
Theory and Algorithms for

Modern Problems in Machine Learning

and an Analysis of Markets

by

Ashish Rastogi

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

May 2008

Richard Cole—Advisor

Mehryar Mohri—Advisor

c© Ashish Rastogi

All Rights Reserved, 2008

To the most wonderful parents in the whole world,

Mrs. Asha Rastogi and Mr. Shyam Lal Rastogi

iv

Acknowledgements

First and foremost, I would like to thank my advisors, Professor Richard

Cole and Professor Mehryar Mohri, for their unwavering support, guidance

and constant encouragement. They have been inspiring mentors and much of

what lies in the following pages can be credited to them. Working under their

supervision has been one of the most enriching experiences of my life.

I would also like to thank Professor Joel Spencer, Professor Arun Sun-

dararajan, Professor Subhash Khot and Dr. Corinna Cortes for agreeing to

serve as members on my thesis committee.

Professor Spencer’s class on Random Graphs remains one of the most stim-

ulating courses I undertook as a graduate student. Internships at Google

through the summers of 2005, 2006 and 2007 were some of the most enjoy-

able periods of my graduate school life. Many thanks are due to Dr. Corinna

Cortes for providing me with the opportunity to work on several challenging

problems at Google. Research initiated during these internships culminated

in the development of ideas that form the bulk of this thesis.

I would also like to thank my peers from the graduate school. Spirited

discussions in the reading group meetings and during various seminars were

directly responsible for the development of a “research attitude”, a critical

ingredient for the successful completion of graduate studies. For all this, I

thank Eugene Weinstein and Tyler Neylon.

v

Pursuing a Ph.D. can be an arduous affair. It entails everything from hav-

ing to cope with failure to the exhilarating feeling of settling a research problem

successfully. I would like to express my gratitude towards my friends, espe-

cially Shruti Haldea, Ritu Gupta, Abhimanyu Yadav, Usha Mallya, Hameer

Ruparel, Chris Wu and Marjorie Levy for providing an excellent web of sup-

port.

Finally, none of this would ever have transpired without the unselfish love

and support of my precious parents and my delightful sister Ragini. Their

constant support, patient love and care and unswerving faith has gotten me

where I am. This thesis is dedicated to them.

vi

Abstract

The unprecedented growth of the Internet over the past decade and of

data collection, more generally, has given rise to vast quantities of digital in-

formation, ranging from web documents and images, genomic databases to a

vast array of business customer information. Consequently, it is of growing

importance to develop tools and models that enable us to better understand

this data and to design data-driven algorithms that leverage this information.

This thesis provides several fundamental theoretical and algorithmic results

for tackling such problems with applications to speech recognition, image pro-

cessing, natural language processing, computational biology and web-based

algorithms.

• Probabilistic automata provide an efficient and compact way to model

sequence-oriented data such as speech or web documents. Measuring the

similarity of such automata provides a way of comparing the objects they

model, and is an essential first step in organizing this type of data. We

present algorithmic and hardness results for computing various discrep-

ancies (or dissimilarities) between probabilistic automata, including the

relative entropy and the Lp distance; we also give an efficient algorithm to

determine if two probabilistic automata are equivalent. In addition, we

study the complexity of computing the norms of probabilistic automata.

• Widespread success of search engines and information retrieval systems

has led to large scale collection of rating information which is being used

vii

to provide personalized rankings. We examine an alternate formulation

of the ranking problem for search engines motivated by the requirement

that in addition to accurately predicting pairwise ordering, ranking sys-

tems must also preserve the magnitude of the preferences or the dif-

ference between ratings. We present algorithms with sound theoretical

properties, and verify their efficacy through experiments.

• Organizing and querying large amounts of digitized data such as images

and videos is a challenging task because little or no label information is

available. This motivates transduction, a setting in which the learning

algorithm can leverage unlabeled data during training to improve per-

formance. We present novel error bounds for a family of transductive

regression algorithms and validate their usefulness through experiments.

• Finally, price discovery in a market setting can be viewed as an (ongoing)

learning problem. Specifically, the problem is to find and maintain a set

of prices that balance supply and demand, a core topic in economics.

This appears to involve complex implicit and possibly large-scale infor-

mation transfers. We show that finding equilibrium prices, even approx-

imately, in discrete markets is NP-hard and complement the hardness

result with a matching polynomial time approximation algorithm. We

also give a new way of measuring the quality of an approximation to

equilibrium prices that is based on a natural aggregation of the dissatis-

faction of individual market participants.

viii

Contents

Dedication . iv

Acknowledgements . v

Abstract . vii

1 Distances Between Probabilistic Automata 1

1.1 Introduction . 1

1.2 Preliminaries . 6

1.2.1 Semirings . 6

1.2.2 Probabilistic Automata and Shortest-Distances 9

1.2.3 Algorithms for Computing Shortest-Distances 14

1.2.4 Composition of Weighted Automata 19

1.2.5 Distances Between Distributions And Norms 20

1.2.6 Problems Studied . 22

1.3 Algorithms for Computation of Distances 22

1.3.1 Relative Entropy of Unambiguous Automata 23

1.3.2 L2p Distance . 36

1.3.3 Hellinger Distance . 40

ix

1.4 Hardness Results . 41

1.4.1 L2p+1 Distance and L∞ Distance 41

1.4.2 Relative Entropy of Arbitrary Automata 55

1.5 Equivalence of Probabilistic Automata 59

1.6 Relative Entropy As a Kernel 61

1.7 Computation of the Norm . 64

1.7.1 Norm of an Unambiguous Automaton 65

1.7.2 Norm of Arbitrary Automata 67

1.7.3 Approximate Computation of Lp-norm 67

1.7.4 Approximate Computation of Entropy 68

1.8 Conclusion . 71

2 Magnitude-Preserving Ranking Algorithms 74

2.1 Introduction and Motivation 74

2.2 Preliminaries . 78

2.2.1 Formulation of the Problem 78

2.2.2 Cost Functions . 79

2.2.3 Kernels and Regularization 81

2.3 Algorithms . 84

2.3.1 Objective Functions 84

2.3.2 MPRank . 85

2.3.3 SVRank . 88

2.3.4 On-line Version of MPRank 90

x

2.3.5 Leave-One-Out Analysis for MPRank 92

2.4 Stability bounds . 98

2.4.1 Magnitude-preserving regularization algorithms 99

2.5 Experiments . 106

2.5.1 MovieLens Dataset . 108

2.5.2 Jester Joke Dataset . 109

2.5.3 Netflix Dataset . 109

2.5.4 Book-Crossing Dataset 110

2.5.5 Performance Measures and Results 110

2.5.6 On-line Version of MPRank 113

2.6 Conclusion . 114

3 Transductive Regression 116

3.1 Introduction . 116

3.2 Preliminaries . 122

3.2.1 Learning Setting . 122

3.2.2 Transductive Stability 123

3.3 Transductive Regression Stability Bounds 125

3.3.1 Bound for Sampling without Replacement 125

3.3.2 Transductive Stability Bound 129

3.4 Stability of Local Transductive Regression Algorithms 132

3.4.1 Local Transductive Regression Algorithms 133

3.5 Stability Based on Closed-Form Solution 141

xi

3.5.1 Unconstrained Regularization Algorithms 141

3.5.2 Stability of Constrained Regularization Algorithms . . 146

3.5.3 Making Seemingly Unstable Algorithms Stable 148

3.6 Experiments . 149

3.6.1 Model Selection Based on Bound 149

3.7 Conclusion . 155

4 An Analysis of Discrete Markets 156

4.1 Introduction . 156

4.2 Definitions . 171

4.3 Hardness of Computing Near-Equilibrium Prices 178

4.3.1 The Balanced Max-3SAT-3 problem 184

4.3.2 Details of the Hardness Construction 186

4.4 A Matching Algorithm . 207

4.5 A Local Tatonnement Algorithm 213

4.5.1 Introduction and Motivation 213

4.5.2 Analysis of Convergence 218

4.6 Relationship Between Discontent and ε-closeness in Utility . . 238

Bibliography . 240

xii

Chapter 1

Distances Between Probabilistic

Automata

1.1 Introduction

A probabilistic automaton is a finite automaton in which each transition carries

a non-negative weight. The weight associated with a path π in the automaton

is the product of the weights of the transitions that appear on π and the

probability associated with a certain string x accepted by the automaton is

the sum of the weights of all the paths on which x is accepted. In addition,

the sum of the weights of all strings accepted by the automaton is one. Thus,

such an automaton represents a probability distribution over a regular set.

Probabilistic automata were introduced in [81] and are extensively used

in a variety of areas of computer science including text and speech process-

1

ing [73], image processing [39], and computational biology [43]. In natural

language-processing applications, for example, probabilistic automata are used

to describe morphological and phonological rules [61].

Closely related to probabilistic automata are Hidden Markov Models, which

are also used extensively in statistical learning [42, 82]. In a Hidden Markov

Model, the weight associated with a transition can itself be a random variable

whose value is drawn from some distribution. However, when each transi-

tion has a fixed constant weight, a Hidden Markov Model is identical to a

probabilistic automaton.

The output of a large-vocabulary speech recognition system or that of a

complex information extraction system is often represented as a probabilistic

automaton compactly representing a large set of alternative sequences [78, 72].

Natural language sequences such as documents or biological sequences can also

be modeled by probabilistic automata [62]. Comparing the objects modeled

by these automata is necessary when one wishes, for example, to cluster these

objects. Thus, the problem of comparing two probabilistic automata by com-

puting the discrepancy between them is central when one wishes to use such

automata for learning. This also also arises in several other machine learning

problems. When a probabilistic automaton is obtained as a result of training

on a large data set, the quality of the learning algorithm can be measured by

computing the distance between the automaton inferred and that of the tar-

get automaton. Similarly, in many on-line learning algorithms and grammar

inference applications, the convergence of an iterative algorithm relies on the

2

magnitude of the distance between two consecutive probabilistic automata.

This motivates the design of efficient algorithms for the problem of com-

puting the distance or discrepancy between probabilistic automata. There are

many standard distances commonly used to compare distributions, such as the

relative entropy or Kullback-Leibler divergence, the Lp distance, the Hellinger

distance, the Jensen-Shannon distance, the χ2-distance, and the Triangle dis-

tance between two distributions [98, 38]. In Section 1.2.5, we define each one

of these distances formally.

Our focus in this chapter will be on the problem of computing various

commonly used distances between two probabilistic automata, including the

relative entropy and the Lp distance. We will also consider various distribution-

related properties of a single probabilistic automaton (such as the entropy, or

the Lp norm). The results of this chapter were published in two journal articles

[32, 34]. A high-level summary of our results is as follows.

Lp distance. We give efficient exact and approximate algorithms for com-

puting the Lp distance between two probabilistic automata for even-valued p

and prove the problem to be NP-hard for all odd values of p using a reduction

from the Max-Clique problem. These latter results complete previously known

hardness results given by Lyngsø and Pederson [84], who showed the problem

to be NP-hard for L1 and L∞. We also establish the hardness of additive

approximation of the Lp distance of two probabilistic automata for odd values

of p.

3

Relative Entropy. We give efficient exact and approximate algorithms for

computing the relative entropy between two unambiguous probabilistic au-

tomata. A finite automaton is said to be unambiguous if any string is accepted

on at most one path in the automaton. We report the results of experiments

demonstrating the practicality of our algorithms for very large probabilistic

automata. Finally, we prove that the computation of the relative entropy of

arbitrary probabilistic automata is (at least) PSPACE-hard.

We also examine the use of the symmetricized relative entropy in machine

learning algorithms and show that, contrary to what is suggested by a number

of publications (e.g., [65]), the symmetricized relative entropy is neither pos-

itive definite symmetric nor negative definite symmetric, which limits its use

and application in kernel methods. In particular, the convergence of training

for learning algorithms is not guaranteed when the symmetricized relative en-

tropy is used directly as a kernel, or as the operand of an exponential as in

the case of Gaussian Kernels [88].

Equivalence of Probabilistic Automata. A problem closely related to

that of computing distances between two probabilistic automata is to test

for their equivalence. Our algorithm for computing the L2 distance of two

arbitrary probabilistic automata A1 and A2 actually provides a polynomial-

time method for testing their equivalence, since A1 and A2 are equivalent

if and only if their L2 distance is zero. However, we will describe an even

more efficient algorithm based on Schützenberger’s standardization technique

4

[90, 12] with a running-time complexity of O(|Σ| (|A1| + |A2|)3). This is a

significant improvement over the previously best algorithm reported for this

problem whose complexity is O(|Σ| (|A1|+ |A2|)4)) [99].

The intuition behind the design of our algorithms for the computation of the

entropy can be explained in terms of traditional shortest-distance algorithms

over weighted graphs. Dijkstra’s algorithm, for example, computes the shortest

distance from a given source vertex to all the other vertices in the graph. The

weight of a path is the sum of the weights of the individual edges on the path.

Among all candidate paths, we choose the one with the minimum weight.

Roughly speaking, one can keep track of the entropy instead of the shortest

distance by redefining the sum and the minimum operations appropriately.

We formalize this notion using the framework of semirings and generalized

shortest-distance algorithms that are introduced in Sections 1.2 and 1.2.3.

In Section 1.2, we introduce some basic algebraic definitions (e.g. semirings)

and notation related to probabilistic automata needed for the description of our

algorithms. We also introduce the notion of generalized shortest-distances on

weighted automata that play a central role in all our algorithms. We conclude

Section 1.2 with a set of definitions of the various measures of discrepancy

between probability distributions that we study and a high-level summary of

the basic questions investigated in this chapter.

In Section 1.2.3, we present efficient algorithms for the computation of the

relative entropy between two unambiguous probabilistic automata, along with

5

similar algorithms for computing the Lp distance for even p and the Hellinger

distance between two (not necessarily unambiguous) probabilistic automata.

In Section 1.4, we present hardness results for the problem of computing the Lp

distance for odd p and the L∞ distance between probabilistic automata. We

also show that computing the relative entropy between arbitrary probabilistic

automata is P-SPACE complete.

In Section 1.5, we present an efficient algorithm to determine whether two

given probabilistic automata are equivalent, that is, if they assign the same

probability to each string x. In Section 1.6, we examine the use of (symmetri-

cized) relative entropy as a kernel in machine learning and present negative

results showing that it is neither positive definite, nor negative definite. We

conclude the chapter with Section 1.7, in which we study the problem of com-

puting distribution-related measures of a single probabilistic automaton (such

as the entropy, or the Lp norm).

1.2 Preliminaries

1.2.1 Semirings

Probabilistic automata are automata in which each transition carries some

weight in addition to the usual alphabet symbol [44, 85, 12]. For various

operations to be well-defined, the weight set must have the algebraic structure

of a semiring [63]. A semiring is a ring that may lack negation.

6

Definition 1.1 (Monoid) A monoid is a system (M,⊗, 1) such that:

• ⊗ is associative: for all a, b, c in M,

(a⊗ b)⊗ c = a⊗ (b⊗ c).

• 1 ∈M is an identity element for ⊗: for all a in M, a⊗ 1 = 1⊗ a = a.

A monoid (M,⊗, 1) is commutative if the operation ⊗ is commutative:

that is, for all a, b in M, a⊗ b = b⊗ a.

Definition 1.2 (Semiring) A semiring is a system (K,⊕,⊗, 0, 1) such that:

• (K,⊕, 0) is a commutative monoid with 0 as the identity element for ⊕,

• (K,⊗, 1) is a monoid with 1 as the identity element for ⊗,

• ⊗ distributes over ⊕: for all a, b, c in K,

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b).

• 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

Definition 1.3 (Idempotent Semiring) A semiring (K,⊕,⊗, 0, 1) is idem-

potent if the ⊕ operation is idempotent. That is, for all a ∈ K,

a⊕ a = a.

7

Some familiar semirings are the Boolean semiring ({0, 1},∨,∧, 0, 1) and the

tropical semiring (R+ ∪ {∞},min,+,∞, 0) related to classical shortest-paths

problems and algorithms. A semiring is commutative when ⊗ is commutative.

Definition 1.4 (Closed Weight) A weight a ∈ K is said to be closed if the

infinite sum,
∞⊕
n=0

an ∈ K,

and if associativity, commutativity, and distributivity apply to countable sums.

Definition 1.5 (Closed Semiring [76]) A semiring K is said to be closed

if all its elements a are closed.

Definition 1.6 (k-closed Semiring [76]) A semiring K is said to be k-closed

if for all a ∈ K,
k+1⊕
n=0

an =
k⊕

n=0

an.

More generally, we will say that K is closed (k-closed) for an automaton A,

if the closedness (respectively k-closedness) axioms hold for all finite sums of

cycle weights at any state of A [76]. In some semirings, e.g., the probability

semiring (R+,+,×, 0, 1), the equality
⊕k+1

n=0 a
n =

⊕k
n=0 a

n may hold for the

cycle weights of A only approximately, modulo ε > 0, as defined next.

Definition 1.7 (ε-k-closed Semiring for Automaton A under Metric d)

A semiring (K,⊕,⊗, 0, 1) is said to be ε-k-closed for an automaton A under

8

metric d : K×K 7→ R if for all finite sums a of cycle weights at any state in

A,

d

(
k+1⊕
n=0

an,

k⊕
n=0

an

)
≤ ε.

Comment 1.1 All of the automata considered in this chapter are probabilis-

tic, defined over the probability semiring (R+,+,×, 0, 1). Henceforth, we will

always use the L1 metric for the notion of ε-k-closedness.

1.2.2 Probabilistic Automata and Shortest-Distances

Definition 1.8 (Weighted Automaton) A weighted automaton A is a 7-

tuple (Σ, Q, I, F, E, λ, ρ) over a semiring (K,⊕,⊗, 0, 1):

• Σ is the finite alphabet of the automaton,

• Q is a finite set of states,

• I ⊆ Q is the set of initial states,

• F ⊆ Q is the set of final states,

• E ⊆ Q× Σ ∪ {ε} ×K×Q is a finite set of transitions,

• λ : I → K is the initial weight function mapping I to K, and

• ρ : F → K is the final weight function mapping F to K.

The weighted automata considered in this chapter are assumed not to

contain ε-transitions. A pre-processing ε-removal algorithm can be used to

9

remove such transitions for the automata considered here [75]. In the absence

of ε-cycles, the complexity of that algorithm is O(|Q|2 + |Q||E|) [75].

We denote by |A| = |E| + |Q| the size of an automaton A, that is the

sum of the number of states and transitions of A. Given a transition e ∈ E,

we denote by i[e] its input label, p[e] its origin or previous state and n[e] its

destination state or next state, w[e] its weight. Given a state q ∈ Q, we denote

by E[q] the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions:

n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] =

n[ek] and p[π] = p[e1]. A cycle is a path with the same origin and destination

states. The labeling functions i and the weight function w can also be extended

to paths by defining the label of a path as the concatenation of the labels of

its constituent transitions, and the weight of a path as the ⊗-product of the

weights of its constituent transitions: i[π] = i[e1] · · · i[ek], w[π] = w[e1]⊗ · · · ⊗
w[ek]. We denote by P (q, q′) the set of paths from q to q′ and by P (q, x, q′)

the set of paths from q to q′ with input label x ∈ Σ∗.

The output weight associated by an automaton A to an input string x ∈ Σ∗

is defined by:

[[A]](x) =
⊕

π∈P (I,x,F)

λ[p[π]]⊗ w[π]⊗ ρ[n[π]].

10

0

a/.33
b/.33

1/.5
a/.33

b/.5

Figure 1.1: An unambiguous weighted finite automaton that admits no equiv-
alent deterministic weighted automaton. 0 is the initial state and 1 the final
state. The automaton accepts the set of strings (a∗b∗)∗ab∗.

The language accepted by A, denoted by L(A), is defined by:

L(A) = {x : P (I, x, F) 6= ∅} .

Definition 1.9 (Trim Automaton) A state of an automaton A is accessi-

ble if it can be reached from an initial state. It is said to be co-accessible if

it lies on a path reaching a final state. An automaton is said to be trim if all

of its states are both accessible and co-accessible and it admits no zero-weight

transitions.

Without loss of generality, we assume that the automata considered in this

chapter are trim.

A weighted automaton A is said to be deterministic or subsequential if it

has a deterministic input, that is if it has a unique initial state and if no two

transitions leaving the same state share the same input label.

Definition 1.10 (Unambiguous Weighted Automata) A weighted automa-

11

30

1
a/0.5

2

b/0.5

c/0.5

b/0.5

c/0.5
a/0.5

Figure 1.2: An example of a probabilistic automaton. The automaton accepts
the set of string ab∗c ∪ ba∗c. The probability that the automaton accepts the
string abbbc is given by 0.5× (0.5)3 × 0.5 = (0.5)5.

ton A is said to be unambiguous if for any x ∈ Σ∗ there is at most one accepting

path labeled with x in A.

Thus, the class of unambiguous weighted automata includes deterministic

weighted automata.

Definition 1.11 (Probabilistic Automaton) A weighted automaton A de-

fined over the probability semiring (R+,+,×, 0, 1) is said to be probabilistic if

the weights it associates to the strings in Σ∗ corresponds to a probability dis-

tribution. That is, it verifies:

∑
x∈Σ∗

[[A]](x) = 1 and ∀x, [[A]](x) ≥ 0.

Definition 1.12 (Stochastic Automaton) A probabilistic automaton A is

said to be stochastic if at each state the weights of the outgoing transitions and

the final weight sum to one.

12

Observe that our definition of probabilistic automata differs from those of [81]

and [80]. Probabilistic automata as defined by these authors are weighted

automata over (R+,+,×, 0, 1) such that at any state q and for any label a ∈
Σ, the weights of the outgoing transitions of q labeled with a sum to one.

More generally, with that definition, the weights of the paths leaving state

q and labeled with x ∈ Σ∗ sum to one. Such automata define a conditional

probability distribution Pr[q′ | q, x] over all states q′ that can be reached from

q by reading x.

Instead, with our definition, probabilistic automata represent distributions

over Σ∗, Pr[x], x ∈ Σ∗. These are the natural distributions that arise in many

applications. They can be inferred from large data sets using statistical learn-

ing techniques. We are interested in computing various distances between two

such distributions over strings. As we shall see, the problem of computing

these distances can be formulated computing “shortest-distances” over an ap-

propriate semiring on a suitably defined automaton. Next, we introduce the

notion of shortest-distances and in Section 1.2.3, we discuss both exact and ap-

proximate algorithms for their computation, provided the underlying semiring

satisfies the technical condition of closedness, specified precisely later.

Shortest-Distances

When the sum of the weights of all paths from any state p to any state q is

well-defined and in K, we can define the “shortest-distance” from p ∈ Q to

13

q ∈ Q as:

d[p, q] =
⊕

π∈P (p,q)

w[π], (1.1)

where the summation is defined to be 0 when P (p, q) = ∅.
Let s[A] denote the ⊕-sum of the weights of all successful paths of A when

it is defined and in K. This sum in an automaton with initial state qs and the

set of final states F is given by:

s[A] =
⊕
qf∈F

d[qs, qf]. (1.2)

s[A] can be viewed as the shortest-distance from the initial states to the final

states. When ⊕ is replaced by min and ⊗ by +, this definition coincides

with the classical definition of shortest-distance in the tropical semiring. This

motivates the terminology we use.

1.2.3 Algorithms for Computing Shortest-Distances

In this section, we review two algorithms for computing the generalized shortest-

distances (as defined in Section 1.2.2) between states in a weighted automaton.

The exact algorithm is a generalization of the classical Floyd-Warshall algo-

rithm and computes shortest-distances between all pairs of states, provided the

underlying semiring is closed. The approximate algorithm, on the other hand,

is a generalization of the single-source shortest-distance algorithm and com-

putes the shortest-distance approximately as long as the underlying semiring

14

is ε-k-closed.

Exact Algorithm

A generalization of the classical Floyd-Warshall algorithm can be used to com-

pute all-pairs shortest distances d[p, q] (p, q ∈ Q) over a closed semiring which

need not be idempotent [74, 76] (Definition 1.3). Thus, this algorithm can also

be used to compute the shortest-distance s[A] (Equation 1.2) for a weighted

automaton A over a non-idempotent semiring, as needed for our purpose.

Note that our definition of closed semirings (Definition 1.5) [64] is more

general than the classical one used by Cormen et al. [26] as our definition does

not assume idempotence. This is because idempotence is not necessary for the

proof of the correctness of the generic all-pairs shortest-distance algorithms of

Floyd-Warshall and Gauss-Jordan [74, 76].

The following is the pseudocode for the generic Floyd-Warshall algorithm

admits. It also admits an in-place implementation as described in [74].

1 for i← 1 to |Q|
2 do for j ← 1 to |Q|
3 do d[i, j]←

⊕

e∈P (i,j)

w[e]

4 for k ← 1 to |Q|
5 create a copy of matrix d in d′

6 do for i← 1 to |Q|
7 do for j ← 1 to |Q|
8 do d[i, j]← d′[i, j]⊕ (d′[i, k]⊗ d′[k, k]∗ ⊗ d′[k, j])

15

9 return d

In all of the semirings we study in this chapter, the ⊕, ⊗ and closure

operations can be carried out in constant time. Thus, the running time com-

plexity of the algorithm is Θ(|E| + |Q|3) and its space complexity is Ω(|Q|2)
when applied to a weighted automaton A = (Q, I, F,Σ, δ, σ, λ, ρ) over a closed

semiring.

The cubic time complexity, together with the quadratic space complexity of

this algorithm is unappealing and makes the algorithm especially inapplicable

to large automata. In text and speech processing applications, a weighted

automaton may have several hundred million states and transitions. In such a

case, the algorithm would require maintaining a matrix with ten billion entries.

The next section presents an algorithm that exploits the sparseness of the

graph and does not impose as stringent space requirements.

Approximate Algorithm

A generic single-source shortest-distance algorithm for directed graphs defined

over a k-closed semiring was presented in [76]. The algorithm can be viewed as

a generalization to these semirings of classical shortest-paths algorithms. This

generalization is not trivial and does not require the semiring to be idempo-

tent. The algorithm is also generic in the sense that it works with any queue

discipline.

The approximate version of the generic single-source shortest distance al-

gorithm relies on the ε-k-closedness of the underlying semiring (see Defini-

16

tion 1.7), where the equality test is replaced by an ε-equality: u =ε v if

||u − v||∞ ≤ ε. Note that under the probability semiring (R+,+,×, 0, 1) (a

natural semiring for probabilistic automata), cycle weights from any state in

a trim automaton are strictly less than one (otherwise, the sum of the weights

of all successful paths would be divergent, and therefore not sum to one). This

implies that the closure operation for cycle weights 0 ≤ w < 1 is well defined,

and in (R+,+,×, 0, 1):

lim
k→∞

k⊕
i=0

wi =
1

1− w.

Because of this property, a probabilistic automaton defined over the probability

semiring (R+,+,×, 0, 1), with maximum cycle weight W is ε-k-closed (recall

Definition 1.7) when ∣∣∣∣∣
k+1∑
n=0

W n −
k∑

n=0

W n

∣∣∣∣∣ ≤ ε.

Upon simplification, this yields the condition k ≥ log(1/ε)
log(1/W)

− 1. Clearly, k ≥
log(1/ε)

log(1/W)
suffices.

The following gives the pseudocode of the modified algorithm.

1 for i← 1 to |Q|
2 do d[i]← r[i]← 0

3 d[s]← r[s]← 1

4 S ← {s}
5 while S 6= ∅
6 do q ← head(S)

17

7 Dequeue(S)

8 r′ ← r[q]

9 r[q]← 0

10 for each e ∈ E[q]

11 do if d[n[e]] 6=ε d[n[e]]⊕ (r′ ⊗ w[e])

12 then d[n[e]]← d[n[e]]⊕ (r′ ⊗ w[e])

13 r[n[e]]← r[n[e]]⊕ (r′ ⊗ w[e])

14 if n[e] 6∈ S
15 then Enqueue(S, n[e])

d[q] denotes the tentative shortest distance from the source s to q. r[q] keeps

track of the sum of the weights added to d[q] since the last queue extraction of

q from the queue. The attribute r is needed for the shortest-distance algorithm

to work in non-idempotent cases. The algorithm uses a queue S to store the

set of states to consider for the relaxation steps of lines 11-15 [76]. Any queue

discipline, e.g., FIFO, shortest-first, topological (in the acyclic case), can be

used. The test of line 11 is based on an ε-equality.

Different queue disciplines yield different running times for our algorithm.

The choice of the best queue discipline to use can be based on the structure of

the automaton, which can be exploited to obtain a more efficient algorithm.

Let N(q) denote the number of times a state q is inserted in the queue.

Then, using the Fibonacci heap with a shortest first queue discipline (as in

18

Dijkstra’s algorithm), the complexity of the algorithm is given by:

O(|Q|+ |E|max
q∈Q

N(q) + log |Q|
∑
q∈Q

N(q)). (1.3)

If the underlying automaton is acyclic, then using the queue discipline cor-

responding to the topological order yields the best time complexity, and the

problem can be solved in linear time: O(|Q|+ |E|).
Using a breadth-first queue discipline (as in the Bellman-Ford shortest

distance algorithm), updates to the shortest distance estimates in iteration k

can be formulated as Dk = MDk−1, where M is the matrix associated with

the automaton, that is the matrix representing the weighted graph defined by

the automaton. Note that the matrix multiplication here is over the ⊕ and ⊗
operations of the semiring, so that Dk[i] = ⊕|Q|j=1M [i, j]⊗Dk−1[j].

1.2.4 Composition of Weighted Automata

In many cases, including the problem of computing the relative entropy of two

probabilistic automata, we will need to carry out the composition of two prob-

abilistic automata under an appropriate semiring. We review the composition

principle here.

Let A1 and A2 be two weighted automata over the same semiring, with

Ai = (Σ, Qi, Ii, Fi, Ei, λi, ρi) for i ∈ {1, 2}. The intersection A of A1 and A2 is

denoted by A = A1 ∩ A2. It is a weighted automaton accepting the language

19

L(A1) ∩ L(A2) and defined by the tuple A:

A = (Σ, Q1 ×Q2, I1 × I2, F1 × F2, E, (λ1, λ2), (ρ1, ρ2)),

where the transitions E are defined according to the following rule:

(q1, a, w1, q2) ∈ E1 and (q′1, a, w
′
1, q

′
2) ∈ E2 ⇒ ((q1, q

′
1), a, (w1⊗w′1), (q2, q′2)) ∈ E.

There exists a general algorithm for the computation of the intersection over

an arbitrary semiring, even in the presence of ε-transitions [77]. The time

complexity of the algorithm is quadratic O(|A1||A2|) since in the worst case

the outgoing transitions of each state of A1 match all those of each state of

A2.

1.2.5 Distances Between Distributions And Norms

There are many standard distances or discrepancies used to compare distri-

butions which can also serve to compare probabilistic automata. Some of the

most commonly used ones are: the relative entropy or Kullback-Leibler diver-

gence D, the Lp distance, the Hellinger distance, the Jensen-Shannon distance

JS, the χ2-distance, and the triangle distance ∆. For distributions q1 and q2

20

over a discrete set X , their definitions are as follows:

D(q1‖q2) =
∑

x∈X
q1(x) log

q1(x)
q2(x)

Lp(q1, q2) =
(∑

x∈X
|q1(x)− q2(x)|p

)1/p

L∞(q1, q2) = max
x∈X
|q1(x)− q2(x)|

Hellinger(q1, q2) =
(∑

x∈X

(√
q1(x)−

√
q2(x)

)2)1/2

JS(q1, q2) =
∑

x∈X

(
q1(x) log

2q1(x)
q1(x) + q2(x)

+ q2(x) log
2q2(x)

q1(x) + q2(x)

)

χ2(q1, q2) =
∑

x∈X

(q1(x)− q2(x))2

q2(x)

∆(q1, q2) =
∑

x∈X

(q1(x)− q2(x))2

q2(x) + q2(x)
.

(1.4)

In this chapter, we will also be interested in computing the entropy of the Lp

norm of a single probability distribution. For a distribution q over a discrete

set X , its entropy H(q) and Lp norm Lp(q) is defined as:

H(q) = −
∑
x∈X

q(x) log q(x)

Lp(q) =

[∑
x∈X

[q(x)]p
]1/p (1.5)

Several general inequalities relate these distances [98, 38] including the follow-

ing ones (the last one holds when the set X is finite and of size n):

[L1(q1, q2)]
2/2 ≤ D(q1‖q2)

21

Hellinger(q1, q2) ≤ ∆(q1, q2) ≤ 2 · JS(q1, q2)

L2(q1, q2)

L∞(q1) + L∞(q2)
≤ ∆(q1, q2) ≤ L1(q1, q2) ≤

√
nL2(q1, q2).

Now that we have presented the basic concepts of semirings, probabilistic au-

tomata and provided the definitions of the various distance-measures between

probability distributions, we are in a position to state precisely the problems

we study in this chapter.

1.2.6 Problems Studied

Problem 1.1 Given two probabilistic automata A1 and A2, what is the com-

plexity of computing various information theoretic distances between the dis-

tributions represented by A1 and A2, including relative entropy, Lp distance

and Hellinger distance?

Problem 1.2 Given a probabilistic automaton A, what is the complexity of

computing its entropy and its Lp norm?

Problem 1.3 Given two probabilistic automata A1 and A2, what is the com-

plexity of deciding whether or not they are equivalent? That is, whether for all

x ∈ Σ∗, [[A1]](x) = [[A2]](x).

1.3 Algorithms for Computation of Distances

In this section, we review the computation of various information-theoretic

distances between automata. We begin with the problem of computing the rel-

22

ative entropy between two unambiguous probabilistic automata. We then gen-

eralize the semiring-based shortest-distance formulation, and apply the ideas

used in the computation of relative entropy to the problem of computing var-

ious other distances including the Lp distance for even p and the Hellinger

distance.

1.3.1 Relative Entropy of Unambiguous Automata

The relative entropy D(q1‖q2) (Equation 1.4), or Kullback-Leibler divergence,

is one of the most commonly used measures of the discrepancy of two distri-

butions p and q [36]. It is an asymmetric difference that admits the following

information-theoretical interpretation: it measures the number of additional

bits needed to encode distribution p when using an optimal code for q in place

of an optimal code for p. It is always non-negative, and is zero if and only if

the two distributions q1 and q2 are identical. It also does not obey the triangle

inequality, it is not symmetric, and is therefore not a metric.

One approximate solution for the computation of the relative entropy would

consist of sampling sequences from the distributions represented by each of

the automata and of using those to compute the KL-divergence by simply

summing their contributions. But, sample sizes guaranteeing a small approx-

imation error could be very large, with prohibitive computational cost, while

still providing only an approximate solution.

A procedure for the approximate computation of the relative entropy was

given by Calera-Rubio and Carrasco [16]. The procedure applies to determin-

23

istic weighted automata and cannot be generalized to the case of unambiguous

weighted automata because it is based on a specific sum decomposition (the

partitioning assumed in [16] [Equations 15 and 16, page 6], that does not hold

for unambiguous automata).

Our algorithms apply to the larger class of unambiguous weighted au-

tomata. For some unambiguous weighted automata, the size of any equivalent

deterministic weighted automaton is exponentially larger (Figure 1.1). Since

the size of the machine directly affects the complexity of the computation, it is

important to be able to compute the entropy directly from the unambiguous

automaton. To the best of our knowledge, the algorithm presented in this

chapter is the first algorithm for the exact computation of the relative entropy.

We also describe an approximate algorithm that is conceptually simpler than

the procedure of [16] and has a better time and space complexity.

In this section, we introduce the entropy semiring, which helps formu-

late the computation of the relative entropy of unambiguous probabilistic au-

tomata as a shortest-distance problem. We then use the exact and approxi-

mate algorithms for the computation of shortest-distances already described

in Section 1.2.3 to compute the relative entropy of unambiguous probabilistic

automata.

The relative entropy between two probabilistic automata A and B can be

written as the sum of two terms:

D(A1‖A2) =
∑
x

[[A1]](x) log[[A1]](x)−
∑
x

[[A1]](x) log[[A2]](x). (1.6)

24

Note that the first term is simply −H(A1), where H(A1) is the entropy of A1.

Entropy Semiring

This section introduces a semiring that will be used later to formulate the

problem of computing the relative entropy of two unambiguous automata as

a single-source shortest-distance problem.

Let K denote (R∪{+∞,−∞})× (R∪{+∞,−∞}). For pairs (x1, y1) and

(x2, y2) in K, define the following :

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2) (1.7)

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + x2y1) (1.8)

Lemma 1.1 The system (K,⊕,⊗, (0, 0), (1, 0)) defines a commutative semir-

ing.

Proof. It is known that (K,⊕, (0, 0)) is a commutative monoid with (0, 0)

as the identity element for ⊕. Furthermore, it is clear that (K,⊗, (1, 0)) is a

commutative monoid with (1, 0) as the identity element for ⊗. Also, (0, 0) is

an annihilator for ⊗. Thus, all that remains to be shown is that ⊗ distributes

over ⊕. Since both operations are commutative, we need to verify that for all

z1, z2, z3 ∈ K,

(z1 ⊕ z2)⊗ z3 = (z1 ⊗ z3)⊕ (z2 ⊗ z3)

25

Let zi = (xi, yi) for i ∈ {1, 2, 3}. Consider (z1 ⊕ z2)⊗ z3. We have

(z1 ⊕ z2)⊗ z3 = ((x1, y1)⊕ (x2, y2))⊗ (x3, y3)

= (x1 + x2, y1 + y2)⊗ (x3, y3)

= ((x1 + x2)x3, (x1 + x2)y3 + x3(y1 + y2))

= (x1x3, x1y3 + x3y1)⊕ (x2x3, x2y3 + x3y2)

= ((x1, y1)⊗ (x3, y3))⊕ ((x2, y2)⊗ (x3, y3))

= (z1 ⊗ z3)⊕ (z2 ⊗ z3).

2

This definition of the entropy semiring is motivated by the following observa-

tion:

Observation 1.1 Let A be an unambiguous probabilistic automaton under

the probability semiring (R+,+,×, 0, 1). Let HA denote the automaton ob-

tained from A by replacing the weight w[e] of each transition by the pair

(w[e], w[e] logw[e]) over the entropy semiring. Then, for all strings x,

[[HA]](x) = ([[A]](x), [[A]](x) log[[A]](x)).

Note that the second term in the pair can be thought of as the negation of the

contribution of x to the entropy of automaton A.

26

Comment 1.2 Observation 1.1 reveals why the shortest-distance based ap-

proach with the entropy semiring only works when the underlying automata

are unambiguous. Indeed, if a string x is accepted on two paths π1 and π2 with

weights (probabilities) w1 and w2, then:

[[HA]](x) = (w1 + w2, w1 logw1 + w2 logw2).

Clearly, the second term above is not the negation of the contribution of x to

the entropy, which is −(w1 + w2) log(w1 + w2).

The generic Floyd-Warshall algorithm can be applied to any automaton A

for which the semiring considered is closed. Recall that a semiring is closed for

A if the infinite ⊕-sums for all cycle weights are well-defined and in R. The

following lemma shows that the entropy semiring has the desired property.

Lemma 1.2 Let A be a weighted automaton over the entropy semiring such

that for any cycle weight w = (x, y), x less than one (0 ≤ x < 1). Then, the

entropy semiring is closed for A.

Proof. For any (x, y) ∈ K and k ≥ 0, define Rk as:

Rk =

k times︷ ︸︸ ︷
(x, y)⊗ . . .⊗ (x, y),

with R0 = (1, 0). It is straightforward to show by induction that Rk =

(xk, kyxk−1) = (xk, y d(x
k)

dx
).

27

q q’b/w

q0

a/0
a/0
b/0

Figure 1.3: Illustration of the completion operation.

For N ≥ 0, define SN by:

SN =
N⊕
i=0

Ri =

(
1− xN+1

1− x , y ·
[

1− xN
(1− x)2

− NxN

1− x
])

. (1.9)

Thus, for 0 ≤ x < 1, the closure of (x, y) is well-defined and in K:1

(x, y)∗ = lim
N→∞

SN =

(
1

1− x,
y

(1− x)2

)
=

(
1

1− x, y
d

dx

(
1

1− x
))

.

2

Semiring Formulation for Computing Relative Entropy

Suppose we wish the compute the relative entropy between two unambiguous

probabilistic automata A1 and A2. A1 and A2 are not necessarily complete: at

some states, there may be no outgoing transition labeled with a given element

of the alphabet a ∈ Σ. We can however make them complete in a way similar

to the standard construction in the unweighted case. We introduce a new state

q0 with final weight 0, add self-loops with weight 0 at that state labeled with

1The right-hand side can also be written as: (x∗, y(x∗)2), if we denote by x∗ =
∑∞

n=0 xn.

28

all elements of the alphabet, and for any a ∈ Σ and q ∈ Q, add a transition

from state q to q0 labeled with a with weight 0 when q does not have an

outgoing transition labeled with a (see Figure 1.3). This construction leads to

a complete and unambiguous weighted automaton equivalent to the original

one since the transitions added all have weight 0. The completion operation

is only applied to handle the boundary case when there exists a string x ∈ Σ∗

such that [[A2]](x) = 0 and [[A1]](x) 6= 0. In this case, the completion operation

ensures that the future computation of the relative entropy would correctly

lead to ∞. Note that the completion operation can be done on-demand.

States and transitions can be created only when needed for the application

of other operations. Thus, we can assume that A1 and A2 are unambiguous

and complete. At the cost of introducing a super-initial and a super-final state,

we can also assume in the following, without loss of generality, that the initial

weight λ and the final weights ρ(q) are all equal to 1 in A1 and A2.

Let logA denote the weighted automaton derived from A by replacing each

weight w ∈ R+ by logw and let Φ1(A) (Φ2(A)) denote the weighted automaton

over the entropy semiring derived from A by replacing each weight w by the

pair (w, 0) (resp. (1, w)). The construction of logA, Φ1(A), and Φ2(A) from

A is straightforward and can be done in linear time.

For the following lemma, recall that s[A] is the generalized shortest-distance

in A, as defined in Equation 1.2.

Lemma 1.3 The relative entropy of A1 and A2 satisfies the following identity

29

in the entropy semiring:

(0, D(A1‖A2)) = s[Φ1(A1) ∩ Φ2(logA1)]− s[Φ1(A1) ∩ Φ2(logA2)].

Thus, the relative entropy is expressed in terms of single-source shortest-distance

computations over the entropy semiring.

Proof. Since A1 is unambiguous and complete, both Φ1(A1) and Φ2(logA1)

are also unambiguous and complete. Thus, for a given string x, there is at

most one accepting path in Φ1(A1) or Φ2(logA1) labeled with x. Then, by

definition of intersection, the weight associated by Φ1(A1) ∩ Φ2(logA1) to a

string x is

([[A1]](x), 0)⊗ (1, log[[A1]](x)) = ([[A1]](x), [[A1]](x) log[[A1]](x)). (1.10)

Thus, the shortest-distance from the initial states to the final states in Φ1(A1)∩
Φ2(logA1) is

s[Φ1(A1) ∩ Φ2(logA1)] =
⊕
x

([[A1]](x), [[A1]](x) log[[A1]](x)) (1.11)

= (
∑
x

[[A1]](x),
∑
x

[[A1]](x) log[[A1]](x)) (1.12)

= (1,
∑
x

[[A1]](x) log[[A1]](x)). (1.13)

30

Similarly, we can show that2

s[Φ1(A1) ∩ Φ2(logA2)] = (1,
∑
x

[[A1]](x) log[[A2]](x)). (1.14)

The statement of the lemma follows directly from the identities 1.13 and 1.14

and Equation 1.6. 2

Thus, the computation of the relative entropy is reduced to two single-source

shortest-distance computations over the entropy semiring. The next section

applies the shortest-distance algorithms reviewed in Section 1.2.3 to compute

these two quantities in the sum in Equation 1.14. Since the first term yields the

entropy of a single unambiguous probabilistic automaton, our results clearly

also apply to the computation of the entropy.

Exact Computation

Theorem 1.1 The relative entropy of two unambiguous probabilistic automata

A1 and A2 can be computed exactly in time Θ(|A1 ∩ A2|3) and space Θ(|A1 ∩
A2|2).

Proof. Since the probabilistic automaton A1 is assumed to be trim and

complete (Definition 1.9 and Figure 1.3), the weight u of any cycle must satisfy

0 ≤ u < 1, otherwise the automaton would not be closed. The weight of a

cycle of Φ1(A1) ∩ Φ2(logA1) is of the form (u, u log u) (see Equation 1.10),

2Given a string x = x1x2 whose respective transitions have weights u1 and u2 in A and
v1 and v2 in B, the weight in Φ1(A1)∩Φ2(log A2) becomes (u1, u1 log v1)⊗ (u2, u2 log v2) =
(u1u2, u1u2 log(v1v2)), that is (‖A1‖(x1x2), ‖A1‖(x1x2) log ‖A2‖(x1x2)).

31

where u is the weight of the cycle of A1, and similarly, the weight of a cycle

of Φ1(A1) ∩ Φ2(logA2) is of the form (u, u log v), where v is the weight of a

matching cycle in A2.

Thus, the entropy semiring is closed both for Φ1(A1) ∩ Φ2(logA2) and

Φ1(A1) ∩ Φ2(logA1) and the generic Floyd-Warshall algorithm can be ap-

plied to compute the shortest-distances s[Φ1(A1)∩Φ2(logA2)] and s[Φ1(A1)∩
Φ2(logA1)].

The intersection Φ1(A1)∩Φ2(logA1) can be computed in linear timeO(|A1|)
but the worst cost of computation of Φ1(A1)∩Φ2(logA2) is quadratic, O(|A1||A2|).
The total time complexity of the computation of the relative entropy is thus

Θ(|A1 ∩ A2|3). Its space complexity is Θ(|A1 ∩ A2|2). 2

This provides an exact algorithm for the computation of the relative entropy.

The cubic time complexity of the algorithm with respect to the size of the

intersection automaton makes it rather slow for large automata.

Its quadratic lower bound complexity with respect to the size of the inter-

section machine makes it prohibitive for use in many applications. In text and

speech processing applications, a weighted automaton may have several hun-

dred million states and transitions. Even, if A1 has only about 100,000 states

and A1 ∩ A2 has about the same number of states, the algorithm requires

maintaining a matrix d with 10 billion entries.

32

Approximate Algorithm

We now analyze the convergence rate of the approximate algorithm with the

breadth-first queue discipline. Using a breadth-first queue discipline (as in

the Bellman-Ford shortest distance algorithm), updates to the shortest dis-

tance estimates in iteration k can be formulated as Dk = MDk−1, where

M is the matrix associated with the automaton, that is the matrix repre-

senting the weighted graph defined by the automaton. Note that the matrix

multiplication here is over the ⊕ and ⊗ operations of the semiring, so that

Dk[i] = ⊕|Q|j=1M [i, j]⊗Dk−1[j].

Let us focus only on the first component of the distance pair in M . Let

M1 be the matrix obtained by taking the first part of each element of M .

Assume that matrix M1 is a stochastic matrix (the transition matrix of a

stochastic automaton). For any row i,
∑|Q|

j=1M1[i, j] = 1. It is not hard to

see that ~1 = (1, . . . , 1) is an eigenvector with eigenvalue 1. By the Perron-

Frobenius theorem [51], 1 is also the maximum eigenvalue and its multiplicity

is 1. Using the Jordan canonical form of M1, the updates in the kth iteration

are proportional to the kth power of the second largest eigenvalue of M1, |λ2|k

(see [51] for a similar analysis). Thus, for the updates are at most ε, when

k = log(1/ε)
log(1/|λ2|) . Substituting this expression forN(q) in Equation 1.3, the overall

complexity of the approximate algorithm is:

O

(
|Q|+ (|E|+ |Q| log |Q|) log(1/ε)

log(1/|λ2|)
)
.

33

For ε exponentially smaller than |λ2| (ε = |λ2|d), the complexity is only linear:

O(|Q|+ d(|E|+ |Q|)).
It is possible to use different queue disciplines in different parts of the graph

and improve the running time of the algorithm. For example, for a large graph

with several strongly connected components, one can use a topological order

on the component graph, with shortest-first queue discipline in each strongly

connected component [76]. If there are k strongly connected components,

with the ith component having ni vertices, then the running time is given by

O(|Q|+ |E|maxq∈QN(q)+log |maxi ni|
∑

q∈QN(q)). If the largest component

has O(n/k) vertices, then this improves the general complexity by an addi-

tive factor of
∑

q∈QN(q) log k. Our experience with such computations for

very large graphs of several million states shows that the generic topological

order with the shortest-first queue discipline within each strongly connected

component often leads to the most efficient results in practice.

Comparison with Previous Work

In [16], the author describes a procedure for an approximate computation of

the relative entropy of two deterministic stochastic automata. The procedure

is based on an iterative method (which can be viewed as approximating the

inverse of a matrix) for computing, for a stochastic automaton A, the proba-

bility of each state q, that is the sum of the weights of all paths going through

q. The convergence is claimed but not proved and no bound is indicated on

the maximum number of iterations.

34

The author in [16] reports no complexity result for the procedure described,

which makes it difficult to compare with our algorithm. Our most favorable es-

timate of its complexity is Ω(|A|2|B|2(T+|Σ|)), where T denotes the maximum

number of iterations executed. This is because the procedure requires using

a matrix of size |A|2|B|2. The complexity of the procedure also depends on

the size of the alphabet, which, in some applications such as natural language

processing applications, may be very large. Furthermore, a lower bound on the

space complexity of this procedure is Ω(|A|2|B|2). This makes it unsuitable

for computing the relative entropy of large weighted automata. Note that the

experiments reported by the author were carried out with very small gram-

mars of about 30 rules. Nevertheless, the procedure bears some resemblance

to our approximate algorithm. It can be viewed as an alphabet-dependent

non-sparse implementation of that algorithm for the particular case of a FIFO

queue discipline.

Experiments

We implemented both the generic Floyd-Warshall algorithm and the approx-

imate algorithm for the computation of the relative entropy of unambiguous

probabilistic automata.

To avoid the numerical instability issues related to the multiplications of

probabilities, the operations of the entropy semiring are implemented so that

individual transition probabilities are never explicitly exponentiated. This is

achieved by using negative log probabilities instead of the probabilities them-

35

selves and appropriately redefining the × and the + operations.

To evaluate the efficiency of our approximate algorithm for computing the

relative entropy we created two n-gram statistical models trained on a large

corpus – one a bigram model (n = 2) and one a trigram model (n = 3). The

minimal deterministic weighted automaton representing the bigram model had

about 200,000 transitions, that of the trigram model about 400,000 transitions.

It took about 3s on a single 2GHz Intel processor with 128MB of RAM to

compute the relative entropy of these large weighted automata using a FIFO

queue discipline. With a shortest-first queue discipline, the time was reduced

to 2s.

1.3.2 L2p Distance

In Section 1.3.1, we saw that formulating the problem of computing the rela-

tive entropy between two probabilistic automata as a shortest-distance prob-

lem over an appropriately defined semiring immediately yields efficient poly-

nomial time algorithms to solve the problem. Here, we extend these ideas

and show that the same techniques can be used to compute the Lk distance

between two probabilistic automata efficiently when k is even. To make this

clear, we consider the computation of L2p distance for any integer p. We will

analyze acyclic, unambiguous and arbitrary probabilistic automata in turn.

Subsequently, we complete this set of results by showing that the problem of

computing Lk distance is NP-hard for odd k.

In [84], the authors give an approximate algorithm to compute the L2

36

distance between two HMMs A1 and A2. Their algorithm applies to the specific

cases of HMMs in which each state belongs to at most one cycle. For more

general HMMs, they claim without proof that an iterative version of their

method yields an approximate algorithm that works in time O((|A1|+ |A2|)6p).

The approximation factor does not appear explicitly in this complexity term

however.

This section presents a simple and general algorithm for the computation

of the L2p distance of two arbitrary probabilistic automata, for p ∈ N. Our

algorithm computes (L2p(A1, A2))
2p. The L2p distance between A1, A2 can

then be obtained straightforwardly by taking the 2pth root. (L2p(A1, A2))
2p

can be rewritten as:

(L2p(A1, A2))
2p =

∑
x∈Σ∗
|[[A1]](x)− [[A2]](x)|2p (1.15)

=
∑
x∈Σ∗

([[A1]](x)− [[A2]](x))
2p (1.16)

=
∑
x∈Σ∗

2p∑
i=0

(
2p

i

)
([[A1]](x))

i(−[[A2]](x))
2p−i (1.17)

=

2p∑
i=0

(
2p

i

)
(−1)i

∑
x∈Σ∗

([[A1]](x))
i([[A2]](x))

2p−i. (1.18)

In the first line, we could remove the absolute values since the exponent is

even. This is crucial and is the reason why we need to treat the case of the

L2p+1 distance separately.

Let T (i, 2p− i) denote
∑

x∈Σ∗([[A1]](x))
i([[A2]](x))

2p−i. First, let us consider

37

the case in which A1 and A2 are unambiguous. If Ak = (Σ, Qi, Ii, Fi, Ei, λi, ρi),

k ∈ {1, 2}, then the transitions in the intersection automaton A = A1∩A2 are

defined according to the following rule:

(q1, a, w1, q
′
1) ∈ E1 and (q2, a, w2, q

′
2) ∈ E2 ⇒ ((q1, q2), a, w1w2, (q

′
1, q

′
2)) ∈ E.

(1.19)

Since we are dealing with unambiguous automata, we can avoid the re-computation

of the intersection automaton for different values of i. During intersection, in-

stead of multiplying w1 and w2, we keep the pair (w1, w2). Then, we only

need to intersect A1 and A2 once, and modify the weight of each transition

in the intersection automaton for different values of i in the computation of

T (i, 2p− i) as ((q1, q2), a, (w
i
1(w2)

2p−i), (q′1, q
′
2)).

Note that if the underlying automata were ambiguous, then this would not

work for a reason that is similar to the one due to which our algorithm fails

to compute the relative entropy of ambiguous automata using the semiring

framework (see Comment 1.2).

Running the shortest-distance algorithm over the intersection automaton

with weights modified as described above yields T (i, 2p − i). Computing the

intersection automaton takes O(|A1||A2|) time.

For automata with cycles, if we use the exact algorithm to compute the

shortest-distance, then for each i, computing T (i, 2p − i) costs O(|A1 ∩ A2|3)
time and Θ(|A1 ∩ A2|2) space. Therefore, the time complexity of computing

the 2p-distance between A1, A2 is O((2p)|A1 ∩A2|3) and the space complexity

38

Θ(|A1 ∩ A2|2).

Theorem 1.2 The L2p distance of unambiguous probabilistic automata can be

computed exactly in time O(2p|A1|3|A2|3).

Note that this theorem significantly improves the result of [84], which is expo-

nential in p. Thus, for unambiguous automata, our algorithms are, to the best

of our knowledge, the only polynomial time algorithms for computing the L2p

distance exactly.

Note that if A1 and A2 are acyclic, T (i, 2p − i) can be computed exactly

using a generalization of the single-source shortest-distance algorithm (Sec-

tion 1.2.3 and [76]) in time that is linear in the size of A1∩A2. Thus, for acyclic

automata, the L2p distance can be computed exactly in time O(2p|A1||A2|).
For the computation of the L2p-distance of arbitrary automata, we can

no longer intersect A1 and A2 just once. Since there may be multiple paths

in Ak, k ∈ {1, 2} with the same label, cross terms appear in T (i, 2p − i).

For example if w1 and w2 are the weights of two paths in A1 with labels x

and the path with weight w′ is the (only) path in A2 with label x, then the

contribution of string x to T (i, 2p − i) is (w1 + w2)
i(w′)2p−i, leading to cross

terms of the type
(
i
j

)
wj1w

i−j
2 w′2p−i, j ≤ i. This makes it necessary to perform

separate intersections for each i, hence a total of 2p intersections. The compu-

tational cost and space complexity of intersection to compute T (i, 2p− i) is in

O(|A1|i|A2|2p−i). Thus, the exact shortest-distance algorithm has complexity

O((|A1|i|A2|2p−i)3). This leads us to the following result.

39

Theorem 1.3 The L2p distance of two arbitrary probabilistic automata A1

and A2 can be computed in time
∑2p

i=0O((|A1|i|A2|2p−i)3) = O((|A1|+ |A2|)6p).

1.3.3 Hellinger Distance

The ideas presented in the previous section can be used in a straightforward

manner to compute the Hellinger distance of two unambiguous probabilistic

automata. The Hellinger distance Hellinger(A1, A2) of two probabilistic au-

tomata A1 and A2 is given by:

Hellinger(A1, A2) =

[∑
x∈Σ∗

(√
[[A1]](x)−

√
[[A2]](x)

)2
]1/2

. (1.20)

Thus,

[Hellinger(A1, A2)]
2 =

∑
x∈Σ∗

(
√

[[A1]](x)−
√

[[A2]](x))
2 (1.21)

=
∑
x∈Σ∗

[[A1]](x) +
∑
x∈Σ∗

[[A2]](x)− 2
∑
x∈Σ∗

√
[[A1]](x)[[A2]](x)

= 2

(
1−

∑
x∈Σ∗

√
[[A1]](x)[[A2]](x)

)
.

The problem of computing the Hellinger distance between A1, A2 therefore

reduces to efficiently computing
∑

x∈Σ∗
√

[[A1]](x)[[A2]](x). Once again, as long

as A1 and A2 are unambiguous there is at most one accepting string with

label x in A1 ∩ A2. Intersecting A1 and A2 over the probability semiring, the

weight of the transition corresponding to the intersection of the transitions

40

e1 = (q1, a, w1, q
′
1) and e2 = (q2, a, w2, q

′
2) is given by w1w2.

The function Φ : (R+,+,×, 0, 1) → (R+,+,×, 0, 1) defined by Φ(x) =
√
x

is clearly a monoid morphism. Since 0 ≤ x < 1, 0 ≤ √x < 1, it also preserves

closedness. Since the Φ-norm of the intersection automaton is precisely the

quantity we are interested in, we obtain an efficient algorithm to compute the

Hellinger distance [30, 34]. The complexity of this computation is the same as

the complexity of the shortest distance algorithm on the intersection automa-

ton A1 ∩A2. If A1 and A2 are acyclic, then the shortest-distance computation

can be done in linear time, i.e. O(|A1 ∩ A2|). For unambiguous A1, A2, one

could compute the Hellinger distance exactly in time that is cubic in the size of

the intersection automaton and space that is quadratic using a generalization

of the classical Floyd-Warshall all-pairs shortest-distance algorithm that works

for arbitrary closed semirings. However, a more efficient approximate solution

that uses only linear space can be obtained using the general single-source

shortest-distance algorithm [76].

1.4 Hardness Results

1.4.1 L2p+1 Distance and L∞ Distance

In this section, we analyze the computation of the Lk distance between prob-

abilistic automata for odd k. In contrast with the complexity of computing

the L2p distance, the problem of computing the L2p+1 distance turns out to be

NP-hard even for acyclic automata.

41

The problem of computing the L1 or L∞ distance of two probabilistic au-

tomata was shown to be NP-hard by Lyngsø and Pederson [84], even for acyclic

automata. Here, we extend these results to the case of arbitrary L2p+1 dis-

tances, where p ∈ N.

Our proof of the hardness of computing the L2p+1 distance between two

acyclic probabilistic automata is by reduction from the Max-Clique problem

and is based on a technique used in [84].

Given a graph G = (V,E), one can construct an acyclic weighted automa-

ton AG over the probability semiring of size polynomial in |V |+ |E| such that

[[AG]](x) = k for some string x if and only if G has a clique of size k.

Let n = |V |. AG is constructed as follows. It has a single initial state qs

and a single final state qt. For each i ∈ V , it admits the following transitions:

(a) a transition from qs to qi,0 with label ε and weight 1;

(b) a transition from qi,n to the final state qt with label ε and weight 1;

(c) a transition from qi,i−1 to qi,i with label i and weight 1;

(d) a transition from qi,j−1 to qi,j with label ε and weight 1 for each j 6= i;

and

(e) if (i, j) ∈ E, a transition from qi,j−1 to qi,j with label j and weight 1.

The size of AG is clearly polynomial in |V | + |E|. Given a set S ⊆ V , let

[S] denote the ordered tuple with elements of S. For example, if S = {3, 1, 2},
then [S] = (1, 2, 3). By construction, for any clique S, AG contains a distinct

42

path labeled with [S] starting at the initial state and going through qi,0 for

each i ∈ S (see Fig. 1.4 for an example with [S] = (1, 2, 3).) Since all accepting

paths have the same weight 1, this proves the property that [[A]](x) = k for

some string x if and only if G has a clique of size k.

The automaton AG is not probabilistic. But, an equivalent probabilis-

tic automaton without ε-transitions can be computed from AG by using the

weighted ε-removal algorithm [75], and a weight-pushing algorithm can be used

to normalize the sum of its weights to one [73]. We first establish the result

with AG and later describe how to convert AG into a probabilistic automaton.

Theorem 1.4 The problem of computing the L2p+1 distance of two probabilis-

tic automata is NP-hard.

Proof. The proof is based on a reduction using an algorithm for the compu-

tation of the L2p+1 distance as a subroutine to define an algorithm for solving

the Max-Clique problem. Using the notation adopted in [84], let ak denote the

number of strings accepted by AG with weight exactly k. Thus determining

the maximum k such that ak 6= 0 is equivalent to determining the size of the

largest clique.

For each i ∈ {0, 1, . . . , n}, let Ci denote the constant weighted automaton

assigning the same weight i to all ordered subsequences of {1, . . . , n} and

weight 0 to all other strings. Fig. 1.5 shows the constant automaton for n = 4.

43

1

2

3

4

(a)

qs

(1, 0)

ε/1

(2, 0)
ε/1

(3, 0)

ε/1

(4, 0)

ε/1

(1, 1)1/1

(2, 1)ε/1
1/1

(3, 1)ε/1
1/1

(4, 1)ε/1
1/1

(1, 2)ε/1
2/1

(2, 2)2/1

(3, 2)ε/1
2/1

(4, 2)ε/1

(1, 3)ε/1
3/1

(2, 3)ε/1
3/1

(3, 3)3/1

(4, 3)ε/1

(1, 4)ε/1
4/1

(2, 4)ε/1

(3, 4)ε/1

(4, 4)4/1

qt

ε/1

ε/1

ε/1

ε/1

(b)

Figure 1.4: (a) Undirected graph G = (V,E). (b) The corresponding automa-
ton AG constructed in the reduction.

By definition of the L2p+1 distance,

∀i ≥ 0, [L2p+1(Ci, AG)]2p+1 =
∑
x∈Σ∗
|[[AG]](x)− [[Ci]](x)|2p+1 (1.22)

=
∑
x∈Σ∗
|[[AG]](x)− i|2p+1 (1.23)

=
n∑
j=0

aj|i− j|2p+1 (1.24)

This defines a system of linear equation with unknown variables aj, j =

44

40 1
ε/1
1/1

2
ε/1
2/1

3
ε/1
3/1

ε/1
4/1

Figure 1.5: The constant automaton C1 for G assigning weight 1 to all sub-
sequences of the set {1, . . . , 4}. Note that the final state has a final weight of
1.

0, . . . , n. Let M ∈ R(n+1)×(n+1) be the matrix defined by Mi,j = |i− j|2p+1, i ∈
{0, 1, . . . , n} and let A ∈ Rn+1 be the column vector containing the ajs. If

M is invertible, then A can be defined with respect the L2p+1 distance of the

automata Ci and AG, which will prove the statement of the theorem.

This matrix is a specific Toeplitz matrix, but it is not straightforward to

compute its determinant [84]. Instead, we can do our reasoning in Z3. In Z3,

the coefficients of M are either 0, 1, or −1, regardless of the value of p. The

determinant of M in Z3 is given by:

det(M) =





−1 if n+ 1 ≡ 2 (mod 3)

1 if n+ 1 ≡ 0 (mod 3)

0 if n+ 1 ≡ 1 (mod 3).

We delay the proof of this fact to Lemma 1.4.

This implies that for all n ∈ N such that n is of the form n + 1 ≡ 0

(mod 3) or n+ 1 ≡ 2 (mod 3), the matrix M of size (n+ 1)× (n+ 1) defined

by Mi,j = |i− j|2p+1, i ∈ {0, 1, . . . , n} is invertible in R. Therefore, for n ≡ ±1

(mod 3), one can compute the column vector A and determine the size of the

45

largest clique in the original graph G. This leaves us only with the case where

n ≡ 0 (mod 3) in the original graph G = (V,E). But, in this case, one can

add a “dummy vertex” to G that is connected to all other vertices of V . Doing

so increases the size of the largest clique by exactly one, and yields a graph

G′ = (V ′, E ′) with |V ′| ≡ 1 (mod 3). Since the size of the largest clique in G

is one less than the size of the largest clique in G′, the reduction is complete.

Thus, the problem of determining the computing 2p+ 1 distance between two

probabilistic automata is NP-hard. 2

We conjecture that the problem of computing the L2p+1 distance, or L∞, is in

fact undecidable. Note that it was shown in [84] that, in view of the hardness

of approximation results for cliques [95, 47], even a polynomial approximation

of the L∞ distance within a factor of n
1
4
−ε is impossible unless NP = P.

Lemma 1.4 The determinant of M in Z3 is given by

det(M) =





−1 if n+ 1 ≡ 2 (mod 3)

1 if n+ 1 ≡ 0 (mod 3)

0 if n+ 1 ≡ 1 (mod 3).

Proof. Let M [n + 1] ∈ R(n+1)×(n+1) be the matrix defined by Mi,j ≡ |i − j|
(mod 3). Note that |i − j|2p+1 (mod 3) ≡ |i − j| (mod 3) for all p ∈ N. To

remain consistent with the previous description, throughout this proof, we

consider the matrix M of size (n+ 1)× (n+ 1).

Let Ri, Cj denote the ith row and the jth column of M respectively. We

46

prove the lemma by showing that the following three identities in Z3 hold for

all k ∈ N, k ≥ 2:

det(M [3k + 1]) = 0

det(M [3k + 2]) = − det(M [3k])

det(M [3k]) = det(M [3k − 4])− det(M [3k − 3]).

Case 1. n + 1 ≡ 1 (mod 3). Let n + 1 = 3k + 1 for some k ∈ N. For all

j ∈ {1, . . . , 3k + 1},

M3k+1,j ≡ |3k+1−j| (mod 3) ≡ (1−j) (mod 3) ≡ −|1−j| (mod 3) = −M1,j.

Since the last row is a scalar multiple of the first row, det(M) = 0 for n+1 ≡ 1

(mod 3).

Case 2. n+1 ≡ 2 (mod 3). Let n+1 = 3k+2 for some k ∈ N. In this case,

we show that det(M [3k + 2]) = − det(M [3k]). Given M [3k + 2], we perform

the following symmetric row and column operations:

R1 ← R1 +R3k+1 C1 ← C1 + C3k+1. (1.25)

Note that in Case 1, we observed that R3k+1 was the negation of R1. The

same argument shows that the above row operation will set all but the last

entry in the first row (and by symmetry, in the first column) to zero. Let M ′

denote the resulting matrix. Then, M ′
1,i = M ′

i,1 = 0 for 1 ≤ i ≤ 3k + 1 and

47

M ′
1,3k+2 = M ′

3k+2,1 = −1. The entries in rows and columns 2 through 3k + 1

are unaffected. Let S be the submatrix of M ′ induced by rows {2, . . . , 3k+ 2}
and columns {1, . . . , 3k+1}. Fig. 1.6(a) illustrates the structure of the matrix

M ′. Developing the determinant of M ′ along R1 and simplifying the powers

of −1 yield:

det(M) = det(M ′) = (−1)(3k+2)+1 [(−1) det(S)] = (−1)3k det(S). (1.26)

Developing the determinant of S along the first column leads to:

det(S) = (−1)(3k+1)+1 [(−1) det(M [3k])] = (−1)3(k+1) det(M [3k]). (1.27)

It follows that:

det(M) = (−1)3(2k+1) det(M [3k]) = − det(M [3k]).

Case 3. n + 1 ≡ 0 (mod 3). Let n + 1 = 3k for k ∈ N. We show that

det(M [3k]) = det(M [3k− 4])− det(M [3k− 3]). Given M [3k], we perform the

48

M[3k]

all 0s
a

ll
0

s

.

.

.

1 2 3k+2

1

2

3k+2

−1

−1

0

...

S

all 0s

.

.

a
ll

0
s

a
ll

0
s

1 2

1

2

... 3k

3k

−1

−1

−11

M[3k−2]

1

−1

all 0s

.

(a) (b)

M[3k−2].
.

1 2

1

2

... 3k

3k 1

1all 0s

a
ll

0
s

a
ll

0
s

all 0s

−1

−1

.

all 0s

.

.

all 0s

all 0s

a
ll

0
s

1 2

1

2

... 3k

3k 1

1

a
ll

0
s

1

−1

−1

M[3k−3]

a
ll

0
s

.

(c) (d)

Figure 1.6: (a) Case 2. The matrix M ′ obtained from M [3k+ 2] after the row
and column operations described in Equation 1.25. (b) Case 3. The matrix
obtained fromM [3k] after the first four (row and column) operations described
in Equation 1.28. (c) Case 3. The matrix obtained after the next four (row
and column) operations. (d) Case 3. The final matrix after all row and column
operations.

49

following symmetric operations:

R1 ← R1 +R3k−2 C1 ← C1 + C3k−2

R3k ← R3k +R3 C3k ← C3k + C3

R2 ← R2 +R1 C2 ← C2 + C1

R3k−1 ← R3k +R3k−1 C3k−1 ← C3k + C3k−1

R2 ← R2 +R3k−1 C2 ← C2 + C3k−1.

(1.28)

The entries of the resulting matrix are all zero in the first and last row and

column, except for M1,3k = 1,M3k,1 = 1 (see Fig. 1.6(b), 1.6(c) and 1.6(d)).

Let S denote the submatrix induced by rows i and j with i, j ∈ {2, . . . , 3k − 1}.
Thus S is a (3k − 2) × (3k − 2) matrix. For S, we have S1,1 = 1, S1,3k−2 =

−1, S3k−2,1 = −1. The remaining entries in the first row and the first column of

S are all zero. Furthermore, the submatrix of S induced by rows i and j with

i, j ∈ {3, . . . , 3k − 1} is the same as M [3k − 3]. Developing the determinant

of S along the first row and simplifying the powers of −1 yields:

det(S) = det(M [3k − 3])− det(M [3k − 4]).

Developing the determinant of matrix M after the row and column operations

described above along R1 followed by R3k (both these rows have only one

non-zero entry, namely, M1,3k = M3k,1 = 1) yields:

det(M [3k]) = − det(S) = det(M [3k − 4])− det(M [3k − 3]),

50

and ends the proof. 2

We now comment on the fact that the automata AG and Ci are not prob-

abilistic. Let L(A) denote the language accepted by automaton A and deg(v)

denote the degree of vertex v in G. The analysis presented here is similar to

that of [84]; we outline it for the sake of completeness.

Lemma 1.5 The sums of the weights of all accepting paths in AG and Ci are

given by

∑

x∈L(AG)

[[AG]](x) =
∑
v∈V

2deg(v),
∑

x∈L(Ci)

[[Ci]](x) = i|L(Ci)| = i2n.

Proof. Since each transition in AG has weight 1, the weight of every accepting

path in AG is 1. Thus, the sum of the weights of all accepting paths in AG is

exactly equal to the number of accepting paths. Let Ni denote the number of

accepting paths in AG that pass through state qi,0. A vertex i ∈ V has deg(i)

vertices adjacent to it in G. By construction, we introduce two transitions from

state qi,j−1 to qi,j for each neighbor j of i, one with label j and weight 1 and

another with label ε and weight 1, and this doubles the number of accepting

paths that pass through qi,0. Thus, Ni = 2deg(i) and the number of accepting

paths in AG is equal to
∑n

i=0 2deg(i).

For automaton Ci, each string has weight i, and the language accepts 2n

strings. Thus, the sum of the weights of all accepting paths in Ci is exactly

i2n. 2

51

Let ZG denote
∑

v∈V 2deg(v). One way to make AG and Ci probabilistic is to

assign a final weight 1/ZG to AG and 1/i2n to Ci. However, this would result

in a modification of matrix M as Mi,j would then become |i/(i2n)− j/ZG|2p+1

and we wish to use our proof of the invertability of M for Mi,j = |i − j|2p+1

for n+ 1 6≡ 1 (mod 3). This can be achieved as follows:

1. If ZG ≥ i2n, then we normalize both automata AG and Ci by assigning

them the final weight 1/ZG. The sum of the weights of all accepting

paths in AG is then one but that in Ci is given by i2n/ZG, which is less

than one. To make Ci probabilistic (i.e. the sum of the weights of all

accepting paths in Ci is exactly one), we introduce a new symbol, say

$, and add a transition in Ci from its start state to its final state with

input label $ and weight 1 − i2n/ZG. Let ÂG, Ĉi denote automata AG

and Ci modified as described. It is straightforward to verify that

[
L2p+1(ÂG, Ĉi)

]2p+1

=
n∑
j=0

aj
ZG
|i− j|2p+1 +

(
1− i2n

ZG

)2p+1

. (1.29)

2. If ZG < i2n, then we normalize AG and Ci by assigning them the final

weight 1/i2n. Now the sum of the weights of all accepting paths in Ci

is one but that in AG is given by ZG/i2
n. Again, we can introduce a

new symbol, say $, and add a transition in AG from its start state to its

final state with input label $ and weight 1 − ZG/i2n. For the modified

52

automata ÂG and Ĉi, as before, we obtain

[
L2p+1(ÂG, Ĉi)

]2p+1

=
n∑
j=0

aj
i2n
|i− j|2p+1 +

(
1− ZG

i2n

)2p+1

. (1.30)

By Equation 1.29 and Equation 1.30, the following holds:

n∑
j=0

aj|i−j|2p+1 =





ZG

(
(L2p+1(ÂG, Ĉi))

2p+1 + (1− i2n

ZG
)2p+1

)
if ZG ≥ i2n

i2n
(
(L2p+1(ÂG, Ĉi))

2p+1 + (1− ZG

i2n)2p+1
)

if ZG < i2n.

(1.31)

Since it is NP-hard to compute
∑n

j=0 aj|i − j|2p+1 for all i (by the previous

reduction), it must be NP-hard to compute the L2p+1 distance between ÂG

and Ĉi, which are both probabilistic.

Absolute Value Automata

The hardness results for the computation of the L2p+1 distances of probabilistic

automata seem to be related to the obligatory presence of the absolute values

in the definition of these distances. This brings us to examine several questions

related to the absolute value.

In particular, one may ask if in general there exists a weighted automaton

C over the real semiring (R,+,×, 0, 1) representing the absolute value of the

difference of two probabilistic automata A and B, that is such that

∀x ∈ Σ∗, [[C]](x) = |[[A]](x)− [[A2]](x)|.

53

We could refer to C as the absolute value automaton and denote it by |A−B|.
The general existence of C and even its efficient computation would not be

sufficient to guarantee the efficient computability of the L1 distance (or L2p+1

distance).

Indeed, by the definition of C, to compute the L1 distance of A and B,

one can sum the weights of all successful paths of C. But, since the semiring

(R,+,×, 0, 1) is not closed, no general algorithm is available for computing this

sum. Note that [[C]] takes its values in R+, but this does not imply that its

transition weights are necessarily in R+, nor does it even imply the existence of

an equivalent weighted automaton C ′ over (R+,+,×, 0, 1). This is because R

is not a Fatou extension of R+ [12]; indeed there exist weighted automata over

the real semiring taking their values in R+ that do not admit an equivalent

weighted automaton over (R+,+,×, 0, 1) [85, 63].

However, the hardness of the computation of the L1 distance guarantees

that in general, unless P = NP, there exists no absolute value weighted au-

tomaton C over (R+,+,×, 0, 1) that can be computed efficiently since the sum

of the weights of the paths of C, i.e., the L1 distance, could then be computed

efficiently.

Note also that the general problem of determining if a weighted automaton

A defined over the real semiring (R,+,×, 0, 1) accepts no string of negative

weight is undecidable [85, 63]. Since there exists an efficient algorithm for

testing the equivalence of two weighted automata over the real semiring [90],

this implies that in general there does not exists a computable absolute value

54

automaton |A| such that ∀x ∈ Σ∗, [[|A|]](x) = |[[A]](x)|.

1.4.2 Relative Entropy of Arbitrary Automata

This section proves a hardness result suggesting that the problem of computing

the relative entropy of arbitrary probabilistic automata is intractable.

Hardness Result

We describe a reduction of the problem of determining whether the language

accepted by an automaton is Σ∗ to the that of determining whether the relative

entropy of two probabilistic automata is infinite.

Automaton A0. We first describe an automaton A0 that is used in our

reduction. Fix a real number α > 0 such that α|Σ| < 1 and let A0 be the

one-state weighted automaton representing the weighted regular expression

(1 − α)(
∑

x∈Σ αx)
∗ shown in Figure 1.7 for Σ = {a, b}. By definition, A0

accepts all strings x ∈ Σ∗ and for all x ∈ Σ∗, [[A]](x) = α|x|(1 − |Σ|α), where

|Σ|α < 1. By construction, A0 is stochastic and thus probabilistic. Here also

is a direct verification:

∑
x∈Σ∗

[[A0]](x) =
∞∑
n=0

∑

|x|=n
αn(1− |Σ|α) =

∞∑
n=0

|Σ|nαn(1− |Σ|α) (1.32)

= (1− |Σ|α)
1

1− |Σ|α = 1. (1.33)

55

0/1 − 2α

a/α
b/α

Figure 1.7: The automaton A0 that accepts all strings, {a, b}∗, and assigns a
weight of αn(1 − α) to any string of length n. α > 0 is a constant such that
2α < 1.

The following theorem shows that the problem of determining the relative en-

tropy of two arbitrary probabilistic automata is at least as hard as determining

if a finite automaton accepts Σ∗.

Theorem 1.5 Let A be an arbitrary probabilistic automaton, then D(A0‖A) <

∞ if and only if A accepts Σ∗.

Proof. Assume that [[A]](x) = 0 for some x ∈ Σ∗. Then, since [[A0]](x) > 0,

[[A0]](x) log [[A0]](x)
[[A]](x)

is infinite and D(A0‖A) =∞.

Assume now that A accepts Σ∗, thus [[A]](x) 6= 0 for all x ∈ Σ∗. With-

out loss of generality, we can assume A to be trim. Let E denote the set

of transitions of A and let δ denote the minimum weight of a transition:

δ = mine∈E w[e]. By assumption, δ > 0 since the automaton A is trim and

probabilistic. For x ∈ Σ∗, |x| = n, [[A]](x) ≥ δn. Thus

∀x ∈ Σ∗,
[[A0]](x)

[[A]](x)
=
αn(1− |Σ|α)

[[A]](x)
≤ (1− |Σ|α)

(α
δ

)n
.

56

It follows that:

∀x ∈ Σ∗, [[A0]](x) log
[[A0]](x)

[[A]](x)
≤ αn(1− |Σ|α) (n log(α/δ) + log(1− |Σ|α)) .

For any positive integer N , summing over all strings x of length at most N ,

in the order of increasing |x|, yields:

∑

|x|≤N
[[A0]](x) log

[[A0]](x)

[[A]](x)
=

N∑
n=0

∑

x:|x|=n
[[A0]](x) log

[[A0]](x)

[[A]](x)
(1.34)

≤
N∑
n=0

|Σ|nαn(1− |Σ|α) (n log(α/δ) + log(1− |Σ|α)) .

Since α|Σ| < 1 the two series in this summation,
∑

n nβ
n and

∑
n β

n with

β = |Σ|α < 1, converge. It is straightforward to verify that for 0 ≤ β < 1,
∑∞

n=0 nβ
n = β

(1−β)2
. Using this identity, we obtain the following bound on

D(A0‖A):

D(A0‖A) ≤ (1− |Σ|α)

(|Σ|α log(α/δ)

(1− |Σ|α)2
+

log(1− |Σ|α)

1− |Σ|α
)
. (1.35)

Thus D(A0‖A) <∞. 2

Theorem 1.6 The problem of computing the relative entropy of two arbitrary

probabilistic automata is PSPACE-hard.

Proof. The universality problem, i.e., the problem of deciding if a trim finite

automaton A accepts Σ∗, is PSPACE-complete [96, 49]. The transitions of

57

any trim finite automaton A can be augmented with positive weights so that

it becomes a probabilistic automaton. This can be done by weighting each

outgoing transition of state q, or final weight if q is final, by 1/nq where nq is

the out-degree of q, plus one if q is final. The encoding of 1/nq takes O(log2 nq)

space, thus the space and time complexity of this construction is polynomial in

the size of A. By Theorem 1.5, it can be decided if a probabilistic automaton

A accepts all strings by computing the relative entropy D(A0‖A) and testing

its finiteness. Thus, the computation of the relative entropy can determine if

a trim finite automaton A accepts Σ∗. 2

Remarks

Theorem 1.6 suggests that the general problem of computing the relative en-

tropy of arbitrary probabilistic automata is intractable. However, one may

resort to various approximations of practical importance. An example is an

approximation based on the use of the log-sum inequality in [93] in the context

of machine learning. We have initiated a specific study of such approximations,

in particular by examining the quality of an approximation when using the al-

gorithms we presented for the unambiguous case. Initial results are presented

in Section 1.7.4.

Note that the general problem of determining if a weighted automaton

over the (R,+,×, 0, 1) semiring accepts the full free monoid Σ∗ is undecidable

[12]. Here, we are considering the same decidability question but only for

probabilistic automata, which form a restricted class of all weighted automata

58

over the (R,+,×, 0, 1) semiring. However, we conjecture that the problem is

in fact undecidable even in this case.

1.5 Equivalence of Probabilistic Automata

Clearly, our algorithm for computing the L2p distance of two arbitrary proba-

bilistic automata A1 and A2 also provides an efficient method for testing their

equivalence since A1 and A2 are equivalent if and only if their Lp distance is

zero. For p = 1, our exact algorithm can be used to test for equivalence in time

O((|A1||A2|)3). However, the standardization algorithm of Schützenberger [90]

can be used to derive a more efficient algorithm.

Theorem 1.7 The equivalence of two arbitrary probabilistic automata A1 and

A2 can be computed in time O(|Σ| (|A1|+ |A2|)3).

Proof. The standardization algorithm of Schützenberger [90, 12] applies to

any weighted automaton defined over a field. It leads to a representation of

a weighted automaton with the smallest number of states. The algorithm

requires the construction of bases for vectorial spaces for which spanning sets

are known. Using LUP decompositions, the complexity of the standardization

algorithm applied to a weighted automaton A is in O(|Σ||A|3).
For the purpose of equivalence, we may view a probabilistic automaton

as an automaton over the field (R,+, ·, 0, 1). Since negation is allowed over

this field, we can construct the automaton A = A1 − A2, in linear time, and

59

apply standardization. A1 and A2 are equivalent if and only if A is equivalent

to the zero weighted machine, that is if and only after standardization A

has no state. Thus, this leads to an algorithm for testing the equivalence of

two probabilistic automata A1 and A2 with overall complexity O(|Σ| |A|3) =

O(|Σ| (|A1|+ |A2|)3). 2

To our knowledge, this is the most efficient algorithm for testing the equiva-

lence of probabilistic automata. Note that the same algorithm can be used to

test the equivalence of probabilistic automata as defined by Rabin [81]. The

best algorithm previously reported in the literature was that of Wen-Guey

Tzeng whose complexity is O(|Σ| (|A1|+ |A2|)4) [99]. The alphabet factor does

not appear in the expression of the complexity reported by the author most

likely because the proof is restricted to a binary alphabet. The technique de-

scribed by Wen-Guey Tzeng is in fact closely related to the standardization

algorithm of Schützenberger [90], which the author was apparently not aware

of.

Also there is a claim in [2] that the equivalence of weighted automata with

transition weights in Z can be tested in cubic time. However, the paper does

not include a full proof of the correctness of the algorithm and its complexity.

Instead it relies on several claims made by others in private communications

or results appearing in a Siberian journal not accessible to us. It also seems

to be specifically using the property of the coefficients being integers. The

algorithm we are describing does not require transition weights to be integers

and applies to all probabilistic automata and other weighted automata with

60

real-valued weights.

1.6 Relative Entropy As a Kernel

This section examines the use of the relative entropy, or its symmetricized

version, in machine learning algorithms. The results hold in general and are

not limited to the particular case of probabilistic automata.

In machine learning, functions K : X ×X → R are called kernels. A kernel

is said to be positive definite symmetric (PDS for short) if it is symmetric,

K(x, y) = K(y, x) for all x, y ∈ X , and if for any subset {x1, . . . , xm} ⊆ X ,

the eigenvalues of the matrix [K(xi, xj)]1≤i,j≤m are non-negative. PDS ker-

nels play an important role in machine learning since they can be combined

with discriminant algorithms such as support vector machines (SVMs) to cre-

ate powerful predictors [88], the PDS condition ensuring the convergence of

training.

In some cases, a symmetric kernel K is not positive definite but exp(−λK)

is PDS for any λ > 0. K is then said to be negative definite symmetric (NDS).

Such kernels are also important since they can be used to defined PDS kernels

as in the case of Gaussian kernels.

However, we will show that the symmetricized relative entropy is neither

PDS nor NDS, contrary to what is stated in a number of machine learning

papers, which limits its use and application in kernel methods.

The symmetricized relative entropy of two distributions p and q is given

61

by:

Dsym(p‖q) =
D(p‖q) +D(q‖p)

2
=

∑
x∈X

[p(x)− q(x)] log
p(x)

q(x)
.

Theorem 1.8 The symmetricized relative entropy is not a PDS kernel.

Proof. Let {q1, q2, . . . , qm} be a set of probability distributions over X . Con-

sider the Gram matrix K ∈ Rm×m defined by Ki,j = Dsym(qi‖qj). By definition

of Dsym, Dsym(qi‖qi) = 0 for all i ∈ [1,m], thus tr(K) = 0. When K 6= 0, this

implies that K admits at least one negative eigenvalue [51]. 2

To show that the symmetricized relative entropy is not an NDS kernel, we

use the following theorem from [87].

Theorem 1.9 ([87, 11]) Let K : X × X → R be an NDS kernel such that

for x, y ∈ X , K(x, y) = 0 if and only if x = y. Then, there exists a Hilbert

space H and a mapping Φ : X → H such that

∀x, y ∈ X , K(x, y) = ||Φ(x)− Φ(y)||2.

Under the hypothesis of the theorem,
√
K defines a metric.

Theorem 1.10 The symmetricized relative entropy is not an NDS kernel.

Proof. Note that for any two distributions p and q, D(p‖q) ≥ 0 and D(q‖p) ≥
0. Since Dsym(p‖q) = 0 is the average of D(p‖q) and D(q‖p), it is zero if and

only if D(p‖q) = 0 and D(q‖p) = 0. This happens only when p = q. Thus, by

62

Theorem 1.9, if Dsym is an NDS kernel,
√
Dsym defines a metric. We prove

that
√
Dsym does not obey the triangle inequality, which will show that Dsym

is not NDS.

For simplicity, the proof is given in the case of a universe of events limited

to two elements: X = {x1, x2}. Let ε > 0 and let q1, q2, q3 be the three

distributions over X defined by:

∀i ∈ [1, 3], qi(x1) = 1− iε and qi(x2) = iε.

By definition of the symmetricized relative entropy,

Dsym(q1‖q2) = ε log
1− ε
1− 2ε

− ε log
ε

2ε
= ε log

2(1− ε)
1− 2ε

.

Similarly, Dsym(q2‖q3) = ε log 3(1−2ε)
2(1−3ε)

and Dsym(q1‖q3) = 2ε log 3(1−ε)
1−3ε

. Note

that:

Dsym(q1‖q3) = 2ε log 3(1−ε)
1−3ε

= 2
(
ε log 2(1−ε)

1−2ε
+ ε log 3(1−2ε)

2(1−3ε)

)

= 2
(
Dsym(q1‖q2) +Dsym(q2‖q3)

)
.

√
Dsym(q1‖q3) =

√
2Dsym(q1‖q2) + 2Dsym(q2‖q3)

Since
√· is strictly concave, for positive x > 0, y > 0, x 6= y (i.e. ε 6= 7

15
),

√
x+ y

2
>

√
x+
√
y

2
.

63

Therefore,

√
Dsym(q1‖q2) +Dsym(q2‖q3)

2
>

√
Dsym(q1‖q2) +

√
Dsym(q2‖q3)

2
.

Or, in other words,

√
Dsym(q1‖q3) =

√
2Dsym(q1‖q2) + 2Dsym(q2‖q3) (1.36)

>
√
Dsym(q1‖q2) +

√
Dsym(q2‖q3). (1.37)

Thus,
√
Dsym does not obey the triangle inequality and the proof is complete.

2

1.7 Computation of the Norm

In Section 1.3.1, we gave a general algorithm for computing the relative en-

tropy of two unambiguous probabilistic automata by relating this problem to

a shortest-distance problem over the appropriate semiring. A special case of

that algorithm can be used to compute the entropy of a single unambiguous

probabilistic automaton. One may ask if such results could be generalized to

the computation of other similar quantities that we will refer to as the norm

of an unambiguous probabilistic automaton. This section shows how they can

be generalized by considering an arbitrary monoid morphism.

64

1.7.1 Norm of an Unambiguous Automaton

Let (K,⊕,⊗, 0, 1) be a closed semiring, or an ε-k-closed semiring for an au-

tomaton A. Let Φ : (R+, ·, 1)→ (K,⊗, 1) be a monoid morphism. We will say

that Φ preserves closedness, if for all x, 0 ≤ x < 1,
⊕∞

n=0 Φ(xn) is well-defined

and in K. For a such a morphism, we can define the Φ-norm of a probabilistic

automaton as:

‖A‖Φ =
⊕
x∈Σ∗

Φ([[A]](x)).

Theorem 1.11 Let (K,⊕,⊗, 0, 1) be a closed or ε-k-closed semiring and let

Φ : (R+, ·, 1)→ (K,⊗, 1) be a monoid morphism preserving closedness. Then,

for any unambiguous probabilistic automaton A, ‖A‖Φ can be computed exactly

in time O(|A|3).

Proof. The automaton Φ(A) derived from A by replacing each weight x by

Φ(x) is a weighted automaton over the semiring K. Since A is unambiguous, at

most one successful path in A, π = e1 · · · ek, is labeled with any string x ∈ Σ∗.

Since Φ is a monoid morphism, Φ([[A]](x)) =
⊗k

j=1 Φ(w[ej]), that is the weight

of the path labeled with x in Φ(A). This shows that ‖A‖Φ = s(A) and proves

the theorem. 2

Theorem 1.11 provides an algorithm for computing the Φ-norm of unam-

biguous probabilistic automata for arbitrary monoid morphisms preserving

closedness. We will briefly illustrate two applications of the theorem.

65

(a) Entropy of a Probabilistic Automaton.

Let (K,⊕,⊗, (0, 0), (1, 0)) be the entropy semiring. It is not hard to see

that the function Φ : (R+,+,×, 0, 1) → (K,⊕,⊗, (0, 0), (1, 0)) defined

by: ∀x ∈ R+,Φ(x) = (x,−x log x), is a monoid morphism preserving

closedness. Thus, the Φ-norm of an unambiguous probabilistic automa-

ton can be computed efficiently using a single-source shortest-distance

algorithm. Its second component is exactly the entropy of A, thus this

provides an efficient and simple algorithm for computing the entropy of

A.

(b) Norm Lα of a Probabilistic Automaton, α ∈ R+.

The function Φ : (R+,+,×, 0, 1) → (R+,+,×, 0, 1) defined by Φ(x) =

xα is clearly a monoid morphism. Since for 0 ≤ x < 1, 0 ≤ xα <

1, it also preserves closedness. Thus, the Lα-norm of an unambiguous

probabilistic automaton A can be computed efficiently using a shortest-

distance algorithm. In particular, the Bhattacharya norm of A, its L 1
2
-

norm, can be computed efficiently.

66

1.7.2 Norm of Arbitrary Automata

In general, a probabilistic automaton may not be unambiguous. But the Lp-

norm can still be computed in polynomial time for any integer p ≥ 1.

Theorem 1.12 The Lp-norm of a probabilistic automaton A can be computed

exactly in time O(|A|3p) time and Θ(|A|2p) space.

Proof. Let A(p) denote the automaton obtained by intersecting A with itself

p− 1 times. Then, by the definition of intersection, (s[A(p)])1/p represents the

Lp-norm of A. The cost of the intersections to create A(p) is in O(|A|p). 2

Note that the problem of computing the L∞ norm of a probabilistic automaton

is NP-hard [84].

1.7.3 Approximate Computation of Lp-norm

Here we consider the specific case of the computation of the Lp-norm of a

probabilistic automaton. Our results can be generalized to cover more general

cases, in particular the case of unambiguous automata.

Since for any ε > 0, a probabilistic automaton is ε-k-closed for the proba-

bility semiring, instead of the (generalized) Floyd-Warshall algorithm, we can

use a single-source shortest-distance algorithm to compute s[A] as already de-

scribed in Section 1.2.3. This algorithm works with any queue discipline and

its space complexity is linear, which is significantly more efficient than the

Floyd-Warshall algorithm. The complexity results and analyses detailed in

Section 1.2.3 apply identically here.

67

1.7.4 Approximate Computation of Entropy

Recall that the entropy H(A) of a probabilistic automaton A is defined as:

H(A) = −
∑
x∈Σ∗

[[A]](x) log([[A]](x)).

In Section 1.7.1, we saw that the entropy of an unambiguous probabilistic

automaton can be computed efficiently using the generalized shortest-distance

algorithm over the entropy semiring. However, the algorithm only works for

unambiguous probabilistic automata. Comment 1.2 explains why the lack of

ambiguity is necessary for correct computation in the semiring framework.

In this section, we show that the same shortest-distance algorithm that

computes the entropy of unambiguous probabilistic automata exactly yields

an approximation of the entropy of an arbitrary probabilistic automaton A,

where the approximation quality is a function of the degree of ambiguity of A,

made precise later. Our proofs make use of the standard log-sum inequality

[36], a special case of Jensen’s inequality, which holds for any positive reals

a1, . . . , ak, and b1, . . . , bk:

k∑
i=1

ai log
ai
bi
≥

(
k∑
i=1

ai

)
log

∑k
i=1 ai∑k
i=1 bi

. (1.38)

We first review the notion of the degree of ambiguity of a finite automaton.

The degree of ambiguity of a string x in an automaton A, denoted by da(A, x),

is the number of successful paths in A labeled with x.

68

The degree of ambiguity of A is defined as da(A) = supx∈Σ∗ da(A, x). A is

said finitely ambiguous if da(A) < ∞ and infinitely ambiguous if da(A) = ∞.

A is called polynomially ambiguous with degree h if there exists an integer

h such that da(A, x) ≤ |x|h for all x ∈ Σ∗. The minimal h for which this

holds is called the degree of polynomial ambiguity of A, denoted by dpa(A).

By definition, dpa(A) = 0 if and only if A is finitely ambiguous. When A

is infinitely ambiguous but not polynomially ambiguous, we say that A is

exponentially ambiguous and that dpa(A) =∞.

Lemma 1.6 Let A be a probabilistic automaton and let x ∈ Σ+ be a string

accepted by A on k paths π1, . . . , πk. Let w(πi) be the probability of path πi.

Clearly, [[A]](x) =
∑k

i=1w(πi). Then,

k∑
i=1

w(πi) logw(πi) ≥ [[A]](x)(log[[A]](x)− log k).

Proof. The result follows straightforwardly from the log-sum inequality, with

ai = w(πi) and bi = 1:

k∑
i=1

w(πi) logw(πi) ≥
(

k∑
i=1

w(πi)

)
log

∑k
i=1w(πi)

k
= [[A]](x)(log[[A]](x)−log k).

2

For a probabilistic automaton A, let s[A] be the quantity computed by the

generalized shortest-distance algorithm with the entropy semiring (see Equa-

tion 1.2). The discussion following Theorem 1.11 (a), together with Theo-

69

rem 1.11 show that if A is unambiguous, then S[A] = H(A).

Theorem 1.13 Let A be a probabilistic automaton and let L denote the ex-

pected length of strings accepted by A (i.e. L =
∑

x∈Σ∗ |x|[[A]](x)). Then,

1. If A is finitely ambiguous with degree of ambiguity k (i.e. da(A) = k for

some k ∈ N), then H(A) ≤ s[A] ≤ H(A) + log k.

2. If A is polynomially ambiguous with degree of polynomial ambiguity k

(i.e. dpa(A) = k for some k ∈ N), then H(A) ≤ s[A] ≤ H(A) + k logL.

Proof. The lower bound, s[A] ≥ H(A) follows from the observation that for

a string x that is accepted by A on k paths π1, . . . , πk,

k∑
i=1

w(πi) log(w(πi)) ≤ (
k∑
i=1

w(πi)) log(
k∑
i=1

w(πi)).

Since the quantity −∑k
i=1w(πi) log(w(πi)) is string x’s contribution to s[A]

and the quantity −(
∑k

i=1w(πi)) log(
∑k

i=1w(πi)) its contribution to H(A),

summing over all accepted strings x, we obtain H(A) ≤ s[A].

Assume that A is finitely ambiguous with degree of ambiguity k. Let x ∈ Σ∗

be a string that is accepted on lx ≤ k paths π1, . . . , πlx . By Lemma 1.6, we

have
∑lx

i=1w(πi) logw(πi) ≥ [[A]](x)(log[[A]](x)− log k). Thus,

s[A] = −
∑
x∈Σ∗

lx∑
i=1

w(πi) logw(πi) ≤ H(A) +
∑
x∈Σ∗

(log k)[[A]](x) = H(A) + log k.

This proves the first statement of the theorem.

70

Next, assume that A is polynomially ambiguous with degree of polynomial

ambiguity k. By Lemma 1.6, we have
∑lx

i=1w(πi) logw(πi) ≥ [[A]](x)(log[[A]](x)−
log lx) ≥ [[A]](x)(log[[A]](x)− log(|x|k)). Thus,

s[A] ≤ H(A) +
∑
x∈Σ∗

k[[A]](x) log |x| = H(A) + kEA[log |x|] (1.39)

≤ H(A) + k logEA[|x|] = H(A) + k logL, (by Jensen’s inequality)

which proves the second statement of the theorem. 2

The quality of the approximation of the entropy of a probabilistic automa-

ton A depends on the expected length L of an accepted string. L can be

computed efficiently for an arbitrary probabilistic automaton using the expec-

tation semiring and the generalized shortest-distance algorithms. The ⊕ and

the ⊗ operations of the expectation semiring have exactly the same definition

as those of the entropy semiring. The difference is in the initial step of the

algorithm, where the initial weight of each transition in A is mapped to a pair

of elements according to the mapping is w[e] 7→ (w[e], w[e]).

1.8 Conclusion

In this chapter, we presented a number of results on the complexity of com-

puting distances between probabilistic automata. On the algorithmic side, we

showed that the relative entropy of two unambiguous probabilistic automata

and the Lp distance for even-valued p between two arbitrary probabilistic au-

71

tomata can be computed in polynomial time using the semiring-framework

with a generalized shortest-distance algorithm. We also showed that the our

techniques can be straightforwardly generalized to compute Hellinger distance.

We believe that many of these algorithmic results can be extended to finitely

ambiguous probabilistic automata. We then presented a cubic time algorithm

for testing the equivalence of two arbitrary probabilistic automata, signifi-

cantly improving best previously reported algorithm for this problem.

We also presented a number of hardness results. We showed that it is NP-

hard to compute the Lp distance between probabilistic automata for odd values

of p and proved that the general problem of computing the relative entropy of

probabilistic automata is (at least) P-SPACE hard. The NP-hardness result

critically depends on ambiguity (or non-determinism) in the automata that is

constructed in the reduction. Determining the complexity of computing the

Lp distance for odd values of p for unambiguous probabilistic automata is an

open problem.

We investigated the use of symmetricized relative entropy as a Kernel in

machine learning and showed that, contrary to what is suggested by a number

of publications, it is neither positive definite symmetric nor negative definite

symmetric.

We showed that our algorithmic results can be generalized to compute ar-

bitrary norms of a probabilistic automaton. Finally, we also examined how

ambiguity (or non-determinism) influences the quality of approximation pro-

duced by the semiring-based shortest-distance algorithm. Determining the

72

complexity of computing the entropy of ambiguous probabilistic automata is

an interesting open question. We conjecture that this problem is NP-hard.

Our results demonstrate the benefit of semiring theory for computing dis-

tances between probabilistic automata. The shortest-distance based approach

yields simple but efficient algorithms, both exact and approximate, for the

computation of the various distances. As shown by our experimental results,

our algorithms scale to large automata with several hundred thousand transi-

tions.

73

Chapter 2

Magnitude-Preserving Ranking

Algorithms

2.1 Introduction and Motivation

The learning problem of ranking has gained an increasing amount of interest

in the machine learning community over the last decade, in part due to the

remarkable success of web search engines and recommender systems [48, 37,

60, 92, 27, 83, 1]. The recent Netflix challenge has further stimulated the

learning community by fueling its research with invaluable datasets [79].

The goal of information retrieval engines is to return a set of documents,

or clusters of documents, ranked in decreasing order of relevance to the user.

The order may be common to all users, as with most search engines, or tuned

to individuals to provide personalized search results or recommendations. The

74

accuracy of this ordered list is the key quality measure of these systems.

With the Netflix challenge [79], the problem is one of learning the prefer-

ences of an individual user. Previously viewed (and rated) movies by the user

comprise the training set. The goal of the learning algorithm is to accurately

predict the user’s preference on an unseen pair of movies. The ratings of other

users for a movie serve as the features for that movie. This setting is also

sometimes referred to as collaborative filtering.

Another special case of the general ranking problem is the bipartite ranking

problem [1]. In the bipartite ranking problem, one is given two sets, a positive

set whose elements are drawn from a distribution, say D+, and a negative set

whose elements are drawn from a different distribution, say D−. The goal is to

learn a ranking function that assigns higher scores to positive examples than to

negative ones. In the context of learning movie preferences of a user, bipartite

ranking suggests that there are two kinds of movies: those that are liked by

this user, and those that aren’t, and the objective of the learning algorithm

is to effectively distinguish between them. Bipartite ranking is distinct from

classification in that the performance of the hypothesis is based on a cost-

function that is defined over a pair of points.

In most previous research studies, the problem of ranking has been formu-

lated as that of learning from a labeled sample of pairwise preferences a scoring

function with small pairwise misranking error [48, 54, 37, 60, 83, 1]. Such a

formulation of the ranking problem has several shortcomings. One point to

note is that most users inspect only the top results. Thus, it would be natural

75

to enforce that the results returned near the top be particularly relevant and

correctly ordered. The quality and ordering of the results further down the

list matter less. An average pairwise misranking error directly penalizes errors

at both extremes of a list more heavily than errors towards the middle of the

list, since errors at the extremes result in more misranked pairs. However, one

may wish to explicitly encode the requirement of ranking quality at the top

in the cost function. One common solution is to weigh examples differently

during training so that more important or high-quality results be assigned

larger weights. This imposes higher accuracy on these examples, but does not

ensure a high-quality ordering at the top. A good formulation of this problem

leading to a convex optimization problem with a unique minimum is still an

open question.

Another shortcoming of the pairwise misranking error is that this formula-

tion of the problem and thus the scoring function learned ignore the magnitude

of the preferences. In many applications, it is not sufficient to determine if one

example is preferred to another. One may further request an assessment of

how large that preference is. Taking this magnitude of preference into consid-

eration is critical, for example in the design of search engines, which originally

motivated our study, but also in other recommendation systems. For a rec-

ommendation system, one may choose to truncate the ordered list returned

where a large gap in predicted preference is found. For a search engine, this

may trigger a search in parallel corpora to display more relevant results.

This motivated our study of the problem of ranking while preserving the

76

magnitude of preferences, which we will refer to in short by magnitude-preserving

ranking. The results of this chapter have appeared in papers [31, 33].

The problem that we are studying bears some resemblance with that of

ordinal regression [67, 68, 92, 20]. It is however distinct from ordinal regression

since in ordinal regression the magnitude of the difference in target values is

not taken into consideration in the formulation of the problem or the solutions

proposed. The algorithm of [20] does take into account the ordering of the

classes by imposing that the thresholds be monotonically increasing, but this

still ignores the difference of target values and thus does not follow the same

objective. A crucial aspect of the algorithms we propose is that they penalize

misranking errors more heavily in the case of larger magnitudes of preferences.

We describe and analyze several cost functions for this learning problem

and give stability bounds for their generalization error, extending previously

known stability results to non-bipartite ranking and magnitude of preference-

preserving algorithms. In particular, our bounds extend the framework of

[13, 14] to the case of cost functions over pairs of examples, and extend the

bounds of [1] beyond the bipartite ranking problem. Our bounds also apply

to algorithms optimizing the so-called hinge rank loss.

We present several algorithms optimizing these cost functions, and in one

instance detail both a batch and an on-line version. For this algorithm,

MPRank, we also show how the leave-one-out error can be computed and

approximated efficiently, which can be used to determine the optimal values

of the trade-off parameter in the cost function. We also report the results

77

of experiments comparing these algorithms on several datasets and contrast

them with those obtained using RankBoost [48, 83], an algorithm designed

to minimize the exponentiated loss associated with the Area Under the ROC

Curve (AUC), or pairwise misranking. We also compare training times and

performance results for the on-line and batch versions of MPRank, demon-

strating that our on-line algorithm scales to relatively large datasets with no

significant loss in accuracy.

The remainder of this chapter is organized as follows. We begin with the

preliminaries in Section 2.2. Section 2.3 describes and analyzes our algorithms

in detail. Section 2.4 presents stability-based generalization bounds for a fam-

ily of magnitude-preserving algorithms. Section 2.5 presents the results of our

experiments with these algorithms on several datasets.

2.2 Preliminaries

2.2.1 Formulation of the Problem

Let S be a sample of m labeled examples drawn in an independent and iden-

tically distributed fashion (i.i.d.) from a set X according to some distribution

D:

(x1, y1), . . . , (xm, ym) ∈ X × R.

Here, X is the domain from which the inputs, or instances xi are drawn and

the yi are called labels or targets.

78

For any i ∈ [1,m], we denote by S−i the sample derived from S by omitting

example (xi, yi), and by Si the sample derived from S by replacing example

(xi, yi) with another example (x′i, y
′
i) drawn i.i.d. from X according to D.

For convenience, we will sometimes denote by yx = yi the label of a point

x = xi ∈ X.

The quality of the ranking algorithms we consider is measured with respect

to pairs of examples. Thus, a cost functions c takes as arguments two sample

points. For a fixed cost function c, the empirical error R̂(h, S) of a hypothesis

h : X 7→ R on a sample S is defined by:

R̂(h, S) =
1

m2

m∑
i=1

m∑
j=1

c(h, xi, xj).

The true error R(h) is defined by

R(h) = Ex,x′∼D[c(h, x, x′)].

2.2.2 Cost Functions

As mentioned before, most ranking algorithms focus on pairwise misranking.

For points x, x′ ∈ X, hypothesis h misranks x and x′ if and only if (h(x′) −
h(x))(yx′ − yx) < 0. The pairwise misranking cost function is therefore given

by:

cPMR(h, x, x′) =





0, if (h(x′)− h(x))(yx′ − yx) ≥ 0

1, otherwise.

79

We introduce several cost functions related to magnitude-preserving ranking.

The first one is the so-called hinge rank loss which is a natural extension of

the pairwise misranking loss [27, 83]. It penalizes a pairwise misranking by the

magnitude of preference predicted or the nth power of that magnitude (k = 1

or k = 2):

ckHR(h, x, x′) =





0, if (h(x′)− h(x))(yx′ − yx) ≥ 0
∣∣(h(x′)− h(x))

∣∣k, otherwise.

ckHR does not take into consideration the true magnitude of preference yx′ − yx
for each pair (x, x′) however. The following cost function has this property and

penalizes deviations of the predicted magnitude with respect to the true one.

Thus, it matches our objective of magnitude-preserving ranking (k = 1, 2):

ckMP(h, x, x′) =
∣∣(h(x′)− h(x))− (yx′ − yx)

∣∣k.

A one-sided version of that cost function penalizing only misranked pairs is

given by (k = 1, 2):

ckHMP(h, x, x′) =





0, if (h(x′)− h(x))(yx′ − yx) ≥ 0
∣∣(h(x′)− h(x))− (yx′ − yx)

∣∣k, otherwise.

80

Finally, we will consider the following cost function derived from the ε-insensitive

cost function used in SVM regression (SVR) [102] (k = 1, 2):

ckSVR(h, x, x′) =





0, if
∣∣[(h(x′)− h(x))− (yx′ − yx)

]∣∣ ≤ ε
∣∣(h(x′)− h(x))− (yx′ − yx)− ε

∣∣k, otherwise.

Note that with the exception of cPMR, all of these cost functions are convex

functions of h(x) and h(x′).

2.2.3 Kernels and Regularization

In this section, we present technical definitions that are necessary for the

presentation of our results. Some of these definitions are standard in machine

learning, but we describe them here for the sake of completeness. A good

reference for this material is [89].

A kernel k : X × X 7→ R can be thought of as a function that measures

the similarity between a pair of points in the input space X. It is standard to

assume that this similarity is symmetric (i.e. k(x1, x2) = k(x2, x1)). Kernels

correspond to dot products in a feature space F via a map Φ : X 7→ F . Thus,

for x1, x2 ∈ X,

K(x1, x2) = 〈Φ(x1),Φ(x2)〉.

Note that we place no restrictions on the setX, and it may contain an arbitrary

set of discrete objects, such as graphs or strings.

Definition 2.1 (Gram Matrix) Given a sample S = {x1, . . . , xm} ⊆ X,

81

and a function k : X × X 7→ R, the m×m matrix K with elements Kij =

K(xi, xj) is called the Gram Matrix with respect to S.

Note that when the kernel function is symmetric, the Gram matrix is sym-

metric. We will make this assumption for the rest of this chapter.

Definition 2.2 (Positive Semi-Definite Symmetric Matrix) A real m×
m symmetric matrix K satisfying

n∑
i,j=1

cicjK(xi, xj) ≥ 0. (2.1)

for all ci ∈ R is called positive definite symmetric.

The left hand side of Equation 2.1 is often referred to as the quadratic form

induced by K. Note that if c is an m-dimensional vector whose ith component

is ci, and K is an m×m-dimensional positive definite symmetric matrix, then

the condition in Equation 2.1 can equivalently be written as c>Kc ≥ 0. Thus,

a matrix is positive definite symmetric if and only if all of its eigenvalues are

non-negative.

Definition 2.3 (Positive Definite Symmetric Kernel) Let X be a non-

empty set. A symmetric function k on X × X which for all m ∈ N and

x1, . . . , xm ∈ X gives rise to a positive semi-definite symmetric Gram matrix

is called a positive definite symmetric kernel. We refer to it simply as a kernel.

Kernels allow non-linear mappings from the input space to a high-dimensional

feature space Φ : X 7→ F . The key advantages of using kernels are efficiency

82

and flexibility. The kernel function k(·, ·) provides an efficient way to compute

dot products in a high-dimensional feature space, without explicit knowledge

of Φ. This is essential when the feature space F has a very large (or even

infinite) dimension. The kernel function k(·, ·) can be chosen arbitrarily so

long as the existence of Φ is guaranteed. If the set of points X is discrete,

then the existence of Φ is guaranteed if the induced Gram matrix is positive

semi-definite symmetric.

Minimizing the training error R̂(h) alone has the potential risk of learning

a hypothesis that over-fits the training sample. This results in a hypothesis

with a bad generalization error R(h). One way to avoid this problem is to

restrict the class of admissible solutions, for instance to a compact set. This

technique has been applied to learning problems with great success. When

the hypothesis is a linear function in some high-dimensional feature (Hilbert)

space (i.e. h(x) = w ·Φ(x)), where w ∈ RN (as is the case with support vector

machines), this restriction is achieved by directly penalizing the weight vector

w in the feature space [102]. This is achieved by adding a term corresponding

to ‖w‖22 together with the training error in the objective function minimized

by the objective function.

83

2.3 Algorithms

2.3.1 Objective Functions

The regularization algorithms based on the cost functions ckMP and ckSVR cor-

respond closely to the idea of preserving the magnitude of preferences since

these cost functions penalize deviations of a predicted difference of score from

the target preferences. We will refer by MPRank to the algorithm minimizing

the regularization-based objective function based on ckMP:

F (h, S) = ‖h‖2K + C
1

m2

m∑
i=1

m∑
j=1

ckMP(h, xi, xj),

and by SVRank to the one based on the cost function ckSVR

F (h, S) = ‖h‖2K + C
1

m2

m∑
i=1

m∑
j=1

ckSVR(h, xi, xj).

The objective function F (h, S) is minimized over h ∈ H. As we will see,

hypothesis set H we are considering is that of linear functions h. That is, for

all x ∈ X, h(x) = w · Φ(x). In this case, ‖h‖2K = ‖w‖2.
For a fixed k, k = 1, 2, the same stability bounds hold for both algorithms

as seen in the following section. However, their time complexity is significantly

different.

Comment 2.1 We note that minimizing pairwise misranking cPMR(·) alone

over a given set of points is a difficult problem. The number of disagreements

84

between hypothesis h and the true ranking for a set of points {x1, . . . , xm} is
∑

i 6=j cPMR(h, xi, xj). This quantity is also called Kemeny distance and can

be thought of as the bubble sort distance between the permutations induced

by (yxi
)i∈[m] and (h(xi))i∈[m]. Minimizing the Kemeny distance between two

permutations is NP-hard.

2.3.2 MPRank

We will examine the algorithm with squared-loss function, c2MP(·). Let Φ :

X 7→ F be the mapping from X to the high-dimensional feature space F .

The hypothesis set H that we are considering is that of linear functions h in a

high-dimensional feature space, that is ∀x ∈ X, h(x) = w ·Φ(x). The objective

function can be expressed as follows

F (h, S) = ‖w‖2 + C
1

m2

m∑
i=1

m∑
j=1

[
(w · Φ(xj)− w · Φ(xi))− (yj − yi)

]2

= ‖w‖2 +
2C

m

m∑
i=1

‖w · Φ(xi)− yi‖2 − 2C‖w · Φ̄− ȳ‖2,

where Φ̄ = 1
m

∑m
i=1 Φ(xi) and ȳ = 1

m

∑m
i=1 yi. The objective function can thus

be written with a single sum over the training examples, which results in a

more efficient computation of the solution.

Let N be the dimension of the feature space F . For i = 1, . . . ,m, let Mxi
∈

RN×1 denote the column matrix representing Φ(xi), MΦ̄ ∈ RN×1 a column

matrix representing Φ̄, W ∈ RN×1 a column matrix representing the vector

85

w, MY ∈ Rm×1 a column matrix whose ith component is yi, and MȲ ∈ Rm×1

a column matrix with all its components equal to ȳ. Let MX ,MX̄ ∈ RN×m

be the matrices defined by:

MX = [Mx1 . . . Mxm] MX = [MΦ̄ . . . MΦ̄].

Then, the expression giving F can be rewritten as

F = ‖W‖2 +
2C

m
‖M>

XW −MY ‖2 − 2C

m
‖M>̄

XW −MȲ ‖2.

The gradient of F is then given by:

∇F = 2W +
4C

m
MX(M>

XW −MY)− 4C

m
MX̄(M>̄

XW −MȲ).

Setting ∇F = 0 yields:

W
(
I + C ′(MXM>

X −MX̄M>̄
X)

)
= C ′(MXMY −MX̄MȲ),

where C ′ = 2C
m

. Upon simplification, we obtain:

W = C ′
(
I+C ′(MX −MX̄)(MX −MX̄)>

)−1
(MX −MX̄)(MY −MȲ), (2.2)

Here, we are using the identities MXM>
X −MX̄M>̄

X
= (MX −MX̄)(MX −

MX̄)> and MXMY −MX̄MȲ = (MX−MX̄)(MY −MȲ), which are not hard

to verify. This provides the solution of the primal problem. Since matrices

86

(I + C ′(MX −MX̄)(MX −MX̄)>
)−1

and MX −MX̄ are symmetric, they

commute and this leads to:

W = C ′(MX −MX̄)
(
I + C ′(MX −MX̄)(MX −MX̄)>

)−1
(MY −MȲ).

This expression for W can be used to derive the solution in the dual, which can

then be kernelized (i.e. points in the input space appear only in dot products,

see “Kernel trick” in [88]). For any x′ ∈ X (see [35] for a similar derivation of

the dual),

h(x′) = C ′K′(I + K̄)−1(MY −MȲ), (2.3)

where K′ ∈ R1×m is the row matrix whose jth component is

K(x′, xj)− 1

m

m∑

k=1

K(x′, xk)

and K̄ is the kernel matrix defined by

1

C ′
(K̄)ij = K(xi, xj)− 1

m

m∑

k=1

(K(xi, xk) +K(xj, xk)) +
1

m2

m∑

k=1

m∑

l=1

K(xk, xl),

for all i, j ∈ [1,m]. The solution of the optimization problem for MPRank

is close to that of a kernel ridge regression [53] problem, but the presence of

additional terms makes it distinct, a fact that can also be confirmed exper-

imentally. However, remarkably, it has the same computational complexity,

due to the fact that the optimization problem can be written in terms of a

87

single sum, as already pointed out above. The main computational cost of

the algorithm is that of the matrix inversion, which can be computed in time

O(N3) in the primal, and O(m3) in the dual case, or O(N2+α) and O(m2+α),

with α ≈ .376, using faster matrix inversion methods such as that of Copper-

smith and Winograd.

2.3.3 SVRank

We will examine the algorithm with the norm-one loss, c1MP(h, x, x′). As with

MPRank, the hypothesis set H that we are considering here is that of linear

functions h, that is ∀x ∈ X, h(x) = w · Φ(x). The constraint optimization

problem associated with SVRank can thus be rewritten as

minimize F (h, S) = ‖w‖2 + C
1

m2

m∑
i=1

m∑
j=1

(ξij + ξ∗ij)

subject to





w · (Φ(xj)− Φ(xi))− (yj − yi) ≤ ε+ ξij

(yj − yi)− w · (Φ(xj)− Φ(xi)) ≤ ε+ ξ∗ij

ξij, ξ
∗
ij ≥ 0,

for all i, j ∈ [1,m]. Note that the number of constraints are quadratic with

respect to the number of examples. Thus, in general, this results in a problem

that is more costly to solve than that of MPRank.

Introducing Lagrange multipliers αij, α
∗
ij ≥ 0, corresponding to the first

two sets of constraints and βij, β
∗
ij ≥ 0 for the remaining constraints leads to

88

the following Lagrange function

L = ‖w‖2 + C 1
m2

m∑
i=1

m∑
j=1

(ξij + ξ∗ij)+

m∑
i=1

m∑
j=1

αij(w · (Φ(xj)− Φ(xi))− (yj − yi)− ε+ ξij)+

m∑
i=1

m∑
j=1

α∗ij(−w · (Φ(xj)− Φ(xi)) + (yj − yi)− ε+ ξ∗ij)+

m∑
i=1

m∑
j=1

(βijξij + β∗ijξ
∗
ij).

Taking the gradients, setting them to zero, and applying the Karush-Kuhn-

Tucker conditions leads to the following dual maximization problem

maximize
1

2

m∑
i,j=1

m∑

k,l=1

(α∗ij − αij)(α∗kl − αkl)Kij,kl−

ε

m∑
i,j=1

(α∗ij − αij) +
m∑

i,j=1

(α∗ij − αij)(yj − yi)

subject to 0 ≤ αij, α
∗
ij ≤ C, ∀i, j ∈ [1,m],

where Kij,kl = K(xi, xk) + K(xj, xl) − K(xi, xl) − K(xj, xk). This quadratic

optimization problem can be solved in a way similar to SVM regression (SVR)

[102] by defining a kernel K ′ over pairs with K ′((xi, xj), (xk, xl)) = Kij,kl, for

all i, j, k, l ∈ [1,m], and associating the target value yi− yj to the pair (xi, xj).

The computational complexity of the quadratic programming with respect

to pairs makes this algorithm less attractive for relatively large samples.

89

2.3.4 On-line Version of MPRank

Recall from Section 2.3.2 that the cost function for MPRank can be written

as

F (h, S) = ‖w‖2 +
2C

m

m∑
i=1

[
(w · Φ(xi)− yi)2 − (w · Φ̄− ȳ)2

]
. (2.4)

This expression suggests that the solution w can be found by solving the

following optimization problem

minimize
w

F = ‖w‖2 +
2C

m

m∑
i=1

ξ2
i

subject to (w · Φ(xi)− yi)− (w · Φ̄− ȳ) = ξi for i = 1, . . . ,m

Introducing the Lagrange multipliers βi corresponding to the ith equality con-

straint leads to the following Lagrange function:

L(w, ξ, β) = ‖w‖2 +
2C

m

m∑
i=1

ξ2
i −

m∑
i=1

βi
(
(w · Φ(xi)− yi)− (w · Φ̄− ȳ)− ξi

)

Setting ∂L/∂w = 0, we obtain w = 1
2

∑m
i=1 βi(Φ(xi)−Φ̄), and setting ∂L/∂ξi =

0 leads to ξi = − m
4C
βi. Substituting these expressions back in and letting

αi = βi/2 results in the optimization problem

maximize
αi

−
m∑
i=1

m∑
j=1

αiαjK̃(xi, xj)− m

2C

m∑
i=1

α2
i + 2

m∑
i=1

αiỹi, (2.5)

90

where K̃(xi, xj) = K(xi, xj)− 1

m

m∑

k=1

(K(xi, xk)+K(xj, xk))+
1

m2

m∑

k,l=1

K(xk, xl)

and ỹi = yi − ȳ.
Based on the expressions for the partial derivatives of the Lagrange func-

tion, we can now describe a gradient descent algorithm that avoids the pro-

hibitive complexity of MPRank that is associated with matrix inversion:

1 for i← 1 to m do αi ← 0

2 repeat

3 for i← 1 to m

4 do αi ← αi + η
[
2(ỹi −

∑m
j=1 αjK̃(xi, xj))− m

C
αi

]

5 until convergence

The gradient descent algorithm described above can be straightforwardly

modified to an on-line algorithm where points in the training set are processed

in T passes, one by one, and the complexity of updates for the ith point is

O(m) leading to an overall complexity of O(T · m2). Note that even using

the best matrix inversion algorithms, one only achieves a time complexity of

O(m2+α), with α ≈ .376. In addition to a favorable complexity if T = o(m.376),

an appealing aspect of the gradient descent based algorithms is their simplicity.

They are quite efficient in practice for datasets with a large number of training

points.

91

2.3.5 Leave-One-Out Analysis for MPRank

The leave-one-out error of a learning algorithm is typically costly to compute

in general as it requires training the algorithm on m subsamples of the original

sample. This section shows how the leave-one-out error of MPRank can be

computed and approximated efficiently by extending the techniques of [103].

The standard definition of the leave-one-out error holds for errors or cost

functions defined over a single point. The definition can be extended to

cost functions defined over pairs by each time leaving out one pair of points

(xi, xj), i 6= j, instead of a single point.

To simplify the notation, we will denote hS−{xi,xj} by hij and hS−{x,x′} by

hxx′ . The leave-one-out error of an algorithm L over a sample S returning the

hypothesis hij for a training sample S − {xi, xj} is then defined by

LOO(L, S) =
1

m(m− 1)

m∑
i=1

m∑

j=1,i 6=j
c(hij, xi, xj). (2.6)

The following proposition shows that with our new definition, the fundamental

property of LOO is preserved.

Proposition 2.1 Let m ≥ 2 and let h′ be the hypothesis returned by L when

trained over a sample S ′ of size m − 2. Then, the leave-one-out error over a

sample S of size m is an unbiased estimate of the true error over a sample of

size m− 2:

ES∼D[LOO(L, S)] = R(h′),

92

Proof. Since all points of S are drawn i.i.d. and according to the same

distribution D,

ES∼D[LOO(L, S)] =
1

m(m− 1)

m∑

i,j=1,j 6=i
ES∼D[c(hij, xi, xj)]

=
1

m(m− 1)

m∑

x,x′∈S,x6=x′
ES∼D,x,x′∈S[c(hxx′ , x, x′)]

= ES∼D,x,x′∈S[c(hxx′ , x, x′)]

This last term coincides with ES′,x,x′∼D,|S′|=m−2[c(hxx′ , x, x
′)] = R(h′). 2

In Section 2.3.2, it was shown that the hypothesis returned by MPRank for a

sample S is given by h(x′) = C ′K′(I + K̄)−1(MY −MȲ) for all x′ ∈MX . Let

Kc be the matrix derived from K by replacing each entry Kij of K by the sum

of the entries in the same column
∑m

j=1 Kij. Similarly, let Kr be the matrix

derived from K by replacing each entry of K by the sum of the entries in the

same row, and let Krc be the matrix whose entries all are equal to the sum of

all entries of K. Note that the matrix K̄ can be written as:

1

C ′
K̄ = K− 1

m
(Kr + Kc) +

1

m2
Krc.

Let K′′ and U be the matrices defined by:

K′′ = K− 1

m
Kr and U = C ′K′′(I + K̄)−1. (2.7)

Then, for all i ∈ [1,m], h(xi) =
∑m

k=1 Uik(yk − ȳ). In the remainder of this

93

section, we will consider the particular case of the k = 2 cost function for

MPRank, c2MP(h, xi, xj) = [(h(xj)− yj)− (h(xi)− yi)]2.

Proposition 2.2 Let h′ be the hypothesis returned by MPRank when trained

on S−{xi, xj} and let h̄′ = 1
m

∑m
k=1 h

′(xk). For all i, j ∈ [1,m], let Vij =

Uij − 1
m−2

∑
k 6∈{i,j}Uik. Then, the following identity holds for c2MP(h′, xi, xj).

[
(1−Vjj)(1−Vii)−VijVji

]2
c2
MP(h′, xi, xj) = (2.8)

[
(1−Vii −Vij)(h(xj)− yj)− (1−Vji −Vjj)(h(xi)− yi)

−[(1−Vii −Vij)(Vjj + Vji)(1−Vji −Vjj)(Vii + Vij)](h̄′ − ȳ)
]2

.

Proof. By Equation 2.4, the cost function of MPRank can be written as:

F = ‖w‖2 +
2C

m

m∑

k=1

[
(h(xk)− yk)− (h̄− ȳ)]2

,

where h̄ = 1
m

∑m
k=1 h(xk). h′ is the solution of the minimization of F when

the terms corresponding to xi and xj are left out. Equivalently, one can keep

these terms but select new values for yi and yj to ensure that these terms are

zero. Proceeding this way, the new values y′i and y′j must verify the following:

h′(xi)− y′i = h′(xj)− y′j = h̄′ − ȳ′,

with ȳ′ = 1
m

[y′(xi) + y′(xj) +
∑

k 6∈{i,j} yk]. Thus, by Equation 2.7, h′(xi) is

94

given by h′(xi) =
∑m

k=1 Uik(yk − y′). Therefore,

h′(xi)− yi =
∑

k 6∈{i,j}
Uik(yk − y′) + Uii(y′i − y′) + Uij(y′j − y′)− yi

=
∑

k 6∈{i,j}
Uik(yk − y)−

∑

k 6∈{i,j}
Uik(y′ − y) + Uii(h′(xi)− h̄′)

+Uij(h′(xj)− h̄′)− yi

= (h(xi)− yi)−Uii(yi − ȳ)−Uij(yj − ȳ)−
∑

k 6∈{i,j}
Uik(y′ − y)

+Uii(h′(xi)− h̄′) + Uij(h′(xj)− h̄′)

= (h(xi)− yi) + Uii(h′(xi)− yi) + Uij(h′(xj)− yj)− (Uii + Uij)(h̄′ − ȳ)

−
∑

k 6∈{i,j}
Uik(y′ − y)

= (h(xi)− yi) + Uii(h′(xi)− yi) + Uij(h′(xj)− yj)− (Uii + Uij)(h̄′ − ȳ)

−
∑

k 6∈{i,j}
Uik

1
m− 2

[(h′(xi)− yi) + (h′(xj)− yj)− 2(h̄′ − ȳ)]

= (h(xi)− yi) + Vii(h′(xi)− yi) + Vij(h′(xj)− yj)− (Vii + Vij)(h̄′ − ȳ).

Thus,

(1−Vii)(h
′(xi)− yi)−Vij(h

′(xj)− yj) = (h(xi)− yi)− (Vii + Vij)(h̄′ − ȳ),

Similarly, we have

−Vji(h
′(xi)− yi)+ (1−Vjj)(h

′(xj)− yj) = (h(xj)− yj)− (Vjj +Vji)(h̄′− ȳ).

Solving the linear system formed by these two equations with unknown vari-

95

ables (h′(xi)− yi) and (h′(xj)− yj) gives:

[
(1−Vjj)(1−Vii)−VijVji

]
(h′(xi)− yi) = (1−Vjj)(h(xi)− yi) + Vij(h(xj)− yj)

−[(Vii + Vij)(1−Vjj) + (Vjj + Vji)Vij](h̄′ − ȳ).

Similarly, we obtain:

[
(1−Vjj)(1−Vii)−VijVji

]
(h′(xj)− yj) = Vji(h(xi)− yi) + (1−Vii)(h(xj)− yj)

−[(Vii + Vij)Vji + (Vjj + Vji)(1−Vii)](h̄′ − ȳ).

Taking the difference of these last two equations and squaring both sides yields

the expression of c2MP(h′, xi, xj) given in the statement of the proposition. 2

Given h̄′, Proposition 2.2 and Equation 2.6 can be used to compute the leave-

one-out error of h efficiently, since the coefficients Uij can be obtained in time

O(m2) from the matrix (I + K̄)−1 already computed to determine h.

Note that by the results of Section 2.3.2 and the strict convexity of the

objective function, h′ is uniquely determined and has a closed form. Thus,

unless the points xi and xj coincide, the expression [(1 − Vjj)(1 − Vii) −
VijVji

]
factor of c2MP(h′, xi, xj) cannot be null. Otherwise, the system of

linear equations found in the proof is reduced to a single equation and h′(xi)

(or h′(xj)) is not uniquely specified.

For larger values of m, the average value of h over the sample S should not

be much different from that of h′, thus we can approximate h̄′ by h̄. Using this

96

approximation, for a sample with distinct points, we can write for L =MPRank

LOO(L, S)≈ 1
m(m−1)

∑

i6=j

[
(1−Vii −Vij)(h(xj)− yj)− (1−Vji −Vjj)(h(xi)− yi)[

(1−Vjj)(1−Vii)−VijVji

]

− [(1−Vii −Vij)(Vjj + Vji)− (1−Vji −Vjj)(Vii + Vij)][
(1−Vjj)(1−Vii)−VijVji

] (h̄− ȳ)

]2

.

This can be used to determine the best value of the parameter C efficiently

based on the leave-one-out error.

Observe that the sum of the entries of each row of K̄ or each row of K′′ is

zero. Let M1 ∈ Rm×1 be column matrix with all entries equal to 1. In view of

this observation, K̄M1 = 0, thus (I + K̄)M1 = M1, (I + K̄)−1M1 = M1, and

UM1 = C ′K′′(I + K̄)−1M1 = C ′K′′M1 = 0. This shows that the sum of the

entries of each row of U is also zero, which yields the following identity for the

matrix V:

Vij = Uij − 1

m− 2

∑

k 6∈{i,j}
Uik = Uij +

Uii + Uij

m− 2
=

(m− 1)Uij + Uii

m− 2
.

Hence the matrix V computes

m∑

k=1

Vik(yk − ȳ) =
m∑

k=1

Vik(yk − ȳ) =
m− 1

m− 2
h(xi).

These identities further simplify the expression of matrix V and its relationship

with h.

97

2.4 Stability bounds

In [13] and [14], Bousquet and Elisseeff gave stability bounds for several re-

gression and classification algorithms. This section shows similar stability

bounds for ranking and magnitude-preserving ranking algorithms. This also

generalizes the results of [1] which were given in the specific case of bipartite

ranking.

The following definitions are natural extensions, to the case of cost func-

tions over pairs, of those given by [14].

Definition 2.4 A learning algorithm L is said to be uniformly β-stable with

respect to the sample S and cost function c if there exists β ≥ 0 such that for

all S ∈ (X × R)m and i ∈ [1,m],

∀x, x′ ∈ X, |c(hS, x, x′)− c(hS−i , x, x′)| ≤ β.

Definition 2.5 A cost function c is is σ-admissible with respect to a hypothe-

sis set H if there exists σ ≥ 0 such that for all h, h′ ∈ H, and for all x, x′ ∈ X,

|c(h, x, x′)− c(h′, x, x′)| ≤ σ(|∆h(x′)|+ |∆h(x)|),

with ∆h = h′ − h.

98

2.4.1 Magnitude-preserving regularization algorithms

For a cost function c such as those just defined and a regularization function

N , a regularization-based algorithm can be defined as one minimizing the

following objective function:

F (h, S) = N(h) + C
1

m2

m∑
i=1

m∑
j=1

c(h, xi, xj),

where C ≥ 0 is a constant determining the trade-off between the emphasis

on the regularization term versus the error term. In much of what follows,

we will consider the case where the hypothesis set H is a reproducing Hilbert

space and where N is the squared norm in a that space, N(h) = ‖h‖2K for

a kernel K, though some of our results can straightforwardly be generalized

to the case of an arbitrary convex N . By the reproducing property, for any

h ∈ H, ∀x ∈ X, h(x) = 〈h,K(x, .)〉 and by Cauchy-Schwarz’s inequality,

∀x ∈ X, |h(x)| ≤ ‖h‖K
√
K(x, x).

Assuming that for all x ∈ X,K(x, x) ≤ κ2 for some constant κ ≥ 0, the in-

equality becomes: ∀x ∈ X, |h(x)| ≤ κ‖h‖K . With the cost functions previously

discussed, the objective function F is then strictly convex and the optimiza-

tion problem admits a unique solution. In what follows, we will refer to the

algorithms minimizing the objective function F with a cost function defined

in the previous section as magnitude-preserving regularization algorithms.

99

Lemma 2.1 Assume that the hypotheses in H are bounded, that is for all

h ∈ H and x ∈ S, |h(x)− yx| ≤M . Then, the cost functions ckHR, ckMP, ckHMP,

and ckSVR are all σn-admissible with σ1 = 1, σ2 = 4M .

Proof. We will give the proof in the case of ckMP, k = 1, 2, the other cases can

be treated similarly.

By definition of c1MP, for all x, x′ ∈ X,

|c1MP(h′, x, x′)− c1MP(h, x, x′)| =
∣∣|(h′(x′)− h′(x))− (yx′ − yx)| − (2.9)

|(h(x′)− h(x))− (yx′ − yx)|
∣∣.

Using the identity
∣∣|X ′−Y |− |X −Y |

∣∣ ≤ |X ′−X|, valid for all X,X ′, Y ∈ R,

it follows that

|c1MP(h′, x, x′)− c1MP(h, x, x′)| ≤ |∆h(x′)−∆h(x)| (2.10)

≤ |∆h(x′)|+ |∆h(x)|, (2.11)

which shows the σ-admissibility of c1MP with σ = 1. For c2MP, for all x, x′ ∈ X,

|c2MP(h′, x, x′)− c2MP(h, x, x′)| = ||(h′(x′)− h′(x))− (yx′ − yx)|2 (2.12)

−|(h(x′)− h(x))− (yx′ − yx)|2|

≤ |∆h(x′)−∆h(x)|(|h′(x′)− yx′|+ (2.13)

|h(x′)− yx′|+ |h′(x)− yx|+ |h(x)− yx|)

≤ 4M(|∆h(x′)|+ |∆h(x)|), (2.14)

100

which shows the σ-admissibility of c2MP with σ = 4M . 2

Proposition 2.3 Assume that the hypotheses in H are bounded, that is for

all h ∈ H and x ∈ S, |h(x) − yx| ≤ M . Then, a magnitude-preserving

regularization algorithm as defined above is β-stable with β = 4Cσ2
nκ

2

m
.

Proof. Fix the cost function to be c, one of the σn-admissible cost function

previously discussed. Let hS denote the function minimizing F (h, S) and hS−k

the one minimizing F (h, S−k). We denote by ∆hS = hS−k − hS.
Since the cost function c is convex with respect to h(x) and h(x′), R̂(h, S)

is also convex with respect to h and for t ∈ [0, 1],

R̂(hS + t∆hS, S
−k)− R̂(hS, S

−k) ≤ t
[
R̂(hS−k , S−k)− R̂(hS, S

−k)
]
.

Similarly,

R̂(hS−k − t∆hS, S−k)− R̂(hS−k , S−k) ≤ t
[
R̂(hS, S

−k)− R̂(hS−k , S−k)
]
.

Summing these inequalities yields

R̂(hS+t∆hS , S−k)−R̂(hS , S−k)+R̂(hS−k−t∆hS , S−k)−R̂(hS−k , S−k) ≤ 0. (2.15)

101

By definition of hS and hS−k as functions minimizing the objective functions,

for all t ∈ [0, 1],

F (hS , S)− F (hS + t∆hS , S) ≤ 0 and F (hS−k , S−k)− F (hS−k − t∆hS , S−k) ≤ 0.

(2.16)

Multiplying Inequality 2.15 by C and summing it with the two Inequalities 2.16

lead to

A+ ‖hS‖2K − ‖hS + t∆hS‖2K + ‖hS−k‖2K − ‖hS−k − t∆hS‖2K ≤ 0. (2.17)

withA = C
(
R̂(hS, S)− R̂(hS, S

−k)+ R̂(hS + t∆hS, S
−k)− R̂(hS + t∆hS, S)

)
.

Since

A = C
m2

[∑

i6=k
c(hS, xi, xk)− c(hS + t∆hS, xi, xk)+

∑

i6=k
c(hS, xk, xi)− c(hS + t∆hS, xk, xi)

]
,

by the σn-admissibility of c,

|A| ≤ 2Ctσn
m2

∑

i6=k
(|∆hS(xk)|+ |∆hS(xi)|) ≤ 4Ctσnκ

m
‖∆hS‖K .

Using the fact that ‖h‖2K = 〈h, h〉 for any h, it is not hard to show that

‖hS‖2K − ‖hS + t∆hS‖2K + ‖hS−k‖2K − ‖hS−k − t∆hS‖2K = 2t(1− t)‖∆hS‖2K .

102

In view of this and the inequality for |A|, Inequality 2.17 implies 2t(1 −
t)‖∆hS‖2K ≤ 4Ctσnκ

m
‖∆hS‖K , that is after dividing by t and taking t→ 0,

‖∆hS‖K ≤ 2Cσnκ

m
.

By the σn-admissibility of c, for all x, x′ ∈ X,

|c(hS, x, x′)− c(hS−k , x, x′)| ≤ σn(|∆hS(x′)|+ |∆hS(x)|) (2.18)

≤ 2σnκ‖∆hS‖K (2.19)

≤ 4Cσ2
nκ

2

m
. (2.20)

This shows the β-stability of the algorithm with β = 4Cσ2
nκ

2

m
. 2

To shorten the notation, in the absence of ambiguity, we will write in the

following R̂(hS) instead of R̂(hS, S).

Theorem 2.1 Let c be any of the cost functions defined in Section 2.2.2.

Let L be a uniformly β-stable algorithm with respect to the sample S and

cost function c and let hS be the hypothesis returned by L. Assume that the

hypotheses in H are bounded, that is for all h ∈ H, sample S, and x ∈ S,

|h(x)− yx| ≤M . Then, for any ε > 0,

Pr
S∼D

[
|R(hS)− R̂(hS)| > ε+ 2β

]
≤ 2e

− mε2

2(βm+(2M)k)2 .

103

Proof. We apply McDiarmid’s inequality [70] to Φ(S) = R(hS) − R̂(hS, S).

We will first give a bound on E[Φ(S)] and then show that Φ(S) satisfies the

conditions of McDiarmid’s inequality.

We will denote by Si,j the sample derived from S by replacing xi with x′i

and xj with x′j, sampled i.i.d. according to D.

Since the sample points in S are drawn in an i.i.d. fashion, for all i, j ∈
[1,m],

ES[R̂(hS, S)] =
1

m2

m∑
i=1

m∑
j=1

E[c(hS, xi, xj)] (2.21)

= ES∼D[c(hS, xi, xj)] (2.22)

= ESi,j∼D[c(hSi,j , x′i, x
′
j)] (2.23)

= ES,x′i,x′j∼D[c(hSi,j , x′i, x
′
j)]. (2.24)

Note that by definition of R(hS), ES[R(hS)] = ES,x′i,x′j∼D[c(hS, x
′
i, x

′
j)]. Thus,

ES[Φ(S)] = ES,x,x′ [c(hS, x′i, x′j) − c(hSi,j , x′i, x
′
j)], and by β-stability (Proposi-

tion 2.3)

|ES[Φ(S)]| ≤ ES,x,x′ [|c(hS, x′i, x′j)− c(hSi , x′i, x
′
j)|] + (2.25)

ES,x,x′ [|c(hSi , x′i, x
′
j)− c(hSi,j , x′i, x

′
j)|] (2.26)

≤ 2β. (2.27)

104

Now,

|R(hS)−R(hSk)| = |ES[c(hS, x, x′)− c(hSk , x, x′)]| (2.28)

≤ ES[|c(hS, x, x′)− c(hSk , x, x′)|] (2.29)

≤ β. (2.30)

For any x, x′ ∈ X, |c(hS, xk, xj)−c(hSk , xi, x
′
k)| < ES[|c(hSk , x, x′)−c(hSk , x, x′)|] ≤

(2M)k, where k = 1 or k = 2. Thus, we have

|R̂(hS)− R̂(hkS)| ≤
1

m2

∑

i6=k

∑

j 6=k
|c(hS, xi, xj)− c(hSk , xi, xj)|+ (2.31)

1

m2

m∑
j=1

|c(hS, xk, xj)− c(hSk , x′k, xj)|+ (2.32)

1

m2

m∑
i=1

|c(hS, xk, xj)− c(hSk , xi, x
′
k)| (2.33)

≤ 1

m2
(m2β) +

m

m2
2(2M)k = β + 2(2M)k/m. (2.34)

Thus,

|Φ(S)− Φ(Sk)| ≤ 2(β + (2M)k/m),

and Φ(S) satisfies the hypotheses of McDiarmid’s inequality. 2

The following Corollary gives stability bounds for the generalization error of

magnitude-preserving regularization algorithms.

Corollary 2.1 Let L be a magnitude-preserving regularization algorithm and

105

let c be the corresponding cost function and assume that for all x ∈ X,K(x, x) ≤
κ2. Assume that the hypothesis set H is bounded, that is for all h ∈ H, sample

S, and x ∈ S, |h(x)− yx| ≤M . Then, with probability at least 1− δ,

• for k = 1,

R(hS) ≤ R̂(hS) +
8κ2C

m
+ 2(2κ2C +M)

√
2

m
log

2

δ
;

• for k = 2,

R(hS) ≤ R̂(hS) +
128κ2CM2

m
+ 4M2(16κ2C + 1)

√
2

m
log

2

δ
.

Proof. By Proposition 2.3, these algorithms are β-stable with β = 4Cσ2
nκ

2

m
. 2

These bounds are of the form R(hS) ≤ R̂(hS)+O(C√
m

). Thus, they are effective

for values of C ¿ √m.

2.5 Experiments

In this section, we report the results of experiments with two of our magnitude-

preserving algorithms, MPRank and SVRank.

The algorithms were tested on four publicly available data sets, three

of which are commonly used for collaborative filtering: MovieLens, Book-

Crossings, and Jester Joke. The fourth data set is the Netflix data. The first

three datasets are available from the following URL:

106

http://www.grouplens.org/taxonomy/term/14.

The Netflix data set is available at

http://www.netflixprize.com/download.

Table 2.1: Performance results for MPRank, SVRank, and RankBoost.

Data set Mean Squared Difference Mean 1-Norm Difference

MPRank SVRank RBoost MPRank SVRank RBoost

MovieLens 2.01 2.43 12.88 1.04 1.17 2.59
20-40 ± 0.02 ± 0.13 ± 2.15 ± 0.05 ± 0.03 ± 0.04

MovieLens 2.02 2.36 20.06 1.04 1.15 2.99
40-60 ± 0.06 ± 0.16 ± 2.76 ± 0.02 ± 0.07 ± 0.12

MovieLens 2.07 2.66 21.35 1.06 1.24 3.82
60-80 ± 0.05 ± 0.09 ± 2.71 ± 0.01 ± 0.02 ± 0.23

Jester 51.34 55.00 77.08 5.08 5.40 5.97
20-40 ± 2.90 ± 5.14 ± 17.1 ± 0.15 ± 0.20 ± 0.16

Jester 46.77 57.75 80.00 4.98 5.27 6.18
40-60 ± 2.03 ± 5.14 ± 18.2 ± 0.13 ± 0.20 ± 0.11

Jester 49.33 56.06 88.61 4.88 5.25 6.46
60-80 ± 3.11 ± 4.26 ± 18.6 ± 0.14 ± 0.19 ± 0.20

Netflix 1.58 1.80 57.5 0.92 0.95 6.48
Density:32% ± 0.04 ± 0.05 ± 7.8 ± 0.01 ± 0.02 ± 0.55

Netflix 1.55 1.90 23.9 0.95 1.02 4.10
Density:46% ± 0.03 ± 0.06 ± 2.9 ± 0.01 ± 0.02 ± 0.23

Netflix 1.49 1.93 12.33 0.94 1.06 3.01
Density:58% ± 0.03 ± 0.06 ± 1.47 ± 0.01 ± 0.02 ± 0.15

Books 4.00 3.64 7.58 1.38 1.32 1.72
± 3.12 ± 3.04 ± 9.95 ± 0.60 ± 0.56 ± 1.05

107

2.5.1 MovieLens Dataset

The MovieLens dataset consists of approximately one million (1M) ratings by

6,040 users for 3,900 movies. A random subset of 250,000 ratings was selected

from the one million ratings to speed up computation. Ratings are integers

in the range of 1 to 5. For each user, a different predictive model is designed.

The ratings of that user on the 3,900 movies (not all movies will be rated)

form the target values yi. The other users’ ratings of the ith movie form the

ith input vector xi.

We followed the experimental set-up of [48] and grouped the reviewers

according to the number of movies they reviewed. The groupings were 20−39

movies, 40− 59 movies, and 60− 79 movies.

Test reviewers were selected among users who had reviewed between 50

and 300 movies. For a given test reviewer, 300 reference reviewers were chosen

at random from one of the three groups and their rating were used to form the

input vectors. Training was carried out on a randomly chosen subset of half

of the test reviewer’s movie ratings and testing was performed on the other

half. The experiment was done for 300 different test reviewers and the average

performance recorded. The whole process was then repeated ten times with a

different set of 300 reviewers selected at random. We report mean values and

standard deviation for these ten repeated experiments for each of the three

groups. Missing review values in the input features were populated with the

median review score of the given reference reviewer.

108

2.5.2 Jester Joke Dataset

The Jester Joke Recommender System dataset contains 4.1M continuous rat-

ings in the range -10.00 to +10.00 of 100 jokes from 73,496 users. The exper-

iments were set up in the same way as for the MovieLens dataset.

2.5.3 Netflix Dataset

The Netflix dataset contains more than 100M ratings by 480,000 users for

17,700 movies. Ratings are integers in the range of 1 to 5. We constructed

three subsets of the data with different user densities. Subsets were obtained

by thresholding against two parameters: the minimum number of movies rated

by a user and the minimum of ratings for a movie. Thus, in choosing users for

the training and testing set, we only consider those users who have reviewed

more than 150, 500, or 1500 movies respectively. Analogously, in selecting the

movies that would appear in the subset data, we only consider those movies

that have received at least 360, 1200, or 1800 reviews. The experiments were

then set-up in the same way as for the MovieLens dataset. The mean densi-

ties of the three subsets (across the ten repetitions) were 32%, 46% and 58%

respectively. Finally, the test raters were selected from a mixture of the three

densities.

109

2.5.4 Book-Crossing Dataset

The book-crossing dataset contains 1,149,780 ratings in the range [1, 10] for

271,379 books for a group of 278,858 users. The low density of ratings makes

predictions very noisy in this task. Thus, we required users to have reviewed

at least 200 books, and then only kept books with at least 10 reviews. This

left us with a dataset of 89 books and 131 reviewers. For this dataset, each

of the 131 reviewers was in turn selected as a test reviewer, and the other 130

reviewers served as input features. The results reported are mean values and

standard deviations over these 131 leave-one-out experiments.

2.5.5 Performance Measures and Results

The performance measures we report correspond to the problem we are solving.

The cost function of MPRank is designed to minimize the squared difference

between all pairs of target values, hence we report the mean squared difference

(MSD) over all pairs in the test set of size m′ of a hypothesis h:

1

m′2

m′∑
i=1

m′∑
j=1

((h(xj)− h(xi))− (yj − yi))2 .

The cost function of SVRank minimizes the absolute value of the difference

between all pairs of examples, hence we report the average of the 1-norm

110

Table 2.2: Comparison of MPRank and RankBoost for pairwise misrankings.

Data set Pairwise Misrankings

MPRank RBoost

MovieLens 0.471 0.476
40-60 ± 0.005 0 ± 0.007

MovieLens 0.442 0.463

60-80 ± 0.005 ± 0.011

Jester 0.414 0.479

20-40 ± 0.005 ± 0.008

Jester 0.418 0.432

40-60 ± 0.007 ± 0.005

Netflix 0.433 0.447

Density:32% ± 0.018 ± 0.027

Netflix 0.368 0.327

Density:46% ± 0.014 ± 0.008

Netflix 0.295 0.318

Density:58% ± 0.006 ± 0.008

difference, M1D:

1

m′2

m′∑
i=1

m′∑
j=1

|(h(xj)− h(xi))− (yj − yi)| .

The results for MPRank and SVRank are obtained using Gaussian kernels.

The width of the kernel and the other cost function parameters were first

optimized on a held-out sample. The performance on their respective cost

functions was optimized and the parameters fixed at these values.

The results are reported in Table 2.1. They demonstrate that the magnitude-

111

preserving algorithms are both successful at minimizing their respective ob-

jective. MPRank obtains the best MSD values and the two algorithms obtain

comparable M1D values. However, overall, in view of these results and the

superior computational efficiency of MPRank already pointed out in the pre-

vious section, we consider MPRank as the best performing algorithm for such

tasks.

To further examine the ranking properties of MPRank we conducted a num-

ber of experiments where we compared the pairwise misranking performance

of the algorithm to that of RankBoost, an algorithm designed to minimize the

number of pairwise misrankings [83]. We used the same features for Rank-

Boost as for MPRank that is we used as weak rankers threshold functions

over other reviewers’ ratings. As for the other algorithms, the parameter of

RankBoost, that is the number of boosting rounds required to minimize pair-

wise misranking, was determined on a held-out sample and then fixed at this

value.

Table 2.2 shows a comparison between these two algorithms. It reports the

fraction of pairwise misrankings for both algorithms using the same experi-

mental set-up as previously described:

∑m′
i,j=1 1yi>yj∧h(xi)≤h(xj)∑m′

i,j=1 1yi>yj

.

The results show that the pairwise misranking error of MPRank is comparable

to that of RankBoost. This further demonstrates the benefits of MPRank as

112

a ranking algorithm.

We also tested the performance of RankBoost with respect to MSD and

M1D (see Table 2.1). Naturally, RankBoost is not designed to optimize these

performance measure and does not lead to competitive results compared to

MPRank and SVRank on any of the datasets examined.

2.5.6 On-line Version of MPRank

Using the Netflix data we also experimented with the on-line version of MPRank

described in Section 2.3.4. The main questions we wished to investigate were

the convergence rate and CPU time savings of the on-line version with respect

to the batch algorithm MPRank (Equation 2.3). The batch solution requires

a matrix inversion and becomes infeasible for large training sets.

Figure 2.1(a) illustrates the convergence rate for a typical reviewer. In this

instance, the training and test sets each consisted of about 700 movies. As

can be seen from the plot, the on-line version converges to the batch solution

in about 120 rounds, where one round is a full cycle through the training set.

Based on monitoring several convergence plots, we decided on terminating

learning in the on-line version of MPRank when consecutive rounds of itera-

tions over the full training set would change the cost function by less than .01

%. Figure 2.1(b) compares the CPU time for the on-line version of MPRank

with the batch solution. For both computations of the CPU times, the time

to construct the Gram matrix is excluded. The figure shows that the on-line

version is significantly faster for large datasets, which extends the applicability

113

0 20 40 60 80 120

1.4

1.5

1.6

1.7

1.8

1.9

Training rounds

M
ea

n
sq

ua
re

d
di

ffe
re

nc
e

Error versus Training Rounds

test error on−line
test error batch
training error on−line
training error batch

600 800 1000 1200

0.5

1.0

2.0

5.0

10.0

20.0

50.0

Training set size

S
ec

on
ds

 −
 lo

g−
sc

al
e

Training Time versus Training Set Size

on−line
batch

(a) (b)

Figure 2.1: (a) Convergence of the on-line learning algorithm towards the
batch solution. Rounding errors give rise to slightly different solutions. (b)
Training time in seconds for the on-line and the batch algorithm. For small
training set sizes the batch version is fastest, but for larger training set sizes
the on-line version is faster. Eventually the batch version becomes infeasible.

of our algorithms beyond the limits of intractable matrix inversion.

2.6 Conclusion

We presented several algorithms for magnitude-preserving ranking problems

and provided stability bounds for their generalization error. We also reported

the results of several experiments on public datasets comparing these algo-

rithms. We presented an on-line version of one of the algorithms and demon-

strated its applicability for very large data sets. We view accurate magnitude-

preserving ranking as important to improving the quality of modern recom-

mendation and rating systems. An alternative for incorporating the magni-

114

tude of preferences in cost functions is to use weighted AUC, where the weights

reflect the magnitude of preferences and extend existing algorithms. This how-

ever, does not exactly coincide with the objective of preserving the magnitude

of preferences.

115

Chapter 3

Transductive Regression

3.1 Introduction

Many modern learning problems in information extraction, computational bi-

ology, natural language processing and other domains can be formulated as

transductive inference problems [101]. In the transductive setting, the learn-

ing algorithm receives both a labeled training set, as in the standard induction

setting, and a set of unlabeled test points. The objective is to predict the labels

of these test points. No other points will ever be considered.

The transductive setting is an intermediate one between the supervised

and the unsupervised learning scenarios. In unsupervised learning, one is

given a set X of unlabeled points that are each drawn in an i.i.d. fashion

from a common distribution D and the goal is to extract interesting structural

properties of the data based on the distribution of points in the set X. The

116

labels of points in X are not available to the learning algorithm. Examples of

unsupervised learning are clustering and dimensionality reduction [97, 9]. In

supervised learning on the other hand, each point x in the input space X has

an associated (often deterministic) label y ∈ Y (for example Y = {+1,−1} for

the task of classification) and the goal is to learn a mapping from X to Y . The

learning algorithm is provided a training set in the form of pairs (xi, yi), where

the xis are drawn in an i.i.d. fashion from the same distribution D according

to which test points are drawn. When Y ⊆ R, the task is that of regression.

The performance of a hypothesis h : X 7→ Y is based on its predictions on

unseen test examples. Thus,

error(h) = Ex∼D [c(h, x)] ,

where c is a cost function that measures the discrepancy between the true

label y of x and the predicted label h(x).

Semi-supervised learning has elements of both unsupervised and supervised

learning. In this setting, the learning algorithm is given both labeled and un-

labeled data as the training set. The goal, however is to produce a hypothesis

that performs well on unseen points drawn according to the same distribution

as the points in the training set. The quality of the hypothesis’ prediction on

unlabeled training points does not matter.

Transductive learning or transductive inference was introduced by Vapnik

[101]. In this setting, as in semi-supervised learning, one is given both a labeled

117

set and an unlabeled set. However, unlike semi-supervised learning, the goal

of transduction is only to predict the labels of the unlabeled points supplied

in the sample. In fact, the hypothesis is never required to produce a label for

an unseen point. This contrasts with inductive learning, where the task is to

produce a function that maps the inputs to the labels. Intuitively, the problem

of transductive inference seems easier than that of induction since the learning

algorithm no longer needs to come up with a function that assigns a label to

every point in the input space, but only to produce labels for the given set of

test instances. Figure 3.1 contrasts the inductive setting with the transductive

setting.

Figure 3.1: The transductive learning approach versus the inductive learning
approach.

At first glance, it might seem unlikely that unlabeled points would provide

any useful information to the learning algorithm. The hope is to exploit the

118

distribution of unlabeled examples to help guide the learning algorithm. A

common approach is to assume that the target values or labels vary smoothly.

In this chapter, our analysis also makes use of such local variations with the

concept of local stability, which will be given a precise definition later. We

shall present precise generalization bounds that relate the performance of the

learning algorithm to local stability. At a high level, the framework of trans-

ductive algorithms we study consists of two steps: in the first step, we learn

estimate labels (or pseudo-targets) for the unlabeled points in the sample. In

the second step, we use true labels of the training samples and the estimate

labels of the test points.

The transductive approach is useful in situations in which the amount of

unlabeled data far exceeds that of labeled data. With the explosive growth of

the Internet, large amounts of digitized data (documents, images, videos) are

widely available but the cost of labeling is often prohibitive since it typically

requires human assistance. A search engine seeking to build a document rating

system or an image labeling system might have access to a small set of manually

labeled instances (rated documents, hand-labeled images) and a much larger

set of instances for which the labels have to be generated. This motivates

the use of transductive algorithms which leverage the unlabeled data during

training to improve learning performance.

This chapter deals with the transductive regression problem. In this set-

ting, the labels are real-valued (i.e. Y ⊆ R). Several algorithms have been

devised for the specific setting of transductive regression [10, 17, 28, 91]. Sev-

119

eral other algorithms introduced for the classification setting can be viewed as

transductive regression algorithms since their objective function is based on

the squared loss, for example, [8, 10].

We study a family of transductive regression algorithms. This includes

most existing algorithms [10, 17, 28, 91]. We are interested in the generaliza-

tion properties of this family of algorithms, that is, how well their performance

on the test set is reflected in their performance on the training set. In [28],

Cortes and Mohri give explicit generalization bounds for this problem that hold

for all bounded loss functions and coincide with the tight classification bounds

of Vapnik [102] when applied to the problem of transductive classification.

As in Chapter 2, Section 2.4, we use the notion of algorithmic stability

to derive generalization bounds for transductive regression. A stability-based

approach has also been used to derive generalization bounds in the inductive

setting, for the problems of regression, classification [13] and ranking [1]. The

advantage of stability bounds over generalization bounds based on complexity

measures such as the VC-dimension is that they are algorithm-dependent. Our

bound generalizes the stability bounds given by Bousquet and Elisseeff [14] for

the inductive setting and extends the stability-based transductive classification

bounds of El-Yaniv and Pechyony [45] to regression.

As we saw in Chapter 2, Section 2.4, deriving stability-based generalization

bounds in the inductive setting essentially involves applying McDiarmid’s con-

centration bound [69] to the random variable that is the difference of the test

error and the training error of the learned hypothesis. Note that this difference

120

is a function of the training sample alone, which is drawn in an i.i.d. fashion

in the inductive setting. In the transductive setting, standard concentration

bounds cannot be readily applied because the sampling random variables are

not independent, but are drawn uniformly at random without replacement

from a finite set. Instead, we need a generalization of McDiarmid’s bound

that holds for random variables sampled without replacement. We derive such

a bound in this chapter, which was independently derived by Pechyony and

El-Yaniv in [45].

The results of this chapter were published in [29].

The remainder of this chapter is organized as follows. Section 3.2 gives a

formal definition of the transductive regression setting and the notion of sta-

bility for transduction. Section 3.3.1 presents a general concentration bound

for random variables sampled without replacement. This concentration bound

is used to derive a general transductive regression stability bound in Sec-

tion 3.3.2. Section 3.4 analyzes the stability of local transductive regression

algorithms which are briefly described in Section 3.4.1. In Section 3.5, we

analyze the stability coefficients of various other algorithms based on their

closed-form solution and propose a modification to the apparently unstable

algorithm that makes them stable and guarantees a non-trivial generalization

bound. Finally, Section 3.6 shows the results of experiments with local trans-

ductive regression, demonstrating the benefit of our stability bounds for model

selection, and in particular for determining the radius of the local neighbor-

hood used by the algorithm. This provides a partial validation of our bounds

121

and analysis.

3.2 Preliminaries

3.2.1 Learning Setting

Assume that a full sampleX ofm+u examples is given. The learning algorithm

further receives the labels of a random subset S of X of size m which serves

as a training sample:

X = x1, . . . , xm︸ ︷︷ ︸
labeled

, xm+1, . . . , xm+u︸ ︷︷ ︸
unlabeled

. (3.1)

The remaining u unlabeled examples, xm+1, . . . , xm+u ∈ X, serve as test data.

We denote by X = (S, T) a partition of X into the training set S and the test

set T . The transductive learning problem consists of predicting accurately the

labels ym+1, . . . , ym+u of the test examples. No other test examples will ever be

considered. The specific problems where the labels are real-valued numbers,

as is the case in this chapter, is that of transductive.

Notation: We denote by c(h, x) the cost of an error of a hypothesis h on a

point x labeled with y(x). The cost function commonly used in regression is

the squared loss,

c(h, x) = (h(x)− y(x))2. (3.2)

122

In the remainder of this chapter, we will assume a squared loss but many of

the results presented generalize to other convex cost functions.

We will denote by R̂(h) andR(h) the training and test errors of a hypothesis

h:

R̂(h) =
1

m

m∑

k=1

c(h, xk), R(h) =
1

u

u∑

k=1

c(h, xm+k). (3.3)

Let H denote the hypothesis space from which the learning algorithm se-

lects an element.

Definition 3.1 (B-bounded hypothesis set H) The hypothesis set H is

said to be B-bounded with respect to the set of points X if for all h ∈ H and

all x ∈ X,

|h(x)− y(x)| ≤ B.

3.2.2 Transductive Stability

The generalization bounds we derive are based on the notion of transductive

algorithmic stability.

Definition 3.2 (Transductive β-stability) Let L be a transductive learn-

ing algorithm and let h denote the hypothesis returned by L on the partition

(S, T) of X and h′ the hypothesis returned on the partition (S ′, T ′). L is said

to be uniformly β-stable with respect to the cost function c if there exists β ≥ 0

such that when S and S ′ differ in exactly one point, for all x ∈ X,

∣∣c(h, x)− c(h′, x)
∣∣ ≤ β. (3.4)

123

We also present the definition of β-stability in the inductive case.

Definition 3.3 (Inductive β-stability) Let L be an inductive learning al-

gorithm and let h denote the hypothesis returned by L on a sample S and h′

the hypothesis returned on S ′. L is said to be uniformly β-stable with respect

to the cost function c if there exists β ≥ 0 such that for any two sets S and S ′

that differ in exactly one point and for all x ∈ X

∣∣c(h, x)− c(h′, x)∣∣ ≤ β. (3.5)

Definitions 3.2 and 3.3 require that the cost (or the error) of any point x

not change by more than β when the training set is changed in exactly one

point. A stronger notion of stability is score stability, which requires that

the hypothesis scores themselves do not change much. Thus, we say that a

learning algorithm has score-stability β if the conditions in Equations 3.4 and

3.5 are replaced by the condition:

∣∣h(x)− h′(x)
∣∣ ≤ β. (3.6)

In our context, the notion of score-stability is stronger than error-stability,

in that if a learning algorithm is β-score stable and the hypothesis set is B-

bounded, then c(h, x)− c(h′, x) = (h(x)− y(x))2 − (h′(x)− y(x))2 ≤ 2βB.

124

3.3 Transductive Regression Stability Bounds

3.3.1 Bound for Sampling without Replacement

Stability-based generalization bounds in the inductive setting are based on

McDiarmid’s inequality [69]. The main technique used is to show that under

suitable conditions on the stability of the algorithm, the difference of the test

error and the training error is sharply concentrated around its expected value,

and that this expected value itself is small. Roughly speaking, this implies

that with high probability, the test error is close to the training error. Since

the points in the training sample are drawn in an i.i.d. fashion, McDiarmid’s

inequality [69] can be applied.

However, in the transductive setting, the sampling random variables are

not drawn independently. Thus, McDiarmid’s concentration bound cannot

be readily used in this case. Instead, a generalization of McDiarmid’s bound

that holds for random variables sampled without replacement is needed. We

present such a generalization in this section. We remark that this bound was

independently discovered by Pechyony and El-Yaniv in [45, 46]. To derive the

bound, we use the method of averaged bounded differences and the following

theorem due to Azuma [7] and McDiarmid [69].

Notation: We will denote by Sji the subsequence of random variables Si, . . . , Sj

and we write Sji = xji as a shorthand for the event Si = xi, . . . , Sj = xj.

Theorem 3.1 (McDiarmid [69], 6.10) Let Sm1 be a sequence of random

125

variables, each Si taking values in the set X, and assume that a measurable

function φ : Xm 7→ R satisfies:

∀i ∈ [m], ∀xi, x′i ∈ X,
∣∣∣ESm

i+1

[
φ|Si−1

1 , Si = xi
]− ESm

i+1

[
φ|Si−1

1 , Si = x′i
]∣∣∣ ≤ ci.

Then for all ε > 0,

Pr [φ− E [φ] ≥ ε] ≤ exp

(−2ε2∑m
i=1 c

2
i

)
. (3.7)

We need the following technical definition before we present the bound.

Definition 3.4 (Symmetric Function) A function φ : Xm 7→ R is said to

be symmetric if its value does not depend on the order of its arguments. That

is, for any two permutations π1 and π2 of Sm1 , φ(π1) = φ(π2).

Theorem 3.2 (A Bound for Sampling Without Replacement) Let xm1

be a sequence of random variables, sampled from an underlying set X of m+u

elements without replacement, and let φ : Xm 7→ R be a symmetric function

such that for all i ∈ [1,m] and for all x1, . . . , xm ∈ X and x′1, . . . , x
′
m ∈ X,

|φ(x1, . . . , xm)− φ(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ c.

Then, for all ε > 0,

Pr [φ− E [φ] ≥ ε] ≤ exp

(−2ε2

α(m,u)c2

)
, (3.8)

126

where α(m,u) = mu
m+u−1/2

· 1
1−1/(2max{m,u}) .

Proof. Fix i ∈ [m] and define g(Si−1
1) as follows.

g(Si−1
1) = ESm

i+1

[
φ|Si−1

1 , Si = xi
]− ESm

i+1

[
φ|Si−1

1 , Si = x′i
]
.

Then,

g(xi−1
1) =

∑
xm

i+1

φ(xi−1
1 , xi,x

m
i+1) Pr[Smi+1 = xmi+1|Si−1

1 = xi−1
1 , Si = xi]

−
∑

x′mi+1

φ(xi−1
1 , x′i,x

′m
i+1) Pr[Smi+1 = x′mi+1|Si−1

1 = xi−1
1 , Si = x′i].

We will bound g(xi−1
1) by ci = u

m+u−ic in order to apply Theorem 3.1 and

thereby obtain the claimed bound.

For uniform sampling without replacement, the probability terms can be

written as:

Pr
[
Smi+1 = xmi+1|Si−1

1 = xi−1
1 , Si = xi

]
=

m−1∏

k=i

1

m+ u− k =
u!

(m+ u− i)! .

Thus,

g(xi−1
1) =

u!

(m+ u− i)!
[∑
xm

i+1

φ(xi−1
1 , xi,x

m
i+1)−

∑

x′mi+1

φ(xi−1
1 , x′i,x

′m
i+1)

]
.

To compute
∑

xm
i+1
φ(xi−1

1 , xi,x
m
i+1) −

∑
x′mi+1

φ(xi−1
1 , x′i,x

′m
i+1), we divide the

set of permutations {x′mi+1} into two sets, those that contain the element xi

127

and those that do not. If a permutation x′mi+1 contains xi we can write it

as x′k−1
i+1 xix

′m
k+1, where k is such that x′k = xi. We then match it up with

the permutation xix
′k−1
i+1 x′mk+1 from the set {xixmi+1}. These two permutations

contain exactly the same elements, and since the function φ is symmetric in

its arguments, the difference in the value of the function on the permutations

is zero.

In the other case, if a permutation x′mi+1 does not contain the element xi,

then we simply match it up with the same permutation in {xmi+1}. The match-

ing permutations appearing in the summation are then xix
′m
i+1 and x′ix

′m
i+1

which clearly only differ with respect to xi. The difference in the value of the

function φ in this case can be bounded by c. The number of such permutations

can be counted as follows: it is the number of permutations of length m − i
from the set X of m + u elements that do not contain any of the elements of

xi−1
1 , xi and x′i, which is equal to (m+u−i−1)!

(u−1)!
. This leads us to the following

upper bound on
∑

xm
i+1
φ(xi−1

1 , xi,x
m
i+1)−

∑
x′mi+1

φ(xi−1
1 , x′i,x

′m
i+1):

∑
xm

i+1

φ(xi−1
1 , xi,x

m
i+1)−

∑

x′mi+1

φ(xi−1
1 , x′i,x

′m
i+1) ≤

(m+ u− i− 1)!

(u− 1)!
c,

which implies that |g(xi−1
1)| ≤ u!

(m+u−i)! · (m+u−i−1)!
(u−1)!

c ≤ u
m+u−ic. We need to

bound
∑m

i=1

(
u

m+u−ic
)2

in order to apply the bound from Theorem 3.1. To

this end, note that

m∑
i=1

1

(m+ u− i)2
=

m+u−1∑
j=u

1

j2
≤

∫ m+u−1/2

u−1/2

dx

x2
=

m

m+ u− 1/2
· 1

u− 1/2
.

128

Applying Theorem 3.1 then yields:

Pr [φ− E [φ] ≥ ε] ≤ exp

(−2ε2

αu(m,u)c2

)
,

where αu(m,u) = mu
m+u−1/2

· 1
1−1/(2u)

. The function φ is symmetric in m and u

in the sense that selecting one of the sets uniquely determines the other set.

The statement of the theorem then follows obtaining a similar bound with

αm(m,u) = mu
m+u−1/2

· 1
1−1/(2m)

and taking the tighter of the two bounds. 2

3.3.2 Transductive Stability Bound

We apply the concentration bound presented in the previous section (Theo-

rem 3.2) to the random variable that is the difference of the training error and

the test error. We call this random variable φ(S) = R(h) − R̂(h). Note that

the elements of the training set S uniquely determine the hypothesis h1, which

in turn determines the test error R(h) and the training error R̂(h). In order to

apply Theorem 3.2, we need to bound ES [φ(S)], where S is a random subset

of X of m elements, and |φ(S) − φ(S ′)| where S and S ′ are samples differing

on exactly one point. The stability parameter β of the transductive learning

algorithm (Definition 3.2) is needed in bounding both these quantities.

Lemma 3.1 Let H be a B-bounded hypothesis set. Let L be a β-stable algo-

rithm and let S and S ′ be two training sets of size m that differ in exactly

1We limit ourselves to deterministic learning algorithms that always produce the same
hypothesis on the same training/test partitions X.

129

one point. Let h ∈ H be the hypothesis returned by L when trained on S and

h′ ∈ H the one returned when L is trained on S ′. Then,

|φ(S)− φ(S ′)| ≤ 2β +
m+ u

mu
B2. (3.9)

Proof. By the definition of S ′, there exist i ∈ [1,m] and j ∈ [1, u] such that

S ′ = S \ {xi} ∪ {xm+j}. φ(S)− φ(S ′) can written as follows:

φ(S)− φ(S ′) =
1

u

u∑

k=1,k 6=j
[c(h, xm+k)− c(h′, xm+k)] +

1

m

m∑

k=1,k 6=i
[c(h′, xk)− c(h, xk)]

+
1

u
[c(h, xm+j)− c(h′, xi)] +

1

m
[c(h′, xm+j)− c(h, xi)] .

Since H is B-bounded, the squared-loss c(·, ·) is such that c(h, x) ≤ B2 for all

x ∈ X, h ∈ H. Thus,

|φ(S)− φ(S ′)| ≤ (u− 1)β

u
+

(m− 1)β

m
+
B2

u
+
B2

m
≤ 2β +B2

(
1

u
+

1

m

)
.

2

Lemma 3.2 Let h be the hypothesis returned by a β-stable algorithm L. Then,

|ES [φ(S)] | ≤ β.

Proof. By the definition of φ(S),

ES [φ(S)] = ES [R(h)]− ES
[
R̂(h)

]

=
1

u

u∑

k=1

ES [c(h, xm+k)]− 1

m

m∑

k=1

ES [c(h, xk)]

130

ES [c(h, xm+k)] is the same for all 1 ≤ k ≤ u, and similarly, ES [c(h, xk)] is the

same for all 1 ≤ k ≤ m. Let i ∈ {1, . . . ,m} and j ∈ {1, . . . , u}. Then,

ES [φ(S)] = ES [c(h, xm+j)]− ES [c(h, xi)]

= ES′∼X [c(h′, xi)]− ES∼X [c(h, xi)]

= ES,S′∼X [c(h′, xi)− c(h, xi)]

≤ β.

2

Theorem 3.3 Let H be a B-bounded hypothesis set and L a β-stable algo-

rithm. Let S be a random subset of labeled points of size m drawn from X

and let h be the hypothesis returned by L on the corresponding partition of X.

Then, for any δ > 0, with probability at least 1− δ,

R(h) ≤ R̂(h) + β +

(
2β +

B2(m+ u)

mu

) √
α(m,u) ln 1

δ

2
, (3.10)

where α(m,u) = mu
m+u−1/2

· 1
1−1/(2max{m,u}) .

Proof. Recall that φ = R(h) − R̂(h). By Lemma 3.1, for sets S and S ′ that

differ in one point, |φ(S)− φ(S ′)| ≤ 2β + m+u
mu

B2. By Lemma 3.2, ES [φ] ≤ β.

131

Thus Theorem 3.2 yields:

Pr
S

[
R(h)− R̂(h)− β ≥ ε

]
≤ exp

(
−2ε2

α(m,u)
(
2β +

(
m+u
mu

)
B2

)2

)

= exp

(−2ε2m2u2

α(m,u) (2βmu+ (m+ u)B2)2

)

Setting the upper bound to δ yields

ε =

(
2β +

B2(m+ u)

mu

) √
α(m,u) ln 1

δ

2
.

Thus, with probability 1− δ, R(h) satisfies the bound in Equation 3.10. 2

This is a general bound that applies to any transductive algorithm. To apply it,

the stability coefficient β, which depends on m and u, needs to be determined.

In subsequent sections, we derive bounds on β for a number of transductive

regression algorithms [8, 28, 105, 106, 107].

3.4 Stability of Local Transductive Regression

Algorithms

This section describes and analyzes a general family of local transductive re-

gression algorithms (LTR) generalizing the algorithm of Cortes and Mohri [28].

132

3.4.1 Local Transductive Regression Algorithms

LTR algorithms can be viewed as a generalization of the so-called kernel regularization-

based learning algorithms to the transductive setting. The objective function

that they minimize is of the form:

F (h, S) = ‖h‖2K +
C

m

m∑

k=1

c(h, xk) +
C ′

u

u∑

k=1

c̃(h, xm+k), (3.11)

where ‖·‖K is the norm in the reproducing kernel Hilbert space (RKHS) with

associated kernel K, C ≥ 0 and C ′ ≥ 0 are trade-off parameters, and c̃(h, x) =

(h(x) − ỹ(x))2 is the error of the hypothesis h on the unlabeled point x with

respect to a pseudo-target ỹ. The objective function contains three terms:

a regularization term based on ‖·‖K , a term corresponding to the empirical

error as in standard kernel-based regularization algorithms, and a third term

corresponding to the error with respect to the pseudo-targets.

Pseudo-targets are obtained from neighborhood labels y(x) by a local

weighted average. Neighborhoods can be defined as a ball of radius r around

each point in the feature space. We will denote by βloc the score-stability (see

Equation 3.6) of the algorithm used to determine pseudo-targets, that is the

maximal amount by which the two hypotheses differ on an given point, when

trained on samples disagreeing on one point.

In this section, we make the bounded-labels assumption, that is for all

x ∈ S, |y(x)| ≤ M . Then, for any x ∈ S the pseudo-target ỹ(x) assigned

by the local estimator to the unlabeled examples satisfies |ỹ(x)| ≤ M . This

133

assumption is quite mild and is satisfied when the pseudo-targets are computed

by Nadaraya-Watson estimators or by the other methods suggested in [28],

such as kernel ridge regression.

We also assume that for any x ∈ X, K(x, x) ≤ κ2. We will use the following

bound based on the reproducing property and the Cauchy-Schwarz inequality

valid for any hypothesis h ∈ H : ∀x ∈ X [89],

|h(x)|= |〈h,K(x, ·)〉| ≤ ‖h‖K
√
K(x, x) ≤ κ‖h‖K . (3.12)

Lemma 3.3 Let h be the hypothesis minimizing (3.11). Assume that for any

x ∈ X, K(x, x) ≤ κ2. Then, for any x ∈ X, |h(x)| ≤ κM
√
C + C ′.

Proof. The proof is a straightforward adaptation of the technique of [14] to

LTR algorithms. By Equation 3.12, |h(x)| ≤ κ‖h‖K . Let 0 ∈ Rm+u be the

hypothesis assigning label zero to all examples. By the definition of h,

F (h, S) ≤ F (0, S) ≤ (C + C ′)M2.

Using the fact that ‖h‖K ≤
√
F (h, S) yields the statement of the lemma. 2

Since |h(x)| ≤ κM
√
C + C ′, this immediately gives us a bound on |h(x) −

y(x)| ≤M(1+κ
√
C + C ′) and we are in a position to apply Theorem 3.3 with

B = AM , A = 1 + κ
√
C + C ′.

Let h be a hypothesis obtained by training on S and h′ by training on S ′. To

determine the stability coefficient β, we must upper-bound |c(h, x)− c(h′, x)|.

134

Let ∆h = h− h′. Then, for all x ∈ X,

|c(h, x)− c(h′, x)| =
∣∣∣∆h(x) [(h(x)− y(x)) + (h′(x)− y(x))]

∣∣∣

≤ 2M(1 + κ
√
C + C ′)|∆h(x)|.

As in Inequality 3.12, for all x ∈ X, |∆h(x)| ≤ κ‖∆h‖K , thus for all x ∈ X,

|c(h, x)− c(h′, x)| ≤ 2M(1 + κ
√
C + C ′)κ‖∆h‖K . (3.13)

It remains to bound ‖∆h‖K . Our approach towards bounding ‖∆h‖K is similar

to the one used by Bousquet and Elisseeff [13], and relies on the convexity of

h 7→ c(h, x). Note however that in the case of c̃, the pseudo-targets may

depend on the training set S. This dependency matters when we wish to

apply convexity with two hypotheses h and h′ obtained by training on different

samples S and S ′. For convenience, for any two such fixed hypotheses h and

h′, we extend the definition of c̃ as follows. For all t ∈ [0, 1],

c̃(th+ (1− t)h′, x) =
(
(th+ (1− t)h′)(x)− (tỹ + (1− t)ỹ′))2

. (3.14)

This allows us to use the same convexity property for c̃ as for c for any two

fixed hypotheses h and h′ as verified by the following lemma.

Lemma 3.4 Let h be a hypothesis obtained by training on S and h′ by training

135

on S ′. Then, for all t ∈ [0, 1],

tc̃(h, x) + (1− t)c̃(h′, x) ≥ c̃(th+ (1− t)h′, x). (3.15)

Proof. Let ỹ = ỹ(x) be the pseudo-target value at x when the training set is

S and ỹ′ = ỹ′(x) when the training set is S ′. For all t ∈ [0, 1],

tc(h, x) + (1− t)c(h′, x)− c(th+ (1− t)h′, x)

= t(h(x)− ỹ)2 + (1− t)(h′(x)− ỹ′)2 − [(th(x) + (1− t)h′(x)− (tỹ + (1− t)ỹ′)]2

= t(h(x)− ỹ)2 + (1− t)(h′(x)− ỹ′)2 − [t(h(x)− ỹ) + (1− t)(h′(x)− ỹ′)]2 .

The statement of the lemma follows directly by the convexity of the function

x 7→ x2 defined over R. 2

Recall that βloc denotes the score-stability of the algorithm that produces the

pseudo-targets. In Lemma 3.6 we present an upper-bound ‖∆h‖K , which can

then be plugged into Equation 3.13 to determine the stability of LTR.

Lemma 3.5 Assume that for all x ∈ X, |y(x)| ≤ M . Let S and S ′ be two

samples differing by exactly one point. Let h be the hypothesis returned by

the algorithm minimizing the objective function F (h, S), h′ be the hypothesis

obtained by minimization of F (h, S ′) and let ỹ and ỹ′ be the corresponding

136

pseudo-targets. Then for all i ∈ {1, . . . ,m},

C

m
[c(h′, xi)− c(h, xi)] +

C ′

u
[c̃(h′, xi)− c̃(h, xi)]

≤ 2AM

(
κ‖∆h‖K

(
C

m
+
C ′

u

)
+ βloc

C ′

u

)
, (3.16)

where ∆h = h′ − h and A = 1 + κ
√
C + C ′.

Proof. From Equation 3.13, we know that:

|c(h′, xi)− c(h, xi)| ≤ 2M(1 + κ
√
C + C ′)κ‖∆h‖K .

It remains to bound |c̃(h′, xi)− c̃(h, xi)|.

c̃(h′, xi)− c̃(h, xi) = (h′(x)− ỹ′(x))2 − (h(x)− ỹ(x))2

= ((h′(x)− ỹ′(x)) + (h(x)− ỹ(x))) (∆h(x)− (ỹ′(x)− ỹ(x)))

≤ 2M(1 + κ
√
C + C ′) (κ‖∆h‖K + βloc)

Here, we are using score-stability βloc of the local algorithm in |ỹ′(x)− ỹ(x)| ≤
βloc (see Equation 3.6) and that |h(x) − ỹ(x)| ≤ M(1 + κ

√
C + C ′) when

|ỹ(x)| ≤M (by Lemma 3.3).

Plugging the bounds for |c(h′, xi) − c(h, xi)| and |c̃(h′, xi) − c̃(h, xi)| into

the LHS of Equation 3.16 yields the statement of the lemma. 2

Lemma 3.6 Assume that for all x ∈ X, |y(x)| ≤ M . Let S and S ′ be two

samples differing by exactly one point. Let h be the hypothesis returned by the

137

algorithm minimizing the objective function F (h, S), h′ the hypothesis obtained

by minimization of F (h, S ′) and let ỹ and ỹ′ be the corresponding pseudo-

targets. Then, for any i ∈ [1,m], j ∈ [1, u],

‖∆h‖2K ≤ 2AM

(
κ‖∆h‖K

(
C

m
+
C ′

u

)
+ βloc

C ′

u

)
, (3.17)

where ∆h = h′ − h and A = 1 + κ
√
C + C ′.

Proof. By the definition of h and h′, we have

h = argmin
h∈H

F (h, S) and h′ = argmin
h∈H

F (h, S ′).

Let t ∈ [0, 1]. Then h+ t∆h and h′− t∆h satisfy F (h, S)−F (h+ t∆h, S) ≤ 0

and F (h′, S ′)− F (h′ − t∆h, S ′) ≤ 0.

For notational ease, let ht∆ denote h + t∆h and h′t∆ denote h′ − t∆h.

Summing these two inequalities yields

C

m

m∑

k=1

[c(h, xk)− c(ht∆, xk)] +
C ′

u

u∑

k=1

[c̃(h, xm+k)− c̃(ht∆h, xm+k)] +

C

m

m∑

k=1,k 6=i
[c(h′, xk)− c(h′t∆, xk)] +

C ′

u

u∑

k=1,k 6=j
[c̃(h′, xm+k)− c̃(h′t∆, xm+k)] +

C

m
[c(h′, xm+j)− c(h′t∆, xm+j)] +

C ′

u
[c̃(h′, xi)− c̃(h′t∆, xi)] +

‖h‖2K − ‖ht∆h‖2K + ‖h′‖2K − ‖h′t∆‖2K ≤ 0.

138

By the convexity of c(h, ·) in h, it follows that for all k ∈ [1,m+ u]

c(h, xk)− c(ht∆h, xk) ≥ t [c(h, xk)− c(h+ ∆h, xk)] , (3.18)

and

c(h′, xk)− c(h′t∆, xk) ≥ t [c(h′, xk)− c(h′ −∆h, xk)] . (3.19)

By Lemma 3.4, similar inequalities hold for c̃. These observations lead to:

Ct

m

m∑

k=1

[c(h, xk)− c(h′, xk)] +
C ′t
u

u∑

k=1

[c̃(h, xm+k)− c̃(h′, xm+k)] +

Ct

m

m∑

k=1,k 6=i
[c(h′, xk)− c(h, xk)] +

C ′t
u

u∑

k=1,k 6=j
[c̃(h′, xm+k)− c̃(h, xm+k)] +

Ct

m
[c(h′, xm+j)− c(h, xm+j)] +

C ′t
u

[c̃(h′, xi)− c̃(h, xi)] +

‖h‖2K − ‖ht∆h‖2K + ‖h′‖2K − ‖h′t∆‖2K ≤ 0.

Let E denote ‖h‖2K − ‖ht∆h‖2K + ‖h′‖2K − ‖h′t∆‖2K . Simplifying the previous

inequality leads to:

E ≤ Ct

m
[c(h′, xi)− c(h, xi) + c(h, xm+j)− c(h′, xm+j)]−

C ′t
u

[c̃(h′, xi)− c̃(h, xi) + c̃(h, xm+j)− c̃(h′, xm+j)] .

Let A = 1 + κ
√
C + C ′. Using Lemma 3.5 twice (with xi and xm+j), the

139

expression above can be bounded by

E ≤ 4AMt

(
κ‖∆h‖K

(
C

m
+
C ′

u

)
+ βloc

C ′

u

)
, (3.20)

. Finally, since ‖h‖2K = 〈h, h〉K for any h ∈ H, it is not hard to show that:

‖h‖2K − ‖h+ t∆h‖2K + ‖h′‖2K − ‖h′ − t∆h‖2K = 2t‖∆h‖2K(1− t). (3.21)

Using Equation 3.21 in Equation 3.20, it follows that:

‖∆h‖2K(1− t) ≤ 2AM

(
κ‖∆h‖K

(
C

m
+
C ′

u

)
+ βloc

C ′

u

)
.

Taking the limit as t→ 0 yields the statement of the lemma. 2

Theorem 3.4 Assume that for all x ∈ X, |y(x)| ≤ M and there exists κ

such that ∀x ∈ X, K(x, x) ≤ κ2. Further, assume that the local estimator

has uniform stability coefficient βloc. Let A = 1 + κ
√
C + C ′. Then, LTR is

uniformly β-stable with

β ≤ 2(AM)2κ2

[
C

m
+
C ′

u
+

√(
C

m
+
C ′

u

)2

+
2C ′βloc
AMκ2u

]
.

Proof. From Lemma 3.6, we know that

‖∆h‖2K ≤ 2AM

(
κ‖∆h‖K

(
C

m
+
C ′

u

)
+ βloc

C ′

u

)
,

140

where ∆h = h′−h andA = 1+κ
√
C + C ′. This implies that ‖∆h‖K is bounded

by the non-negative root of the second-degree polynomial which gives

‖∆h‖K ≤ AMκ

[(
C

m
+
C ′

u

)
+

√(
C

m
+
C ′

u

)2

+
2C ′βloc
AMκ2u

]
.

Using the above bound on ‖∆h‖K in Equation 3.13 yields the desired bound

on the stability coefficient of LTR and completes the proof. 2

Our experiments with local transductive regression in Section 3.6 will show

the benefit of this bound for model selection.

3.5 Stability Based on Closed-Form Solution

3.5.1 Unconstrained Regularization Algorithms

In this section, we consider a family of transductive regression algorithms that

can be formulated as the following optimization problem:

min
h

h>Qh + (h− y)>C(h− y). (3.22)

Q ∈ R(m+u)×(m+u) is a symmetric regularization matrix, C ∈ R(m+u)×(m+u)

is a symmetric matrix of empirical weights (in practice it is often a diagonal

matrix), y ∈ R(m+u)×1 are the target values of the m labeled points together

with (possibly) the pseudo-target values of the u unlabeled points (in some

formulations, the pseudo-target value is 0), and h ∈ R(m+u)×1 is a column

141

vector whose ith row is the predicted target value for xi. In addition to the

bounded labels assumption, in this section, we also assume that the hypothesis

values are bounded. That is, for all x ∈ X, |h(x)| ≤ M . These assumptions

are standard [8]. The closed-form solution of (3.22) is given by

h∗ = (C−1Q + I)−1y. (3.23)

The formulation (3.22) is quite general and includes as special cases the algo-

rithms of [8, 105, 106, 107]. In this section, we present a general framework

for bounding the stability coefficient of these algorithms. Then we examine

specific algorithms and use the general results derived in this section to bound

the stability coefficient of each algorithm in turn. One point to note is that the

objective function in Equation 3.22 is distinct from the one in Equation 3.11 in

that the prediction for a test point is no longer linear in an underlying Hilbert

space.

For a symmetric matrix A ∈ Rn×n we will denote by λM(A) its largest

and by λm(A) its smallest eigenvalue. Then, for any v ∈ Rn×1, λm(A)‖v‖2 ≤
‖Av‖2 ≤ λM(A)‖v‖2. In the proof of the following theorem, we will also use

the fact that for symmetric matrices A,B ∈ Rn×n, λM(AB) ≤ λM(A)λM(B).

Theorem 3.5 Let h∗ and h′∗ solve (3.22), under test and training sets that

differ exactly in one point and let C,C′,y,y′ be the analogous empirical weight

142

and the target value matrices. Then,

‖h∗−h′∗‖∞ ≤ ‖h∗−h′∗‖2 ≤ ‖y − y′‖2
λm(Q)
λM (C)

+ 1
+
λM(Q)‖C′−1 −C−1‖2 ‖y′‖2(

λm(Q)
λM (C′) + 1

)(
λm(Q)
λM (C)

+ 1
) (3.24)

Proof. Let ∆h∗ = h∗ − h′∗ and ∆y = y − y′. By definition,

∆h∗ =(C−1Q + I)−1y − (C′−1Q + I)−1y′

=(C−1Q + I)−1∆y + ((C−1Q + I)−1 − (C′−1Q + I)−1)y′

=(C−1Q + I)−1∆y

+
[
(C′−1Q + I)−1

[
(C′−1 −C−1)Q

]
(C−1Q + I)−1

]
y′.

Using standard linear algebra inequalities yields:

‖∆‖2 ≤ ‖∆y‖2
λm(C−1Q + I)

+
λM(Q)‖C′−1 −C−1‖2 · ‖y′‖2
λm(C′−1Q + I)λm(C−1Q + I)

(3.25)

Furthermore, λm(C−1Q + I) ≥ λm(Q)
λM (C)

+ 1. Plugging this bound back into

Equation 3.25 yields:

‖∆‖2 ≤ ‖∆y‖2
λm(Q)
λM (C)

+ 1
+
λM(Q)‖C′−1 −C−1‖2 · ‖y′‖2(

λm(Q)
λM (C′) + 1

)(
λm(Q)
λM (C)

+ 1
) .

2

The theorem helps derive score-stability bounds for various transductive re-

gression algorithms [106, 105, 107] based on the closed-form solution for the

143

hypothesis. Recall that score-stability (Equation 3.6) is the maximum change

in the hypothesis score on any point x as the learning algorithm is trained on

two training sets that differ in exactly one point. Thus, the score-stability is

bounded by ‖h∗ − h′∗‖∞.

For each of the algorithms in [106, 105, 107], an estimate of 0 is used for

unlabeled points. Thus, the vector y has the following structure: the entries

corresponding to training examples are their true labels and those correspond-

ing to the unlabeled examples are 0. For each one of the three algorithms, we

make the bounded labels assumption (∀x ∈ X, |y(x)| ≤ M for some M > 0).

It is then not difficult to show that ‖y − y′‖2 ≤
√

2M and ‖y′‖2 ≤
√
mM .

Furthermore, all the derived stability bounds are based on the notion of score-

stability and not on error-stability.

Consistency method (CM) In the CM algorithm [106], the regularization

matrix Q is a normalized Laplacian of a weight matrix W ∈ R(m+u)×(m+u)

that captures affinity between pairs of points in the full sample X. Thus, Q =

I−D−1/2WD−1/2, where D ∈ R(m+u)×(m+u) is a diagonal matrix, whose (i, i)th

element is the sum of the ith row in W. Note that λm(Q) = 0. Furthermore,

matrices C and C′ are identical in CM, both being diagonal matrices whose

(i, i)th element is a positive constant µ > 0. Thus C−1 = C′−1 and using

Theorem 3.5, we obtain the following bound on the score-stability of the CM

algorithm:

βCM ≤
√

2M. (3.26)

144

Local learning regularization (LL− Reg) In the LL− Reg algorithm [105],

the regularization matrix Q is (I−A)>(I−A), where I ∈ R(m+u)×(m+u) is an

identity matrix and A ∈ R(m+u)×(m+u) is a symmetric weight matrix that cap-

tures the local similarity between pairs of points in the full sample X. A is nor-

malized; that is, each row (and column) of A sums to 1. The matrix A is com-

puted before obtaining the actual partition of the full sample X into training

and test sets, and it is not symmetric in general. Let Cl, Cu > 0 be two positive

constants. The matrix C is a diagonal matrix with the ith entry being Cl if the

ith example is in the training set and Cu otherwise. Let Cmax = max{Cl, Cu}
and Cmin = min{Cl, Cu}. Thus, ‖C′−1 −C−1‖2 =

√
2
(

1
Cmin
− 1

Cmax

)
.

Since the sum of entries of each row of A is 1, by the Perron-Frobenius

theorem its eigenvalues lie in the interval (−1, 1] and one of its eigenvalues is

1. Thus, λm(I−A) = 0 and λM(I−A) = 2. Recall that Q = (I−A)>(I−A).

This leads to λm(Q) = 0 and λM(Q) = 4 and we have the following bound on

the score-stability of the LL− Reg algorithm:

βLL−Reg ≤
√

2M + 4
√
mM

(
1

Cmin

− 1

Cmax

)

≤
√

2M +
4
√
mM

Cmin

. (3.27)

The Gaussian Mean Fields algorithm [107] is very similar to the LL− Reg

algorithm, and admits exactly the same stability coefficient.

Thus, the stability coefficients of the algorithms in [105, 106, 107] are quite

large and do not allow the generalization bound of Equation 3.10 to con-

145

verge. Without additional assumptions on the matrix Q, these algorithms do

not appear to be stable enough for the generalization bound (Theorem 3.3)

to converge. We first present and analyze these stability bounds and later

detail a general approach imposing additional constraints on the hypothesis

that make the bound converge. A particular example of this is the constraint
∑m+u

i=1 h(xi) = 0 used by Belkin’s algorithm [8]. In the next section, we present

a generalization bound for Belkin’s algorithm and comment on “stable” ver-

sions of the algorithms analyzed in this section.

3.5.2 Stability of Constrained Regularization Algorithms

This subsection analyzes constrained regularization algorithms such as the

Laplacian-based graph regularization algorithm of Belkin et al. [8]. Given a

weighted graph G = (X,E) in which edge weights represent the extent of

similarity between vertices, the task consists of predicting the vertex labels.

The hypothesis h returned by the algorithm is the solution of the following

optimization problem:

min
h∈H

h>Lh +
C

m

m∑
i=1

(h(xi)− yi)2

subject to:
m+u∑
i=1

h(xi) = 0,

where L ∈ R(m+u)×(m+u) is a smoothness matrix, for example the graph Lapla-

cian, and {yi | i ∈ [m]} are the target values of the m labeled nodes.

146

The hypothesis set H in this case can be thought of as a hyperplane in

Rm+u that is orthogonal to the vector 1 ∈ Rm+u. Maintaining the notation

used in [8], we let PH denote the operator corresponding to the orthogonal

projection on H. For a sample S drawn without replacement from X, define

IS ∈ R(m+u)×(m+u) to be the diagonal matrix with [IS]i,i = 1 if xi ∈ S and 0

otherwise. Similarly, let yS ∈ R(m+u)×1 be the column vector with [yS]i,1 = yi

if xi ∈ S and 0 otherwise. The closed-form solution on a training sample S is

given by [8]:

hS =
(
PH

(m
C

L + IS

))−1

yS. (3.28)

Theorem 3.6 Assume that the vertex labels of the graph G = (X,E) and the

hypothesis h obtained by optimizing Equation 3.28 are both bounded (∀x, |h(x)| ≤
M and |y(x)| ≤M for some M > 0). Let A = 1+κ

√
C. Then, for any δ > 0,

with probability at least 1− δ,

R(h) ≤ R̂(h) + β +

(
2β +

(AM)2(m+ u)

mu

) √
α(m,u) ln 1

δ

2
,

with β ≤ 4
√

2M2

m
C
λ2−1

+ 4
√

2mM2

(m
C
λ2−1)

2 , where λ2 is the second smallest eigenvalue of the

Laplacian matrix and α(m,u) = mu
m+u−1/2

· 1
1−1/(2max{m,u}) .

Proof. The proof is similar to that of [8] but uses our general transductive

regression bound instead. 2

The generalization bound we just presented differs in several respects from

that of Belkin et al. [8]. Our bound explicitly depends on both m and u while

147

theirs shows a dependency on m only. Also, our bound does not depend on the

number of times a point is sampled in the training set (parameter t), thanks

to our analysis based on sampling without replacement.

Contrasting the stability coefficient of Belkin’s algorithm with the stability

coefficient of LTR (Theorem 3.4), we note that it does not depend on C ′ and

βloc. This is because unlabeled points do not enter the objective function, and

thus C ′ = 0 and ỹ(x) = 0 for all x ∈ X. However, the stability does depend

on the second smallest eigenvalue λ2 and the bound diverges as λ2 approaches

C
m

. In all our regression experiments, we observed that this algorithm does not

perform as well as LTR.

3.5.3 Making Seemingly Unstable Algorithms Stable

In Section 3.5.2, we saw that imposing additional constraints on the hypothe-

sis, for example, h · 1 = 0, allowed one to derive non-trivial stability bounds.

This idea can be generalized and similar non-trivial stability bounds can be

derived for “stable” versions of the algorithms presented in Section 3.5.1:

CM, LL− Reg, and GMF. Recall that the stability bound in Theorem 3.5 is

inversely proportional to the smallest eigenvalue λm(Q). The main difficulty

with using the theorem for these algorithms is that λm(Q) = 0 in each case.

Let vm denote the eigenvector corresponding to λm(Q) and let λ2 be the second

smallest eigenvalue of Q. One can modify (3.22) and constrain the solution to

be orthogonal to vm by imposing h · vm = 0. In the case of [8], vm = 1. This

modification, motivated by the algorithm of [8], is equivalent to increasing the

148

smallest eigenvalue to be λ2.

As an example, by imposing the additional constraint, we can show that

the stability coefficient of CM becomes bounded by O(C/λ2), instead of Θ(1).

Thus, if C = O(1/m) and λ2 = Ω(1), it is bounded by O(1/m) and the

generalization bound converges as O(1/m).

3.6 Experiments

3.6.1 Model Selection Based on Bound

This section reports the results of experiments using our stability-based gener-

alization bound for model selection for the LTR algorithm. A crucial parameter

of this algorithm is the stability coefficient βloc(r) of the local algorithm, which

computes pseudo-targets ỹx based on a ball of radius r around each point. We

derive an expression for βloc(r) and show, using extensive experiments with

multiple data sets, that the value r∗ minimizing the bound is a remarkably

good estimate of the best r for the test error. This demonstrates the benefit of

our generalization bound for model selection, avoiding the need for a held-out

validation set.

The experiments were carried out on several publicly available regression

data sets: Boston Housing (Figure 3.3), Elevators (Figure 3.2) and Ailerons

(Figure 3.3)2. For each of these data sets, we used m = u, guided by the

observation that, all other parameters being fixed, the bound of Theorem 3.3

2www.liaad.up.pt/~ltorgo/Regression/DataSets.html.

149

is tightest when m = u. The value of the input variables were normalized

to have mean zero and variance one. For the Boston Housing data set, the

total number of examples was 506. For the Elevators and the Ailerons data

set, a random subset of 2000 examples was used. For both of these data

sets, other random subsets of 2000 samples led to similar results. The Boston

Housing experiments were repeated for 50 random partitions, while for the

Elevators and the Ailerons data set, the experiments were repeated for 20

random partitions of each set. Since the target values for the Elevators and

the Ailerons data set were extremely small, they were scaled by a factor 1000

and 100 respectively in a pre-processing step.

In our experiments, we estimated the pseudo-target of a point x′ ∈ T

as a weighted average of the labeled points x ∈ N(x′) in a neighborhood of

x′. Thus, ỹx′ =
∑

x∈N(x′) αxy(x)/
∑

x∈N(x′) αx. We considered two weighting

approaches, as discussed in [28], defining them in terms of the inverse of the

distance between Φ(x) and Φ(x′) (i.e. αx = (1+||Φ(x)−Φ(x′)||)−1), and in terms

of a similarity measure K(x, x′) captured by a kernel K (i.e. αx = K(x, x′)).

In our experiments, the two approaches produced similar results. We report

the results of kernelized weighted average with a Gaussian kernel.

Lemma 3.7 Let r ≥ 0 be the radius of the ball around an unlabeled point

x′ ∈ X that determines the neighborhood N(x′) of x′ and let m(r) be the

number of labeled points in N(x′). Furthermore, assume that the values of the

labels are bounded (i.e. ∀x ∈ X, |y(x)| ≤ M for some M ≥ 0 and that all

the weights in (3.6.1) are non-negative (i.e. ∀x, αx ≥ 0). Then, the stability

150

coefficient of the weighted average algorithm for determining the estimate of

the unlabeled point x′ is bounded by:

βloc ≤ 4αmaxM

αminm(r)
, (3.29)

where αmax = maxx∈N(x′) αx and αmin = minx∈N(x′) αx.

Proof. We consider the change in the estimate as a point is removed from

N(x′) and show that this is at most 2αmaxM
αminm(r)

. The statement of the lemma

then follows straightforwardly from the observation that changing one point

is equivalent to removing one point and adding another point.

Let N(x′) = {x1, . . . , xm(r)}. For ease of notation, assume that n = m(r).

Consider the effect of removing xn from the neighborhood N(x′). The estimate

changes by: ∑n
i=1 αiyi∑n
i=1 αi

−
∑n−1

i=1 αiyi∑n−1
i=1 αi

.

Thus, the stability βloc is bounded by:

βloc ≤
∣∣∣∣∣
∑n

i=1 αiyi∑n
i=1 αi

−
∑n−1

i=1 αiyi∑n−1
i=1 αi

∣∣∣∣∣

≤ αn|yn|∑n
i=1 αi

+
n−1∑
i=1

αi|yi|
(

1∑n−1
i=1 αi

− 1∑n
i=1 αi

)

=
αn|yn|∑n
i=1 αi

+

∑n−1
i=1 αi|yi|∑n−1
i=1 αi

· αn∑n
i=1 αi

≤ 2αnM∑n
i=1 αi

≤ 2αmaxM

αminn
≤ 2αmaxM

αminm(r).

151

2

Corollary 3.1 Using the notation of Lemma 3.7, the stability coefficient of

the kernelized weighted average algorithm with a Gaussian kernel K with pa-

rameter σ is bounded by:

βloc ≤ 4M

m(r)e−2r2/σ2 .

Proof. This follows directly from Lemma 3.7 using the observation that for a

Gaussian kernel K, K(x, x′) ≤ 1, and for x, x′ such that ||x|| ≤ r and ||x′|| ≤ r,

||x− x′|| ≤ 2r. Thus, K(x, x′) ≥ e−2r2/σ2
. 2

Corollary 3.2 Using the notation of Lemma 3.7, the stability coefficient of

the weighted average algorithm, where weights are determined by the inverse

of the distance in the feature space, i.e. αx = (1+ ||Φ(x)−Φ(x′)||)−1 is bounded

by:3

βloc ≤ (2r + 1)2M

m(r)
.

Proof. Follows directly from Lemma 3.7 using the observation that ∀x ∈
N(x′),

0 ≤ ||Φ(x)− Φ(x′)|| ≤ 2r.

2

To estimate βloc, one needs an estimate of m(r), the number of samples in a

ball of radius r from an unlabeled point x′. In our experiments, we estimated

31 is added to the weight to make the weights between 0 and 1.

152

 .088

 .090

 .092

 .094

 .096

 .098

 0 1 2 3 4 5 6 7 8

Transduction
Induction

Training Error + Slack Term

Figure 3.2: The mean-squared error (MSE) against the radius r of LTR for the
Ailerons data set. The small horizontal bar indicates the location (mean ±
one standard deviation) of the minimum of the empirically determined r.

m(r) as the number of samples in a ball of radius r from the origin. Since all

features are normalized to mean zero and variance one, the origin is also the

centroid of the set X.

We implemented a dual solution of LTR and used Gaussian kernels, for

which the parameter σ was selected using cross-validation on the training

set. Experiments were repeated across 36 different pairs of values of (C,C ′).

For each pair, we varied the radius r of the neighborhood used to determine

estimates from zero to the radius of the ball containing all points.

Figure 3.2 shows the mean values of the test mean-squared error of our

experiments on the Ailerons data set for typical values of C and C ′ as the radius

r of the neighborhood that determines pseudo-target values on the unlabeled

153

 36

 38

 40

 42

 44

 46

 48

 0 1 2 3 4 5 6 7 8

Transduction
Induction

Training Error + Slack Term

 .285

 .290

 .295

 .300

 .305

 .310

 .315

 0 1 2 3 4 5 6 7 8

Transduction
Induction

Training Error + Slack Term

(a) (b)

Figure 3.3: MSE against the radius r of LTR for two other data sets: (a) Boston
Housing. (b) Elevators.

points is varied. As mentioned before, the objective of the experiment is

to validate the stability-based generalization bound derived in Theorem 3.3.

Recall that Theorem 3.3 tells us that with high probability (at least 1− δ),

R(h) ≤ R̂(h) + β +

(
2β +

B2(m+ u)

mu

) √
α(m,u) ln 1

δ

2
, (3.30)

where α(m,u) = mu
m+u−1/2

· 1
1−1/(2max{m,u}) , B is an upper-bound on |h(x)−y(x)|,

β is the stability of the learning algorithm and m and u are the number of la-

beled and unlabeled points inX respectively. The curve labeled “training error

plus slack term” corresponds to the expression on the RHS of Inequality 3.30,

where β is the stability coefficient of LTR as determined in Theorem 3.4. The

curve corresponding to “Transduction” (solid line) is R(h). Only two terms

depend upon the choice of the radius r: R̂(h) and βloc. Thus, keeping all other

parameters fixed, the theoretically optimal radius r∗ is the one that minimizes

154

the training error plus the slack term. Our experiments confirm that r∗ is close

to the empirically optimal one.

Figures 3.3(a)-(b) show similar results for the Boston Housing and Eleva-

tors data sets. For the sake of comparison, we also report results for induction.

The relative standard deviations on the MSE are not indicated, but were typ-

ically on the order of 10%. LTR generally achieves a significant improvement

over induction. The figures also include plots of the training error combined

with the complexity term, appropriately scaled. The empirical minimization

of the radius r coincides with or is close to r∗. The optimal r based on test

MSE is indicated with error bars.

3.7 Conclusion

We presented a comprehensive analysis of transductive regression algorithms

based on the notion of stability. Since they are algorithm-dependent, our

bounds are often tighter than those based on complexity measures such as the

VC-dimension. Our experiments further show the effectiveness of our bounds

for model selection and the good performance of LTR algorithms.

155

Chapter 4

An Analysis of Discrete Markets

4.1 Introduction

Economists have long been explaining some of the core workings of market

economies via general equilibrium theory. In his book An Inquiry into the Na-

ture and Causes of the Wealth of Nations [94], arguably the first modern work

in the field of economics, Scottish economist Adam Smith suggested that the

pursuit of self-interest tends to lead toward economic well-being and prosperity.

Smith coined the expression invisible hand to refer to the market’s ability to

discover socially desirable outcomes. The first mathematical treatment seeking

to model the evolution of prices in a market was made by the French economist

Léon Walras in his seminal book, Elements of Pure Economics [104]. Since

then, mathematical economists have made impressive progress in determining

the conditions under which an equilibrium is guaranteed to exist [4]. Although

156

economists have sought to model the dynamics that lead markets to equilib-

rium prices, their emphasis has primarily been on establishing convergence.

The complexity of the processes through which this happens (the efficiency of

convergence), an important consideration in computer science, has remained

largely unaddressed.

An equilibrium is provided by prices that balance supply and demand in

all goods simultaneously. In order to reach equilibrium, prices need to adjust

to demand imbalances. Walras suggested they do so by tatonnement: if there

is too little demand for a good its price drops, if there is too much demand its

price rises. He also proposed a formal model in which this could occur: the

auctioneer model. There is an auctioneer who sets the prices. To do this, she

announces current prices, receives the resulting demands, compares them to

supplies, adjusts the prices (by tatonnement) and iterates. Subsequently, sev-

eral studies [86, 100] sought to understand the dynamics of tatonnement-based

convergence of prices to equilibrium, though the focus was merely to establish

some convergence. These studies of pricing updates implicitly or explicitly

take the view that there is a virtual price setter for each good that encapsu-

lates the collective actions of individual buyers and sellers in the market. We

too follow this viewpoint in this chapter.

A significant motivation for the recent algorithmic study of equilibrium

theory is the viewpoint, first articulated by Papadimitriou, that equilibria, or

at least approximate equilibria, need to be efficiently computable for equilib-

rium theory to be meaningful. This also suggests, as pointed out by Cole

157

and Fleischer [25], that equilibria need to be efficiently computable within the

market itself.

If equilibria are to be discovered within the market itself, then it is reason-

able to assume that updates to prices are responses to excess demand, for it

seems plausible that buyers reveal their demand, but not the underlying util-

ities driving the demand. We call this demand-driven pricing. Under demand

driven pricing, goods are allocated to buyers only if they demand the good

(i.e. there is no substitution of second best choices). This captures algorithms

which assume a demand oracle, for example the tatonnement algorithms such

as [5, 50, 52], but excludes algorithms where full knowledge of the buyer’s

utilities is needed, such as [55, 56, 59].

The standard formulation of a market is called an Arrow-Debreu market,

named after the nobel-prize winning economists Kenneth Arrow and Gerard

Debreu. In Arrow-Debreu markets each agent is provided with an initial allo-

cation of goods. The problem is to find prices at which every agent can trade

its initial allocation for an optimal bundle in such a way that supply and de-

mand balance exactly. In this chapter, we limit ourselves to the special case of

Fisher markets. In these markets, there are two groups of agents: buyers, who

initially have only money, and sellers, who have only goods. Each seller’s goal

is to sell all its goods. Each buyer’s goal is to utilize its money to obtain an

optimal bundle of goods. In fact, we use a small variant of the Fisher model

in which buyers may attach utility to money, and thus an optimal allocation

158

may leave them with non-zero money at the end.1 This strikes us as reflect-

ing actual behavior, and was previously considered by Devanur and Vazirani

who proposed putting limits on spending and also incorporating a desire for

money in the context of utility functions that are linear step functions [41].

The possible inclusion of money in the utility function has received attention

in the economics literature also, e.g. [15].

In the divisible setting, where all goods are infinitely divisible and prices

can take on any real value, under modest assumptions, equilibrium prices

always exist [4]. This need not be the case in an indivisible setting. The task

then becomes one of finding prices that support a near-minimally unbalanced

allocation (a near-equilibrium allocation, for short).

Seeking to understand how actions of the price setters and buyers in the

market lead them to discover (near-)equilibrium prices bears some resemblance

to the following more general problem: how do selfish independent agents in a

multiplayer noncooperative game adjust their strategies to converge to a Nash

equilibrium [6].

This chapter studies the interplay of three issues: indivisibility of goods and

money, the hardness of finding approximate equilibrium prices, and demand-

driven pricings and allocations. This then brings up two issues that arise due

to indivisibility, namely how to measure the approximation quality, and the

fact that a very standard assumption on the behavior of demand as prices

1Of course, all buyers could continue to have no desire for money; thus this is a general-
ization of the standard model.

159

vary (the weak gross substitutes property, defined later) appears to be unduly

restrictive in the indivisible setting.

There are two issues when faced with computing an approximate equilib-

rium. The first is to determine prices and the second is to allocate goods,

for given that the equilibrium is only approximate, there will not be a perfect

allocation. Deng, Papadimitriou and Safra [40] showed that the allocation

problem is APX-hard. Given our interest in what a market can do, we believe

that the critical question is how hard it is to set prices, for this is presumably

what the markets adjust based on the supply and demand imbalances, whereas

it seems less plausible that the market optimizes among the allocations at a

given price. So, by contrast with Deng et al. [40], we show that choosing

optimal prices and not just optimal allocations is NP-hard. Note that in the

construction of [40], optimal prices are easily computed.

There has also been a considerable body of work giving polynomial time

algorithms to compute exact and approximate equilibria for divisible markets

[18, 19, 21, 23, 40, 50, 56, 57, 58]. Of course, all markets are necessarily indi-

visible. While one anticipates large numbers of copies of each good, and prices

with a minimum adjustment that is a small fraction of the price, it remains

the case that both these quantities are bounded. In our view, an implicit as-

sumption in studying the divisible problem is that the discreteness present in

actual markets has only a small effect. As in practice the number of copies of

a good need not be much greater than the number of interested buyers, it does

not seem that the assumption is sound in general. Nonetheless, we show that

160

in the markets we consider, the hardness moderates as the amount of money

increases (intuitively, as money becomes more divisible).

Deng et al. [40] also considered algorithms for indivisible markets. They

gave an exhaustive algorithm for computing an approximate equilibrium in

polynomial time for markets with a constant number of distinct goods.

In [25], Cole and Fleischer focus on tatonnement-style price update pro-

tocols that yield rapid convergence in divisible markets. In this chapter, we

focus on the discrete versions of what they call the One-Time market, which

is essentially the auctioneer model of tatonnement.

Notation Let p = (p1, . . . , pn) be a collection of prices. Whenever conve-

nient, we write p = (pi,p−i), where p−i is the collection of prices for all goods

except good i. Further, we let xi(p) denote the demand for good i at p.

For a demand driven algorithm to achieve rapid convergence it seems nec-

essary that a small change in prices lead to only a small change in demand.

This observation led Cole and Fleischer [25] to parameterize the markets they

considered in terms of a bound, E, on the price elasticity of demand (see [66],

page 27). It is defined as the fractional rate of of change of demand with

respect to price: ∂xi(p)/∂pi

xi/pi
. Under the assumption of weak gross substitutes (a

market obeys weak gross substitutes if when the price of one good increases,

the demand for other goods does not decrease while the good’s own demand

only decreases), this is negative. The parameter E is an upper bound on the

161

absolute value of this quantity over all goods and all prices:

E = −min
i,p

∂xi(p)/∂pi
xi/pi

. (4.1)

In general E could be unbounded (e.g., when all the buyers have identical

linear utility functions). Intuitively, it is clear that the larger E is, the smaller

the price adjustments should be for a given level of excess demand.

We define a discrete version of this parameter, which we called discrete

bounded elasticity.

Definition 4.1 (Bounded Elasticity E) A discrete market is said to have

bounded elasticity E if for every good i, for all prices p, for all h > 0 such

that xi(pi + h,p−i) ≥ 1,

xi(pi,p−i) ≤ dxi(pi + h,p−i) (1 + h/pi)
Ee,

and if xi(pi + 1,p−i) = 0, then xi(pi,p−i) ≤ 1.

Note that xi(pi,p−i) ≤ 2Exi(2pi,p−i) if xi(2pi,p−i) ≥ 1.

Another major change in the discrete setting, at least with money being

discrete, is that there are no obvious conditions guaranteeing the existence of

equilibria. However, with continuous money, equilibria exist in the settings we

consider. We introduce a second parameter, r, which indicates the degree of

divisibility of money; it is defined later.

The issue of how to measure the quality of an approximate equilibrium is

162

far from clear cut. The previous literature in computer science measured it by

considering each agent in turn and asking what is the ratio between its actual

utility and the maximum utility it could conceivably achieve at the prices on

offer; the quality of the approximation is then defined to be the minimum of

these ratios over all agents (0 is the worst possible, 1 the best). We offer two

critiques of this approach.

The first is that utilities are being treated implicitly as if they were valua-

tion functions (i.e. as if they assign dollar amounts to each bundle). But this

is ascribing more meaning to the function than may be appropriate, since in

general there are multiple utility functions that represent a given well behaved

preference ordering. Indeed, if u is a utility function and f is a strictly increas-

ing function, then f(u) provides an alternative utility function giving the same

preference ordering.2 This is disconcerting, for a (1− ε)-approximation under

one utility function may be a much better or worse quality approximation for

another equivalent utility function. Example 4.1 illustrates these two issues.

Our second critique concerns how the utilities are combined. In our view,

the quality of the approximation ought to correspond to how dissatisfied the

market participants are collectively; surely participants with large resources

will have a larger impact. This suggests an approach other than minimizing

relative discontent. Instead, we seek to combine the discontent of each of the

participants. But this necessitates expressing discontent in a common unit.

2When studying choice under risk (for example in auctions), the concavity of u defines
agents’ risk aversion. In such cases, the utility function may be unique. However, this is
not the case in a market setting, where we concern ourselves with deterministic outcomes.

163

We do this using the notion of compensatory payments from welfare economics:

essentially, this asks what is the difference in value to the agent between the

agent’s optimal allocation at the current prices and the allocation the agent

receives. We call this quantity, measured in the unit of money, the agent’s

discontent.

The following example illustrates the shortcomings of measuring the quality

of an approximate equilibrium by considering the utility ratios of the most

dissatisfied participant.

Example 4.1 Consider the following scenario. In a market with 3 agents,

at an announced set of (non-equilibrium) prices, sub-optimal allocations with

utilities as specified in the following table are made.

Actual Utility Optimal Utility “Happiness”

Agent 1, u1(·) 80 100 80%

Agent 2, u2(·) 20 50 40%

Agent 3, u3(·) 90 100 90%

The most dissatisfied participant is 40% “happy”, so the current prices are

0.4-close to equilibrium.

Now suppose that the same set of buyers have utilities u2
i (·) instead of

ui(·), i ∈ {1, 2, 3}. Their preference among different allocations is the same as

before.

164

Actual Utility Optimal Utility “Happiness”

Agent 1, u2
1(·) 6400 10000 64%

Agent 2, u2
2(·) 400 2500 16%

Agent 3, u2
3(·) 8100 10000 81%

The most dissatisfied participant is 16% “happy” now, and the current prices

are 0.16-close to equilibrium, even though neither the prices, nor the allocations

to individual market participants have changed.

By calculating the discontent of the individual market participants appropri-

ately, we show how to put this on a sound footing and use the term efficiency

for the resulting measure.

Nonetheless, in a demand driven setting, where demands are only indirectly

based on utilities, and are not influenced by the degree of disutility, it does

not appear possible to determine efficiency exactly based on excess demands

alone (as opposed, for example, to obtaining loose upper bounds). As a result,

we also consider the simpler measures of relative prices and misspending as

was done by Cole and Fleischer.

We review the definition of the Weak Gross Substitutes (WGS) property.

Recall that a market obeys WGS if when the price of one good increases,

the demand for other goods only increases (i.e. stays the same or increases)

while its demand only decreases. As we will see, in the discrete setting, this

property is not observed by many natural utility functions including linear

and CES utility functions, leading us to introduce a generalized relaxed WGS

property.

165

Summary of results. Our main results are:

• In a market with bounded elasticity E satisfying the relaxed WGS prop-

erty it is NP-hard to find prices at which there is a demand-driven al-

location achieving a 1 − Θ((E − 1)/r)-approximation (in a sense made

precise later). The hardness lies in finding the prices, not the allocation.

To the best of our knowledge, this is the first result demonstrating that

it is hard to find correct prices as opposed to a correct allocation. We

also remark that in the present setting it seems much more delicate to

obtain the hardness result for prices.

• A complementary P-time algorithm that achieves 1−O(E/r)-approximation.

The algorithm assumes a polynomial time oracle which, given the prices

for every good, returns the demand for each good. The algorithm makes

O(Etn logw) calls to the oracle, where n is the number of distinct goods

in the market, w is the total buyer wealth, and t is the total number

of copies of goods in the market; the oracle calls dominate the overall

running time. (If tÀ r, the running time can be made linear in r rather

than t. The running time can also be reduced proportionately if a less

good approximation is sought). An appealing aspect of the algorithm is

its simplicity.

• A partial analysis of the convergence of a tatonnement-based local, dis-

tributed price update protocol in which the price of each good is updated

asynchronously and independently. Here, we show that the prices rapidly

166

converge to an interval around near-equilibrium prices.

Note that the average wealth r intuitively captures the extent of divisibility

of money in the market, while E is the elasticity. For the rest of this chapter,

we assume that r ≥ E.

As mentioned earlier, a market with bounded elasticity E is one in which

the rate of change of demand for a good with respect to its own price is

bounded. Assuming that the demand function for every good has a bounded

partial derivative with respect to every price, Codenotti et al. [23] gave strongly

polynomial time algorithms for finding approximate equilibria using a proce-

dure similar to tatonnement. The algorithm of Codenotti et al. uses the ellip-

soid method as a subroutine; this contrasts with the simplicity of our method.

Of course the algorithms are not directly comparable as they are for different

settings, and as we discuss below, use different approximation measures. An-

other point to keep in mind is that a rounded optimal or near-optimal solution

for the divisible setting need not be a near-optimal solution in the indivisible

setting (assuming analogous problems can be defined). This can occur, for

example, when there are goods for which buyers have o(1) demand, even if

there are many copies of the good.

Bounded elasticity constrains the behavior of the overall demand in the

market. Without some constraints, equilibria need not be unique and can be

hard to compute [24]. Most previous algorithmic work in the divisible setting

overcame this by constraining individual utility functions (e.g. to satisfy the

WGS property, or to be linear [23, 21]). However, this can still result in some

167

quite unintuitive behavior. For example, if all the buyers had identical linear

utility functions, a minimal change in prices can shift the demand from being

all for one good to all for another good. Bounded elasticity allows linear

utilities, but it limits the amount of a pair of goods that are equally desired at

a given set of prices (thereby avoiding large fluctuations in demand with small

changes in price), and so in particular precludes all buyers having identical

linear utilities.

Indivisible markets have been studied by mathematical economists also.

Ausubel, Gul and Stacchetti [5, 52] restrict the utility functions being allowed

so as to ensure that equilibria exist. In fact, they suppose the buyers have

valuation functions that are integer valued, i.e. each basket of goods has an

associated dollar value. They show that if these functions also satisfy an

“individual substitutes” property, then there is a Walrasian equilibrium. The

individual substitutes condition is a further restriction of the well known gross

substitutes condition. It requires separate prices for distinct copies of the

same good and that individual copies of the same good also obey the gross

substitutes property. Given these restrictions, they show that the minima of

a certain potential function (a Lyapunov function) correspond to equilibrium

prices. They propose a tatonnement algorithm that updates prices at discrete

time steps in the direction of decreasing potential function values, which is

found by exhaustively testing every price point in a unit neighborhood of

the current price. The algorithm converges to equilibrium prices, but only in

exponential time.

168

In [71] Milgrom and Strulovici consider the above setting, replacing the

individual substitutes constraint with the standard WGS constraint. As an

equilibrium may then not exist they propose a notion of pseudo-equilibrium.

The authors argue that a pseudo-equilibrium price is also an approximate

equilibrium price by showing that the excess demand (which should be zero at

equilibrium prices) can be bounded by a function of the number of goods, the

number of buyers and the largest gap in demand for each good among optimal

bundles at any price. They also give an exhaustive algorithm. This approach

is in contrast with our work which seeks to estimate individual discontent in

terms of money and aggregate the overall discontent in the unit of money.

In the divisible setting, it is well known that the market obeys WGS when

buyers in the market possess linear, Cobb-Douglas or CES utility functions

with 0 < ρ < 1. A CES utility function orders a buyer’s preferences over

bundles of goods x according to the value u(x) = (
∑

i αix
ρ
i)

1/ρ, with−∞ < ρ <

1, ρ 6= 0. The linear utility function and the Cobb-Douglas utility function arise

as special cases of the CES utility function when ρ = 1 and ρ→ 0 respectively.

However the WGS property need not hold in the indivisible setting and the

indivisibility can result in quite unintuitive behavior, as we illustrate later

via an example. To account for such effects, we propose a relaxation of the

WGS property. Our algorithm and the hardness result assume that the overall

market obeys the relaxed WGS property.

Next, we discuss how to measure the quality of an approximate equilibrium.

It is natural to ask what is the relationship between an individual’s discontent

169

in our measure and that given by comparing utility values. We show that in

the divisible setting, for concave utility functions, for a given allocation, the

approximation factor is always at least as large in our measure, and can be

arbitrarily worse. In other words, for each individual, a given approximation

factor is at least as hard to achieve in our measure as in the utility measure.

Once one has a way to measure the individual discontent of each partic-

ipant, the next issue is to aggregate individual discontents to represent the

overall discontent of the market. Here, the fact that our measure of individ-

ual discontent is in the common unit of money allows us to simply combine

discontents additively.

This can be viewed as an L1 norm; our hardness results carry over to any

Lp norm, p > 1, and to the L∞ or maximum norm, but with the approximation

factor 1 − Θ((E − 1)1/p/r). Loosely speaking, the L∞ norm is analogous to

but not the same as the previous approximation measure. The algorithmic

bound remains at 1 − O(E/r); a bound of 1 − O(E1/p/r) applies if we can

assume that for each good any unsold copies are evenly spread among E or

more sellers. The fact that trivial changes to the distribution of unsold goods

can sharply change the discontent in Lp norms, p > 1, suggests to us that the

L1 norm is the most robust of these measures. We remark that the Deng et

al. inapproximability bound does not appear to extend to the norms considered

here.

We conclude the introduction by summarizing our contributions. An im-

portant part of the study lies in the definitions it introduces: bounded elastic-

170

ity, discontent and relaxed WGS. In our view, bounded elasticity provides a

natural way to specify well-behaved markets, and the definition of discontent

supports a more robust notion of approximation of equilibria than the previ-

ous approach. We also characterize the complexity of computing equilibria in

these markets via an NP-hardness result and a complementary simple P-time

algorithm that demonstrates that our hardness result is tight. We then present

some preliminary results on the convergence of a local distributed tatonnement

algorithm. This analysis is similar in spirit to the one presented by Cole and

Fleischer [25] for the continuous case.

In Section 4.2, we provide formal definitions. Section 4.3 gives the hardness

result and Section 4.4 the algorithm. Finally, in Section 4.6, we comment on

the relationship between our proposed definition of discontent and ε-closeness

in utility.

4.2 Definitions

Definition 4.2 (Utility Function) Let G denote the set of goods present in

the market. Then u : RG → R+ is said to be a utility function, if, for A1, A2 ⊆
G, the allocation A1 is strictly preferred to A2 exactly when u(A1) > u(A2).

Comment 4.1 In the auction literature, utility is often defined to be the dif-

ference between valuation and price; this is not the meaning intended here.

Definition 4.3 (The Market) The market consists of a set G of n goods in

supply s (sg copies of good g for g ∈ G), a set B of m buyers, buyer wealth w

171

(an initial amount wb for b ∈ B). Each buyer b possesses a utility function ub

over the basket of goods. (G, s, B,w, (u1, . . . , um)) denotes an instance of the

market.

Comment 4.2 In addition to the indivisibility of goods, we also impose indi-

visibility of money in the market. Thus, money is no longer fluid, and prices

can be set only at indivisible integer values. Henceforth, for specificity, we take

the unit of money to be a dollar.

Given a market M , the problem is to find prices, called market-clearing prices,

such that at these prices each buyer receives its optimal allocation and no goods

are left unsold (i.e. all sellers are also optimally happy). Formally, this can be

written as:

Indivisible extended Fisher market problem. Given a market M , de-

termine prices p such that there exists a partitioning of goods to buyers, with

buyer b receiving Ab, Ab ·p ≤ wb,
⋃
bAb = G, and for each b, Ab maximizes b’s

utility: for all A′b such that A′b ·p ≤ wb, ub(Ab, wb−Ab ·p) ≥ ub(A
′
b, wb−A′b ·p).3

Given a set of prices, for each buyer there is a basket of goods which

maximizes its utility. An optimal allocation is one which maximizes every

buyer’s utility simultaneously and leaves no goods unsold. In the indivisible

setting, in general, there need not be any price collection at which an optimal

3In computing utility, we view money as just another good. However, to conform with
the usual perspective, we list it separately from the other goods.

172

allocation exists, which raises the question of how far from optimal a given

allocation is. To this end, we define a notion of individual discontent.

Our approach is based on the notion of compensatory payments from wel-

fare economics. It asks what payment an agent a needs to receive to compen-

sate for a non-optimal allocation. Previously, this was defined for the divisible

setting, as follows. Let Aopt be an optimal allocation, Aact the actual alloca-

tion, and Al a least cost allocation with u(Al) = u(Aact). Note that the choice

of Al depends on the prices and on agent a’s utility function. Then the com-

pensation agent a needs is defined to be cost(Aopt)−cost(Al). We call cost(Al)

the value of Aact for agent a at the current prices. Figure 4.1 illustrates this

notion of value.

Our approach is analogous. For each agent a (buyer or seller), for each

amount of money, $1, $2, . . ., $i, . . ., we consider an optimal allocation Aia

of goods and mi
a of money, its utility ua(A

i
a,m

i
a) and its cost for agent a,

Aia ·p+mi
a = i at the given prices. It may be that Aia = Ai+1

a and ua(A
i
a,m

i
a) =

ua(A
i+1
a ,mi+1

a) for some i (this can occur only if agent a has no utility for

money, and there is nothing useful to purchase with the last dollar). To find the

value of an allocation A with moneyma (written as (A,ma)) to agent a, we find

the least i such that either ua(A
i
a, i−Aia ·p) = ua(A,ma) or ua(A

i
a, i−Aia ·p) <

ua(A,ma) < ua(A
i+1
a , i+1−Ai+1

a ·p). In the former case, the value of (A,ma)

is $i, whereas in the latter case, the value of (A,ma) is defined to lie between

$i and $i+ 1. In the second case, given that money is indivisible, it does not

appear possible to define the value more precisely; in this situation $i is called

173

feasible allocations

in
cr
. u
ti
l.

x1

x2

10

9

O

P

A

Figure 4.1: An illustration of the notion of value. Consider a buyer interested
in two goods. Equal utility contours as a function of the buyer’s allocation,
(x1, x2), are shown. The shaded region denotes the set of allocations that
can be afforded by the buyer at the announced set of prices. The optimal
allocation, O, yields a utility of 10. The value of a sub-optimal allocation A
that has a utility of 9 is the cost of the cheapest allocation yielding the same
utility, i.e. the cost of allocation P .

the lower-value and $i + 1 the upper-value of (A,ma) at prices p. When the

agent is a buyer (say buyer b with wealth wb), we let vb((A,mb),p) denote

the upper-value of allocation A at prices p, defined to be the upper value of

allocation A together with leftover money mb := wb−A ·p. Note that for the

optimal allocation, the upper value is the same as the lower value.

Henceforth, in scenarios in which a buyer has no marginal utility for money

(i.e. adding money to a buyer’s allocation does not improve her utility), we

use the term optimal allocation to mean a maximum utility allocation of least

cost.

174

Definition 4.4 (Discontent) Let (A,wa−A·p) be an allocation and (Aopt,mopt)

an optimal allocation (both including money) to agent a with wealth wa at

prices p. The upper-discontent of a with allocation (A,wa−A ·p) at prices p,

uda((A,wa−A·p),p), is given by valuea((A
opt,mopt),p)−lower-valuea((A,wa−

A · p),p). Lower-discontent, lda, is defined analogously. We use the notation

da for short when no ambiguity will result.

We observe that the seller discontent has a very simple form. First, we assume,

without loss of generality, that there is a single distinct seller for each distinct

good. If there are cg copies of good g unsold at price pg, the seller vg for good

g has a discontent of dvg(cg,p) = cgpg.

Note that upper-discontent minus lower-discontent is either $0 or $1. If

they are equal, they are both called discontent for short. Further, for buyer

b with wealth wb, both lower and upper discontent are upper bounded by

vb((A
opt,mopt),p). Note that mopt ≤ wb −Aopt · p, with equality when b has a

desire for every remaining dollar in the leftover money. In our algorithms, we

will use upper discontent as a worst case measure of discontent, while for the

hardness results, we will use lower-discontent, as it provides a lower bound.

From an agent’s point of view, how well it is doing, its efficiency, is the

ratio of value achieved (lower-value say) to the value of its optimal allocation.

We define market efficiency as the ratio of the utility derived by all the

agents compared to what appears possible individually at the offered prices.

More precisely:

175

Definition 4.5 (Market Efficiency) The market efficiency of an allocation

A under prices p is defined as:

1−
∑

a∈A da((Aa, wa − Aa · p),p)∑
a∈A va((A

opt
a ,mopt

a),p)

where A denote the set of agents in the markets (all buyers and sellers).

Another view of market efficiency is that it is simply a weighted average of the

agent efficiencies, where an agent’s weight is the value of its optimal allocation.

If all prices are zero, the market efficiency is not well defined (it is 1−0/0).

To avoid this difficulty, we limit the allowable prices to be strictly positive.

Further, note that if the market has efficiency 1, then an equilibrium has been

achieved, for the sellers will have sold all their goods and every buyer will have

an optimal allocation. Conversely, if an equilibrium has been achieved, then

the market has an efficiency of 1.

Problem 4.1 (Indivisible Market Value Problem) Given a market M with

parameters (G, s, B,w, (u1, . . . , um)), determine prices p and an allocation of

goods to buyers that maximizes the market efficiency.

Our results are parameterized by r, the average wealth per unit good.

Formally, r =
P

b∈B wbP
g∈G sg

.

The relaxed WGS property. As already noted, many widely studied util-

ity functions that obey the WGS property in the divisible case do not do so in

176

the indivisible setting. The following example illustrates this counter-intuitive

behavior.

Example 4.2 Let B be a buyer with initial wealth $10 in a market with goods

G1 and G2, and let ni denote Bi’s demand for Gi, i = 1, 2. Suppose B has a

linear utility u(n1, n2) = 11n1 + n2. At prices p1 = 10, p2 = 1, B’s optimal

bundle is (n1, n2) = (1, 0), while at prices p1 = 9, p2 = 1, it is (1, 1). This

increase in demand for G2 on reducing p1 violates WGS.

One could think of G2 as being money in this example, though the same

construction works for larger p2 also. Similar constructions are possible for

CES utility functions with 0 < ρ < 1.

We relax the WGS property as follows to allow the demand for money to

possibly increase when the price of a good drops, but this increase in demand

is strictly upper bounded by the new (lower) price of the good.

Definition 4.6 (Relaxed WGS) A market obeys the relaxed WGS prop-

erty if when the price of a good Gi drops from pi to p′i, the demand for Gi

only increases, the demand for every other good apart from money only de-

creases, and the demand for money increases by less than p′i, i.e. n$(p−i, p′i) <

n$(p−i, pi) + p′i.

This definition could also be made w.r.t. individual buyers’ demands, but in

general this would give more slack in the market as a whole creating a less

useful constraint.

177

Example 4.2 suggests that in the indivisible setting buyers may well have

leftover money, and this gives a further reason to assume money has utility.

For otherwise, contrary to intuition, it would seem a buyer would not have a

preference for more leftover money.

A different relaxation of WGS would be to apply it to all the goods apart

from money. This seems a natural approach if money has no utility, and even

if money has utility, it seems defensible, for otherwise, as the price of a good

G drops, spending on, and not just demand for G only increases (of course,

this is what happens in the divisible setting in Fisher markets). However, as it

has no effect on the algorithmic result, and is the more demanding condition

for the hardness result, we choose to use Definition 4.6, above.

Finally, one might wonder how the specific assumptions affect our results.

1. If we allow arbitrary allocations in the hardness result, we can show that

a 1− Θ(min{1, E − 1}/r)-approximation is NP-hard (with a somewhat

simplified construction).

2. If we replace the Relaxed WGS constraint with the stricter WGS, then

it does not seem possible to combine it with bounded elasticity E.

4.3 Hardness of Computing Near-Equilibrium

Prices

Our reduction will be from the balanced Max-3SAT-3 problem.

178

Definition 4.7 (Balanced Max-3SAT-3 problem.) Input. A CNF formula

with n variables in which each clause contains at least 2 and at most 3 literals,

and every literal appears in exactly 3 clauses.

Output. The maximum number of clauses that can be satisfied simultane-

ously by some assignment to the variables.

In the Boolean formula, we let n and m denote the number of variables and

the number of clauses, respectively. Note that in a balanced 3SAT-3 formula,

m = Θ(n). For ease of exposition, we assume that all clauses contain exactly 3

literals. The construction is readily modified when some of the clauses contain

2 literals instead of 3.

Given a balanced 3SAT-3 formula, we construct a market with bounded

elasticity E that has Θ(mr2) wealth, Θ(r) wealth per item, in which it is NP-

hard to find if there are prices that support a market-based allocation with

O(m(E − 1)r) discontent, while if the corresponding formula is satisfiable,

there exists a pricing that supports an allocation with O(km) discontent.

For each variable x in the boolean formula, we create goods Gx, Gx (corre-

sponding to the positive and negative literals of x) and two helper goods Fx

and Dx. When no ambiguity arises we let G,G, F,D denote Gx, Gx, Fx, Dx,

respectively. For the remainder of this section, we let pE denote the price of

good E; we will also let px, px denote the prices of Gx, Gx, when the variable

name is significant.

Our interpretation of the pricing is that x =True if pG > r and pG ≤ r. If

both pG, pG > r, this does not correspond to a truth assignment. Finally, if

179

both pG, pG ≤ r, this does not correspond to a truth assignment, but we treat

it as the “assignment” in which both x and x are false. We will also need to

take note of the values of pF and pD, but we will specify these later.

Notation: We let k denote dEe. Since we are concerned with E > 1, k ≥ 2.

Our construction depends on creating two pools of discontent.

Pricing Pool: For each variable x, if the prices do not correspond to a truth

assignment there will be at least kr/8 discontent.

Satisfying Pool: For each clause C = a ∨ b ∨ c, if pa, pb, pc ≤ r (and all the

prices of the corresponding F and D goods correspond to a truth assignment),

there is at least kr/8 discontent.

We can now state the main result.

Lemma 4.1 Consider a pricing. Suppose there are n1 variables for which

the pricing does not correspond to a truth assignment. Suppose there are m2

clauses a ∨ b ∨ c containing only literals for which the corresponding goods’

prices correspond to a truth assignment of false. Then there is discontent of

at least (n1 +m2)kr/8.

Proof. This is immediate from the definition of the two pools. 2

Corollary 4.1 If any truth assignment leaves αm clauses unsatisfied for some

constant α > 0, then any pricing has discontent βmkr, with β = α/48.

Proof. Suppose there are n1 variables for which the prices of the corresponding

goods do not correspond to a truth assignment. These variables appear in at

180

most 6n1 clauses. Thus, if n1 ≥ αm/6, the discontent is at least n1kr/8 ≥
αmkr/48, and if n1 < αm/6, it is at least [n1 + (αm− 6n1)]kr/8 ≥ αmkr/48.

2

The positive side of the construction is to show that if there is a satisfying

assignment, then there exists a pricing with O(Em) discontent. As the overall

wealth is O(Emr2/(E − 1)), this yields:

Theorem 4.1 There is a fixed β > 0, such that in a market with bounded elas-

ticity E satisfying relaxed WGS it is NP-hard to compute prices under which

a market-based allocation achieves an efficiency of 1− β(E−1)
r

, even when there

exist prices supporting a market-based allocation with efficiency 1− γ(E−1)
r2

, for

a fixed γ > 0, for any fixed E > 1, where r ≥ Θ(max{E,E/(E − 1)}) is the

wealth per item in the market.

The difficulty in creating the discontent pools is that we appear to need to

avoid seller discontent when pD and pF are “correctly” set. This implies that

when pG = r (and pG = r+ 1) there will be excess demand for G, which needs

to be borne with low discontent.4 Yet, if both pG = r and pG = r there needs

to be high discontent.

To this end we introduce several gadget submarkets. In particular for each

variable x, we introduce the Unequal-Prices (G,G, F, r) submarket to achieve

4Doing this does not appear to be compatible with both demand-driven allocations and
no utility for money, which may explain our inability to obtain the same hardness bound in
this latter setting.

181

the Pricing Pool and for each clause C = a ∨ b ∨ c we introduce the Force-

Clause-True (Ga, Gb, Gc, r) submarket to achieve the Satisfying Pool.

Intuitively, these submarkets function as follows. Unequal-Prices (G,G, F, r)

has two buyers, BG and BG. BG desires goods G,F , and money, while BG

desires G,F , and money. Each buyer has r money. If pG ≤ r, then BG will

desire one copy of G plus leftover money. If pG > r and pF ≤ r, then BG will

desire one copy of F plus leftover money. BG’s desire is analogous. If both

pG > r, pG > r, and pF ≤ r, then there is a demand for two copies of F ;

only one will be available. The construction of the submarket will ensure this

causes Θ(r) buyer discontent. This entails forcing pF to be much less than r

(we choose to force pF ≤ 3r/4); the “forcing” arises by causing Θ(r) discontent

if pF > 3r/4. In turn, the forcing uses yet another good D. Thus the sub-

market either creates Θ(r) discontent or yields at least one of pG, pG ≤ r. As

it turns out, if both pG, pG ≤ r, the solution is only improved (i.e. discontent

reduced) by setting either one of them to r + 1.

For each variable x, we use multiple instances of the Unequal-Prices (G,G, F, r)

submarket.

Notice that if pG > r, for each instance of the Unequal-Prices (G,G, F, r)

submarket, there is one “leftover” copy of the corresponding good G. These

will be the goods used to meet the demand of the buyers in Force-Clause-True

(Ga, Gb, Gc, r) submarket. This demand will be sufficiently met so long as at

least one of pa = r + 1, or pb = r + 1, or pc = r + 1; if all of pa, pb, pc ≤ r,

then too little of the demand will be met, causing Θ(r) discontent, while in

182

the other scenarios there will be only O(1) discontent.

The net result, as we will see, is that if there is a satisfying assignment,

the corresponding pricing causes O(1) discontent in each instance of the above

submarkets.

As we have seen, it is convenient to describe buyer demands in terms of

prices, which also seems natural given the demand-driven perspective. How-

ever, we also need to ensure that the demands are reasonable in the sense that

they can be generated by utility functions. For this to happen, we need the

demands to observe the weak axiom of revealed preferences (WARP) ([66],

page 29). The axiom states that if under a given set of prices, an agent prefers

allocation A1 among two feasible allocations A1 and A2, then at any other

set of prices where both A1 and A2 are feasible, the agent will prefer A1 over

A2. We achieve this by specifying demands at a few critical prices and leaving

them otherwise unchanged as prices head away from these critical values. At

first sight, this approach seems to make achieving the relaxed WGS property

even harder, for these buyers do not obey the relaxed WGS property indi-

vidually or in combination since their demand for money grows as prices drop

from their critical values. But in fact, this approach simplifies the market-wide

achievement of relaxed WGS, as well as bounded elasticity, which are met by

introducing two more buyers per good, one to achieve relaxed WGS, and one

to achieve bounded elasticity E (without interfering with each other or the

prior demand changes between critical values).

183

In Section 4.3.1, we present the balanced Max-3SAT-3 problem, and prove

that it is NP-hard. Subsequently, in Section 4.3.2, we provide the remaining

details of the hardness construction and complete the proof of Theorem 4.1.

4.3.1 The Balanced Max-3SAT-3 problem

To prove our result, we start from the following Max-3SAT-B problem.

Input. A CNF formula with n variables in which each clause contains either

2 or 3 literals, and every variable appears in at most a bounded number (B)

of clauses.

Output. The maximum number of clauses can be satisfied simultaneously

by some assignment to the variables.

Arora et al. [3] prove the following:

Theorem 4.2 ([3]) For some fixed ε > 0, it is NP-hard to distinguish between

satisfiable 3CNF-B formulas, and 3CNF-B formulas in which at most a (1−ε)-
fraction of the clauses can be satisfied simultaneously.

Theorem 4.3 The balanced Max-3SAT-3 problem is APX-Hard: For some

fixed δ > 0, it is NP-hard to distinguish between satisfiable 3CNF-3 formulas,

and 3CNF-3 formulas in which at most a (1 − δ)-fraction of the clauses can

be satisfied simultaneously.

Proof. Given an instance ψ of a Max-3SAT-B problem, we reduce it to an

instance φ of the balanced Max-3SAT-3 problem in polynomial time.

184

Consider any variable x and let b be the number of occurrences of x in ψ.

Let b+ and b− denote the number of positive and negative occurrences of x,

respectively. The first step of the reduction is to add |b+− b−| balance clauses,

where each balance clauses reduces the imbalance between the positive and

negative literals by 1. Without loss of generality, suppose that b+ > b−; we

add b+ − b− clauses of the form (x ∨ x ∨ x). The addition of these clauses

causes the boolean formula to be balanced.

Suppose that there are bx occurrences of x (and therefore of x) in the new

formula. Pair each occurrence of x with an occurrence of x. Since the formula

is balanced, all occurrences are paired. Replace the occurrence of x in the

ith pair with a fresh variable xi, for 0 ≤ i ≤ bx − 1, and add 2bx clauses

(xi ∨ xi+1), (xi ∨ xi+1), where i+ 1 is computed mod bx. The new clauses are

satisfied if and only if xi = xi+1 for every i. Now each literal appears exactly

3 times, and no literal appears more than once in the same clause. The above

reduction has the following properties:

• The reduction takes polynomial time.

• If ψ is satisfiable, then so is φ.

• The number of clauses increases by at most a constant multiplicative

factor. Let m,m1,m2 be the number of clauses in the formula ψ, after

the first step, and in the final formula φ respectively. We have m2 ≤
m1 + 2

∑
x bx ≤ 2m1, and m1 ≤ 4m = O(m). Thus m2 = O(m) as

desired.

185

• The number of unsatisfiable clauses decreases by at most a constant

multiplicative factor. We need to argue that if for each truth assignment

to ψ, εm clauses in ψ are not satisfied, then for each truth assignment

to φ, δm2 clauses in φ are not satisfied, for a suitable constant δ > 0.

We prove the contrapositive. Assume that under the assignment σφ

fewer than δm2 clauses in φ fail to be satisfied. Then we construct an

assignment σψ from assignment σφ as follows: for a boolean variable x

in ψ, if each one of xi, 0 ≤ i ≤ bx − 1 has the same truth value in σφ,

then set x to that value. If however, some of the xi are true while others

are false, pick the majority of the two as the value of x. Each unsatisfied

clause in φ yields at most B unsatisfied clauses in ψ.

The last two properties imply that if a ε-fraction of the clauses of ψ are not

satisfiable, then an εm
Bm2

-fraction of the clauses of φ are not satisfiable; setting

δ = εm
Bm2

suffices. 2

4.3.2 Details of the Hardness Construction

We introduce seven gadget submarkets: the already mentioned Unequal-Prices

(G,G, F, r) and Force-Clause-True (Ga, Gb, Gc, r), plus Force-Price, Strong-Force-

Price, Liberator, Buffer, and Big-Buyer. We will explain their roles and function-

ing in turn. The constructions use a suitably small constant γ > 0; γ = 1/2er2

suffices, where e is another constant we will introduce later.

We begin by showing how to achieve the discontent needed for the dis-

186

content pool, without obtaining either bounded elasticity E or relaxed WGS.

This uses the first four of the above gadget submarkets.

For variable x, the pricings correspond to a truth assignment if pF ≤ 3r/4,

pD ≤ r/2, either p G ≤ r or pG ≤ r or both. We will show:

Discontent Properties:

1. If pF > 3r/4 there is at least kpF > 3kr/4 seller discontent (Claim 4.3).

2. If pD > r/2 and pF ≤ 3r/4 there is kpD > kr/2 seller discontent

(Claim 4.2).

3. If pF ≤ 3r/4, pD ≤ r/2, in each Strong-Force-Price submarket for which

the buyer does not receive a copy of F , the buyer will have discontent

at least r/4 (Claim 4.1).

4. If pF ≤ 3r/4, pD ≤ r/2, pG ≥ r+1, pG ≥ r+1, there is at least kr/8 buyer

discontent among the buyers in the Strong-Force-Price and Unequal-Prices

(G,G, F, r) submarkets (Claims 4.5 and 4.19).

Discontent Properties 1, 2 and 4 yield the Pricing Pool discontent of at least

kr/8 if at least one of pF > 3r/4, pD > r/2, or both pG, pG ≥ r + 1 holds.

Finally, we show that:

5. For a clause C = a ∨ b ∨ c, if pa, pb, pc ≤ r and all the corresponding

pF ≤ 3r/4, pD ≤ r/2, then there is at least kr/8 discontent among the

buyers of Gx for x ∈ {a, b, c}. (Claims 4.9 and 4.20).

Discontent property 5 yields the Satisfying Pool discontent of at least kr/8.

187

The core of our construction comprises the following submarkets:

1. For each variable x:

(a) 6k instances of Unequal-Prices (G,G, F, r).

(b) 7k instances of Strong-Force-Price (F,D, 3r/4).

(c) k instances of Force-Price (D, r/2).

2. For each clause C = a ∨ b ∨ c:

(a) 2k instances of Force-Clause-True (Ga, Gb, Gc, r).

This construction uses k copies of D, 13k copies of F and 6k copies each of G

and G. It is helpful to think of having one copy each of G,G and F associated

with each instance of Unequal-Prices (G,G, F, r), one copy of F with each

instance of Strong-Force-Price (F,D, 3r/4), one copy of D with each instance

of Force-Price (D, r/2).

We begin by describing Force-Price and Strong-Force-Price so as to obtain

Discontent Properties 1-3. Recall that γ > 0 is a small constant, suitably

chosen.

1. Force-Price (D, r/2): This gadget is used to ensure that pD ≤ r/2 or

there is an excess supply of one copy of D.

The submarket has one buyer, BFP, that has r/2 units of money. BFP de-

sires one copy of D, if affordable, and then leftover money. The following

188

utility suffices.

u(nD, n$) =





r/2 + 1 + γ(nD − 1) + n$ if nD ≥ 1

n$ if nD = 0

2. Strong-Force-Price (F,D, 3r/4): This gadget is used to ensure that pF ≤
3r/4 and that when pF ≤ 3r/4, if the expected allocation of goods does

not occur (as specified shortly) there is 3r/4− pD buyer discontent.

It has one buyer, BSFP, that has 3r/4 units of money. BSFP desires

one copy of F , if affordable, alternatively one copy of D as a second

preference, and then leftover money. The following utility suffices.

u(nF , nD, n$) =





3r/2 + 1 + γ(nF − 1 + nD) + n$ if nF ≥ 1

3r/4 + 1 + γ(nD − 1) + n$ if nF = 0 and nD ≥ 1

n$ if nF = 0 and nD = 0

Claim 4.1 In the Strong-Force-Price (F,D, 3r/4) submarket, if pF ≤ 3r/4,

pD ≤ r/2, and BSFP does not receive a copy of F , BSFP has discontent at least

3r/4− pD ≥ r/4.

Proof. At pF ≤ 3r/4, BSFP desires one copy of F together with left-over

money. Because a buyer can receive only goods it demands, if BSFP does

not receive a copy of F , it remains with 3r/4 money. But uSFP(0, 1, 0) >

uSFP(0, 0, 3r/4), yet the LHS allocation costs pD, while the RHS one costs

3r/4. 2

189

Claim 4.2 In submarkets Force-Price (D, r/2) and Strong-Force-Price (F,D, 3r/4),

if pD > r/2 and pF ≤ 3r/4, there is seller discontent pD.

Proof. There is no demand for D in this scenario, but there is a supply of

one copy. 2

To obtain Discontent Property 1 above we need to know that each instance

of the Unequal-Prices (G,G, F, r) submarket creates a demand for at most 2

copies of F .

Claim 4.3 If pF > 3r/4 there is seller discontent of at least kpF.

Proof. There is at most 12k demand (from the Unequal-Prices (G,G, F, r)

submarkets), but the supply is 13k. 2

Discontent Property 4 will follow from the definition of the Unequal-Prices

(G,G, F, r) submarket.

3. Unequal-Prices (G,G, F, r): The submarket has two buyers, BG and BG.

BG has r money; it desires copies of G,F and money. Its first preference

is for one copy of G, failing that for one copy of F , and failing that for

money. It has minimal desire for additional copies of F and G. The

following utility function suffices.

uG(nG, nF , n$) =





2r + 1 + γ(nG − 1 + nF) + n$ if nG ≥ 1

r + 1 + γ(nF − 1) + n$ if nG = 0 and nF ≥ 1

n$ if nG = 0 and nF = 0.

190

The second buyer desires copies of G rather than G and has an analogous

utility function.

Note that as claimed each instance of the Unequal-Prices (G,G, F, r)

submarket has a demand for at most two copies of F (when pG, pG ≥
r + 1).

Claim 4.4 If pG ≥ r+1, pG ≥ r+1, and pF ≤ 3r/4, there is an excess demand

for one copy of F in the Unequal-Prices (G,G, F, r) submarket.

Proof. At these prices, neither BG nor BG can afford copies of G or G. So

they each desire one copy of F creating an overall demand for two copies of

F ; but only one is available in this submarket. 2

Claim 4.5 If pG ≥ r + 1, pG ≥ r + 1, pF ≤ 3r/4, pD ≤ r/2, there is at least

3kr/2 buyer discontent among the buyers BSFP, BG, BG.

Proof. By Claim 4.4 and (implicitly) by Claim 4.1, there is a demand for

19k copies of F , i.e. an excess demand of 6k. By Claim 4.1, each buyer BSFP

missing a copy has discontent at least r/4. Similarly, if a buyer BG (or BG) is

missing a copy it has discontent at least r/4; for uG(0, 1, 0) > uG(0, 0, r) and

yet the LHS allocation costs at least r/4 units of money less than the RHS

one. So each unit of excess demand creates at least r/4 buyer discontent. 2

It remains to define the Force-Clause-True (Ga, Gb, Gc, r) submarkets and to

show Discontent Property 5.

191

4. Force-Clause-True (Ga, Gb, Gc, r): This gadget has one buyer BFCTC
with

wealth 3r + 3. BFCTC
desires one copy of each of Ga, Gb, Gc, that has

price at most r+ 1. If all of pa, pb, pc ≥ r+ 2, BFCTC
desires one copy of

the least expensive if it costs at most 3r + 3, breaking ties in the order

Ga, Gb, Gc. The following utility suffices:

u(na, nb, nc, n$) =





(3r + 4) + n$ + γ(na + 1) if na ≥ 1, nb = 0, nc = 0

(3r + 4) + n$ + γ(nb) if na = 0, nb ≥ 1, nc = 0

(3r + 4) + n$ + γ(nc − 1) if na = 0, nb = 0, nc ≥ 1

n$ if na = 0, nb = 0, nc = 0

4r + 5 + n$ + γ(na + nb + 2) if na ≥ 1, nb ≥ 1, nc = 0

4r + 5 + n$ + γ(na + nc + 1) if na ≥ 1, nb = 0, nc ≥ 1

4r + 5 + n$ + γ(nb + nc) if na = 0, nb ≥ 1, nc ≥ 1

5r + 6 + n$ + γ(na + nb + nc + 2) if na ≥ 1, nb ≥ 1, nc ≥ 1.

Claim 4.6 If pa, pb, pc ≤ r + 1, and BFCTC
receives only money then it has

discontent at least 2r.

Proof. u(1, 0, 0, 0) > u(0, 0, 0, 0, 3r+3), yet the LHS allocation costs 3r+3−
pa ≥ 2r + 2 less than the RHS one. 2

Claim 4.7 If at least one of pa, pb, or pc equals r + 1 and BFCTC
receives at

least one of the goods priced at or below r+1, then BFCTC
has upper discontent

at most 3.

192

Proof. The worst example arises when BFCTC
receives one copy of Gc and

pa = pb = r, pc = r+1. Then as u(1, 1, 0, r) < u(0, 0, 1, 2r+2) and as the LHS

is an optimal allocation, the lower value is at least 3r and hence the upper

discontent is at most 3r + 3− 3r = 3. 2

Claim 4.8 If pF ≤ 3r/4 and pG ≤ r, and if the buyer BG (in Unequal-Prices)

does not receive a copy of G it has discontent at least r/4. An analogous result

holds for BG and G.

Proof. By the allocation rule, at the given set of prices, BG demands only G,

and on not receiving a copy of G, it remains with r money. But uG(0, 1, 0) >

uG(0, 0, r), yet the LHS allocation is at least r/4 cheaper than the RHS one

so its discontent is at least r/4. 2

Claim 4.9 Let C = a ∨ b ∨ c be a clause. Suppose that px ≤ r, pFx ≤
3r/4, pDx ≤ r/2 for x ∈ {a, b, c}. Then BFCTC

and BGx (from the Unequal-

Prices submarket) have discontent at least kr/2.

Proof. Consider the 6k buyers BGx . Between them they desire 6k copies

of Gx. Suppose they receive 6k − lx copies. By Claim 4.8, this creates at

least rlx/4 discontent. This results in the buyers in the 2k Force-Clause-True

(Ga, Gb, Gc, r) submarkets receiving at most la+ lb+ lc copies of Ga, Gb and Gc.

By Claim 4.6, the 2k buyers BFCTC
have discontent at least 2r(2k− la− lb− lc);

the total discontent is at least 2kr/4 ≥ kr/2. 2

It is readily seen that the submarkets we have formed obey WGS on every

good except money, for each buyer wants (at the available amount of money)

193

at most one copy of each good, and demand for a good may increase only when

its price drops or other prices rise.

The challenge is to achieve relaxed WGS on money, for as a price drops,

typically the retained money increases. To offset this, we introduce the Buffer

submarket.

5. Buffer (H, r′, r′′, f): This submarket has one buyer BBF with f(r′−1)+δ

money, where 0 ≤ δ < r′′ and f(r′ − r′′) + δ = (r′′ − 1) mod r′′. The

assumption we make in using Buffer is that when pH decrements from

p + 1 ≤ r′ to p, the money retained by buyers buying H in the other

submarkets increases by at most f . Then at price p, BBF seeks to spend

up to f(r′ − p) + δ on copies of H. Loosely speaking, this is f more

spending than at price p+1. Finally, we will be seeking to have pH = r′′,

so we create another
⌊
f(r′−r′′)+δ

r′′

⌋
copies of H.

Let pi be the largest price at which BBF desires at least i copies of H

(note that pi is a non-increasing function of i). Then the following utility

suffices:

uBF(nH , n$) =

nH∑
i=1

(pi + 1/2) + n$.

Claim 4.10 For i = x(r′′)− h, pi ≥ r′′ + hr′′
3f

if r′′ ≥ r′/2, where x(p) denotes

the demand for H in Buffer (H, r′, r′′, f) when pH = p.

Proof. When pH = r′′, the spending on H is f(r′ − r′′) + δ − (r′′ − 1). At

pH = r′′ + ∆, the cost increases by at most ∆x(r′′) ≤ ∆f(r′ − r′′)/r′′, and the

spending reduces by at most (f + 1)∆.

194

If (f + 1)∆ + ∆f(r′ − r′′)/r′′ < hr′′, the demand has reduced by less than

h, that is, if ∆ < hr′′
fr′/r′′+1

, the demand drops by less than h. Since r′/r′′ ≤ 2,

it suffices that ∆ < hr′′
2f+1

. For f ≥ 1, ∆ < hr′′
3f

suffices.

So to reduce demand by h, implies the price increases by at least hr′′
3f

. 2

Claim 4.11 If pH ≤ r′′ and BBF has x(r′′) − h copies of H, its discontent is

at least (h−1)hr′′
6f

.

Proof. The following is a higher utility allocation: h more copies of H and

with spending including retained money reduced by


x(r′′)−1∑

i=x(r′′)−h+1

(pi − r′′)
 ≥

h−1∑
j=1

jr′′

3f
(by Claim 4.10)

=
(h− 1)hr′′

6f
.

2

Claim 4.12 The Buffer submarket together with the rest of the market obey

relaxed WGS for money and for good H with respect to changes in pH, for

pH ≤ r′.

Proof. The claim forH is straightforward as the demand of BBF only increases

as pH decreases, and we already observed the rest of the market obeys WGS

for H.

To see the result for money, we compare the demand for money at prices

p and p+ h ≤ r′. At the lower price, the rest of the market demands at most

195

hf more money, by assumption. The Buffer buyer at price p seeks f(r′− 1)−
f(r′ − p) + [f(r′ − p) + δ mod p] money, and at price p+ h, f(r′ − 1)− f(r′ −
p−h)+[f(r′−p−h)+δ mod p+h]. Thus, (demand for money at pH = p+h)

minus (demand for money at pH = p) is at least fh− (p− 1)− fh ≥ −(p− 1).

This is exactly the definition of relaxed WGS. 2

To achieve relaxed WGS on goods D, F and G, we introduce one in-

stance each of Buffer (D, 3r/4, r/2, 14k), Buffer (F, r, 3r/4, 19k) and Buffer

(G, r + 1, r, 12k). We also need to confirm that Discontent Properties 1-5

above continue to hold; we will return to this issue when we have assured that

the market has bounded elasticity E.

To enforce bounded elasticity E, we use the Big-Buyer submarket.

6. Big-Buyer (H, r′, r′′): In this gadget there is one buyer BBB with money

er′r′′ + (r′ − 1). This buyer has a high desire to spend all but 2r′ − 2

of its money on H. The remaining money is balanced between a slight

preference for H and a preference for being unspent, the exact balance

being chosen to ensure relaxed WGS for money with respect to changes

in pH.

Let rem(p) be the available money unspent by BBB at price p:

rem(p) = f(r′ − p) + δ mod p.

Then BBB has demand
⌊
er′r′′+rem(p)

p

⌋
for H when p ≤ r′, and

⌊
er′r′′
p

⌋

when p > r′.

196

Let qi be the largest price at which BBB desires i copies of H. To ensure

qi only decreases as i increases, it suffices that

⌊
er′r′′

p

⌋
+ 1 ≤

⌊
er′r′′

p− 1

⌋
for p ≤ r′

or that

er′r′′

p
+ 2 ≤ er′r′′

p− 1

or that

2p(p− 1) ≤ er′r′′

We will always choose r′′ ≥ r′/2, and then the condition is true if e ≥ 4.

We use the following utility function for BBB:

uBB(nH , n$) =





∑nH
i=1(qi +

1
2) + n$ if n$ ≤ 2r′ − 2

∑nH
i=1(qi +

1
2) + 2r′ − 2 + n$−2r′+2

2 if n$ > 2r′ − 2

Claim 4.13 Let y(p) =
⌊
er′r′′−(r′−1)

p

⌋
. If BBB receives y(p) − h copies of H

when pH = p ≤ r′, it has discontent at least hpH/2, for h ≥ 1.

Proof. For the Big-Buyer, we have:

uBB

{
y(p)− bh/2c, er′r′′ + r′ − 1− p[y(p)− bh/2c]− (p/2)h

}

> uBB

{
y(p)− h, er′r′′ + r′ − 1− p[y(p)− h]

}
, (4.2)

197

for the LHS utility minus the RHS utility is at least:

p (h− bh/2c) +
1

2

[
er′r′′ + r′ − 1− p (y(p)− bh/2c)− pbh/2c

]

−1

2

[
er′r′′ + r′ − 1− p(y(p)− h)

]
− term(h)

where

term(h) =





0 when h is even.

p/2 when h is odd

This can be seen as follows. First, the LHS utility corresponds to h − bh/2c
additional items, each of which yields a utility of at least p. This accounts for

the first term. Second, for all allocated money, except the first 2r′ − 2 units,

there is a utility of 1/2 per unit. When h is even both allocations that are

being compared in (4.2) have at least 2r′− 2 money, while when h is odd, the

RHS allocation has at least 2r′−2 money, but the LHS one could have as little

as 2r′ − 2− p/2 money.

Thus, the difference in utilities is at least:

p

2
dh/2e −





ph/4 when h is even

p(h− 1)/4 + p
2

when h is odd

= 0.

198

But the cost of the RHS allocation minus the cost of the LHS one is at least

ph/2. 2

Comment 4.3 Because BBB’s demand for H beyond the first y(p) copies may

cause less discontent, we refer to this discontent as low discontent, and it is

equal to:

actual demand− y(p) =

⌈
r′ − 1 + rem(p)

p

⌉
.

Claim 4.14 The Big-Buyer, the Buffer and the rest of the market observe re-

laxed WGS.

Proof. Again, BBB’s demand for H only increases as pH decreases, so all that

needs to be checked is the demand for money. As in the proof of Claim 4.12, we

can compute (demand for money at pH = p+ h) minus (demand for money at

pH = p) ≥ (p+h−1)f−fh−(p−1)f−[(er′r′′+(r′−p)f+δ) mod p] ≥ −(p−1).

For pH > r′, the only source of demand is BBB, and by design, its demand

obeys relaxed WGS. 2

Claim 4.15 Suppose that when pH decrements from p + 1 to p, the demand

for H in the market apart from Buffer and Big-Buyer increases by at most d for

p ≤ r′, and by zero for p > r′. Then the market has bounded elasticity E for

E > 1 if e ≥ 2(d+7)
E−1

, r′′ ≥ r′/2, r′ ≥ f , where f is as in the Buffer (H, r′, r′′, f)

submarket.

Proof. We begin by analyzing the case p < r′. We need to show that:

xH(p) ≤ ⌈
xH(p+ 1)(1 + 1/p)E

⌉

199

It suffices to show:

d+
er′r′′ + f(r′ − p) + δ

p
+ 1 ≤

(
er′r′′ + f(r′ − p− 1) + δ

p+ 1
− 2

)
(1 + E/p) .

Multiplying the entire equation by p(p + 1) and expanding LHS and RHS

separately, we obtain:

LHS = (d+ 1)p(p+ 1) + er′r′′(p+ 1) +
[
f(r′ − p) + δ

]
(p+ 1)

RHS = er′r′′(p+ E)− 2p(p+ 1)− 2E(p+ 1) +
[
f(r′ − p− 1) + δ

]
(p+ E)

Simplifying the inequality leads to:

(d + 3)p(p + 1) + 2E(p + 1) + f(p + E) ≤ (E − 1)er′r′′ + (E − 1)
[
f(r′ − p) + δ

]

So it suffices that:

(d+ 3)p(p+ 1) + 2E(p+ 1) + f(p+ E) ≤ (E − 1)er′r′′

or that:

(d+ 3)(r′)2 + 2(r′)2 + 2fr′ ≤ (E − 1)e(r′)2

2

or:

(d+ 5 + 2f/r′) ≤ (E − 1)e

2

And so e ≥ 2(d+7)
E−1

suffices.

200

For p ≥ r′, it suffices to show:

⌊
er′r′′

p

⌋
≤

⌈⌊
er′r′′

p+ 1

⌋
(1 + E/p)

⌉

Let er′r′′ = x(p+ 1) + y with 0 ≤ y ≤ p. Then it suffices to show:

x+ bx/p+ y/pc ≤ dx(1 + E/p)e = x+ dxE/pe

Let x = up+ z, 0 < z < p. Then it suffices to show:

u+ b(z + y)/pc ≤ u+ d(E − 1)u/p+ zE/pe

Note that b(z + y)/pc ≤ 1, so unless u = z = 0 the equation is true. But then

p+ 1 ≥ er′r′′ and this is outside the range we need consider. 2

For each one of the goods F,D,G,G, we have f = O(E), and r′ = Θ(r) so

the condition r′ ≥ f is implied by the condition r = Ω(E), which we make.

For D, on a price decrement by one, the demand increases by at most 7k;

this happens when pD drops from 3r/4 + 1 to 3r/4. So we use one instance of

Big-Buyer (D, 3r/4, r/2) and need e ≥ 2(7k + 7)/(E − 1).

For F , again, the demand increases by at most 12k; this happens when pF

drops from r + 1 to r. So we use one instance of Big-Buyer (F, r, 3r/4) and

need e ≥ 2(12k + 7)/(E − 1).

For G, the demand increases by at most 12k; this can happen when pG

drops from r + 1 to r. So we use one instance of Big-Buyer (G, r + 1, r) and

201

need e ≥ 2(13k + 7)/(E − 1).

There is one more submarket that we need. It is needed to cope with the

fact that pG could legitimately take on either the value r or r + 1, and if the

pricing corresponds to a satisfying assignment, then the discontent must be

low. The difficulty is that if BBB does not receive essentially its full demand,

there is high discontent (Claim 4.13). The increase in demand at price r is e.

We introduce e new buyers that want a copy of G at price r + 1 (and hence

at price r) but will have O(1) discontent on not receiving the copy at price r,

using the Liberator submarket.

7. Liberator (G, r′): The purpose of this gadget is to absorb one copy of G

at prices pG ≤ r′, as needed. When the copy is not absorbed it results

in O(r′ − pG + 1) buyer discontent.

The submarket has one buyer BL with wealth r′ that desires one copy

of G plus residual money. The following utility suffices.

uL(nG, n$) =





r′ + 1 + n$ + γ(nG − 1) if nG ≥ 1

n$ if nG = 0

Claim 4.16 If pG ≤ r′, BL has upper discontent at most r′− pG + 1 if it does

not receive a copy of G.

Proof. As u(0, pG − 1) < u(0, r′) and nG = 0, n$ = pG − 1 is an optimal

allocation, allocation nG = 0, n$ = r′ has lower value at least pG − 1, and

consequently upper discontent at most r′ − pG + 1. 2

202

We introduce one instance each of Liberator (G, r′) for r + 1 ≤ r′ ≤ r + e.

Claim 4.17 If pG = r and none of the buyers BL receive a copy of G the

resulting upper discontent is at most e(e+ 3)/2 = O(1).

Proof. This follows immediately from Claim 4.16. 2

There is a need to reprove Claim 4.15 to account for the effect of the Liberator

submarket.

Claim 4.18 Suppose that when pG decrements from p + 1 to p the demand

for G in the market apart from Buffer and Big-Buyer increases by at most

d for p < r + 1, and by at most 1 for r + 1 ≤ p ≤ r + e, and by 0 for

p > r + e. Then the market has bounded elasticity E for E > 1, if e ≥
max{2(d+ 7)/(E − 1), 10/(E − 1)}, r ≥ e+ 1, r ≥ E, r + 1 ≥ 12k.

Proof. The proof of Claim 4.15 has already shown the result except for p in

the range [r + 1, r + e]. It suffices to show:

e(r + 1)r

p
+ 1 ≤

(
er(r + 1)

p+ 1
− 1

)
(1 + k/p)

or:

2p(p+ 1) + k(p+ 1) + er(r + 1) ≤ ker(r + 1)

or:

2(r + e)(r + e+ 1) + k(r + e+ 1) ≤ (k − 1)er(r + 1)

203

Assuming r ≥ e+ 1 and r ≥ k, it suffices that:

10r2 ≤ (k − 1)er(r + 1)

So e ≥ 10/(k − 1) suffices. 2

It remains to check that Discontent-Properties 1-5 still hold. To see (1) and

(2) it suffices to note that the excess supply of F and D only increase with the

presence of the Buffer and Big-Buyer submarkets when pF > 3r/4 and pD >

r/2, respectively. (3) is unaffected by the Buffer and Big-Buyer submarkets.

(4) results from an excess demand for F . We need to slightly modify Claim 4.5

to obtain an analogous result.

Claim 4.19 If pG ≥ r + 1, pG ≥ r + 1, pF ≤ 3r/4, pD ≤ r/2 there is at least

kr/8 buyer discontent among the following buyers of F : BSFP, BG, BG, BBF, BBB,

if r ≥ 8.

Proof. There is an excess demand for at least 6k copies of F as argued in the

proof of Claim 4.5. As argued there, each of the BSFP, BG, BG has discontent

at least r/4 on not receiving a copy of F . By Claim 4.11, BBF has discontent

at least (h−1)hr′′
6f

= (h−1)hr
152k

if it has x(r′′) − h copies of F (for r′′ = 3r/4 and

f = 19k). By Claim 4.13, BBB has discontent at least (h′ − d r+pF
pF
e)pF/2 if it

is missing h′ copies of F (as y(pF) is at most
⌈
r+pF−2
pF

⌉
smaller than the actual

demand of BBB). For pF = r′′, the total discontent is minimized when BBB

is missing 3 copies and BBF is missing 6k − 3; the total discontent is then at

204

least (6k − 4)(6k − 3)r/134k ≥ kr/8.

If pF < r′′, the excess demand due to BBB increases by at least err′′
r′′−(r′′−pF)

−
er ≥ (r′′ − pF)er/pF. There is an increase in BBB’s low discontent demand of

d(r − 2)/pFe − b(r − 2)/r′′c ≤ r/pF. For each additional missing item beyond

6k − 3, BBF has discontent at least 2(6k − 3)r/134k ≥ r/15. This yields an

increase in discontent of at least ([e(r′′ − pF)− 1]r/pF − l)pF/2 + lr/15, where

l items of the increased demand are taken from BBF and the remainder from

BBB. But this is always positive and hence the discontent is only higher in

this case. 2

Again, to show Discontent-Property 5, we need to modify Claim 4.9.

Claim 4.20 Let C = a ∨ b ∨ c be a clause. Suppose that e ≥ 3, px ≤ r, pFx ≤
3r/4, pDx ≤ r/2 for x ∈ {a, b, c}. Then there is at least kr/8 discontent among

the buyers BGx , BFCTC
, BBFx , BBBx for x ∈ {a, b, c}.

Proof. We begin by considering the case where px = r for x ∈ {a, b, c}. One

copy of these goods is needed for each of the 2k BFCTC
. Note that at these

prices the BBFx have zero demand. Likewise, each BBBx has demand e(r + 1)

and y(r) = e(r + 1) − 1 (see Claim 4.13). Recall that BBB’s low discontent

demand is defined as actual demand − y(p). Thus each BBBx can miss one

copy of its demand with low discontent. Subsequent missing copies each cause

discontent r/2 by Claim 4.13. If BGx or BFCTC
are missing copies they each

incur discontent r/4 by Claims 4.6 and 4.8 respectively. Thus, overall, there

is at least (2k − 3)r/4 ≥ kr/8 discontent.

205

For smaller px = r −∆, the demand of BBBx increases by at least ∆e(r+1)
r−∆

;

the low discontent demand (see Claim 4.13) increases by at most
⌈
r+(r−∆)
r−∆

⌉
≤

3r
r−∆

. Thus the increase in discontent is at least
⌈

(∆e−3)r
r−∆

⌉
·min{ r−∆

2
, r

4
} (using

Claim 4.13, 4.6, and 4.8, according to whether additional unmet demand is

allocated to BBBx , BGx , BFCTC
, respectively). But this increase in discontent

is at least ∆(e−3)r
4
≥ 0 if e ≥ 3. Thus the discontent is only larger in this case.

2

Lemma 4.2 If there is a satisfying assignment there is a pricing and demand-

driven allocation yielding O(mE) discontent.

Proof. For each true literal x, set pDx = r/2, pFx = 3r/4, pGx = r + 1,

pGx
= r. The k buyers BFP are each allocated one copy of D, the 7k buyers

BSFP one copy of F each, the 6k buyers Bx one copy of F each, the 6k buyers

Bx one copy of Gx each; the 6k copies of Gx are distributed one to each

of the 6k clausal buyers BFCTC
associated with literal x. As the formula

is satisfiable, each clausal buyer BFCTC
receives between one and three of the

goods Ga, Gb, Gc, where C = a∨b∨c. By Claim 4.7 this yields O(1) discontent

per clausal buyer, or O(km) = O(km) discontent overall. Finally, each BBF

and BBB receives an amount of goods equal to the supply intended for the

corresponding submarkets. All the other buyers have zero discontent as do

the sellers for all the goods are sold. 2

This completes the proof of Theorem 4.1.

206

4.4 A Matching Algorithm

In this section, we present a simple algorithm that approximates the efficiency

of market with bounded elasticity E to a factor 1 − O(E/r). We assume

that an oracle for computing the aggregate excess demand is available. This

assumption is fairly standard [23, 55, 22, 59]. Let p = (p1, . . . , pn).

Recall that a market has bounded elasticity E if for every good i, for all

prices p, for all h > 0 such that xi(pi + h,p−i) ≥ 1,

xi(pi,p−i) ≤ dxi(pi + h,p−i) (1 + h/pi)
Ee,

and if xi(pi + 1,p−i) = 0, then xi(pi,p−i) ≤ 1.

Definition 4.8 (High price.) A price pi in a collection p = (p1, . . . , pn) of

prices is said to be high if there is a surplus of good i at p. The surplus need

not be strict. (Barely high price.) Price pi is said to be barely high if there is

a surplus of good i at p, but a strict deficit of good i at (pi − 1,p−i).

Low and barely low prices are defined analogously.

Let w denote the total buyer wealth and s be the minimum number of

copies of any one good present in the market; i.e. w =
∑

iwi, s = minj sj.

Let xi(p) denote the demand for good i at prices p. We aim to find a collection

of prices p so that all goods are priced barely high. The algorithm in Figure 4.2

computes such prices while keeping all prices high at all times. On termination,

as all the prices are barely high, the supply of each good is at least the demand,

207

and thus each buyer can be and is allocated all the goods it seeks. We will

show that this allocation achieves an efficiency of 1−O(E/r).

1 initialize p with pi ← dw/sie.
2 repeat [for each i in turn]
3 if pi is high and pi − 1 is not strictly low
4 decrement it (pi ← pi − 1)
5 end if
6 until no decrement is effective

Figure 4.2: A simple algorithm that converges to a barely high price vector.

Claim 4.21 A decrement of a price leaves all other high prices high.

Proof. This is an immediate consequence of the relaxed WGS property. 2

Lemma 4.3 Algorithm 1 terminates after at most n2w/s calls to the demand

oracle.

Proof. If a price pi reaches 1, it is necessarily barely high. Further, by

Claim 4.21 high prices remain high until decremented. If no price can be

dropped, then this is the desired state, otherwise the price of some good is

decremented. Since pi ≥ 1 for all goods i, there can be at most (w/s)n

decrements. Conceivably, we may have to repeatedly try all goods to find the

one whose price reduces, and therefore the total number of queries is at most

n2w/s. 2

Lemma 4.4 Decrementing the price of a good whose current price is strictly

high and greater than 2Esi increases its demand by at most 1.

208

Proof. Let pi denote the price of such a good after the decrement. Let

∆ denote xi(pi,p−i) − xi(pi + 1,p−i). We claim that ∆ ≤ 1. Note that

(1 + 1/pi)
E ≤ 1 + 1/si for pi ≥ 2Esi. By bounded elasticity E, we have:

xi(pi,p−i) ≤ xi(pi + 1,p−i) (1 + 1/pi)
E + 1.

Thus xi(pi,p−i) ≤ xi(pi + 1,p−i)(1 + 1/si) + 1. Therefore,

∆ ≤ xi(pi + 1,p−i)/si + 1

But xi(pi +1,p−i) < si as pi +1 is strictly high. As ∆ is an integer, ∆ ≤ 1. 2

Lemma 4.5 The excess supply of a good whose current price pi is barely high

is at most Esi/pi + 1.

Proof. If pi ≤ E then the lemma follows trivially since the excess supply is

always less than the total supply si and si ≤ Esi/pi + 1 for pi ≤ E. Suppose

that pi > E. By bounded elasticity E, we have

xi(pi,p−i) ≥ xi(pi − 1,p−i)− 1

(1 + 1/(pi − 1))E

≥ xi(pi − 1,p−i)

(1 + 1/(pi − 1))E
− 1

= xi(pi − 1,p−i) (1− 1/pi)
E − 1.

Since pi is barely high, pi − 1 must be low, so xi(pi − 1,p−i) > si. Therefore

si− xi(pi,p−i) < si− si(1− 1/pi)
E + 1. As (1− 1/pi)

E ≥ 1−E/pi for pi > E,

209

the excess supply is given by:

si − xi(pi,p−i) < si(1− 1 + E/pi) + 1 = Esi/pi + 1.

2

As each buyer receives its optimal allocation, there is no buyer discontent.

The only discontent is the seller discontent. Let p denote the set of prices

computed by the algorithm. We claim that a good i whose price pi is greater

than 2Esi is correctly priced. For pi is barely high, pi − 1 is low, and by

Lemma 4.4, the demand for such a good increases by at most 1 at each price

decrement; therefore the demand exactly matches the supply at prices p.

Recall that the inefficiency of an allocation is defined as the ratio of the total

(buyer and seller) discontent and the total (buyer and seller) value. For subse-

quent analysis, it will be helpful to rewrite the expression for Market Efficiency

(Definition 4.5) and specify the terms for buyers and sellers separately as:

1−
∑

b∈B db((Ab, wb − Ab · p),p) +
∑

g∈G cgpg∑
b∈B vb((A

opt
b ,mopt

b),p) +
∑

g∈G sgpg

where cg denotes the number of unsold copies of g in the allocation, vb denotes

the upper value for buyer b and (Aoptb ,mopt
b) is an optimal allocation (including

money) for b with wealth wb at prices p.

Lemma 4.6 The above allocation at the prices p computed by the algorithm

in Figure 4.2 has efficiency 1−O(E/r).

210

Proof. For a good i whose price is less than or equal to 2Esi, by Lemma

4.5, there are at most Esi/pi + 1 unsold copies. The total seller discontent is

therefore at most

∑
i:pi≤2Esi

(Esi/pi + 1) pi ≤
∑

i:pi≤2Esi

Esi +
∑

i:pi≤2Esi

pi

≤ E
∑
i

si +
∑
i

2Esi = 3E
∑
i

si.

Recall that the inefficiency of a market is defined as the ratio of the total (buyer

and seller) discontent and the total (buyer and seller) value. The inefficiency

of the allocation at prices p is then given by:

3E
∑

i si∑
j wj +

∑
i sipi

≤ 3E
∑

i si∑
j wj

= O(E/r).

The efficiency is thus 1−O(E/r). 2

Theorem 4.4 The algorithm in Figure 4.2 can be modified so that it makes

at most O(nEt logw) demand oracle queries, where t =
∑

i si.

Proof. Instead of considering all prices in the set {1, . . . , dw/sie}, one can con-

sider multiplicatively growing values of pi from the set Ii+ = {1, 2, . . . , d1/εie}∪
{b 1

εi
(1 + εi)

jc : j > 0, 1
εi
(1 + εi)

j ≤ dw/sie}. With foresight, we set εi =

1/(8Esi). Note that if at price b 1
εi
(1+ εi)

j+1c there is an excess supply of good

i, then at price b 1
εi
(1 + εi)

jc > 8Esi, the demand increases by at most 1 due

to the following argument. Let pi = b 1
εi
(1 + εi)

jc and pi + h = b 1
εi
(1 + εi)

j+1c

211

so that

h =

⌊
1

εi
(1 + εi)

j+1

⌋
−

⌊
1

εi
(1 + εi)

j

⌋

≤ 1

εi
(1 + εi)

j+1 − 1

εi
(1 + εi)

j + 1

= (1 + εi)
j + 1 ≤ 2(1 + εi)

j.

Finally,

pi =

⌊
1

εi
(1 + εi)

j

⌋
≥ (1 + εi)

j

2εi
.

Thus, h/pi ≤ 4εi and (1 + h/pi)
E ≤ (1 + 4εi)

E ≤ 1 + 1/si for 4εi ≤ 1/(2Esi).

From this point on, an argument identical to the one used in the proof of

Lemma 4.4 works. It follows that for a good i whose price is greater than

8Esi, upon the termination of the algorithm, the demand equals the supply

and there are no unsold copies.

Since |Ii+| ≤ 8Esi(1 + logw), the complexity, in oracle calls, becomes

8nE(
∑

i si)(1 + logw) = O(nEt logw). 2

The modification is to adjust prices multiplicatively: in line 4 above, pi ←
min{dpi(1− εi)e , pi − 1}, where εi = 1/(8Esi).

When t is too large one can reduce the accuracy of the low test without

significantly affecting the quality of the approximation.

Definition 4.9 Price pi is near-low if the excess demand for good i at (pi,p−i)

is at most si/r.

The test in the algorithm (in line 3) is changed from a test for a low price to

212

a test for a near-low price. Further, for all i, εi is set to 1/(8Er). This may

create a further O(si/r) excess supply of good i, but it is clear that this does

not affect the approximation quality beyond an additive O(1/r) term. The

complexity becomes O(Ern2 logw) oracle calls.

4.5 A Local Tatonnement Algorithm

4.5.1 Introduction and Motivation

Section 4.4 presented a simple P-time algorithm to compute near-equilibrium

prices of a discrete market obeying WGS with bounded elasticity E. This

establishes that for a fixed E > 1, the hardness result shown in Section 4.3

(Theorem 4.1) is tight. In this section, we seek a local, distributed, taton-

nement based algorithm that converges rapidly toward near-equilibrium prices.

The spirit of this investigation is to elucidate the processes by which near-

equilibrium prices are discovered within the market itself.

In the continuous setting, Cole and Fleischer [25] showed that fast con-

vergence is possible with tatonnement-style price update protocols, methods

which update each price independently. Their analysis copes with asynchrony

plus data staleness and inaccuracy. In this section, we seek to develop their

analysis to account for discreteness in the market so as to provide richer and

hence more plausible justifications for why markets can be well-behaved.

As in Sections 4.3 and 4.4, we continue to consider the discrete market with

bounded elasticity E and average wealth r. However, in addition to bounded

213

elasticity (which we saw is equivalent to bounding the fractional rate of change

of demand with respect to fractional changes in prices), we need a lower bound

on the sensitivity of demand to price changes (made precise later).

In the economics literature, in the continuous setting, a good i is said to

be normal for agent l if its fractional rate of change of demand with respect

to the agent’s wealth is non-negative. That is, ∂xil(p, vl)/∂vl ≥ 0, where

vl is the wealth of agent l at prices p and xil(p, vl) is agent l’s demand for

good i at prices p (see [66] page 25). In their analysis of convergence in the

continuous setting, Cole and Fleischer [25] assumed that the fractional rate of

change of demand with respect to the wealth is lower bounded by a strictly

positive value β. They called this constraint the wealth effect. However, in the

discrete setting, it turns out that it is no longer effective to place constraints

on individual agents in order to limit changes in aggregate demand when price

vary. For in the discrete setting, unless individual demands never vary, no

constraint can prevent a sharp change in demand on a unit change in price at

a critical price – simply imagine that many or all of the individual utilities are

identical.

In the continuous setting with real-valued prices, the wealth effect on de-

mand can be expressed in the following manner.

Definition 4.10 (Wealth Effect in the Continuous Setting) If all prices

are reduced by a factor f < 1 from p to fp, then the demand for each good

214

increases by at least a factor of (1/f)β for some β > 0. Equivalently, for all i

xi(fp) ≥ xi(p)

fβ
.

Analogously, if all prices are raised by a factor g > 1 from p to gp, then the

demand for each good decreases by at least a factor of gβ for some β > 0. That

is, for all i,

xi(gp) ≤ xi(p)/gβ.

Making an analogous definition in the discrete setting is problematic because

the price of each good in fp may not be an integer. In order to avoid this

difficulty, we combine the wealth effect with bounded elasticity, and define it

as in Definition 4.11.

p

q

p
′

Step I: Drop all
prices by a factor of

q1

p1

Good 1 Good i Good n

Step II: Raise prices
to their value in q

xi(p
′) ≥ xi(p)

(

p1

q1

)β

xi(q) ≥ xi(p
′)

(

pi · (q1/p1)

qi

)E

Figure 4.3: An illustration of bounded elasticity E with demand sensitivity β.

215

Definition 4.11 (Bounded Elasticity E and Demand Sensitivity β) Let

p and q be two price vectors. Assume that 1 = arg mini
qi
pi

and n = arg maxi
qi
pi

.

A market with bounded elasticity E is said to have demand sensitivity β if when

q1
p1
< 1,

xi(q) ≥
⌊
xi(p)

(
p1

q1

)β (
q1/p1

qi/pi

)E
⌋

and when qn
pn
> 1,

xi(q) ≤
⌈
xi(p)

(
pn
qn

)β (
qn/pn
qi/pi

)E
⌉
,

for some fixed constant β > 0.

Figure 4.3 provides an intuitive explanation of bounded elasticity E and de-

mand sensitivity β in continuous markets, for two price vectors p and q with

mini
qi
pi
< 1. We imagine changing the price vector p to q in two steps. In

the first step, all prices are dropped by a factor of q1
p1

(i.e. mini
qi
pi

) to p′. This

increases the demand for good i by at least a
(
q1
p1

)β
factor. In the second

step, the prices are raised from p′ to q. This entails raising the price of good i

from pi · (q1/p1) to qi, and thus by bounded elasticity E, the demand does not

drop by more than a factor
(
pi·(q1/p1)

qi

)E
. Combining the two yields bounded

elasticity E with demand sensitivity β.

We are interested in price adjustment mechanisms that are based on taton-

nement, as in [25], with minor modifications to account for the discrete setting.

Let λ be a parameter of our price update protocol. Looking ahead, λ will

216

be at most 1
cE

, where E is a bound on the elasticity of demand and c is a

constant, suitably chosen.

Price Update Rules: The price of good i is updated according to the

following rule:

p′i ←
⌈
pi

(
1 + λmin

{
zi(p)

si
, 1

})⌉
(4.3)

Note that if a good is in excess demand (i.e. zi(p) > 0), then its price is only

increased, while if a good is in excess supply (i.e. zi(p) < 0), then its price is

either decreased or stays the same. The following is an immediate corollary of

Bounded Elasticity E and Demand Sensitivity β (Definition 4.11):

Corollary 4.2 (Bounded Elasticity E) Fix the price of all goods other than

good i to p−i. Then, for all ri ≤ pi ≤ qi,

⌊
xi(ri,p−i)

(
ri
pi

)E
⌋
≤ xi(p) ≤

⌈
xi(qi,p−i)

(
qi
pi

)E
⌉
.

In Section 4.4, we described a notion of barely high prices (see Definition 4.8).

For the analysis of the local tatonnement-style algorithm, we need the analo-

gous barely low prices.

Definition 4.12 (Barely low prices) A price vector p is said to be barely

low if for each good i, zi(p) ≥ 0 and zi(pi + 1,p−i) < 0.

Comment 4.4 (Complexity Measure) As is standard for asynchronous al-

gorithms, we measure the complexity in rounds. The basic unit of time is a

217

price update as specified above. A round comprises a minimum length sequence

of updates in which every price updates at least once. The rounds are specified

uniquely by defining them from a fixed start time.

4.5.2 Analysis of Convergence

Let pH and pL denote a pair of barely high and barely low prices, respectively.

The two assumptions that we will need in the analysis are:

• the minimum number of copies of a good available in the market is

Ω(E/β). Specifically, we require that for all goods i, si ≥ 32E
β

.

• the barely low and the barely high price of each good is at least 8cE2

β
,

where c is a constant, suitably chosen.

The outline of our analysis is:

1. First, we show that the barely high and the barely low prices are “close”

to each other. Specifically, that for all goods i, |pHi − pLi | = O(pHi /E).

2. Next, we establish that under the price update protocol specified, prices

rapidly converge, so that the price of each good i gets to be in the interval
[
pLi (1−O(1/E)), pHi (1 +O(1/E))

]
.

3. Finally, we deduce that once the prices are bounded, the demand of each

good is bounded. Specifically, that for all goods i, xi(p) = O(si), and

therefore the misspending,
∑

i pi|zi(p)|, is O(
∑

j wj), where wj is the

amount of money with buyer j in the market.

218

Lemma 4.7 Let pH and pL denote a set of barely high and barely low prices,

respectively. Let n = arg maxi p
H
i /p

L
i . For all goods i,

pHi ≤ pLi

[
1 +

2

cE

]
,

if pLn , p
H
n ≥ 8cE2/β.

Proof. Let f = pHn /p
L
n . We seek to upper bound f . So suppose that f > 1.

As pLn is barely low, the demand at (pL−n, p
L
n + 1) for good n is at most sn− 1.

By bounded elasticity,

xn(p
L) ≤ (sn − 1)

(
pLn + 1

pLn

)E

= (sn − 1)

(
1 +

1

pLn

)E

.

If E
pL

n
≤ 1

2
, the RHS expression can be bounded as:

(sn − 1)

(
1 +

1

pLn

)E

≤ (sn − 1)

(
1 +

2E

pLn

)
= sn +

2Esn
pLn
− 1− 2E

pLn
.

Similarly, as pHn is barely high, the demand at (pH−n, p
H
n − 1) for good n is at

least sn + 1. By bounded elasticity,

xn(p
H) ≥ (sn + 1)

(
pHn − 1

pHn

)E

= (sn + 1)

(
1− 1

pHn

)E

.

If E
pH

n
≤ 1, the RHS expression can be bounded as:

(sn + 1)

(
1− 1

pHn

)E

≥ (sn + 1)

(
1− E

pHn

)
= sn − Esn

pHn
+ 1− E

pHn
.

219

Imagine changing all prices from pL to pH ; this is an increase of at most a

factor f . Hence, by demand sensitivity β (Definition 4.11), the demand for

good n at pH is at most

(
sn +

2Esn
pLn
− 1− E

pLn

)
f−β.

We need:

(
sn +

2Esn
pLn
− 1− E

pLn

)
f−β ≥ sn − Esn

pHn
+ 1− E

pHn
.

Thus, the required condition on f is:

f ≤
(
sn +

2Esn
pLn
− 1− E

pLn

)1/β (
sn − Esn

pHn
+ 1− E

pHn

)−1/β

=

(
1 +

2E

pLn
− 1

sn
− E

snpLn

)1/β (
1− E

pHn
+

1

sn
− E

snpHn

)−1/β

≤
(

1 +
4E

βpLn

)(
1 +

4E

βpHn

) (
if

4E

βpLn
,

4E

βpHn
≤ 1

)

≤ 1 +
8E

β

(
1

pLn
+

1

pHn

)
.

Since pHn , p
L
n ≥ 8cE2/β by assumption, it follows that f ≤ 1 + 2

cE
. 2

Let s = mini si, and let pL = mini p
L
i , pH = mini p

H
i . Without loss of generality,

let 1 = arg maxi
pL

i

pi
and n = arg min

pH
i

pi
. For notational ease, we let zi denote

zi(p), i.e. the excess demand at current prices.

Lemma 4.8 After one round of price updates, if λE(2+ 1
s
) ≤ 1, the prices p′

220

satisfy:

1. If p1 ≥ pL1 , then p′i ≥ pLi (1− λ/s).

2. If p1 ≤ pL1 , then

p′i
pLi
≥ p1

pL1

[
1 + λmin

{(
pL1
p1

)β

− 1

s
− 1, 1

}]
.

Proof. Let f =
pL
1

pi
, ri =

pL
1

p1

pi

pL
i
.

• Case 1: zi ≥ si. In this case, p′i ≥ pi(1 + λ), and the result holds both

when the condition of (1) holds and when the condition of (2) holds.

• Case 2: si > zi ≥ 0. If the condition of (1) holds, then the result will

hold for pi. So it suffices to consider (2). The price of good i is updated

according to:

p′i =

⌈
pi

(
1 + λmin

{
zi
si
, 1

})⌉
.

By demand sensitivity and bounded elasticity (Definition 4.11), xi ≥
bsifβr−Ei c.

It suffices to show that

pi
pLi

[
1 + λmin

{
fβr−Ei − 1

si
− 1, 1

}]
≥ p1

pL1

[
1 + λmin

{
fβ − 1

s
− 1, 1

}]
.

Note that since xi < 2si, it follows that sif
βr−Ei < 2si. Thus fβr−Ei < 2.

221

For simplicity, we write g = fβ, r = ri. It suffices to show that:

r

[
1 + λmin

{
gr−E − 1

s
− 1, 1

}]
≥ 1 + λmin

{
g − 1

s
− 1, 1

}
.

Let h(r) be defined as:

h(r) = r

[
1 + λmin

{
gr−E − 1

s
− 1, 1

}]
.

If gr−E − 1
s
− 1 ≤ 1, then we show dh/dr ≥ 0, and thus the LHS of the

above equation is minimized when r = 1, when it is an identity; thus the

condition holds when gr−E − 1
s
− 1 ≤ 1.

dh

dr
=

[
1 + λ

(
gr−E − 1

s
− 1

)]
− λEgr−E

= 1− λ
(

(E − 1)gr−E +
1

s
+ 1

)
.

As −gr−E ≥ −(2 + 1/s), we have:

dh

dr
≥ 1− λ

(
(E − 1)(2 + 1/s) +

1

s
+ 1

)
.

After simplifying and ignoring positive terms, we obtain:

dh

dr
≥ 1− λE

(
2 +

1

s

)
.

Thus, dh
dr
≥ 0 if λE(2 + 1/s) ≤ 1.

222

Next, consider the case when gr−E − 1
s
− 1 > 1. In this case, it suffices

that

r[1 + λ] ≥ 1 + λmin

{
g − 1

s
− 1, 1

}
.

The RHS is at most 1 + λ. Clearly the condition is true in this case.

Thus the result of condition (2) holds in this case.

• Case 3: zi < 0. If the condition of (2) holds, the argument is as in Case

1. So suppose the condition of (1) holds. Then,

p′i =

⌈
pi

(
1 + λ

zi
si

)⌉
.

By demand sensitivity and bounded elasticity (Definition 4.11), xi ≥
bsifβr−Ei c. So,

p′i ≥ pi

[
1 + λ

(
fβr−Ei − 1

si
− 1

)]

≥ pLi
ri
f

[
1 + λ

(
fβr−Ei − 1

si
− 1

)]
.

It suffices that :

ri
f

[
1 + λ

(
fβr−Ei − 1

s
− 1

)]
≥ 1− λ

s
.

For simplicity, we write r = ri and let h(r, f) be defined as:

h(r, f) =
r

f

[
1 + λ

(
fβr−E − 1

s
− 1

)]
.

223

Then

dh

dr
=

1

f

[
1 + λ

(
fβr−E − 1

s
− 1

)]
− Eλ

f
fβr−E

=
1

f

[
1− λ

(
fβr−E(E − 1) +

1

s
+ 1

)]

≥ 1

f

[
1− λ

(
E +

1

s

)]
(as fβr−E ≤ 1)

≥ 0

(
if λ

(
E +

1

s

)
≤ 1

)

So h(r, f) is minimized at r = 1. Then we want

h(1, f) :=
1

f

[
1 + λ

(
fβ − 1

s
− 1

)]
≥ 1− λ

s
. (4.4)

Let k(f) = 1
f

[
1 + λ

(
fβ − 1

s
− 1

)]
. Then,

dk

df
= −f−2

[
1 + λ

(
fβ − 1

s
− 1

)]
+ λβf−2+β

= −f−2

[
1− λ

(
1 +

1

s

)
+ λfβ (1− β)

]

< 0.

(
if λ

(
1 +

1

s

)
≤ 1

)

As f ≤ 1, the LHS is minimized at f = 1. And at f = 1, the condition

in Equation 4.4 is true.

2

Corollary 4.3 Suppose that s ≥ aE
β

for a constant a ≥ 1 and β
aE
≤ 1. Let

pTi
−

= pLi
(
1− 1

aE

)
. If λE(2 + 1/s) ≤ 1, then,

224

1. If p1 ≥ pT1
−
, then p′i ≥ pTi

−
.

2. If p1 < pT1
−
, then,

p′i
pTi

− ≥
p1

pT1
−


1 + λmin





(
pT1

−

p1

)β

− 1, 1






 .

Proof. Note that pTi
− ≤ pLi (1−λ/s) as 1

aE
≥ λβ

aE
≥ λ

s
; so (1) holds for p1 ≥ pL1 .

First, for p1 < pT1
−
, we show that

pLi
pL1

[
1 + λmin

{(
pL1
p1

)β

− 1

s
− 1, 1

}]
≥ pTi

−

pT1
−


1 + λmin





(
pT1

−

p1

)β

− 1, 1






 .

It suffices to show that:

(
pL1
p1

)β

≥
(
pT1

−

p1

)β

+
1

s
(
pL1
p1

)β

≥
(
pL1
p1

)β (
1− 1

aE

)β

+
1

s

0 ≥
(
pL1
p1

)β (
− β

aE

)
+

1

s
(if β/aE ≤ 1).

As p1 ≤ pL1 , s ≥ β
aE

suffices.

Next, consider the case when pT1
− ≤ p1 ≤ pL1 . In this case, we need to show

that:

pLi
pL1

[
1 + λmin

{(
pL1
p1

)β

− 1

s
− 1, 1

}]
≥ pTi

−

pT1
−

(
1− λ

s

)
.

225

Thus, it suffices that the LHS expression is more than (1 − λ/s)pL
i

pL
1
, which is

true. 2

Lemma 4.9 Starting with initial prices pI , after

O

(
1

λ

(
log max

i

pLi
pIi

+
1

β
log

1

β
+

1

β
logE

))

rounds, for all goods i, pi ≥ pLi − 2(pLi − pTi −), if 2
aE
≤ 1 and λE(2 + 1/s) ≤ 1.

Proof. By Corollary 4.3 (2), so long as
(
pT
1
−

p1

)β
≥ 2, p′i ≥ pi(1 + λ), and so in

O(1/λ) iterations, maxi
pT

i
−

pi
halves.

Let ah be the number of rounds needed to reduce maxi
pT

i
−

pi
from at most

(1 + 1
2h)

1
β to at most (1 + 1

2h+1)
1
β for h = 0, 1, To count ah, again, by

Corollary 4.3 (2), note that in each round, maxi
pT

i
−

pi
reduces at least by a

(1 + λ/2h+1) factor. Thus, ah can be upper-bounded using:

(1 + λ/2h+1)ah ≥
(

1 + 1
2h

1 + 1
2h+1

) 1
β

=

(
2(2h + 1)

2h+1 + 1

) 1
β

=

(
1 +

1

2h+1 + 1

) 1
β

.

This yields:

ah ≤ 1

β

log
(

2(2h+1)
2h+1+1

)

log (1 + λ/2h+1)
≤ 2 · 2h+1

λβ
log

(
1 +

1

2h+1 + 1

)
≤ 2

λβ
.

To increase pi so that pi ≥ pLi − 2(pLi − pTi −) for all i means that

pi

pTi
− ≥

pTi
−

pTi
−−

pLi − pTi −
pTi

− ≥ 1−
[(

1− 1

aE

)−1

− 1

]
≥ 1− 2

aE

(
as

1

aE
≤ 1

2

)

226

Thus, (
pi

pTi
−

)β

≥ 1− 2β

aE

(
assuming

2

aE
≤ 1

)
.

By the argument of the previous paragraph, to increase pi ≥ pLi − 2(pLi − pTi −)

for all i takes a further O
(

1
λβ

log
(
aE
β

))
rounds. 2

Lemma 4.10 After one round of price updates, if 2λE ≤ 1, the prices p′

satisfy:

1. If pn ≤ pHn then
p′i
pH

i
≤ (1 + λ/s) + 1

pH
i
.

2. If pn ≥ pHn then

p′i
pHi
≤ pn
pHn

[
1 + λ

((
pHn
pn

)β

+
1

s
− 1

)]
+

1

pHi
.

Proof. Let f = pn

pH
n

and ri = pn

pH
n

pH
i

pi
.

1. Case 1: zi ≤ 0.

If pn ≤ pHn then as p′i ≤ pi, the result of (1) holds for all i. So consider

(2) (and pn ≥ pHn).

p′i =

⌈
pi

(
1 + λ

zi
si

)⌉

≤ pi + min

{
λpi

(⌈
sif

−βrEi
⌉

si
− 1

)
+ 1, 0

}

≤ pi + min

{
λpif

−βrEi +
λpi
si
− λpi + 1, 0

}

227

So it suffices to show that for f−βrEi ≤ 1,

pi
pHi

[
1 + λf−βrEi − λ+

λ

si

]
+

1

pHi
≤ pn
pHn

[
1 + λ

(
f−β − 1 +

1

s

)]
+

1

pHi
.

Or,

1

ri

[
1 + λf−βrEi − λ+

λ

s

]
≤ 1 + λ

(
f−β − 1 +

1

s

)
.

Let h(r, f) be defined as:

h(r, f) =
1

r

(
1 + λf−βrE − λ+

λ

s

)
.

Then,

dh

dr
= − 1

r2

[
1− (E − 1)λf−βrE − λ+

λ

s

]

≤ 0
(
if Eλ ≤ 1 as f−βrE ≤ 1

)
.

So the LHS is maximized at r = 1. Then, we want

1 + λ

(
f−β − 1 +

1

s

)
≤ 1 + λ

(
f−β − 1 +

1

s

)
,

which is indeed true.

And we also need to show that when f−βrEi ≥ 1:

pi
pHi
≤ pn
pHn

(
1 + λ

(
f−β − 1 +

1

s

))
+

1

pHi
. (4.5)

228

It suffices that:

1 ≤ ri

[
1 + λ

(
r−Ei − 1 +

1

s

)]
.

To this end, let k(r) be defined as:

k(r) = r

[
1 + λ

(
r−E − 1 +

1

s

)]
.

dk
dr

is given by:

dk

dr
= 1− (E − 1)λr−E − λ+

λ

s
.

Thus, dk
dr
≥ 0 if λE ≤ 1. So the RHS in Equation 4.5 is minimized at

ri = 1, and then we want 1 ≤ 1 + λ
s
, which is true.

2. Case 2: zi ≥ 0. Again, suppose that pn ≥ pHn . As in Case 1, it suffices

that

1

ri

[
1 + λmin

{
2, f−βrEi

}− λ+
λ

s

]
≤ 1 + λ

(
f−β − 1 +

1

s

)
. (4.6)

Now we define h(r, f) as:

h(r, f) =
1

r

[
1 + λmin

{
2, f−βrE

}− λ+
λ

s

]
.

For f−βrE ≤ 2, dh/dr is given by:

229

dh

dr
=

1

r2

[
(E − 1)λf−βrE − 1 + λ− λ

s

]

≤ 1

r2

[
(2E − 1)λ− 1− λ

s

]
(since f−βrE ≤ 2)

Thus, we obtain that dh/dr ≤ 0 if 1 ≥ (2E − 1)λ and the LHS in

Equation 4.6 is maximized at ri = 1, when the inequality is an equality.

So again the claim is true.

When f−βrEi ≥ 2, since the claim holds for f−βrEi = 2, and 1
ri
≤ 1

ri
, the

claim continues to hold.

Finally, suppose that pn ≤ pHn . Let f = pH
n

pn
and ri =

pH
i

pi

pn

pH
n

.

p′i =

⌈
pi

(
1 + λ

{
zi
si
, 1

})⌉

≤ pi + λpi min

{⌈
fβrEi si

⌉

si
− 1, 1

}
+ 1.

So

p′i
pHi

≤ pi
pHi

[
1 + λ

{
fβrEi +

1

si
− 1, 1

}]
+

1

pHi

≤ pn
pHn

1

ri

[
1 + λmin{fβrEi +

1

si
− 1, 1}

]
+

1

pHi
.

And we want to show this is bounded by (1 + λ/s) + 1
pH

i
.

230

It suffices that:

1

fri

(
1 + λmin

{
fβrEi − 1, 1

}) ≤ 1.

Let h(r, f) be defined as:

h(r, f) =
1

fr

[
1 + λ(fβrE − 1)

]
, for fβrE ≤ 2.

Then

dh

dr
= − 1

fr2

[
1 + λ(fβrE − 1)

]
+
EλfβrE

fr2

≤ − 1

fr2
[1− 2Eλ] (as 1 ≤ fβrE ≤ 2)

Thus, dh
dr
≤ 0 if 2Eλ ≤ 1.

h(r, f) is maximized at r = 1, and

h(f, 1) =
1

f

[
1 + λ(fβ − 1)

]
.

Now,

dh(f, 1)

df
= − 1

f 2

[
1 + λ(fβ − 1)

]
+
βλfβ

f 2
.

Thus, dh(f,1)
df
≤ 0 as λ ≥ λβ and λ ≤ 1.

Again, h is maximized at f = 1, and h(1, 1) = 1. This verifies the

condition for fβrEi ≤ 2.

231

But for fβrEi ≥ 2, the condition becomes

1

fri
(1 + λ) ≤ 1.

This is verified by the fact that it holds for fβrEi = 2.

2

Corollary 4.4 Suppose that s ≥ 8
β∆

, pH ≥ 2
λβ∆

and 2β∆ ≤ 1. Let pTi
+

=

pHi (1 + ∆).

1. If pn ≤ pTn
+
, then p′i ≤ pTi

+
.

2. If pn ≥ pTn
+
, then

p′i
pTi

+ ≤
pn

pTn
+


1 + λmax





(
pTn

+

pn

)β

− 1,−1

2






 .

Proof. Note that pTi
+ ≥ pHi (1 + λ/s) + 1 so (1) is true when pi ≤ pHi .

First, for pn ≥ pTn
+
, if

(
pT

n
+

pn

)β
≥ 1

2
, we show that

pn
pHi
pHn

[
1 + λ

[(
pHn
pn

)β

+
1

s
− 1

]]
+ 1 ≤ pnp

T
i

+

pTn
+


1 + λ




(
pTn

+

pn

)β

− 1





 ,

Or,

λ

(
pHn
pn

)β

+
λ

s
+

pHn
pnpHi

≤ λ

(
pTn

+

pn

)β

.

232

As pTn
+

= pHn (1 + ∆), it suffices that:

λ

(
pHn
pn

)β

+
λ

s
+

1

pHi

pHn
pn
≤ λ

(
pHn
pn

)β

(1 + ∆)β.

It suffices that:

λ

s
+

1

pHi

pHn
pn
≤ λβ∆

(
pHn
pn

)β

.

Thus, the following two conditions suffice:

λ

s
≤ λβ∆

2
· 1
2

(
pHn
pTn

+

)β

(4.7)

1

pHi
≤ λβ∆

2
. (4.8)

For the first of these two conditions, we have

(
pHn
pTn

+

)β

=

(
1

1 + ∆

)β

≤ 1− β∆

2
, if β∆ ≤ 1

2
.

It suffices that λ
s
≤ λβ∆

8
, or ∆ ≥ 8

βs
. And for the second condition, ∆ ≥ 2

λβpH

suffices.

For
(
pT

n
+

pn

)β
≤ 1

2
, we need to show:

pn
pHi
pHn

[
1 + λ

[(
pHn
pn

)β

+
1

s
− 1

]]
+ 1 ≤ pn

pTi
+

pTn
+

[
1− λ

2

]
.

Or, λ

(
pHn
pn

)β

+
λ

s
+

pHn
pnpHi

≤ λ

2
suffices.

233

It suffices that:

λ

2
(1 + ∆)−β +

λ

s
+

1

pHi

(
1

2

)1/β

≤ λ

2
.

Or,
λ

2

[
1− β∆

2

]
+
λ

s
+

1

2pHi
≤ λ

2
suffices.

Or,
λ

s
+

1

2pHi
≤ λβ∆

4
suffices.

So s ≥ 8
β∆

and pHi ≥ 2
λβ∆

suffice.

Now consider pHn ≤ pn ≤ pTn
+
. Then we need to show:

pnp
H
i

pHn

[
1 + λ

[(
pHn
pn

)β

+
1

s
− 1

]]
+ 1 ≤ pTi

+

Let x = pn

pH
n

. Write h(x) as:

h(x) := xpHi

[
1 + λ

[
x−β +

1

s
− 1

]]
+ 1

Then

dh

dx
= pHi

[
1 + λ

(
xβ +

1

s
− 1

)]
− βλpHi xβ ≥ 0.

234

This is maximized when x = pT
n

+

pH
n

. The LHS becomes

pTn
+
pHi

pHn

[
1 + λ

((
pHn
pTn

+

)β

+
1

s
− 1

)]
+ 1

≥ pHi (1 + ∆)

(
1 + λ

[
(1 + ∆)−β +

1

s
− 1

])
+ 1

≥ pTi
+

[
1 + λ(1− β∆ +

1

s
− 1)

]
+ 1 (if β∆ ≤ 1)

≥ pTi
+

[
1− λ

(
β∆− 1

s
− 1

λpTi
+

)]

For this to be bounded by pTi
+
, it suffices that

β∆ ≥ 1

s
+

1

λpTi
+ , or s ≥ 2

β∆
and pTi

+ ≥ 2

λβ∆
.

2

Corollary 4.5 Suppose that s ≥ 8bE
β

for a constant b ≥ 1 and pH ≥ 2bE
λβ

,

λE ≤ 2. Let pTi
+

= pHi
(
1 + 1

bE

)
.

1. If pn ≤ pTn
+
, then p′i ≤ pTi

+
.

2. If pn ≥ pTn
+
, then

p′i
pTi

+ ≤
pn

pTn
+


1 + λmax





(
pTn

+

pn

)β

− 1,−1

2






 .

Proof. The proof is immediate from Corollary 4.4 with ∆ = 1
bE

. 2

235

Lemma 4.11 Starting with initial prices pI , after

O

(
1

λ

(
log max

i

pIi
pHi

+
1

β
log

1

β
+

1

β
logE

))

rounds, for all goods i, pi ≤ pHi + 2(pTi
+ − pHi), if 2

bE
≤ 1.

Proof. By Corollary 4.5, so long as
(
pT

n
+

pn

)β
≤ 1

2
, p′i ≤ pi(1− λ/2), and so in

O(1/λ) iterations, maxi
pi

pT
i

+ halves.

Let ah be the number of rounds needed to increase maxi
pT

i
+

pi
from at most

(
1− 1

2h

) 1
β to at most

(
1− 1

2h+1

) 1
β for h = 1, 2, Using an argument similar

to the one used in Lemma 4.9,

ah = O

(
2h+1

λβ
log

(
2h+1 − 1

2h+1 − 2

))
= O

(
1

λβ

)
.

To decrease pi so that pi ≤ pHi + 2(pTi
+ − pHi) for all i means that

pi

pTi
+ ≤

pTi
+

pTi
+ +

pTi
+ − pHi
pTi

+ ≤ 1+

[
1−

(
1 +

1

bE

)−1
]
≤ 1+

1

2bE

(
as

1

bE
≤ 1

2

)

Thus,

(
pTi

+

pi

)β

≥
(

1− 1

2bE

)−β
≥ 1− β

4bE

(
assuming

1

2bE
≤ 1

2

)
.

By the argument of the previous paragraph, to decrease pi ≤ pHi +2(pTi
+−pHi)

for all i takes a further O
(

1
λβ

log
(
bE
β

))
rounds. 2

236

Lemmas 4.9 and 4.10 can be combined to yield the following theorem.

Theorem 4.5 Starting with initial prices pI , after

O

(
1

λ

(
log max

i

pIi
pHi

+ log max
i

pLi
pIi

+
1

β
log

1

β
+

1

β
logE

))

rounds, if λ ≤ 1
cE

, s ≥ 32E
β

and mini p
H
i ≥ 8E

λβ
, for all goods i,

pi ≥ pLi − 2(pLi − pTi
−
)

pi ≤ pHi + 2(pTi
+ − pHi).

Here, pH and pL are a set of barely high and barely low prices, respectively,

and pTi
−

= pLi (1− 1
4E

), pTi
+

= pHi (1 + 1
4E

).

Theorem 4.5 demonstrates that the price of each good i converges to the

interval
[
pLi

(
1− 1

2E

)
, pHi

(
1 + 1

2E

)]
.

Corollary 4.6 If for all goods i,

pLi

(
1− 1

2E

)
≤ pi ≤ pHi

(
1 +

1

2E

)
,

and pHi ≤ pLi (1 + 2
cE

), then the demand of each good is bounded as xi(p) =

O(si) and thus the excess demand is O(si), for c ≥ 4, λ ≤ 1
cE

, s ≥ 32E
β

and

mini p
H
i ≥ 8E

λβ
.

237

Proof. Using bounded elasticity E with demand sensitivity β (Definition 4.11),

we know that:

xi(p) ≤
⌈
xi(p

H)

(
pHn
pn

)β (
pn/p

H
n

pi/pHi

)E
⌉
.

Since xi(p
H) ≤ si,

pn

pH
n
≤ 1 + 1

2E
and pi

pH
i
≥ 1− 1

2E

1+ 8
cE

, it follows that:

xi(p) ≤
⌈
si

(
1 +

1

2E

)E−β (
1 +

2

cE

)E (
1− 1

2E

)−E⌉

≤ 8si + 1
(
if 2

c
≤ 1

2

)

Thus, xi(p) = O(si). 2

At prices p, we define |pizi(p)| as the misspending on good i. The overall

misspending in the market is simply
∑

i |pizi(p)|. Recall that buyer j’s wealth

is denoted by wj. The total wealth in the market is
∑

j wj. If zi(p) = O(si)

for all i, the misspending is O(
∑

i pisi) = O(
∑

j wj).

We conjecture that the price update protocol converges to prices with mis-

spending O(E
∑

i si).

4.6 Relationship Between Discontent and ε-

closeness in Utility

In this section, we discuss the relationship between the two measures of dis-

tance from equilibria in the divisible setting. Specifically, for a fixed set of

prices p, let x∗ denote the optimal allocation of a buyer b who has initial

238

wealth w. We are interested in determining the discontent of a bundle x that

is ε-close to x∗ in terms of utility; i.e. u(x) = (1 − ε)u(x∗). Given a utility u

(not a utility function), a set of prices p, define ψ(u,p) as follows:

ψ(u,p) = min{p · x | u(x) ≥ u}

In words, given a desired utility level u and set of prices p, ψ(u,p) is the

minimum amount of wealth required to afford a bundle with utility value u.

In the economics literature, ψ(·) is also known as the expenditure function (see

[66], page 59).

The discontent for the bundle x is then given by ψ(u(x∗),p) − ψ((1 −
ε)u(x∗),p). In the divisible setting, it is fairly standard to assume that

ψ(u(x∗),p) = w 5 and thus the expression for the discontent reduces to

w − ψ((1− ε)u(x∗),p). Define the relative discontent as

εd = 1− ψ((1− ε)u(x∗),p)

w

Theorem 4.6 If the underlying utility function u(·) is concave and ψ(0,p) =

0, then the relative discontent is no smaller than the ε-closeness in utility.

That is εd ≥ ε.

Proof. It suffices to show that ψ((1 − ε)u(x∗),p) ≤ (1 − ε)w. It is known

that if the utility function u(·) is concave, then the expenditure function ψ(·)
5If the buyer has utility for money, this is necessarily the case.

239

is convex in u. Thus, for any ε ∈ [0, 1], we have

ψ(ε0 + (1− ε)u(x∗),p) ≤ εψ(0,p) + (1− ε)ψ(u(x∗),p)

= (1− ε)w

2

For preference orderings for which an increase in wealth by a factor f results in

the optimal allocation increasing the amount of each good by the same factor

f , if the utility function also grows by this factor f , then the two approximation

measures are the same. Cobb-Douglas and CES utilities meet this criteria.

However, when increases in wealth result in non-proportionate spending

increases on the different goods, this need not be true any more. Indeed for

the two-good utility function x1/s + y(s−1)/s, given fixed prices, as the wealth

w of a buyer tends to zero a decrease of w to w(1 − ε) results in a change

of optimal utility from u to a value that tends to u(1 − ε/s), i.e. giving a

multiplicative gap of up to s in the two approximation factors.

240

Bibliography

[1] Shivani Agarwal and Partha Niyogi. Stability and generalization of bi-

partite ranking algorithms. In Conference on Learning Theory (COLT

2005), pages 32–47. Springer, 2005.

[2] Kostyantyn Archangelsky. Efficient algorithm for checking multiplicity

equivalence for the finite z−σ∗-automata. In Developments in Language

Theory (DLT 2002), pages 283–289. Springer, 2002.

[3] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and

Mario Szegedy. Proof verification and the hardness of approximation

problems. Journal of the ACM (JACM), 45(3):501–555, 1998.

[4] Kenneth Arrow and Gerard Debreu. Existence of an equilibrium for a

competitive economy. Econometrica, 22(3):265–290, 1954.

[5] Laurence Ausubel. Walrasian tatonnement for discrete goods. Technical

report, University of Maryland, 2005.

241

[6] Baruch Awerbuch, Yossi Azar, and Rohit Khandekar. Fast load balanc-

ing via bounded best response. In Symposium on Discrete Algorithms

(SODA 2008), pages 314–322. ACM Press, 2008.

[7] Kazuoki Azuma. Weighted sums of certain dependent random variables.

In Tohoku Mathematical Journal, volume 19, pages 357–367, 1967.

[8] Mikhail Belkin, Irina Matveeva, and Partha Niyogi. Regularization and

semi-supervised learning on large graphs. In Conference on Learning

Theory (COLT 2004), pages 624–638. Springer, 2004.

[9] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral

techniques for embedding and clustering. In Advances in Neural In-

formation Processing Systems (NIPS 2001), pages 585–591. MIT Press,

2001.

[10] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regular-

ization; a geometric framework for learning from examples. Technical

Report TR-2004-06, University of Chicago, 2004.

[11] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic

Analysis on Semigroups. Springer-Verlag: Berlin-New York, 1984.

[12] Jean Berstel and Christophe Reutenauer. Rational Series and Their

Languages. Springer-Verlag: Berlin-New York, 1988.

242

[13] Olivier Bousquet and André Elisseeff. Algorithmic stability and gener-

alization performance. In Advances in Neural Information Processing

Systems (NIPS 2000), pages 196–202. MIT Press, 2000.

[14] Olivier Bousquet and André Elisseeff. Stability and generalization. Jour-

nal of Machine Learning Research (JMLR), 2:499–526, 2002.

[15] Pascal Bridel. Patinkin, Walras and the “money in the

utility function” tradition. European Journal of the His-

tory of Economic Thought, 9(2):268–292, 2002. Available at

http://ideas.repec.org/a/taf/eujhet/v9y2002i2p268-292.html.

[16] Rafael C. Carrasco. Accurate computation of the relative entropy be-

tween stochastic regular grammars. Informatique Théorique et Applica-

tions (ITA), 31(5):437–444, 1997.

[17] Olivier Chapelle, Vladimir Vapnik, and Jason Weston. Transductive

inference for estimating values of functions. In Neural Information Pro-

cessing Systems (NIPS 1999), pages 421–427. MIT Press, 1999.

[18] Lihua Chen, Yinyu Ye, and Jiawei Zhang. A note on equilibrium pricing

as convex optimization. In Workshop on Internet and Network Eco-

nomics (WINE 2007), pages 7–16. Springer, 2007.

[19] Ning Chen, Xiaotie Deng, Xiaoming Sun, and Andrew Chi-Chih Yao.

Fisher equilibrium price with a class of concave utility functions. In Eu-

243

ropean Symposium on Algorithms (ESA 2004), pages 169–179. Springer,

2004.

[20] Wei Chu and Selvaraj Sathiya Keerthi. New approaches to support vec-

tor ordinal regression. In International Conference on Machine Learning

(ICML 2005), pages 145–152. ACM Press, 2005.

[21] Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. Market

equilibrium via the excess demand function. In Symposium on Theory

of Computing (STOC 2005), pages 74–83. ACM Press, 2005.

[22] Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. The

computation of market equilibria. SIGACT News, 35(4):23–37, 2004.

[23] Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. On

the polynomial time computation of equilibria for certain exchange

economies. In Symposium on Discrete Algorithms (SODA 2005), pages

72–81. ACM Press, 2005.

[24] Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye.

Leontief economies encode nonzero sum two-player games. In Symposium

on Discrete Algorithms (SODA 2006), pages 659–667. ACM Press, 2006.

[25] Richard Cole and Lisa Fleischer. Fast-converging tatonnement algo-

rithms for one-time and ongoing market problems. In Symposium on

Theory of Computing (STOC 2008), to appear. ACM Press, 2008.

244

[26] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-

duction to Algorithms. The MIT Press: Cambridge, MA, 1992.

[27] Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate

minimization. In Advances in Neural Information Processing Systems

(NIPS 2003). MIT Press, 2004.

[28] Corinna Cortes and Mehryar Mohri. On transductive regression. In

Advances in Neural Information Processing Systems (NIPS 2006), pages

305–312. MIT Press, 2007.

[29] Corinna Cortes, Mehryar Mohri, Dmitry Pechyony, and Ashish Rastogi.

Stability of transductive regression algorithms. In International Confer-

ence on Machine Learning (ICML 2008), to appear. ACM Press, 2008.

[30] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. On the computa-

tion of some standard distances between probabilistic automata. In Con-

ference on Implementation and Application of Automata (CIAA 2006),

pages 137–149. Springer-Verlag, 2006.

[31] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. An alternative

ranking problem for search engines. In Workshop on Experimental Al-

gorithms (WEA 2007), pages 1–22. Springer, 2007.

[32] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. lp distance and

equivalence of probabilistic automata. International Journal of Founda-

tions of Computer Science, 18(4):761–779, 2007.

245

[33] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Magnitude-

preserving ranking algorithms. In International Conference on Machine

Learning (ICML 2007), pages 169–176. ACM Press, 2007.

[34] Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and Michael Riley.

On the computation of the relative entropy of probabilistic automata.

International Journal of Foundations of Computer Science, 19(1):219–

242, 2007.

[35] Corinna Cortes, Mehryar Mohri, and Jason Weston. A general regression

technique for learning transductions. In International Conference on

Machine learning (ICML 2005), pages 153–160. ACM Press, 2005.

[36] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

John Wiley & Sons, Inc., New York, 1991.

[37] Koby Crammer and Yoram Singer. Pranking with ranking. In Advances

in Neural Information Processing Systems (NIPS 2001), pages 641–647.

MIT Press, 2001.

[38] Imre Csiszar and Janos Korner. Information Theory: Coding Theorems

for Discrete Memoryless Systems. Akademiai Kiado, 1997.

[39] Karel Culik II and Jarkko Kari. Digital images and formal languages.

In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal

Languages, volume 3, pages 599–616. Springer, 1997.

246

[40] Xiaotie Deng, Christos Papadimitriou, and Shmuel Safra. On the com-

plexity of price equilibria. Journal of Computer System Sciences (JCSS),

67:311–324, 2003.

[41] Nikhil Devanur and Vijay Vazirani. The spending constraint model for

market equilibrium: algorithmic, existence and uniqueness results. In

Symposium on Theory of Computing (STOC 2004), pages 519–528. ACM

Press, 2004.

[42] Pierre Dupont, Franois Denis, and Yann Esposito. Links between prob-

abilistic automata and hidden markov models: probability distributions,

learning models and induction algorithms. In Pattern Recognition, vol-

ume 38, pages 1349–1371, 2005.

[43] Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Bi-

ological Sequence Analysis: Probabilistic Models of Proteins and Nucleic

Acids. Cambridge University Press, 1998.

[44] Samuel Eilenberg. Automata, Languages and Machines, volume A–B.

Academic Press, 1974–1976.

[45] Ran El-Yaniv and Dmitry Pechyony. Stable transductive learning. In

Conference on Learning Theory (COLT 2006), pages 35–49. Springer,

2006.

247

[46] Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complex-

ity and its applications. Journal of Machine Learning Research (JMLR),

2007.

[47] Lars Engebretsen and Jonas Holmerin. Clique is hard to approximate

within n1−o(1). In Proceedings of the 27th International Colloquium on

Automata, Languages and Programming (ICALP 2000), pages 2–12,

London, UK, 2000. Springer-Verlag.

[48] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An ef-

ficient boosting algorithm for combining preferences. In Jude W. Shav-

lik, editor, Proceedings of the 15th International Conference on Machine

Learning, pages 170–178, Madison, US, 1998. Morgan Kaufmann Pub-

lishers, San Francisco, US.

[49] Michael R. Garey and David S. Johnson. Computers and Intractability.

Freeman and Company, New York, 1979.

[50] Rahul Garg and Sanjiv Kapoor. Auction algorithms for market equilib-

rium. In Symposium on Theory of Computing, pages 511–518, 2004.

[51] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The

Johns Hopkins University Press, Baltimore, 1996.

[52] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross sub-

stitutes. Journal of Economic Theory, 87(1):95–124, 1999.

248

[53] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical

Learning. Springer, 2001.

[54] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin

rank boundaries for ordinal regression. In Smola, Bartlett, Schoelkopf,

and Schuurmans, editors, Advances in Large Margin Classifiers, pages

115–132. MIT Press, Cambridge, MA, 2000.

[55] Kamal Jain. A polynomial time algorithm for computing the Arrow-

Debreu market equilibrium for linear utilities. In Foundations of Com-

puter Science (FOCS 2004), pages 286–294. IEEE Computer Society,

2004.

[56] Kamal Jain, Mohammad Mahdian, and Amin Saberi. Approximating

market equilibria. In Approximation, Randomization, and Combinatorial

Optimization (RANDOM-APPROX 2003), pages 98–108, 2003.

[57] Kamal Jain and Kasturi Varadarajan. Equilibria for economies with

production: constant-returns technologies and production planning con-

straints. In Symposium on Discrete algorithm (SODA 2006), pages 688–

697. ACM Press, 2006.

[58] Kamal Jain and Vijay V. Vazirani. Eisenberg-gale markets: algorithms

and structural properties. In Symposium on Theory of computing (STOC

2007), pages 364–373. ACM Press, 2007.

249

[59] Kamal Jain, Vijay V. Vazirani, and Yinyu Ye. Market equilibria for

homothetic, quasi-concave utilities and economies of scale in production.

In Symposium on Discrete Algorithms (SODA 2005), pages 63–71, 2005.

[60] Thorster Joachims. Evaluating retrieval performance using clickthrough

data. In Workshop on Mathematical, Formal Methods in Information

Retrieval, 2002.

[61] Ronald M. Kaplan and Martin Kay. Regular models of phonological rule

systems. Computational Linguistics, 20(3):331–378, 1994.

[62] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjolander, and

David Haussler. Hidden markov models in computational biology: Appli-

cations to protein modeling. Journal of Molecular Biology, 235(5):1501–

1531, 1994.

[63] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages.

Number 5 in EATCS Monographs on Theoretical Computer Science.

Springer-Verlag, Berlin, Germany, 1986.

[64] Daniel J. Lehmann. Algebraic structures for transitive closures. Theo-

retical Computer Science, 4:59–76, 1977.

[65] Michael Mandel, Graham Poliner, and Dan Ellis. Support vector ma-

chine active learning for music retrieval. Multimedia Systems, 12(1):3–13,

2006.

250

[66] Andreu Mas-Collel, Michael D. Whinston, and Jerry R. Green. Microe-

conomic Theory. Oxford University Press, 1995.

[67] Peter McCullagh. Regression models for ordinal data. Journal of the

Royal Statistical Society B, 42(2), 1980.

[68] Peter McCullagh and John A. Nelder. Generalized Linear Models. Chap-

man & Hall, London, 1983.

[69] Colin McDiarmid. On the method of bounded differences. In Surveys in

Combinatorics, pages 148–188. Cambridge University Press, Cambridge,

1989.

[70] Colin McDiarmid. Concentration. In Probabilistic Methods for Algorith-

mic Discrete Mathematics, pages 195–248, 1998.

[71] Paul Milgrom and Bruno Strulovici. Concepts and properties of sub-

stitute goods. Technical Report 2006-W02, Economics Group, Nuffield

College, University of Oxford, 2006.

[72] Mehryar Mohri. Compact representations by finite-state transducers. In

Proceedings of the 32nd annual meeting on Association for Computa-

tional Linguistics, pages 204–209, Morristown, NJ, USA, 1994. Associa-

tion for Computational Linguistics.

[73] Mehryar Mohri. Finite-state transducers in language and speech pro-

cessing. Computational Linguistics, 23(2), 1997.

251

[74] Mehryar Mohri. General algebraic frameworks and algorithms for

shortest-distance problems. Technical Memorandum 981210-10TM,

AT&T Labs - Research, 62 pages, 1998.

[75] Mehryar Mohri. Generic epsilon-removal and input epsilon-

normalization algorithms for weighted transducers. International Jour-

nal of Foundations of Computer Science, 13(1):129–143, 2002.

[76] Mehryar Mohri. Semiring frameworks and algorithms for shortest-

distance problems. Journal of Automata, Languages and Combinatorics,

7(3):321–350, 2002.

[77] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted

automata in text and speech processing. In Proceedings of the 12th bien-

nial European Conference on Artificial Intelligence (ECAI-96), Work-

shop on Extended finite state models of language, Budapest, Hungary.

John Wiley and Sons, Chichester, 1996.

[78] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted

finite-state transducers in speech recognition. Computer Speech and Lan-

guage, 16(1):69–88, 2002.

[79] Netflix. Netflix prize, 2006. http://www.netflixprize.com/.

[80] Azaria Paz. Introduction to probabilistic automata. Academic Press,

New York, 1971.

252

[81] Michael Oser Rabin. Probabilistic automata. In Information and Con-

trol, volume 6, pages 230–245, 1963.

[82] Lawrence R. Rabiner. A tutorial on hidden markov models and selected

applications in speech recognition. Joural of the ACM, pages 267–296,

1990.

[83] Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E.

Schapire. Margin-based ranking meets boosting in the middle. In Pro-

ceedings of Conference on Learning Theory 2005, volume 3359 of Lecture

Notes in Computer Science, pages 63–78. Springer, Heidelberg, Ger-

many, June 2005.

[84] Rune B. Lyngsø and Christian N. S. Pederson. The consensus string

problem and the complexity of comparing hidden markov models. Jour-

nal of Computer and System Sciences, 65(3):545–569, 2002.

[85] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of For-

mal Power Series. Springer-Verlag, 1978.

[86] Paul Samuelson. Foundations of Economic Analysis. Harvard University

Press, 1947.

[87] Iso J. Schoenberg. Metric spaces and positive definite functions. Trans-

actions of the American Mathematical Society, 44(3):522–536, november

1938.

253

[88] Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press:

Cambridge, MA, 2002.

[89] Bernhard Schölkopf and Alexander J. Smola. A short introduction to

learning with kernels. In S. Mendelson and A. J. Smola, editors, Ma-

chine Learning, Proceedings of the Summer School, Australian National

University, pages 41–64. Springer, 2003.

[90] Marcel-Paul Schützenberger. On the definition of a family of automata.

Information and Control, 4, 1961.

[91] Dale Schuurmans and Finnegan Southey. Metric-based methods for

adaptive model selection and regularization. Machine Learning, 48:51–

84, 2002.

[92] Amnon Shashua and Anat Levin. Ranking with large margin principle:

Two approaches. In Advances in Neural Information Processing Systems

(NIPS 2003), 2003.

[93] Yoram Singer and Manfred K. Warmuth. Training algorithms for hidden

markov models using entropy based distance functions. In Advances in

Neural Information Processing Systems (NIPS 1997), pages 641–647.

The MIT Press, 1997.

[94] Adam Smith. An Inquiry into the Nature and Causes of the Wealth of

Nations. University of Chicago Press; Facsimile edition, 1776.

254

[95] Johan H̊astad. Clique is hard to approximate within n1−ε. In Proceedings

of the 37th Annual Symposium on Foundations of Computer Science

(FOCS 1996), page 627, Washington, DC, USA, 1996. IEEE Computer

Society.

[96] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring

exponential time. In Proceedings of the 5th Annual ACM Symposium on

Theory of Computing. Association for Computing Machinery, New York,

1-9., 1973.

[97] Josh Tenenbaum, Vin de Silva, and John Langford. A global ge-

ometric framework for nonlinear dimensionality reduction. Science,

290(5500):2319–2323, December 2000.

[98] Flemming Topsøe. Some inequalities for information divergence and re-

lated measures of discrimination. IEEE Trans. Inform. Theory, 46:1602–

1609, 2000.

[99] Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of

probabilistic automata. Foundations of Computer Science, pages 216–

227, 1992.

[100] Hirofumi Uzawa. Walras’s tatonnement in the theory of exchange. Re-

view of Economic Studies, 27:182–194, 1960.

[101] Vladimir N. Vapnik. Estimation of Dependences Based on Empirical

Data. Springer, Berlin, 1982.

255

[102] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience,

New York, 1998.

[103] Grace Wahba. Spline models for observational data. Society for Indus-

trial and Applied Mathematics, 1990.

[104] Léon Walras. Elements of Pure Economics. Harvard University Press,

1874.

[105] Mingrui Wu and Bernhard Scholkopf. Transductive classification via lo-

cal learning regularization. In Artificial Intelligence and Statistics (AIS-

TATS 2007), 2007.

[106] Dengyong (Denny) Zhou, Olivier Bousquet, Thomas N. Lal, Jason We-

ston, and Bernhard Schölkopf. Learning with local and global consis-

tency. In Advances in Neural Information Processing Systems (NIPS

2004). MIT Press, 2004.

[107] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised

learning using gaussian fields and harmonic functions. In International

Conference on Machine Learning (ICML 2003), pages 912–919. ACM

Press, 2003.

256

