V22.0453-001: Honors Theory of Computation

Problem Set 5

Due Dec 9, 2005

All problems are worth 10 points.

Problem 1

Let L be a Turing-recognizable language over alphabet Σ. Show that there exists a Turing machine M with the following properties:

- The machine has one input tape (as usual) and one output tape. The output tape is writeonly, meaning, once the tape-head writes a symbol on it, the head can move only to the right. The output tape is empty when the machines starts.
- When the machine is run on empty input (it may never halt), the contents of the output tape are

$$
w_{1} \# w_{2} \# w_{3} \# w_{4} \# \ldots \ldots
$$

Here $w_{i} \in \Sigma^{*} \forall i$ and $\# \notin \Sigma$ is a special separator symbol.

- $w_{i} \in L \forall i$, and every $w \in L$ appears as some w_{i} in the list (however the same string could occur multiple times).

Problem 2

Let U be a set. Let $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ be a collection of subsets of U (i.e. each S_{i} is a subset of $U)$ such that $U=\bigcup_{i=1}^{m} S_{i}$. A subcollection of subsets $\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\}$ in \mathcal{S} is a set cover of size k if $U=\bigcup_{j=1}^{k} S_{i_{j}}$. Define

$$
\text { Set-Cover }=\{\langle\mathcal{S}, k\rangle: \mathcal{S} \text { has a set cover of size } k\} .
$$

By reduction from Vertex-Cover, prove that Set-Cover is NP-Complete.

Problem 3

1. Prove that if $\mathbf{P}=\mathbf{N P}$, that is, if there is a polynomial-time algorithm that decides 3-SAT, then there is a polynomial-time algorithm that given a 3-SAT instance φ (i.e. a formula in 3-CNF), finds a satisfying assignment to φ if $\varphi \in 3$-SAT, or outputs NO if $\varphi \notin 3$-SAT.
2. Prove that if $\mathbf{P}=\mathbf{N P}$, then there is a polynomial-time algorithm that given a 3 -SAT instance φ, finds an assignment that satisfies the maximum number of clauses in φ that are satisfiable.

Problem 4

Knapsack is the following problem: We are given n objects, where object i has volume v_{i} and $\operatorname{cost} c_{i}$. We also have a bag which has total volume B, and a target cost t. We want to decide whether it is possible to fit in the bag a subset of the objects of total cost at least t. In other words, Knapsack is the problem that given volumes v_{1}, \ldots, v_{n}, $\operatorname{costs} c_{1}, \ldots, c_{n}$, a volume bound B and a target cost t, each of which is an integer, decide whether there is a subset $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} c_{i} \geq t$ and $\sum_{i \in S} v_{i} \leq B$.

Prove, by reduction from Subset-Sum, that Knapsack is NP-Complete.

Problem 5

Partition is the following problem: Given a sequence of n integers a_{1}, \ldots, a_{n}, decide whether there is a subset $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} a_{i}=\sum_{j \notin S} a_{i}=\frac{1}{2} \cdot \sum_{i=1}^{n} a_{i}$.

Prove, by reduction from Subset-Sum, that Partition is NP-Complete.

Problem 6

Bin-Packing is the following problem: Given volumes v_{1}, \ldots, v_{n}, a volume bound B, and a target number k, each of which is an integer, decide whether we can partition v_{1}, \ldots, v_{n} into k disjoint subsets such that the volumes in each subset sum up to at most B.

Prove, by reduction from Partition, that Bin-Packing is NP-Complete.

