V22.0453-001: Honors Theory of Computation

Problem Set 5 Solutions

Problem 1

Solution: Let My, be the Turing machine that recognizes L. This means that on every w € L, M,
accepts, and on every = & L, My, either rejects or never halts.

Note that X* is a countable set. Let x1, xo,x3,... denote an ordering of all strings in X*. For
example, one can order strings in increasing order of length, and strings with the same length can
be ordered lexicographically.

Note also that the set N x N is countable (where N is the set of natural numbers). Let
(i1,71), (2, 42), (3, j3), . . . denote an ordering of N x N. For example, one can order the pairs in
increasing order of the sum of two co-ordinates, and pairs with the same sum can be ordered in
increasing order of the first co-ordinate.

Define the required machine M as follows:

For k=1,2,3,... do:

e Let (ig, ji) be the k' pair in the ordering of N x N.
e Simulate the machine My, on string x;, for j; steps.
o If M, accepts, then print the string x;, on the output tape, and print the symbol #.

Clearly, M prints only those strings that are accepted by My, i.e. the strings in L. On the
other hand, for any w € L, w is accepted by M, in (say) t steps. Suppose w = x; in the ordering
of ¥*. When the machine M works on the pair (i,t) (it will, eventually), it prints z; on the output
tape.

Problem 2

Solution: It is clear that Set-Cover € NP, as an NTM can decide whether (S = {S1,..., S}, k) €
Set-Cover by nondeterministically guessing a subcollection {S;,,...,S; } of size k, and verifying
whether U;?:lSij = UjL15;.

To show that Set-Cover is NP-Complete, we give a polynomial-time reduction from Vertex-
Cover to Set-Cover, as follows:

On input a Vertex-Cover instance (G = (V, E), k):
1. Let U = F, that is, the universe U is the set of edges in G.

2. For each vertex v € V in G, define S, = {(u,v) : (u,v) € E}. That is, S, is the set of all
edges incident with v.

3. Let S = {S, : v € V}. That is, the collection S consists of S, for every vertex v € V.

4. Output (S, k).



Clearly the reduction takes polynomial time. We now show that the reduction is correct, that is,
(G, k) € Vertex-Cover if and only if (S, k) € Set-Cover.

If {v1,..., v} is a vertex cover in G, then U¥_;S,, = E = U, and thus {S,,,..., Sy, } is a set
cover in S = {S, : v € V}. Conversely, if {S,,,..., Sy, } is a set cover in S, then U¥_;S,, = E = U,
and thus {vy,..., v} is a vertex cover in G.

We therefore conclude that Set-Cover is NP-Complete.

Problem 3

Solution to Part 1: Suppose that P = NP. Then there is a polynomial-time algorithm A
that decides 3-SAT. We now describe an algorithm B that actually finds a satisfying solution to
any given 3-SAT instance ¢ that is satisfiable by invoking algorithm A n times, where n is the
number of variables in (. Therefore, if A runs in polynomial-time, then B runs in polynomial-time.



Algorithm B:
On input @(x1,...,2,):

1. Run algorithm A on ¢ to decide whether ¢ is satisfiable. If not, then output NO and halt.
If ¢ is satisfiable, then the rest of the algorithm finds a satisfying assignment in n iterations,
as follows.

2. Define formulas po(x2, ..., zn) = @(0,x9,...,2,) and p1(x2,...,z,) = @(1,x9,...,2,). That
is, o and 1 are the resulting formulas after x; is substituted by constants 0 and 1 respec-
tively. If ¢ is satisfiable, then clearly at least one of pg and 1 must be satisfiable, as in
any satisfying assignment 1 is assigned either 0 or 1. Thus, in the first iteration, first run
algorithm A on ¢q to decide whether g is satisfiable, and if so, set a; = 0; else 1 must be
satisfiable, and set a; = 1. Assign x; = a1, and repeat the above for ¢,, until all variables
have been assigned. That is:

3. In general, in the i-th iteration, with aq,...,a;_1 already assigned to x1,...,x;_1 in the first
i — 1 iterations so that @q, . 4 (i, ..., 2n) = @(a1,...,0i—1,%4,...,2,) is satisfiable, set
Car i 1,0(Tit1s -y Tn) = @(a1, ..., ai—1,0,Zit1, ..., Tp),
and
(Pal,...,ai_l,l(xi—l-l? ceey xn) = cp(al, ey i1, 1, Lid1y--- 71'77,)-

Then as above, at least one of vq,.. a; 1,0 and @Yq, .. q; 1 must be satisfiable. Thus, first
run algorithm A on g, . 4, ;0 to decide whether it is decidable, and if so, set a; = 0; else
©Pay,...a;_1,1 Must be satisfiable, and set a; = 1.

4. Repeat the above process until all variables x1,...,x, have been assigned, and output the
assignment x1 = aq,...,Ty = Gp.

If ¢ is not satisfiable, then algorithm B outputs NO at the beginning. If ¢ is satisfiable, then the
assignment r; = a1,...,x, = a, found by B satisfies ¢ as explained in the description of algorithm
B. The claimed polynomial running time of B can be easily verified.

Solution to Part 2: Define the language
MAX-3-SAT = {{(¢, k) : ¢ is in 3-CNF and 3 an assignment that satisfies k clauses of ¢} .

Clearly MAX-3-SAT € NP, as an NTM can decide whether (¢, k) € MAX-3-SAT by nondeter-
ministically guessing an assignment and verifying whether it satisfies k clauses of ¢. Therefore if
P = NP, then there is a polynomial-time algorithm C' that decides MAX-3-SAT. We now construct
the following algorithm D that finds an assignment that satisfies the maximum number of clauses

in a given ¢ using this algorithm C. Algorithm D uses essentially the same technique as algorithm
B does.



Algorithm D:
On input @(x1,...,2,) = C1 A -+ A Cpy, where m is the number of clauses in ¢:
For k = m downto O:

1.

2.

4.

If kK =0, then output any assignment and halt. Else,

Run algorithm C on (¢, k) to decide whether there is an assignment that satisfies k clauses
of . If C outputs NO, then go to the next iteration. Else (if C' outputs YES), we find such
an assignment as follows:

. Set wo(xa,...,xn) = p(0,22,...,2y,) and p1(z2,...,2y) = @(1,x9,...,2,) as in algorithm B.

Then at least one of g and @1 has an assignment that satisfies at least k clauses. Thus first
run algorithm C' on (gg, k), and if C accepts, set a; = 0; else set a; = 1. Repeat this for ¢,
in a way similar to algorithm B, until all variables have been assigned.

Output z1 = aq,...,x, = a, and halt.

It is not hard to see that algorithm D finds an assignment that satisfies the maximum number of
clauses of a given formula ¢, and it takes polynomial time provided that C' runs in polynomial

time.

Problem 4

Solution: We show that Subset-Sum is a special case of Knapsack. Consider special instances of
Knapsack where the volumes and costs are the same, i.e. v; = ¢; Vi, and the volume bound equals
the target cost, i.e. B =t. The Knapsack problem asks whether there exists aset S C {1,2,...,n}
such that

ZCiZt and ZvigB (1)

€S i€S

which is same as asking whether there exists S such that

Zvizt and Zvigt

€S €S

which is same as asking whether there exists S such that

Zvi:t

€S

which is an instance of Subset-Sum.

Therefore, since Subset-Sum is a NP-hard problem, so is Knapsack. On the other hand,
Knapsack is in NP (guess the set S and verify whether Condition (?7) is satisfied). Hence
Knapsack is NP-complete.

Problem 5



