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A. Online-to-batch conversion

Let H be a finite hypothesis set of functions mapping from X to R and
` : R×Y→ R+ a convex function bounded by M , convex with respect to its
first argument. Let A be an online learning algorithm that at each round
returns a probability distribution pt over H. The goal of this problem is
to study an online-to-batch conversion from these probability distributions
into a randomized algorithm.

Let P be the set of suffixes Pt: Pt = {pt, . . . , pT }, t = 1, . . . , T . Fix
δ > 0. For each P ∈ P, we define:

Γ(P) =
1

|P|
∑
pt∈P

∑
h∈H

pt(h)`(h(xt), yt) +M

√
log T

δ

|P|
.

The online-to-batch conversion is done in two steps: first, a distribution
Pδ is selected via Pδ ∈ argminP∈P Γ(P); next, a randomized algorithm is
defined via the distribution p over H defined for any h ∈ H by:

p(h) =
1

|Pδ|
∑
pt∈Pδ

pt(h).

Let hrand be the randomized hypothesis thereby defined.

1. Show that for any δ > 0, with probability at least 1− δ over the draw
of an i.i.d. sample S = ((x1, y1), . . . , (xT , yT )) from D, the following
inequality holds:

E[`(hrand(x, y))] ≤ 1

T

T∑
t=1

E
h∼pt

[`(h(xt), yt)] +M

√
log T

δ

T
.

Hint : you can apply Azuma’s inequality to an appropriately chosen
martingale sequence.
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Solution: Let P = {pt1 , . . . , pt|P|} and let hP be the randomized hy-

pothesis defined by the distribution pP(h) = 1
|P|
∑|P|

s=1 pts(h). Then,

E[`(hP(x, y))]− 1

|P|

|P|∑
s=1

E
h∼pt

[`(h(xts), yts)]

=

|P|∑
s=1

∑
h∈H

pts(h)

|P|

[
E[`(h(x), y)]− `(h(xts), yts)

]
.

LetAs denote the random variable
∑

h∈H
pts (h)
|P|

[
E[`(h(x), y)]−`(h(xts), yts)

]
.

Then, As forms a martingale sequence with respect to the filtration
Fts , where Ft is the σ-algebra generated by ((x1, y1), . . . , (xt, yt)) since:

E[As|Fts ] =
1

|P|
∑
h∈H

E[pts(h)E[`(h(x), y)]|Fts ]−E[pts(h)`(h(xts), yts)|Fts ],

and, since pt is completely determined by Ft−1 and (xt, yt) is indepen-
dent of Ft−1, we have

E[pts(h)`(h(xts), yts)|Fts ] = E
(xts−1

1 ,yts−1
1 )

[ E
(xts ,yts )

[pts(h)`(h(xts), yts)|Fts ]]

= E
(xts−1

1 ,yts−1
1 )

[pts(h) E
(xts ,yts )

[`(h(xts), yts)|Fts ]].

Thus, E[As|Fts ] = 0. Therefore, by Azuma’s inequality, since |As| ≤
M
|P| , for any δ > 0, with probability at least 1− δ,

E[`(hP(x, y))] ≤ 1

|P|

|P|∑
s=1

E
h∼pt

[`(h(xts), yts)] +M

√
log 1

δ

|P|
= Γ(P).

By the union bound, for any δ > 0, with probability at least 1− δ, for
any P,

E[`(hP(x, y))] ≤ 1

|P|

|P|∑
s=1

E
h∼pt

[`(h(xts), yts)] +M

√
log T

δ

|P|
= Γ(P).

Thus,

E[`(hrand(x, y))] ≤ 1

|Pδ|

|Pδ|∑
s=1

E
h∼pt

[`(h(xts), yts)] +M

√
log T

δ

|Pδ|

≤ 1

T

T∑
s=1

E
h∼pt

[`(h(xt), yt)] +M

√
log T

δ

T
,

2



since P contains {p1, . . . , pT }, and Pδ is a minimizer of Γ(P) over all
P, including {p1, . . . , pT }.

2. Let RT denote the expected regret of the online algorithm A. Then,
show that for any δ > 0, with probability at least 1− δ over the draw
of an i.i.d. sample S = ((x1, y1), . . . , (xT , yT )) from D, the following
inequality holds:

E[`(hrand(x, y))] ≤ inf
h∈H

E[`(h(x), y)] +
RT
T

+ 2M

√
log 2T

δ

T
.

Solution: Let h∗ ∈ H be the minimizer of E[`(h(x), y)]. By Hoeffding’s
inequality,

P

 1

T

T∑
t=1

`(h∗(xt), yt))− E[`(h∗(x, y))] > M

√
log 2

δ

T

 ≤ δ

2
.

Combining this with the result of the previous question, by the union
bound, with probability at least 1− δ

E[`(hrand(x, y))]− inf
h∈H

E[`(h(x), y)]

≤ 1

T

T∑
t=1

E
h∼pt

[`(h(xt), yt)] +M

√
log 2T

δ

T
− 1

T

T∑
t=1

`(h∗(xt), yt)) +M

√
log 2

δ

T

≤ RT
T

+ 2M

√
log 2T

δ

T
.

B. Mirror Descent

The notation and definitions used are those adopted in lectures.

1. Prove that Mirror Descent coincides with EG when the convex set is
the simplex and the unnormalized relative entropy is used as a Breg-
man divergence. In particular, you should show that the corresponding
mirror map Φ is 1-strongly convex with respect to ‖·‖1 on the simplex.

Solution: Use Pinsker’s inequality to show the 1-strong convexity.
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2. Consider the scenario where the functions ft are differentiable and
where, when requesting the gradient ∇ft(w) of ft at w, the learner
receives only a random variable gt(w), such that E[gt(w)] = ∇ft(w).
When wt itself is a random variable, we have E[gt(wt)|wt] = ∇ft(wt).
Show that MD in this scenario benefits from the following guarantee:

E[RT (MD)] ≤ B(w∗ ‖ w1)

η
+
η E
[
‖gt(wt)‖2∗

]
2α

,

and that for an appropriate choice of η, we have

E[RT (MD)] ≤ DG∗

√
2T

α
,

when B(w∗ ‖ w1) ≤ D2 and E
[
‖gt(wt)‖2∗

]
≤ G2

∗.

Solution: Proceeding as in the proof for MD in the standard case and
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taking expectations, we have:

E[RT (MD)]

= E

[
T∑
t=1

(
ft(wt)− ft(w∗)

)]

≤ E

[
T∑
t=1

E[gt(wt)|wt] · (wt −w∗)

]
(def. of grad.)

≤ E

[
T∑
t=1

∇ft(wt) · (wt −w∗)

]
(tower rule)

= E

[
1

η

T∑
t=1

[∇Φ(wt)−∇Φ(vt+1)] · (wt −w∗)

]
(def. of vt)

=
1

η

T∑
t=1

[
B(w∗ ‖ wt)− B(w∗ ‖ vt+1) + B(wt ‖ vt+1)

]
(Breg. div. Identity)

≤ E

[
1

η

T∑
t=1

[
B(w∗ ‖ wt)− B(w∗ ‖ wt+1)− B(wt+1 ‖ vt+1) + B(wt ‖ vt+1)

]]
(Pythagorean ineq.)

=
1

η

[
B(w∗ ‖ w1)− B(w∗ ‖ wT+1)

]
+ E

[
1

η

T∑
t=1

[
− B(wt+1 ‖ vt+1) + B(wt ‖ vt+1)

]]
(telescoping sum)

≤ B(w∗ ‖ w1)

η
+ E

[
1

η

T∑
t=1

[
B(wt ‖ vt+1)− B(wt+1 ‖ vt+1)

]]
.

(non-negativity of Bregman div.)
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E[B(wt ‖ vt+1)− B(wt+1 ‖ vt+1)]

= E[Φ(wt)− Φ(wt+1)−∇Φ(vt+1) · (wt −wt+1)]

≤ E
[(
∇Φ(wt)−∇Φ(vt+1)

)
· (wt −wt+1)−

α

2
‖wt −wt+1‖2

]
(α-strong convexity)

= E
[
−η gt(wt) · (wt −wt+1)−

α

2
‖wt −wt+1‖2

]
(def. of vt+1)

= E
[
−η gt(wt) · (wt −wt+1)−

α

2
‖wt −wt+1‖2

]
≤ E

[
η ‖gt(wt)‖∗ ‖wt −wt+1‖ −

α

2
‖wt −wt+1‖2

]
≤
η2 E

[
‖gt(wt)‖2∗

]
2α

. (max. of 2nd deg. eq.)

3. In this question, we adopt the same assumptions as in the previous
one except: the functions ft are all equal to f , f is assumed to be
convex and β-smooth with respect to ‖ · ‖ and, instead of the upper
bound E

[
‖g(wt)‖2∗

]
≤ G2

∗, we will assume that the following bound on
the variance holds for all w:

E
[
‖∇f(w)− g(w)‖2∗

]
≤ σ2.

(a) Show that the following inequality holds:

T∑
t=1

f(wt+1)− f(w∗)

≤
T∑
t=1

∇f(wt) · (wt+1 −wt) +
β

2
‖wt+1 −wt‖2 +∇f(wt) · (wt −w∗).

(b) Prove the identity 2u · v ≤ µ‖u‖2∗ + ‖v‖2/µ valid for any µ > 0
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and vectors u and v. Use that to show the following:

T∑
t=1

f(wt+1)− f(w∗)

≤
T∑
t=1

g(wt) · (wt+1 −wt) +∇f(wt) · (wt −w∗)

+
T∑
t=1

η

2

[
‖∇f(wt)− g(wt)‖2∗

]
+
β + 1/η

2
‖wt+1 −wt‖2.

Solution: For the Cauchy-Schwarz-type inequality, observe that:

0 ≤
(
√
µ‖u‖∗ −

1
√
µ
‖v‖

)2

= µ‖u‖2∗ +
1

µ
‖v‖2 − 2‖u‖∗‖v‖

≤ µ‖u‖2∗ +
1

µ
‖v‖2 − 2u · v. (Hölder’s ineq.)

(c) Use the 1-strong convexity of Φ to show the following:

T∑
t=1

f(wt+1)− f(w∗)

≤
T∑
t=1

g(wt) · (wt+1 −w∗) + [∇f(wt)− g(wt)] · (wt −w∗)

+

T∑
t=1

η

2

[
‖∇f(wt)− g(wt)‖2∗

]
+ (β + 1/η)B(wt+1 ‖ wt).

(d) Prove the following inequality:

[∇Φ(wt+1)−∇Φ(vt+1)] · (wt+1 −w∗) ≤ 0.

(e) Use the previous question to prove:

1

β + 1
η

g(wt) · (wt+1 −w∗) ≤ B(w∗ ‖ wt)− B(w∗ ‖ wt+1)− B(wt+1 ‖ wt).
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(f) Use the previous results to conclude that the following regret

bound holds for MD run with step size 1
β+1/η , with η = D

σ

√
2
T :

E[RT (MD)] ≤ βD2 + σD
√

2T .

Solution: Proceeding as in the proof for MD in the standard case and
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taking expectations, we have:

E[RT (MD)]

= E

[
T∑
t=1

(
f(wt+1)− f(w∗)

)]

= E

[
T∑
t=1

(
f(wt+1)− f(wt) + f(wt)− f(w∗)

)]

≤ E

[
T∑
t=1

∇f(wt) · (wt+1 −wt) +
β

2
‖wt+1 −wt‖2 +∇f(wt) · (wt −w∗)

]
(β-smoothness and def. of grad.)

= E

[
T∑
t=1

g(wt) · (wt+1 −wt) +∇f(wt) · (wt −w∗)

]

+ E

[
T∑
t=1

[∇f(wt)− g(wt)] · (wt+1 −wt) +
β

2
‖wt+1 −wt‖2

]

= E

[
T∑
t=1

g(wt) · (wt+1 −wt) +∇f(wt) · (wt −w∗)

]

+ E

[
T∑
t=1

η

2

[
‖∇f(wt)− g(wt)‖2∗

]
+
β + 1/η

2
‖wt+1 −wt‖2

]
(Cauchy-Schwarz-type inequality)

≤ E

[
T∑
t=1

g(wt) · (wt+1 −wt) +∇f(wt) · (wt −w∗)

]

+ E

[
T∑
t=1

η

2

[
‖∇f(wt)− g(wt)‖2∗

]
+ (β + 1/η)B(wt+1 ‖ wt)

]
(1-strong convexity of Φ)

≤ E

[
T∑
t=1

g(wt) · (wt+1 −w∗) + [∇f(wt)− g(wt)] · (wt −w∗)

]

+ E

[
T∑
t=1

η

2

[
‖∇f(wt)− g(wt)‖2∗

]
+ (β + 1/η)B(wt+1 ‖ wt)

]

= E

[
T∑
t=1

g(wt) · (wt+1 −w∗) +
η

2

[
‖∇f(wt)− g(wt)‖2∗

]
+ (β + 1/η)B(wt+1 ‖ wt)

]
.
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Now, first, observe that:

[∇Φ(wt+1)−∇Φ(vt+1)] · (wt+1 −w∗)

= B(w∗ ‖ wt+1) + B(wt+1) ‖ vt+1)− B(w∗ ‖ vt+1)
(Bregman div. identity)

= B(w∗ ‖ vt+1)− B(w∗ ‖ vt+1) (Pythagorean theorem)

≤ 0.

In view of that, we can write:

1

β + 1
η

g(wt) · (wt+1 −w∗)

= [∇Φ(wt)−∇Φ(vt+1)] · (wt+1 −w∗) (by def. of MD update)

= [∇Φ(wt)−∇Φ(wt+1) +∇Φ(wt+1)−∇Φ(vt+1)] · (wt+1 −w∗)

≤ [∇Φ(wt)−∇Φ(wt+1)] · (wt+1 −w∗)

= B(w∗ ‖ wt)− B(w∗ ‖ wt+1)− B(wt+1 ‖ wt).
(Bregman div. identity)

Thus, we have:

E[RT (MD)]

E

[
T∑
t=1

g(wt) · (wt+1 −w∗) +
η

2

[
‖∇f(wt)− g(wt)‖2∗

]
+ (β + 1/η)B(wt+1 ‖ wt)

]

≤ E

[
T∑
t=1

(β + 1/η)[B(w∗ ‖ wt)− B(w∗ ‖ wt+1)] +
η

2

[
‖∇f(wt)− g(wt)‖2∗

]]

= E

[
T∑
t=1

(β + 1/η)[B(w∗ ‖ wt)− B(w∗ ‖ wt+1)] +
η

2

[
‖∇f(wt)− g(wt)‖2∗

]]

= E
[
(β + 1/η)[B(w∗ ‖ w1)− B(w∗ ‖ wT+1)] +

ηT

2

[
‖∇f(wt)− g(wt)‖2∗

]]
≤ E

[
(β + 1/η)[B(w∗ ‖ w1)] +

ηT

2

[
‖∇f(wt)− g(wt)‖2∗

]]
(non-negativity of Bregman div.)

≤ (β + 1/η)D2 +
ηT

2
σ2

= βD2 + σD
√

2T .
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