V22.0453-001: Honors Theory of Computation

Problem Set 5 Solutions

Problem 1

Solution: Let M_L be the Turing machine that recognizes L. This means that on every $w \in L$, M_L accepts, and on every $x \notin L$, M_L either rejects or never halts.

Note that Σ^* is a countable set. Let x_1, x_2, x_3, \ldots denote an ordering of all strings in Σ^* . For example, one can order strings in increasing order of length, and strings with the same length can be ordered lexicographically.

Note also that the set $\mathbf{N} \times \mathbf{N}$ is countable (where \mathbf{N} is the set of natural numbers). Let $(i_1, j_1), (i_2, j_2), (i_3, j_3), \ldots$ denote an ordering of $\mathbf{N} \times \mathbf{N}$. For example, one can order the pairs in increasing order of the sum of two co-ordinates, and pairs with the same sum can be ordered in increasing order of the first co-ordinate.

Define the required machine M as follows: For k = 1, 2, 3, ... do:

- Let (i_k, j_k) be the k^{th} pair in the ordering of $\mathbf{N} \times \mathbf{N}$.
- Simulate the machine M_L on string x_{i_k} for j_k steps.
- If M_L accepts, then print the string x_{i_k} on the output tape, and print the symbol #.

Clearly, M prints only those strings that are accepted by M_L , i.e. the strings in L. On the other hand, for any $w \in L$, w is accepted by M_L in (say) t steps. Suppose $w = x_i$ in the ordering of Σ^* . When the machine M works on the pair (i, t) (it will, eventually), it prints x_i on the output tape.

Problem 2

Solution: It is clear that Set-Cover \in **NP**, as an NTM can decide whether $\langle S = \{S_1, \ldots, S_m\}, k \rangle \in$ Set-Cover by nondeterministically guessing a subcollection $\{S_{i_1}, \ldots, S_{i_k}\}$ of size k, and verifying whether $\cup_{j=1}^k S_{i_j} = \bigcup_{j=1}^m S_j$.

To show that Set-Cover is **NP-Complete**, we give a polynomial-time reduction from Vertex-Cover to Set-Cover, as follows:

On input a Vertex-Cover instance $\langle G = (V, E), k \rangle$:

- 1. Let U = E, that is, the universe U is the set of edges in G.
- 2. For each vertex $v \in V$ in G, define $S_v = \{(u, v) : (u, v) \in E\}$. That is, S_v is the set of all edges incident with v.
- 3. Let $\mathcal{S} = \{S_v : v \in V\}$. That is, the collection \mathcal{S} consists of S_v for every vertex $v \in V$.
- 4. Output $\langle \mathcal{S}, k \rangle$.

Clearly the reduction takes polynomial time. We now show that the reduction is correct, that is, $\langle G, k \rangle \in$ Vertex-Cover if and only if $\langle S, k \rangle \in$ Set-Cover.

If $\{v_1, \ldots, v_k\}$ is a vertex cover in G, then $\bigcup_{i=1}^k S_{v_i} = E = U$, and thus $\{S_{v_1}, \ldots, S_{v_k}\}$ is a set cover in $S = \{S_v : v \in V\}$. Conversely, if $\{S_{v_1}, \ldots, S_{v_k}\}$ is a set cover in S, then $\bigcup_{i=1}^k S_{v_i} = E = U$, and thus $\{v_1, \ldots, v_k\}$ is a vertex cover in G.

We therefore conclude that Set-Cover is **NP-Complete**.

Problem 3

Solution to Part 1: Suppose that $\mathbf{P} = \mathbf{NP}$. Then there is a polynomial-time algorithm A that decides 3-SAT. We now describe an algorithm B that actually finds a satisfying solution to any given 3-SAT instance φ that is satisfiable by invoking algorithm A n times, where n is the number of variables in φ . Therefore, if A runs in polynomial-time, then B runs in polynomial-time.

Algorithm B:

On input $\varphi(x_1,\ldots,x_n)$:

- 1. Run algorithm A on φ to decide whether φ is satisfiable. If not, then output NO and halt. If φ is satisfiable, then the rest of the algorithm finds a satisfying assignment in n iterations, as follows.
- 2. Define formulas $\varphi_0(x_2, \ldots, x_n) = \varphi(0, x_2, \ldots, x_n)$ and $\varphi_1(x_2, \ldots, x_n) = \varphi(1, x_2, \ldots, x_n)$. That is, φ_0 and φ_1 are the resulting formulas after x_1 is substituted by constants 0 and 1 respectively. If φ is satisfiable, then clearly at least one of φ_0 and φ_1 must be satisfiable, as in any satisfying assignment x_1 is assigned either 0 or 1. Thus, in the first iteration, first run algorithm A on φ_0 to decide whether φ_0 is satisfiable, and if so, set $a_1 = 0$; else φ_1 must be satisfiable, and set $a_1 = 1$. Assign $x_1 = a_1$, and repeat the above for φ_{a_1} until all variables have been assigned. That is:
- 3. In general, in the *i*-th iteration, with a_1, \ldots, a_{i-1} already assigned to x_1, \ldots, x_{i-1} in the first i-1 iterations so that $\varphi_{a_1,\ldots,a_{i-1}}(x_i,\ldots,x_n) = \varphi(a_1,\ldots,a_{i-1},x_i,\ldots,x_n)$ is satisfiable, set

$$\varphi_{a_1,\ldots,a_{i-1},0}(x_{i+1},\ldots,x_n) = \varphi(a_1,\ldots,a_{i-1},0,x_{i+1},\ldots,x_n),$$

and

$$\varphi_{a_1,\ldots,a_{i-1},1}(x_{i+1},\ldots,x_n) = \varphi(a_1,\ldots,a_{i-1},1,x_{i+1},\ldots,x_n).$$

Then as above, at least one of $\varphi_{a_1,\ldots,a_{i-1},0}$ and $\varphi_{a_1,\ldots,a_{i-1},1}$ must be satisfiable. Thus, first run algorithm A on $\varphi_{a_1,\ldots,a_{i-1},0}$ to decide whether it is decidable, and if so, set $a_i = 0$; else $\varphi_{a_1,\ldots,a_{i-1},1}$ must be satisfiable, and set $a_i = 1$.

4. Repeat the above process until all variables x_1, \ldots, x_n have been assigned, and output the assignment $x_1 = a_1, \ldots, x_n = a_n$.

If φ is not satisfiable, then algorithm *B* outputs NO at the beginning. If φ is satisfiable, then the assignment $x_1 = a_1, \ldots, x_n = a_n$ found by *B* satisfies φ as explained in the description of algorithm *B*. The claimed polynomial running time of *B* can be easily verified.

Solution to Part 2: Define the language

MAX-3-SAT = { $\langle \varphi, k \rangle$: φ is in 3-CNF and \exists an assignment that satisfies k clauses of φ }.

Clearly MAX-3-SAT \in **NP**, as an NTM can decide whether $\langle \varphi, k \rangle \in$ MAX-3-SAT by nondeterministically guessing an assignment and verifying whether it satisfies k clauses of φ . Therefore if **P** = **NP**, then there is a polynomial-time algorithm C that decides MAX-3-SAT. We now construct the following algorithm D that finds an assignment that satisfies the maximum number of clauses in a given φ using this algorithm C. Algorithm D uses essentially the same technique as algorithm B does.

Algorithm D:

On input $\varphi(x_1, \ldots, x_n) = C_1 \wedge \cdots \wedge C_m$, where *m* is the number of clauses in φ : For k = m down to 0:

- 1. If k = 0, then output any assignment and halt. Else,
- 2. Run algorithm C on $\langle \varphi, k \rangle$ to decide whether there is an assignment that satisfies k clauses of φ . If C outputs NO, then go to the next iteration. Else (if C outputs YES), we find such an assignment as follows:
- 3. Set $\varphi_0(x_2, \ldots, x_n) = \varphi(0, x_2, \ldots, x_n)$ and $\varphi_1(x_2, \ldots, x_n) = \varphi(1, x_2, \ldots, x_n)$ as in algorithm B. Then at least one of φ_0 and φ_1 has an assignment that satisfies at least k clauses. Thus first run algorithm C on $\langle \varphi_0, k \rangle$, and if C accepts, set $a_1 = 0$; else set $a_1 = 1$. Repeat this for φ_{a_1} in a way similar to algorithm B, until all variables have been assigned.
- 4. Output $x_1 = a_1, \ldots, x_n = a_n$ and halt.

It is not hard to see that algorithm D finds an assignment that satisfies the maximum number of clauses of a given formula φ , and it takes polynomial time provided that C runs in polynomial time.

Problem 4

Solution: We show that **Subset-Sum** is a special case of **Knapsack**. Consider special instances of **Knapsack** where the volumes and costs are the same, i.e. $v_i = c_i \forall i$, and the volume bound equals the target cost, i.e. B = t. The **Knapsack** problem asks whether there exists a set $S \subseteq \{1, 2, ..., n\}$ such that

$$\sum_{i \in S} c_i \ge t \quad \text{and} \quad \sum_{i \in S} v_i \le B \tag{1}$$

which is same as asking whether there exists S such that

$$\sum_{i \in S} v_i \ge t \quad \text{and} \quad \sum_{i \in S} v_i \le t$$

which is same as asking whether there exists S such that

$$\sum_{i \in S} v_i = t$$

which is an instance of **Subset-Sum**.

Therefore, since **Subset-Sum** is a **NP-hard** problem, so is **Knapsack**. On the other hand, **Knapsack** is in **NP** (guess the set S and verify whether Condition (??) is satisfied). Hence **Knapsack** is **NP-complete**.

Problem 5