

A Spectral Algorithm for Learning Hidden Markov Models

Based on Daniel Hsu, Sham Kakade, and Tong Zhang
arXiv:0811.4413

Kentaro Hanaki

New York University

May 5, 2015

Table of Contents

Introduction

Learning Algorithm

Learning Guarantees

Conclusion

Table of Contents

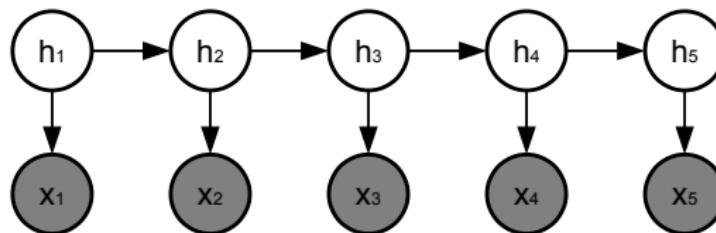
Introduction

Learning Algorithm

Learning Guarantees

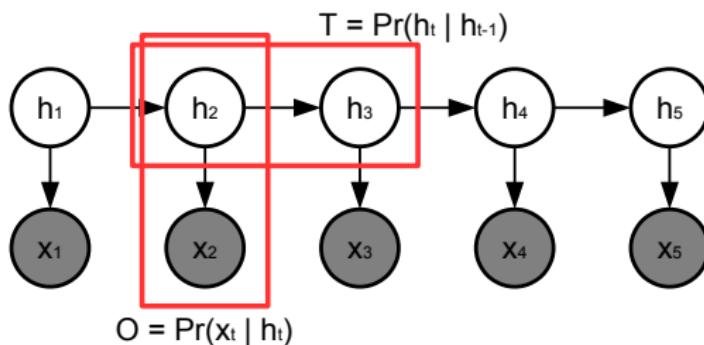
Conclusion

What is HMM?



- ▶ Probabilistic model for sequential observations $\Pr[x_1, \dots, x_T]$
- ▶ Observations are generated by their underlying **hidden states**
- ▶ **Hidden states follows Markov assumptions**
- ▶ Low-dim. hidden states → Dynamics easier to understand
- ▶ Speech recognition, NLP (PoS tagging, NER, MT, ...), etc.

Parameters of HMM



- ▶ $\Pr[x_1, \dots, x_T] = \sum_{h_1, \dots, h_T} (\prod_{t=1}^T \Pr[h_t | h_{t-1}] \Pr[x_t | h_t]) \Pr[h_1]$
- ▶ Observation matrix $O_{i,a} = \Pr[x_t = i | h_t = a]$
- ▶ Transition matrix $T_{a,b} = \Pr[h_t = a | h_{t-1} = b]$
- ▶ Prior probability for the initial hidden states $\pi_a = \Pr[h_t = a]$

Training HMM — Traditional Approaches

Natural loss for probabilistic model is **negative log likelihood (NLL)**

1. Find the global minimum of NLL
 - ▶ NLL is **not convex** due to the presence of hidden states
 - ▶ Solving non-convex optimization problem is **extremely hard**
2. Heuristically minimize NLL using **EM algorithm**
 - ▶ NLL is convex once the hidden states are fixed
 - ▶ E-step: Infer and fix the hidden states based on the parameters
 - ▶ M-step: Minimize NLL with respect to parameters
 - ▶ Tend to get stuck into **local minima**
 - ▶ Works fine in practice, **hard to analyze learning guarantees**

Contribution of the Paper

The paper proposed an **efficient** training method that admits a **unique solution** and **learning guarantees**

Table of Contents

Introduction

Learning Algorithm

Learning Guarantees

Conclusion

Overview of the Algorithm

- ▶ Learn model for predicting joint probabilities for observations
- ▶ Learning is hard due to the presence of hidden states
- ▶ Two steps solution without directly referring to hidden states:
 - ▶ Map to observation space so that probs **can be estimated**
 - ▶ Find subspace that is **tractable**

Observation Operator Representation

In HMM, joint probability can be written as

$$\Pr[x_1, \dots, x_t] = \vec{1}_m^T A_{x_t} \cdots A_{x_1} \vec{\pi}$$

A_x is the **observation operator**

$$A_x = T \text{diag}(O_{x,1}, \dots, O_{x,m})$$

Proof

Proof for $t = 2$ (Generalization is straightforward)

$$\begin{aligned}\Pr[x_1 = i, x_2 = j] &= \sum_{a,b} \Pr[x_1 = i, x_2 = j | h_1 = a, h_2 = b] \Pr[h_1 = a, h_2 = b] \\ &= \sum_{a,b} \Pr[x_1 = i, x_2 = j | h_1 = a, h_2 = b] T_{b,a} \pi_a \\ &= \sum_{a,b} \Pr[x_1 = i | h_1 = a] \Pr[x_2 = j | h_2 = b] T_{b,a} \pi_a \\ &= \sum_{a,b} O_{j,b} T_{b,a} O_{i,a} \pi_a \\ &= \vec{1}_m^T T \text{diag}(O_{j,1}, \dots, O_{j,m}) T \text{diag}(O_{i,1}, \dots, O_{i,m}) \vec{\pi} \\ &= \vec{1}_m^T A_j A_i \vec{\pi}\end{aligned}$$

Observation Operator Representation

Problem: Estimation of $\vec{\pi}$ and A_x requires inferring hidden states

- ▶ $\vec{\pi}$: Prior for hidden states
- ▶ A_x : Transition between hidden states

Solution: Map everything into the space in which

- ▶ each component can be **estimated from observation**
- ▶ **dynamics as easy** as in hidden state space

Mapping to Subspace

- ▶ First map everything into observation space using O

$$\vec{\pi} \rightarrow O\vec{\pi}, \quad \vec{1}_m \rightarrow O\vec{1}_m, \quad A_x \rightarrow OA_xO^{-1}$$

- ▶ O^{-1} not well-defined and dynamics complicated in this space
- ▶ Find U such that $U^T O$ is invertible (i.e., preserves hidden state dynamics) and

$$\vec{\pi} \rightarrow \vec{b}_1 = (U^T O)\vec{\pi}, \quad \vec{1}_m \rightarrow \vec{b}_\infty = (U^T O)\vec{1}_m$$

$$A_x \rightarrow B_x = (U^T O)A_x(U^T O)^{-1}$$

$$\Pr[x_1, \dots, x_t] = \vec{b}_\infty^T B_{x_t} \cdots B_{x_1} \vec{b}_1$$

Estimating b_1 , b_∞ and B_x

b_1 , b_∞ and B_x can be estimated using

$$(P_1)_i = \Pr[x_1 = i]$$

$$(P_{2,1})_{i,j} = \Pr[x_2 = i, x_1 = j]$$

$$(P_{3,x,1})_{i,j} = \Pr[x_3 = i, x_2 = x, x_1 = j]$$

Lemma

b_1 , b_∞ , B_x can be expressed as

$$b_1 = U^T P_1$$

$$b_\infty = (P_{2,1}^T U)^+ P_1$$

$$B_x = (U^T P_{3,x,1})(U^T P_{2,1})^+$$

Finding U

Lemma

Assume $\vec{\pi} > 0$ and that O and T have column rank m (i.e., any two hidden states are not identical). If U is the matrix of left singular vectors of $P_{2,1}$ corresponding to non-zero singular values, then $U^T O$ is invertible.

Proof for the Existence of $(U^T O)^{-1}$

$P_{2,1}$ can be rewritten as

$$P_{2,1} = O T \text{diag}(\vec{\pi}) O^T$$

So, $\text{rank}(P_{2,1}) \leq \text{rank}(O)$. Also, $T \text{diag}(\vec{\pi}) O^T$ has full row rank from assumptions. This implies

$$O = P_{2,1} (T \text{diag}(\vec{\pi}) O^T)^+$$

Therefore, $\text{rank}(O) \subset \text{rank}(P_{2,1})$. So,

$$\text{rank}(O) = \text{rank}(P_{2,1}) = \text{rank}(U)$$

and $U^T O$ has rank m and invertible.

Learning Algorithm

1. Randomly sample N observation triples (x_1, x_2, x_3) and estimate P_1 , $P_{2,1}$ and $P_{3,x,1}$
2. Compute SVD of $P_{2,1}$ and let U be the matrix consisting of left singular vectors corresponding to m largest singular values
3. Compute model parameters b_1 , b_∞ and B_x

Table of Contents

Introduction

Learning Algorithm

Learning Guarantees

Conclusion

Learning Bound for Joint Probabilities

Theorem

There exists a constant $C > 0$ s.t.

$$\Pr \left[\sum_{x_1, \dots, x_t} |\Pr[x_1, \dots, x_t] - \hat{\Pr}[x_1, \dots, x_t]| \geq \epsilon \right] \leq \exp \left(-\frac{\sigma_m(O)^2 \sigma_m(P_{2,1})^4 N \epsilon^2}{C(1 + n_0(\epsilon) \sigma_m(P_{2,1})^2) t^2} \right)$$

where

$$n_0(\epsilon) = \min\{k : \epsilon(k) \leq \epsilon/4\}$$

$$\epsilon(k) = \min \left\{ \sum_{j \in S} \Pr[x_2 = j] : S \subset [n], |S| = n - k \right\}$$

and σ_m is the m -th largest singular value.

Note: Bound gets looser as the length of sequence gets longer!!!

Brief Idea of the Proof

1. Compute the sampling error for P_1 , $P_{2,1}$ and $P_{3,x,1}$
2. Compute how the sampling error is propagated to accuracy
 - ▶ Compute the approximation error for U
 - ▶ Compute the approximation error for b_1 , b_∞ and B_x

Learning Bound for Conditional Probabilities

Conditional probability

$$\Pr[x_T | x_{T-1}, \dots, x_1] = \frac{b_\infty^T B_{x_T} b_T}{\sum_x b_\infty^T B_x b_T}$$

$$b_{t+1} = \frac{B_{x_{T+1}} b_T}{b_\infty^T B_{x_T} b_T}$$

Conditional probability also have learning guarantee

- ▶ Bound **independent of the length of the sequence**
- ▶ Two more parameters compared to joint probability bound
 - ▶ α : Smallest value of transition matrix A_x
 - ▶ γ : Error for hidden states measured in observation space

Table of Contents

Introduction

Learning Algorithm

Learning Guarantees

Conclusion

Conclusion

- ▶ Spectral learning for HMM yields **a unique solution**
- ▶ Joint probability estimated **without inferring hidden states**
- ▶ Learning guarantee for joint probability depends on the length, but that for conditional probability does not