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What is HMM?

v

Probabilistic model for sequential observations Pr[xy, - - , x7]
» Observations are generated by their underlying hidden states

» Hidden states follows Markov assumptions

v

Low-dim. hidden states — Dynamics easier to understand
Speech recognition, NLP (PoS tagging, NER, MT, ...), etc.
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Parameters of HMM

T =Pr(h|he)

OHOOFO-E

® @

o= Pr(xt | ht)
> Prpa, -, xr] = 24 o (T1y Prlhe| he—1]Prlxe| he])Pr(hi]
» Observation matrix O; , = Pr[x; = i|h; = a]
» Transition matrix T, = Pr[h; = alh;—1 = b]
>

Prior probability for the initial hidden states 7, = Pr[h; = 3]

] = = =

D¢
:

:
Spectral Algorithm for Learning HMM New York University




Introduction Learning Algorithm Learning Guarantees Conclusion
: :

Training HMM — Traditional Approaches

Natural loss for probabilistic model is negative log likelihood (NLL)

1. Find the global minimum of NLL

» NLL is not convex due to the presence of hidden states
» Solving non-convex optimization problem is extremely hard
2. Heuristically minimize NLL using EM algorithm
» NLL is convex once the hidden states are fixed
E-step: Infer and fix the hidden states based on the parameters
M-step: Minimize NLL with respect to parameters
Tend to get stuck into local minima
Works fine in practice, hard to analyze learning guarantees
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The paper proposed an efficient training method that admits a
unique solution and learning guarantees
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Overview of the Algorithm

Conclusion

» Learn model for predicting joint probabilities for observations
» Learning is hard due to the presence of hidden states

» Two steps solution without directly referring to hidden states:

» Map to observation space so that probs can be estimated
» Find subspace that is tractable
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In HMM, joint probability can be written as

—

™

T
Prlxi, -, x¢] = 1A% - - Axg
Ay is the observation operator

Ax = Tdiag(ox,la ] Ox,m)
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Proof

Proof for t = 2 (Generalization is straightforward)
Prpg =ixo=j] = > Prfxa=ix =jlh=ah=bPr[h =a h = b]

a,b

= Y Prla=ix=jlm=ah =bT,,m
a,b

= > Prlxa =ilh = aPrpo = jlhy = b] T} 75
a,b

= > 0675207
a,b

= I,E Tdiag(OjJ, ey, Oj,m)Tdiag(O;,l, ety O,',m)ﬁ"
= ITAAR
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:
Problem: Estimation of @ and Ay requires inferring hidden states
» 7 Prior for hidden states

» A,: Transition between hidden states

Solution: Map everything into the space in which

» each component can be estimated from observation
» dynamics as easy as in hidden state space
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7 = OF,

Conclusion

Tm — Ofm,

I
» First map everything into observation space using O

state dynamics) and

Ac — OAL 071
» Find U such that UT O is invertible (i.e., preserves hidden

» O~ not well-defined and dynamics complicated in this space
@ by = (UTO),

T — by = (UTO)T,

Ac = By = (UT0)A(UT0)?
Pr[xy, - ,x¢] = EOTOB , "Bxlgl
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Estimating by, by, and B
b1, by and By can be estimated using
(P1)i = Prlxi =1]
(P21)ij = Prlxo=1i,x =]
(P3x1)ij = Prlxs=i,x=xx =j]
Lemma
b1, bso, Bx can be expressed as
by = UTP
boo = (PLLU)TP
By = (UTPsu1)(UTP21)*
=] = - = = o
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Finding U

Lemma
Assume 7 > 0 and that O and T have column rank m (i.e., any
two hidden states are not identical). If U is the matrix of left

singular vectors of P, 1 corresponding to non-zero singular values,
then UT O is invertible.
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Proof for the Existence of (U7 0)!

P> 1 can be rewritten as

P,; = OTdiag(7)0O"

So, rank(Py 1) < rank(O). Also, Tdiag(7)O has full row rank
from assumptions. This implies

O = P,1(Tdiag(#)0")*
Therefore, rank(O) C rank(Ps1). So,

rank(O) = rank(P,1) = rank(U)
and UT O has rank m and invertible.
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Learning Algorithm

1. Randomly sample N observation triples (xi, x2, x3) and
estimate Py, P>y and P31

2. Compute SVD of P51 and let U be the matrix consisting of
left singular vectors corresponding to m largest singular values

3. Compute model parameters by, by, and By

o 5 = = £ DA
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Learning Bound for Joint Probabilities

Theorem
There exists a constant C > 0 s.t.

3 O'm(O)ZO'm(Pz 1)4ch2
P P . _ P .. > < _ s
' xl,zu:,xt i, il b, el 2 €:| e ( C(1+ no(€)om(P2,1)?)t?

where

no(€)

min{k : e(k) < ¢/4}

e(k) = min {Z Prixo =j]1:S C[n],|S|=n— k}

JjeSs
and o, is the m-th largest singular value.

Note: Bound gets looser as the length of sequence gets longer!!!
I
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1. Compute the sampling error for Py, P>1 and P31

2. Compute how the sampling error is propagated to accuracy
» Compute the approximation error for U

» Compute the approximation error for by, by and By
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Learning Bound for Conditional Probabilities
Conditional probability

Conclusion

bT B, br
PI'[XT|XT_1, : )Xl] = ZX bO-I;TBXbT
BXT+1 br
b B, by

bt+1 =
Conditional probability also have learning guarantee

» Bound independent of the length of the sequence

» Two more parameters compared to joint probability bound
» «: Smallest value of transition matrix A,

» . Error for hidden states measured in observation space
Spectral Algorithm for Learning HMM
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Conclusion

» Spectral learning for HMM yields a unique solution
» Joint probability estimated without inferring hidden states

» Learning guarantee for joint probability depends on the length,
but that for conditional probability does not
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