The second moment method is an effective tool in number theory. Let $\nu(n)$ denote the number of primes p dividing n. (We do not count multiplicity though it would make little difference.) The following result says, roughly, that “almost all” n have “very close to” $\ln \ln n$ prime factors. This was first shown by Hardy and Ramanujan in 1920 by a quite complicated argument. We give a remarkably simple proof of Paul Turán [1934], a proof that played a key role in the development of probabilistic methods in number theory.

Theorem 2.1 Let $\omega(n) \to \infty$ arbitrarily slowly. Then number of x in \{1, \ldots, n\} such that

$$|\nu(x) - \ln \ln n| > \omega(n) \sqrt{\ln \ln n}$$

is $o(n)$.

Proof. Let x be randomly chosen from \{1, \ldots, n\}. For p prime set

$$X_p = \begin{cases} 1 & \text{if } p | x \\ 0 & \text{otherwise} \end{cases}$$

Set $M = n^{1/10}$ and set $X = \sum X_p$, the summation over all primes $p \leq M$. As no $x \leq n$ can have more than ten prime factors larger than M we have $\nu(x) - 10 \leq X(x) \leq \nu(x)$ so that large deviation bounds on X will translate into asymptotically similar bounds for ν. (Here 10 could be any large constant.) Now

$$E[X_p] = \frac{\lfloor n/p \rfloor}{n}$$

As $y - 1 < \lfloor y \rfloor \leq y$

$$E[X_p] = 1/p + O(1/n)$$

By linearity of expectation

$$E[X] = \sum_{p \leq M} \frac{1}{p} + O(1/n) = \ln \ln n + O(1)$$

Now we find an asymptotic expression for $\text{Var}[X] = \sum_{p \leq M} \text{Var}[X_p] + \sum_{p \neq q} \text{Cov}[X_p, X_q]$. As $\text{Var}[X_p] = \frac{1}{p} (1 - \frac{1}{p}) + O(1/n)$,

$$\sum_{p \leq M} \text{Var}[X_p] = \sum_{p \leq M} \frac{1}{p} + O(1) = \ln \ln n + O(1)$$
With p, q distinct primes, $X_pX_q = 1$ if and only if $p|x$ and $q|x$ which occurs if and only if $pq|x$. Hence

$$Cov[X_p, X_q] = E[X_p]E[X_q] - E[X_pX_q]$$

$$= \frac{|n/pq|}{n} - \frac{|n/p|}{n} \frac{|n/q|}{n}$$

$$\leq \frac{1}{pq} - (\frac{1}{p} - \frac{1}{n})(\frac{1}{q} - \frac{1}{n})$$

$$\leq \frac{1}{n}(\frac{1}{p} + \frac{1}{q})$$

Thus

$$\sum_{p \neq q} Cov[X_p, X_q] \leq \frac{1}{n} \sum_{p \neq q} \frac{1}{p} + \frac{1}{q} \leq \frac{2M}{n} \sum_{p} \frac{1}{p}$$

Thus

$$\sum_{p \neq q} Cov[X_p, X_q] = O(n^{-9/10} \ln \ln n) = o(1)$$

That is, the covariances do not affect the variance, $Var[X] = \ln \ln n + O(1)$ and Chebyshev’s Inequality actually gives

$$Pr[|X - \ln \ln n| > \lambda \sqrt{\ln \ln n}] < \lambda^{-2} + o(1)$$

for any constant λ. As $|X - \nu| \leq 10$ the same holds for ν. \Box

In a classic paper Paul Erdős and Marc Kac [1940] showed, essentially, that ν does behave like a normal distribution with mean and variance $\ln \ln n$. Here is their precise result.

Theorem 2.2. Let λ be fixed, positive, negative or zero. Then

$$\lim_{n \to \infty} \frac{1}{n} \{x : 1 \leq x \leq n, \nu(x) \geq \ln \ln n + \lambda \sqrt{\ln \ln n}\} = \int_{\lambda}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

We outline the argument, emphasizing the similarities to Turán’s proof. Fix a function $s(n)$ with $s(n) \to \infty$ and $s(n) = o((\ln \ln n)^{1/2})$ - e. g. $s(n) = \ln \ln n$. Set $M = n^{1/s(n)}$. Set $X = \sum X_p$, the summation over all primes $p \leq M$. As no $x \leq n$ can have more than $s(n)$ prime factors greater than M we have $\nu(x) - s(n) \leq X(x) \leq \nu(x)$ so that it suffices to show Theorem 2.2 with ν replaced by X. Let Y_p be independent random variables with $Pr[Y_p = 1] = p^{-1}$, $Pr[Y_p = 0] = 1 - p^{-1}$ and set $Y = \sum Y_p$, the summation over all primes $p \leq M$. This Y represents an idealized version of X. Set

$$\mu = E[Y] = \sum_{p \leq M} p^{-1} = \ln \ln n + o((\ln \ln n)^{1/2})$$

2
and
\[\sigma^2 = Var[Y] = \sum_{p \leq M} p^{-1}(1 - p^{-1}) \sim \ln \ln n \]
and define the normalized \(\tilde{Y} = (Y - \mu)/\sigma \). From the Central Limit Theorem (well, an appropriately powerful form of it!) \(\tilde{Y} \) approaches the standard normal \(N \) and \(E[\tilde{Y}^k] \to E[N^k] \) for every positive integer \(k \). Set \(\tilde{X} = (X - \mu)/\sigma \). We compare \(\tilde{X}, \tilde{Y} \).

For any distinct primes \(p_1, \ldots, p_s \leq M \)
\[E[X_{p_1} \cdots X_{p_s}] - E[Y_{p_1} \cdots Y_{p_s}] = \frac{n^{p_1 \cdots p_s}}{n} - \frac{1}{p_1 \cdots p_s} = O(n^{-1}) \]
We let \(k \) be an arbitrary fixed positive integer and compare \(E[\tilde{X}^k] \) and \(E[\tilde{Y}^k] \). Expanding, \(\tilde{X}^k \) is a polynomial in \(X \) with coefficients \(n^{o(1)} \). Further expanding each \(X^j = (\sum X_p)^j \) - always reducing \(X_p^a \) to \(X_p \) when \(a \geq 2 \) - gives the sum of \(O(M^k) = n^{o(1)} \) terms of the form \(X_{p_1} \cdots X_{p_s} \). The same expansion applies to \(\tilde{Y} \). As the corresponding terms have expectations within \(O(n^{-1}) \) the total difference
\[E[\tilde{X}^k] - E[\tilde{Y}^k] = n^{-1+o(1)} = o(1) \]
Hence each moment of \(\tilde{X} \) approach that of the standard normal \(N \). A standard, though nontrivial, theorem in probability theorem gives that \(\tilde{X} \) must therefore approach \(N \) in distribution. \(\square \)

We recall the famous quotation of G. H. Hardy:

\[317 \text{ is a prime, not because we think so, or because our minds are shaped in one way rather than another, but because it is so, because mathematical reality is built that way.} \]

How ironic - though not contradictory - that the methods of probability theory can lead to a greater understanding of the prime factorization of integers.