖ = 1 for i 6= j. Compute exactly R̂S(H).

Solution: Given that ‖xi − xj‖ = 1 for i 6= j, the diagonal terms of

the kernel matrix are Ki,j
γ = 1 for i = j and the off-diagonal terms are

Ki,j
γ = e−γ for i 6= j.

sup
γ>0

[
σ>Kγσ

]
= sup

γ>0

[∑
i,j

σiσjK
i,j
γ

]

= sup
γ>0

[
m+ e−γ

∑
i 6=j

σiσj

]

= sup
γ>0

[∑
i,j

σiσjK
i,j
γ

]
= m+ sup

γ>0
e−γ

∑
i 6=j

σiσj

= m+
∑
i 6=j

σiσj1∑
i6=j σiσj>0.
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Observe that:

m+
∑
i 6=j

σiσj =
m∑

i,j=1

σiσj = σ>11>σ = (σ>1)2 =

[
m∑
i=1

σi

]2
.

It is also known that:

E

[∣∣∣∣∣
m∑
i=1

σi

∣∣∣∣∣
]

=
1

2m−1

⌈m
2

⌉( m⌈
m
2

⌉) ≤ √m. (Jensen’s ineq.)

Thus, we have:

sup
γ>0

[
σ>Kγσ

]
=


|
∑m

i=1 σi| if
∑

i 6=j σiσj > 0;
√
m if

∑
i 6=j σiσj < 0;

√
m if

∑
i 6=j σiσj = 0.

When m is odd, the event
∑

i 6=j σiσj = 0 cannot occur and the other
two events are symmetric, each with probability 1/2. Thus, we have:

R̂S(H) =
1

2m
m+ 1

2m

(
m
m+1
2

)
+

1

2

1√
m
.

When m is even, the event
∑

i 6=j σiσj = 0 occurs with probability
1
2m

(
m
m
2

)
and the other two events with equal probability p = 1

2 −
1

2m+1

(
m
m
2

)
. Thus, we have:

R̂S(H) =

[
1

2
− 1

2m+1

(
m
m
2

)]
1

2m

(
m
m
2

)
+

[
1

2
+

1

2m+1

(
m
m
2

)]
1√
m
.

We can express the solution in terms of β0 ≈
√

2
π , where 1

m E[|
∑m

i=1 σi|] =
β0√
m

, as follows:

R̂S(H) =

{
1
2 [β0 + 1] 1√

m
if m even

1
2 [β0 + 1] 1√

m
+ 1

2

[
β0 − β20

]
1
m otherwise.

ut
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