
V22.0453-001: Honors Theory of Computation

Problem Set 5 Solutions

Problem 1

Solution: Let ML be the Turing machine that recognizes L. This means that on every w ∈ L, ML

accepts, and on every x 6∈ L, ML either rejects or never halts.
Note that Σ∗ is a countable set. Let x1, x2, x3, . . . denote an ordering of all strings in Σ∗. For

example, one can order strings in increasing order of length, and strings with the same length can
be ordered lexicographically.

Note also that the set N × N is countable (where N is the set of natural numbers). Let
(i1, j1), (i2, j2), (i3, j3), . . . denote an ordering of N ×N. For example, one can order the pairs in
increasing order of the sum of two co-ordinates, and pairs with the same sum can be ordered in
increasing order of the first co-ordinate.

Define the required machine M as follows:
For k = 1, 2, 3, . . . do:

• Let (ik, jk) be the kth pair in the ordering of N × N.

• Simulate the machine ML on string xik for jk steps.

• If ML accepts, then print the string xik on the output tape, and print the symbol #.

Clearly, M prints only those strings that are accepted by ML, i.e. the strings in L. On the
other hand, for any w ∈ L, w is accepted by ML in (say) t steps. Suppose w = xi in the ordering
of Σ∗. When the machine M works on the pair (i, t) (it will, eventually), it prints xi on the output
tape.

Problem 2

Solution: It is clear that Set-Cover ∈ NP, as an NTM can decide whether 〈S = {S1, . . . , Sm} , k〉 ∈
Set-Cover by nondeterministically guessing a subcollection {Si1 , . . . , Sik} of size k, and verifying
whether ∪kj=1Sij = ∪mj=1Sj .

To show that Set-Cover is NP-Complete, we give a polynomial-time reduction from Vertex-
Cover to Set-Cover, as follows:

On input a Vertex-Cover instance 〈G = (V,E), k〉:

1. Let U = E, that is, the universe U is the set of edges in G.

2. For each vertex v ∈ V in G, define Sv = {(u, v) : (u, v) ∈ E}. That is, Sv is the set of all
edges incident with v.

3. Let S = {Sv : v ∈ V }. That is, the collection S consists of Sv for every vertex v ∈ V .

4. Output 〈S, k〉.

1



Clearly the reduction takes polynomial time. We now show that the reduction is correct, that is,
〈G, k〉 ∈ Vertex-Cover if and only if 〈S, k〉 ∈ Set-Cover.

If {v1, . . . , vk} is a vertex cover in G, then ∪ki=1Svi = E = U , and thus {Sv1 , . . . , Svk} is a set
cover in S = {Sv : v ∈ V }. Conversely, if {Sv1 , . . . , Svk} is a set cover in S, then ∪ki=1Svi = E = U ,
and thus {v1, . . . , vk} is a vertex cover in G.

We therefore conclude that Set-Cover is NP-Complete.

Problem 3
Solution to Part 1: Suppose that P = NP. Then there is a polynomial-time algorithm A

that decides 3-SAT. We now describe an algorithm B that actually finds a satisfying solution to
any given 3-SAT instance ϕ that is satisfiable by invoking algorithm A n times, where n is the
number of variables in ϕ. Therefore, if A runs in polynomial-time, then B runs in polynomial-time.

2



Algorithm B:
On input ϕ(x1, . . . , xn):

1. Run algorithm A on ϕ to decide whether ϕ is satisfiable. If not, then output NO and halt.
If ϕ is satisfiable, then the rest of the algorithm finds a satisfying assignment in n iterations,
as follows.

2. Define formulas ϕ0(x2, . . . , xn) = ϕ(0, x2, . . . , xn) and ϕ1(x2, . . . , xn) = ϕ(1, x2, . . . , xn). That
is, ϕ0 and ϕ1 are the resulting formulas after x1 is substituted by constants 0 and 1 respec-
tively. If ϕ is satisfiable, then clearly at least one of ϕ0 and ϕ1 must be satisfiable, as in
any satisfying assignment x1 is assigned either 0 or 1. Thus, in the first iteration, first run
algorithm A on ϕ0 to decide whether ϕ0 is satisfiable, and if so, set a1 = 0; else ϕ1 must be
satisfiable, and set a1 = 1. Assign x1 = a1, and repeat the above for ϕa1 until all variables
have been assigned. That is:

3. In general, in the i-th iteration, with a1, . . . , ai−1 already assigned to x1, . . . , xi−1 in the first
i− 1 iterations so that ϕa1,...,ai−1(xi, . . . , xn) = ϕ(a1, . . . , ai−1, xi, . . . , xn) is satisfiable, set

ϕa1,...,ai−1,0(xi+1, . . . , xn) = ϕ(a1, . . . , ai−1, 0, xi+1, . . . , xn),

and
ϕa1,...,ai−1,1(xi+1, . . . , xn) = ϕ(a1, . . . , ai−1, 1, xi+1, . . . , xn).

Then as above, at least one of ϕa1,...,ai−1,0 and ϕa1,...,ai−1,1 must be satisfiable. Thus, first
run algorithm A on ϕa1,...,ai−1,0 to decide whether it is decidable, and if so, set ai = 0; else
ϕa1,...,ai−1,1 must be satisfiable, and set ai = 1.

4. Repeat the above process until all variables x1, . . . , xn have been assigned, and output the
assignment x1 = a1, . . . , xn = an.

If ϕ is not satisfiable, then algorithm B outputs NO at the beginning. If ϕ is satisfiable, then the
assignment x1 = a1, . . . , xn = an found by B satisfies ϕ as explained in the description of algorithm
B. The claimed polynomial running time of B can be easily verified.

Solution to Part 2: Define the language

MAX-3-SAT = {〈ϕ, k〉 : ϕ is in 3-CNF and ∃ an assignment that satisfies k clauses of ϕ} .

Clearly MAX-3-SAT ∈ NP, as an NTM can decide whether 〈ϕ, k〉 ∈ MAX-3-SAT by nondeter-
ministically guessing an assignment and verifying whether it satisfies k clauses of ϕ. Therefore if
P = NP, then there is a polynomial-time algorithm C that decides MAX-3-SAT. We now construct
the following algorithm D that finds an assignment that satisfies the maximum number of clauses
in a given ϕ using this algorithm C. Algorithm D uses essentially the same technique as algorithm
B does.

3



Algorithm D:
On input ϕ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm, where m is the number of clauses in ϕ:
For k = m downto 0:

1. If k = 0, then output any assignment and halt. Else,

2. Run algorithm C on 〈ϕ, k〉 to decide whether there is an assignment that satisfies k clauses
of ϕ. If C outputs NO, then go to the next iteration. Else (if C outputs YES), we find such
an assignment as follows:

3. Set ϕ0(x2, . . . , xn) = ϕ(0, x2, . . . , xn) and ϕ1(x2, . . . , xn) = ϕ(1, x2, . . . , xn) as in algorithm B.
Then at least one of ϕ0 and ϕ1 has an assignment that satisfies at least k clauses. Thus first
run algorithm C on 〈ϕ0, k〉, and if C accepts, set a1 = 0; else set a1 = 1. Repeat this for ϕa1

in a way similar to algorithm B, until all variables have been assigned.

4. Output x1 = a1, . . . , xn = an and halt.

It is not hard to see that algorithm D finds an assignment that satisfies the maximum number of
clauses of a given formula ϕ, and it takes polynomial time provided that C runs in polynomial
time.

Problem 4

Solution: We show that Subset-Sum is a special case of Knapsack. Consider special instances of
Knapsack where the volumes and costs are the same, i.e. vi = ci ∀i, and the volume bound equals
the target cost, i.e. B = t. The Knapsack problem asks whether there exists a set S ⊆ {1, 2, . . . , n}
such that ∑

i∈S
ci ≥ t and

∑
i∈S

vi ≤ B (1)

which is same as asking whether there exists S such that∑
i∈S

vi ≥ t and
∑
i∈S

vi ≤ t

which is same as asking whether there exists S such that∑
i∈S

vi = t

which is an instance of Subset-Sum.
Therefore, since Subset-Sum is a NP-hard problem, so is Knapsack. On the other hand,

Knapsack is in NP (guess the set S and verify whether Condition (??) is satisfied). Hence
Knapsack is NP-complete.

Problem 5

4


