# V22.0453-001: Honors Theory of Computation 

## Problem Set 5 Solutions

## Problem 1

Solution: Let $M_{L}$ be the Turing machine that recognizes $L$. This means that on every $w \in L, M_{L}$ accepts, and on every $x \notin L, M_{L}$ either rejects or never halts.

Note that $\Sigma^{*}$ is a countable set. Let $x_{1}, x_{2}, x_{3}, \ldots$ denote an ordering of all strings in $\Sigma^{*}$. For example, one can order strings in increasing order of length, and strings with the same length can be ordered lexicographically.

Note also that the set $\mathbf{N} \times \mathbf{N}$ is countable (where $\mathbf{N}$ is the set of natural numbers). Let $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right), \ldots$ denote an ordering of $\mathbf{N} \times \mathbf{N}$. For example, one can order the pairs in increasing order of the sum of two co-ordinates, and pairs with the same sum can be ordered in increasing order of the first co-ordinate.

Define the required machine $M$ as follows:
For $k=1,2,3, \ldots$ do:

- Let $\left(i_{k}, j_{k}\right)$ be the $k^{t h}$ pair in the ordering of $\mathbf{N} \times \mathbf{N}$.
- Simulate the machine $M_{L}$ on string $x_{i_{k}}$ for $j_{k}$ steps.
- If $M_{L}$ accepts, then print the string $x_{i_{k}}$ on the output tape, and print the symbol $\#$.

Clearly, $M$ prints only those strings that are accepted by $M_{L}$, i.e. the strings in $L$. On the other hand, for any $w \in L, w$ is accepted by $M_{L}$ in (say) $t$ steps. Suppose $w=x_{i}$ in the ordering of $\Sigma^{*}$. When the machine $M$ works on the pair $(i, t)$ (it will, eventually), it prints $x_{i}$ on the output tape.

## Problem 2

Solution: It is clear that Set-Cover $\in \mathbf{N P}$, as an NTM can decide whether $\left\langle\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}, k\right\rangle \in$ Set-Cover by nondeterministically guessing a subcollection $\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\}$ of size $k$, and verifying whether $\cup_{j=1}^{k} S_{i_{j}}=\cup_{j=1}^{m} S_{j}$.

To show that Set-Cover is NP-Complete, we give a polynomial-time reduction from VertexCover to Set-Cover, as follows:

On input a Vertex-Cover instance $\langle G=(V, E), k\rangle$ :

1. Let $U=E$, that is, the universe $U$ is the set of edges in $G$.
2. For each vertex $v \in V$ in $G$, define $S_{v}=\{(u, v):(u, v) \in E\}$. That is, $S_{v}$ is the set of all edges incident with $v$.
3. Let $\mathcal{S}=\left\{S_{v}: v \in V\right\}$. That is, the collection $\mathcal{S}$ consists of $S_{v}$ for every vertex $v \in V$.
4. Output $\langle\mathcal{S}, k\rangle$.

Clearly the reduction takes polynomial time. We now show that the reduction is correct, that is, $\langle G, k\rangle \in$ Vertex-Cover if and only if $\langle\mathcal{S}, k\rangle \in$ Set-Cover.

If $\left\{v_{1}, \ldots, v_{k}\right\}$ is a vertex cover in $G$, then $\cup_{i=1}^{k} S_{v_{i}}=E=U$, and thus $\left\{S_{v_{1}}, \ldots, S_{v_{k}}\right\}$ is a set cover in $\mathcal{S}=\left\{S_{v}: v \in V\right\}$. Conversely, if $\left\{S_{v_{1}}, \ldots, S_{v_{k}}\right\}$ is a set cover in $\mathcal{S}$, then $\cup_{i=1}^{k} S_{v_{i}}=E=U$, and thus $\left\{v_{1}, \ldots, v_{k}\right\}$ is a vertex cover in $G$.

We therefore conclude that Set-Cover is NP-Complete.

## Problem 3

Solution to Part 1: Suppose that $\mathbf{P}=\mathbf{N P}$. Then there is a polynomial-time algorithm $A$ that decides 3 -SAT. We now describe an algorithm $B$ that actually finds a satisfying solution to any given 3-SAT instance $\varphi$ that is satisfiable by invoking algorithm $A n$ times, where $n$ is the number of variables in $\varphi$. Therefore, if $A$ runs in polynomial-time, then $B$ runs in polynomial-time.

## Algorithm $B$ :

On input $\varphi\left(x_{1}, \ldots, x_{n}\right)$ :

1. Run algorithm $A$ on $\varphi$ to decide whether $\varphi$ is satisfiable. If not, then output NO and halt. If $\varphi$ is satisfiable, then the rest of the algorithm finds a satisfying assignment in $n$ iterations, as follows.
2. Define formulas $\varphi_{0}\left(x_{2}, \ldots, x_{n}\right)=\varphi\left(0, x_{2}, \ldots, x_{n}\right)$ and $\varphi_{1}\left(x_{2}, \ldots, x_{n}\right)=\varphi\left(1, x_{2}, \ldots, x_{n}\right)$. That is, $\varphi_{0}$ and $\varphi_{1}$ are the resulting formulas after $x_{1}$ is substituted by constants 0 and 1 respectively. If $\varphi$ is satisfiable, then clearly at least one of $\varphi_{0}$ and $\varphi_{1}$ must be satisfiable, as in any satisfying assignment $x_{1}$ is assigned either 0 or 1 . Thus, in the first iteration, first run algorithm $A$ on $\varphi_{0}$ to decide whether $\varphi_{0}$ is satisfiable, and if so, set $a_{1}=0$; else $\varphi_{1}$ must be satisfiable, and set $a_{1}=1$. Assign $x_{1}=a_{1}$, and repeat the above for $\varphi_{a_{1}}$ until all variables have been assigned. That is:
3. In general, in the $i$-th iteration, with $a_{1}, \ldots, a_{i-1}$ already assigned to $x_{1}, \ldots, x_{i-1}$ in the first $i-1$ iterations so that $\varphi_{a_{1}, \ldots, a_{i-1}}\left(x_{i}, \ldots, x_{n}\right)=\varphi\left(a_{1}, \ldots, a_{i-1}, x_{i}, \ldots, x_{n}\right)$ is satisfiable, set

$$
\varphi_{a_{1}, \ldots, a_{i-1}, 0}\left(x_{i+1}, \ldots, x_{n}\right)=\varphi\left(a_{1}, \ldots, a_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)
$$

and

$$
\varphi_{a_{1}, \ldots, a_{i-1}, 1}\left(x_{i+1}, \ldots, x_{n}\right)=\varphi\left(a_{1}, \ldots, a_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)
$$

Then as above, at least one of $\varphi_{a_{1}, \ldots, a_{i-1}, 0}$ and $\varphi_{a_{1}, \ldots, a_{i-1}, 1}$ must be satisfiable. Thus, first run algorithm $A$ on $\varphi_{a_{1}, \ldots, a_{i-1}, 0}$ to decide whether it is decidable, and if so, set $a_{i}=0$; else $\varphi_{a_{1}, \ldots, a_{i-1}, 1}$ must be satisfiable, and set $a_{i}=1$.
4. Repeat the above process until all variables $x_{1}, \ldots, x_{n}$ have been assigned, and output the assignment $x_{1}=a_{1}, \ldots, x_{n}=a_{n}$.

If $\varphi$ is not satisfiable, then algorithm $B$ outputs NO at the beginning. If $\varphi$ is satisfiable, then the assignment $x_{1}=a_{1}, \ldots, x_{n}=a_{n}$ found by $B$ satisfies $\varphi$ as explained in the description of algorithm $B$. The claimed polynomial running time of $B$ can be easily verified.

Solution to Part 2: Define the language
MAX-3-SAT $=\{\langle\varphi, k\rangle: \varphi$ is in 3-CNF and $\exists$ an assignment that satisfies $k$ clauses of $\varphi\}$.
Clearly MAX-3-SAT $\in \mathbf{N P}$, as an NTM can decide whether $\langle\varphi, k\rangle \in$ MAX-3-SAT by nondeterministically guessing an assignment and verifying whether it satisfies $k$ clauses of $\varphi$. Therefore if $\mathbf{P}=\mathbf{N P}$, then there is a polynomial-time algorithm $C$ that decides MAX-3-SAT. We now construct the following algorithm $D$ that finds an assignment that satisfies the maximum number of clauses in a given $\varphi$ using this algorithm $C$. Algorithm $D$ uses essentially the same technique as algorithm $B$ does.

## Algorithm $D$ :

On input $\varphi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \cdots \wedge C_{m}$, where $m$ is the number of clauses in $\varphi$ : For $k=m$ downto 0 :

1. If $k=0$, then output any assignment and halt. Else,
2. Run algorithm $C$ on $\langle\varphi, k\rangle$ to decide whether there is an assignment that satisfies $k$ clauses of $\varphi$. If $C$ outputs NO, then go to the next iteration. Else (if $C$ outputs YES), we find such an assignment as follows:
3. Set $\varphi_{0}\left(x_{2}, \ldots, x_{n}\right)=\varphi\left(0, x_{2}, \ldots, x_{n}\right)$ and $\varphi_{1}\left(x_{2}, \ldots, x_{n}\right)=\varphi\left(1, x_{2}, \ldots, x_{n}\right)$ as in algorithm $B$. Then at least one of $\varphi_{0}$ and $\varphi_{1}$ has an assignment that satisfies at least $k$ clauses. Thus first run algorithm $C$ on $\left\langle\varphi_{0}, k\right\rangle$, and if $C$ accepts, set $a_{1}=0$; else set $a_{1}=1$. Repeat this for $\varphi_{a_{1}}$ in a way similar to algorithm $B$, until all variables have been assigned.
4. Output $x_{1}=a_{1}, \ldots, x_{n}=a_{n}$ and halt.

It is not hard to see that algorithm $D$ finds an assignment that satisfies the maximum number of clauses of a given formula $\varphi$, and it takes polynomial time provided that $C$ runs in polynomial time.

## Problem 4

Solution: We show that Subset-Sum is a special case of Knapsack. Consider special instances of Knapsack where the volumes and costs are the same, i.e. $v_{i}=c_{i} \forall i$, and the volume bound equals the target cost, i.e. $B=t$. The Knapsack problem asks whether there exists a set $S \subseteq\{1,2, \ldots, n\}$ such that

$$
\begin{equation*}
\sum_{i \in S} c_{i} \geq t \text { and } \sum_{i \in S} v_{i} \leq B \tag{1}
\end{equation*}
$$

which is same as asking whether there exists $S$ such that

$$
\sum_{i \in S} v_{i} \geq t \quad \text { and } \quad \sum_{i \in S} v_{i} \leq t
$$

which is same as asking whether there exists $S$ such that

$$
\sum_{i \in S} v_{i}=t
$$

which is an instance of Subset-Sum.
Therefore, since Subset-Sum is a NP-hard problem, so is Knapsack. On the other hand, Knapsack is in NP (guess the set $S$ and verify whether Condition (??) is satisfied). Hence Knapsack is NP-complete.

## Problem 5

