
Order and Learning in Sequential Neural Structured

Prediction

by

Sean Welleck

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 2021

Kyunghyun Cho

c© Sean Welleck

All Rights Reserved, 2021

Acknowledgements

Thank you to Kyunghyun Cho for advising me throughout the PhD, for teaching me how to decide

which ideas are worth pursuing and how to investigate them, and for the countless conversations that

have shaped my approach to research and life in general. Kyunghyun’s enthusiasm, creativity, and rigor

are qualities that I aspire to emulate, along with his ability and willingness to provide guidance on

everything from the lowest level details to the highest level ideas.

I am grateful to Zheng Zhang (ZZ) for advising me, helping me to explore a variety of research areas,

and for always being flexible in advising and collaboration. I am continually inspired by ZZ’s ability to

find the essence of an idea, by his lessons on forming and leading research teams, and by his creative

perspective that spans multiple research fields.

I thank Jason Weston for advising me at FAIR, where he continually provided interesting ideas and

guidance. I also thank Arthur Szlam, Stephen Roller, Emily Dinan, Margaret Li, and Y-Lan Boureau

for collaborating at FAIR.

Thank you to New York University for the opportunity to do a PhD in conjunction with NYU Shanghai. I

have fond memories of my two semesters in Shanghai, and I look forward to visiting in the future. I thank

Keith Ross for his guidance at NYU Shanghai and for serving on the thesis committee. I learned invaluable

lessons from Keith’s ability to carefully examine an idea from first principles, and from discussing ideas

in our reading group that would often last far beyond the allotted hour. The logistics of moving to and

from Shanghai would have been intractable without the help of Dean Eric Mao, Vivien Du, and Chloe

Ma. Thank you to Yiming Zhang for many great discussions, and to Gus Xia, Mufei Li, Che Wang, Jialin

Mao, Jinjing Zhou, Zixin Yao, Yu Gai, and Yanqiu Wu for making NYUSH an intellectual environment

that feels like home.

Thank you to the NYU ML2 and CILVR lab members for creating a great research environment. I

thank Ilia Kulikov, with whom I co-authored the work on unlikelihood and consistency and had many

conversations, programming sessions, and side projects that were invaluable to this thesis. Thank you to

Kianté Brantley and Hal Daumé III for their collaboration on non-monotonic text generation, and to He

He for serving on the thesis committee. I thank Jaedeok Kim for his lessons on mathematical precision

and rigor. Thank you to Isaac Henrion, Jake Zhao, Jason Lee, Elman Mansimov, Alex Wang, Richard

Pang, Minjie Wang, Conrad Christensen, Jinyang Li, Sebastian Ruder, Phil Blunsom, Chris Dyer, Yoon

Kim, Raphael Shu, David Ha, and many others for impactful conversations during the PhD.

Finally, thank you to my family for their constant support, whether at home, across the country, or

across the globe.

iii

Abstract

Structured objects such as sets, trees, and sequences appear in a variety of scientific and industrial

domains. Developing machine learning methods that generate these objects is of interest for both sci-

entific understanding and practical applications. One approach to generating structured objects, called

sequential neural structured prediction, decomposes generation into a sequence of predictions, with each

prediction made by a deep neural network. Choosing an appropriate sequential representation of each

structured object and selecting an effective learning objective are key to adopting this approach. The

standard method for learning specifies a canonical ordering of elements in the sequential representation

and maximizes the likelihood of the resulting sequences. This thesis develops two streams of research

that explore alternatives to this fixed-order, maximum likelihood approach for sequentially generating

sets, trees, and sequences, with a focus on natural language processing applications.

In the first part of the thesis, we focus on text generation and study degenerate properties of fixed-order

maximum-likelihood learning that are surfaced in practice, motivating new learning methods. We charac-

terize the degeneracy using three properties that are observed in generated text: non-termination, logical

incoherence, and repetition. To study non-termination, we develop theory that allows us to formally

prove that conventional text generation methods can generate infinite-length sequences with high prob-

ability. To study logical incoherence, we create a dataset for investigating the degree to which a model

logically contradicts its preceding statements. For reducing the three types of degeneration, we develop

unlikelihood training, a new learning method which penalizes task-specific textual properties.

In the second part of the thesis, we remove the requirement of a fixed generation order by developing

a learning framework, called non-monotonic generation, that yields models capable of selecting input-

dependent generation orders. This flexibility is natural for set-structured objects, which lack an inherent

order. For ordered objects, such as text, the selected orders induce an interpretable latent structure

and allow us to study whether canonical orders such as left-to-right are optimal for learning. We use

non-monotonic generation for generating multisets, parse trees, and text.

The investigations and techniques presented in this thesis lead to promising directions for future work.

iv

Table of Contents

Acknowledgments . iii

Abstract . iv

List of Figures . viii

List of Tables . xi

List of Appendices . xiv

1 Introduction . 1

1.1 Thesis Outline . 2

I Sequential Neural Structured Prediction 3

2 Introduction . 4

2.1 Preliminaries and Notation . 5

3 Applications . 6

3.1 Multisets: Multiple Object Classification . 6

3.2 Trees: Dependency Parsing . 7

3.3 Sequences: Conditional Language Modeling and Generation 8

4 Sequential Neural Structured Prediction . 13

4.1 Model . 13

4.2 Learning . 15

4.3 Inference . 16

4.4 Summary . 22

II Neural Text Generation 23

5 Text Degeneration . 24

5.1 Non-termination . 24

5.2 Repetition . 25

5.3 Logical Incoherence . 25

5.4 Other . 26

5.5 Summary . 27

6 Theory: Inconsistency . 28

6.1 Method . 29

v

6.2 Empirical Evaluation . 33

6.3 Discussion . 38

7 Learning: Unlikelihood . 39

7.1 Method . 40

7.2 Empirical Evaluation . 44

7.3 Discussion . 50

8 Data: Dialogue Natural Language Inference . 51

8.1 Method . 51

8.2 Empirical Evaluation . 56

8.3 Discussion . 62

9 Discussion and Future Directions . 63

III Non-Monotonic Generation 65

10 Non-Monotonic Generation . 66

11 Background . 66

11.1 Imitation Learning for Structured Prediction . 67

12 Non-Monotonic Generation . 69

13 Multisets: Multiset Prediction . 72

13.1 Method . 73

13.2 Related Problems in Supervised Learning . 74

13.3 Empirical Evaluation . 77

13.4 Discussion . 82

14 Trees: Sequential Graph Dependency Parser . 83

14.1 Method . 83

14.2 Empirical Evaluation . 87

14.3 Related Work . 90

14.4 Discussion . 91

15 Sequences: Binary Tree Generation Policy . 92

15.1 Method . 93

15.2 Empirical Evaluation . 96

15.3 Discussion . 102

16 Discussion and Future Directions . 103

vi

IV Appendices 105

Bibliography 117

vii

List of Figures

1 An illustration of the saliency and priority maps influencing an eye movement (saccade).

From (Lamme and Roelfsema 2000). 6

2 Human scanpaths (saccade sequences) for the image on the left. Each heatmap indicates

fixation frequency. From (Peters et al. 2005). 6

3 A scene with a multiset of animals {dog, dog, cat}. The green and yellow arrows se-

quentially represent the multiset as (cat, dog, dog) and (dog, cat, dog), respectively. . . 7

4 A multiset of digits. Any ordering of the digits {0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 5, 5, 5, 6, 6, 6, 7, 7, 9, 9}

is a valid labeling. Is there a ‘natural’ ordering that you use when listing the digits? . . 7

5 Two example dependency trees. 7

6 Sequence and set representations of the dependency tree on the left. 8

7 Text completion examples. Each context x is in plain text, and each continuation ŷ is

underlined. 9

8 Two models with the same perplexity on the dataset D, but different generations under

greedy decoding. The conditional distributions are independent of time and only depend

on the preceding token. The log probability of D is log(0.4∗0.4∗0.5)+log(0.6∗0.3∗0.5)

under both pθ1 and pθ2 , yielding the same perplexity. Greedy decoding generates a

sequence by beginning with ŷ0 = 〈bos〉, then repeatedly selecting the most probable

token given the preceding token, ŷt = arg max pθ(·|ŷt−1), until 〈eos〉 is selected. This

yields (〈bos〉 , B, 〈eos〉) for pθ1 and (〈bos〉 , A, 〈eos〉) for pθ2 10

9 Persona-based dialogue with a key-value memory network (Zhang et al. 2018) 27

10 Next-token probabilities from GPT-2. Obtained with https://demo.allennlp.org/

next-token-lm. 27

11 Four possibilities involving consistency of the model’s sequence distribution (light grey,

solid border) and the decoder’s induced sequence distribution (dark grey, dotted bor-

der). The white and black rectangles depict the set of all finite and infinite sequences,

respectively. In (a) the model and the induced distribution are consistent. In (b) only

the model is inconsistent, while in (c) both distributions are inconsistent. Our analysis

shows that non-terminating generations in practice correspond to case (d). 30

viii

https://demo.allennlp.org/next-token-lm
https://demo.allennlp.org/next-token-lm

12 The self-terminating recurrent language model uses the layer shown in grey instead

of the standard softmax layer. The layer takes the logits (u>· ht), the previous step’s

〈eos〉 probability (p
〈eos〉
t−1), and a hyper-parameter ε ∈ (0, 1). The layer computes α using

Equation 22, which determines p
〈eos〉
t ∈ (ε, 1) and guarantees that p

〈eos〉
t > p

〈eos〉
t−1 . The

remaining probability mass is allocated to the non-〈eos〉tokens. 33

13 Ground-truth and greedy-decoded continuation lengths from vanilla and self-terminating

LSTMs (Wikitext-2). 36

14 Ground-truth and greedy-decoded continuation lengths from baseline and self-terminating

GPT-2 117M (Wikitext-103). 37

15 Per-step unlikelihood losses induced by candidate choices (C1:T) and token-dependent

weights (β(yc)) using sequence-level unlikelihood (LULE-seq). Each row shows a decoded

continuation ŷ. Sequence-level candidates determine whether to apply an unlikelihood

loss (i.e. “penalize”) at each step by setting Ct to either ∅ (no loss) or {yt} (loss).

Darker values indicate larger unlikelihood losses for a fixed value of (1− pθ(yt|y<t,x)).

Crandom
1:T candidates penalize a random subset of timesteps. Crepeat

1:T candidates penalize

timesteps which are part of a repeating n-gram (here n = 3). Cidentity
1:T penalizes all

timesteps, and β(yc) scales the penalty. The final row shows a scaling based on unigram

frequency (Equation 34); the dark cells imply that A,B,C are over-produced by the

model, especially A and C. 42

16 ELI5: Perplexity vs. label repeats as α varies in the unlikelihood objective. 48

17 Vocabulary control as α varies. 49

18 Human evaluation experiments for label unlikelihood on ELI5 (left), and vocabulary

unlikelihood on ConvAI2 for two values of α (right). 50

19 Relating triples, persona sentences, and utterances to derive annotated sentence pairs.

Shown here is a “relation swap” contradiction. 53

20 Multiple object classification consists of mapping an image to a multiset of class labels.

In this example, any ordering of the digits {0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 5, 5, 5, 6, 6, 6, 7, 7, 9, 9}

is a valid labeling. 72

ix

21 Each row shows a trajectory from a learned policy πθ, with each image representing a

timestep. Each digit with class yt is highlighted according to its probability, πθ(yt|ŷ<t, x),

normalized by the highest class’s probability. Brighter squares represent higher proba-

bilities. A green box denotes the class predicted by the policy, ŷt = arg maxyt πθ, and a

blue border denotes a class with normalized probability exceeding a threshold τ = 0.1.

Top: a policy trained with Lmultiset. Bottom: a policy trained with Lseq using the

spatial ordering function. 81

22 Comparison of per-step entropies of predictive distributions (validation set). 81

23 Per-step edge distributions from recurrent weight models trained with the given oracle. . 88

24 A sequence, “how are you ?”, generated by the proposed approach trained on utterances

from a dialogue dataset. The model first generated the word “are” and then recursively

generated left and right subtrees (“how” and “you ?”, respectively) of this word. At

each production step, the model may either generate a token, or an 〈end〉 token, which

indicates that this subtree is complete. The full generation is performed in a level-order

traversal, and the output is read off from an in-order traversal. The numbers in green

squares denote generation order (level-order); those in rounded blue squares denote

location in the final sequence (in-order). 92

25 A sampled tree for the sentence “a b c d” with an action space Ṽ = (a,b,c,d,e,〈end〉),

showing an oracle’s distribution π∗ and valid actions (consecutive subsequences) Yt for

t ∈ {0, 1, 2, 3, 6}. Each oracle distribution is depicted as 6 boxes showing π∗(at+1|st)

(lighter = higher probability). After b is sampled at the root, two empty left and right

child nodes are created, associated with valid actions (a) and (c, d), respectively. Here,

π∗ only assigns positive probability to tokens in Yt. 94

26 POS tag counts by tree-depth, computed by tagging 10,000 sampled sentences. Counts

are normalized across each row (depth), then the marginal tag probabilities are sub-

tracted. Light values mean the probability of the tag occurring at that depth exceeds

the prior probability of the tag occurring. 99

27 Normalized entropy of π(·|s) as a function of tree depth for policies trained with each of

the oracles. The annealing-trained policy, unlike the others, makes low entropy decisions

early. 101

28 Different combinations of unlikelihood . 116

29 Unlikelihood vs. stochastic decoding . 116

x

List of Tables

1 Part II Neural Text Generation . 2

2 Part III Non-Monotonic Generation . 2

3 Decoding methods for autoregressive neural sequence models. 18

4 Non-termination and repetition in completions from GPT-2, a large-scale language

model trained with MLE (Radford et al. 2018). The examples contain single-word rep-

etitions, phrase-level repetitions, and structural repetitions where some tokens within a

repeating phrase vary. Recently proposed stochastic samplers (top-k, nucleus) exhibit

degeneration based on hyper-parameter settings. 26

5 Non-termination (nontermL (%)) of decoded sequences using ancestral sampling, in-

complete, and consistent decoding methods. 35

6 Non-termination of greedy-decoded sequences and test perplexity for STRLMs. 35

8 Greedy non-termination for GPT2 the self-terminating variant (ST). 36

7 Continuations with consistent nucleus sampling (µ = 0.2) and self-terminating LSTM

(ε = 10−3). 37

9 Example greedy completions showing representative examples of the MLE model’s de-

generate single-token repetition (top), phrase-level repetition (middle), and ‘structural’

repetition (bottom), as well as the proposed method’s ability to fix these degenerate

behaviors. 44

10 Token-level objectives and sequence-level fine-tuning (wikitext-103 test set). 46

11 Fine-tuning LMLE using sequence-level unlikelihood with the specified candidates. Met-

rics computed using beam search on the wikitext-103 valid set. 46

12 Human evaluation results. * denotes statistical significance (2-sided binomial test,

p < .05). 47

13 Evaluation on the ConvAI2, Wizard of Wikipedia, and ELI5 tasks, comparing standard

likelihood (MLE) with context and label repetition unlikelihood training. MLE exhibits

a high level of context or label repetition compared to humans, with severity and type

of repetition depending on the task. Each repetition type can be decreased depending

on which form of unlikelihood is used. 49

14 Vocabulary control with unlikelihood. 49

15 Examples from the Dialogue NLI validation set. 53

xi

16 Dialogue NLI dataset statistics. (u, p) and (p, p) refer to (utterance, persona sentence)

and (persona sentence, persona sentence) pairs, respectively. Numerics consist of (u, u)

(u, p) and (p, p) pairs. 54

17 Dialogue NLI results. 57

18 ESIM accuracy by data type (test-gold). 57

19 Example ESIM mispredictions by data type on Test Gold. 58

20 Incoherence and effects of NLI re-ranking in a retrieval-based dialogue model. 60

21 Human evaluation results, reported as mean (std. dev). 60

22 Test evaluation on the Dialogue NLI two utterance generation task, comparing standard

MLE training with unlikelihood training (external unlikelihood with Dialogue NLI).

Results are partitioned according to whether the premise and positive candidate are

entailing, triple-entailing, or neutral. Selection Accuracy measures how often the model

assigns lower perplexity to the positive candidate than to the negative candidate in the

pair. The MLE model’s perplexity is lower on contradicting utterances than on neutral

or triple-entailing utterances, showing partial failure at the coherence task. Unlikelihood

training yields large improvements on all coherence metrics, while minimally increasing

overall perplexity. 61

23 Example perplexities of a baseline maximum likelihood model (LMLE) and an unlike-

lihood trained model (LUL) when generating the hypotheses, given the premise. The

MLE-trained model assigns high probability (low perplexity) to contradictory genera-

tions, while unlikelihood does not. 61

24 Test evaluation on the Full Dialogue NLI generation task. External unlikelihood training

with Dialogue NLI improves coherence metrics compared to likelihood (MLE) training.

The unlikelihood-trained model assigns higher probability (lower perplexity) to triple-

entailing or neutral candidates than to contradicting candidates, with higher selection

accuracy for coherent labels. 61

25 Performance of the sequential baseline (§13.2.3) varies based on the ordering σ used by

the deterministic oracle πdet
∗ (Equation 60). 79

26 Influence of the roll-in policy πin used in the multiset loss (Equation 55). Using πθ as

the roll-in policy with either greedy selection or sampling outperforms oracle π∗ roll-in. 79

27 MNIST Multiset results. 79

28 MS COCO results. 79

xii

29 Development set UAS for single vs. multi-step methods. (U) is uniform oracle and roll-

in, (C) is coaching with valid roll-in. D&M is an abbreviation for (Dozat and Manning

2017). 87

30 Varying the oracle and roll-in policies (German dataset). 88

31 Test set results (UAS) on datasets from the CoNLL 2018 shared task with greater than

200k examples, plus the Ancient Greek (GRC) and Chinese (ZH) datasets. Bold denotes

the highest UAS on each dataset. 90

32 Statistics computed over 10,000 sampled sentences (in-order traversals of sampled trees

with 〈end〉 tokens removed) for policies trained on Persona-Chat. A sample is novel

when it is not in the training set. Percent unique is the cardinality of the set of sampled

sentences divided by the number of sampled sentences. 97

33 Samples from unconditional generation policies trained on Persona-Chat for each train-

ing oracle. The first sample’s underlying tree is shown. 98

34 Non-monotonic text completion samples from a policy trained on Persona-Chat with

the uniform oracle. The left column shows the initial seed tree. Seed words are in bold. 99

35 Word Reordering results on Persona-Chat, reported according to Bleu score, F1 score,

and exact match. 101

36 Machine translation results for different training oracles across four different evaluation

metrics. 101

xiii

List of Appendices

Derivations & Proofs . 106

Experimental Details . 112

Additional Results . 116

xiv

1 Introduction

Structured objects such as sets, trees, and sequences appear in a variety of scientific and industrial

domains. Developing machine learning methods that generate these objects is of interest for both scientific

understanding and practical applications. This thesis focuses on analyzing and developing methods for

sequential neural structured prediction, a machine learning approach to generating structured objects.

Structured prediction involves learning a mapping between an input space and an output space whose

elements have structure; that is, complex dependencies between variables. Neural refers to parameterizing

the mapping with a neural network, which allows for end-to-end learning of expressive models. Sequential

means that each structured object is predicted in a sequence of dependent steps, allowing the model to

adjust its predictions based on the past.

The conventional approach to sequential neural structured prediction involves executing the sequence

of predictions in a canonical order. Learning consists of maximizing the likelihood of these ordered

sequences. For instance, we may learn a sentence generation model by maximizing the likelihood of word

sequences that are ordered from left to right. This thesis presents two streams of research that explore

alternatives to this fixed-order, maximum likelihood approach for sequentially generating sets, trees, and

sequences, with a focus on natural language processing applications.

In the first stream of research, we focus on text generation and study degenerate properties of fixed-order

maximum-likelihood learning that are surfaced in practice, motivating new learning methods. We charac-

terize the degeneracy using three properties that are observed in generated text: non-termination, logical

incoherence, and repetition. To study non-termination, we develop theory that allows us to formally

prove that conventional text generation methods can generate infinite-length sequences with high prob-

ability. To study logical incoherence, we create a dataset for investigating the degree to which a model

logically contradicts its preceding statements. For reducing the three types of degeneration, we develop

unlikelihood training, a new learning method which penalizes task-specific textual properties.

In the second stream of research, we remove the requirement of a fixed generation order by developing

a learning framework, called non-monotonic generation, that yields models with input-dependent gen-

eration orders. This flexibility is natural for set-structured objects, which lack an inherent order. For

ordered objects, such as text, the selected orders induce an interpretable latent structure and allow us

to study whether canonical orders such as left-to-right are optimal for learning. We use non-monotonic

generation for generating multisets, parse trees, and text.

The investigations and techniques presented in this thesis lead to promising directions for future work.

1

1.1 Thesis Outline

Part I provides background about sequential neural structured prediction that is necessary for under-

standing the contributions in the thesis, including conventional model, learning, and inference methods,

as well as applications. Parts II and III contain the novel contributions in this thesis.

Part II analyzes degenerate properties of the conventional approach to sequential neural text generation

and develops alternative methods. Section 5 characterizes degeneration in terms of repetition, logical

incoherence, and non-termination. Section 6 formally analyzes non-termination, showing that a model

paired with a conventional decoding algorithm can decode infinite-length sequences with high probability,

known as inconsistency. Section 7 develops unlikelihood training, which is used to penalize degeneration

that is surfaced in model-generated text, such as repetition. Section 8 develops dialogue natural language

inference, a dataset for measuring a model’s logical incoherence, then uses the dataset to improve coher-

ence through unlikelihood training. Part II concludes with a discussion and outlines directions for future

work (§9).

Part III develops and applies the non-monotonic generation learning framework. Following a background

section (§11), Section 12 presents the learning framework. Each subsequent section uses non-monotonic

generation for a different class of outputs. Section 13 develops multiset prediction for generating multisets,

and applies it to multiple object classification. Section 14 develops the sequential graph dependency parser

for generating parse trees. For sequences, Section 15 develops a binary tree generation policy that learns

input-dependent text generation orders defined by binary tree traversals. Part III concludes with a

discussion and outlines directions for future work (§16).

Tables 1 and 2 classify the methods that are developed in Parts II and III of this thesis.

Class Method

Theory Inconsistency §6
Learning Unlikelihood Training §7
Data Dialogue NLI §8

Table 1: Part II Neural Text Generation

Class Method

Multisets Multiset Prediction §13
Trees Sequential Graph Dependency Parser §14
Sequences Binary Tree Generation Policy §15

Table 2: Part III Non-Monotonic Generation

2

Part I

Sequential Neural Structured

Prediction

3

2 Introduction

In many scientific and industrial application domains, the data is structured, meaning that each data

item is composed of multiple parts that are connected by complex underlying relations. For instance, a

sentence is composed of words that are connected by relations that convey meaning to a reader. Rather

than formally defining structure in general, we will assume each structured object can be decomposed

into discrete elements, y = {y1, . . . , y|y|}, with underlying relations between the elements that constitute

notions of structure that are present in examples such as objects in a visual scene, edges which form

a parse tree, or words that comprise a document. A collection of these objects constitutes a structured

space, such as the set of all sentences. In this thesis we will consider structured spaces Y whose objects

y ∈ Y are sets, trees, or sequences.

This thesis is concerned with structured prediction, which consists of finding a mapping f : X → Y

between an input space X and a structured output space Y. An example is machine translation, which

finds a mapping between sentences in a source language, such as Japanese, to sentences in a target

language, such as English. Structured prediction approaches can be partitioned into global and local

methods. Global methods assign a score to each item y in the output space, then search for the highest

scoring output. Local methods assume that each structured object can be decomposed into discrete

elements, y = {y1, . . . , y|y|}, and predict the object sequentially. Each intermediate prediction is over

the space of elements, rather than the full output space, and is hence ‘local’. We will use local methods

in this thesis, which we call sequential structured prediction.

Sequential structured prediction relies on decomposing an object into elements, and choosing a sequence

of predictions. The conventional approach is to choose a canonical ordering of elements, making the

decomposition into a sequence y = (y1, . . . , y|y|), and predicting the elements according to this order.

For text, it may seem obvious that we should decompose an (English) sentence into a left-to-right sequence

of words, and hence predict from left to right. But how should we order the object’s elements when the

object is a set, or a tree? For text, is it optimal to choose the intuitive left-to-right ordering?

Once we have selected a canonical ordering, we must choose a model for the local predictions. The

conventional approach is to learn a probabilistic model over sequences that decomposes according to the

chain rule of probability, known as an autoregressive model. In this case, each local prediction is made

based on a conditional distribution pθ(yt|y<t,x). Using a neural network to parameterize each conditional

distribution allows for learning complex, non-linear mappings. Although several of the techniques in this

4

thesis are agnostic to the parameterization, neural networks are an expressive model family that have

led to significant advancements in sequential structured prediction, and are thus worthy of investigation

as a separate subclass, which we call sequential neural structured prediction.

After specifying a family of parameterized models, we learn the parameters using a collection of data. The

conventional approach to learning the parameters of a neural autoregressive model is to find parameters

that maximize the probability of the data, known as maximum likelihood estimation (MLE). Finally,

given a learned model, we perform inference to generate a sequence. In our setting, inference is also

known as decoding, which is performed using a decoding algorithm.

This background part of the thesis (§I) introduces notation and provides an overview of the conventional

models, learning algorithms, and inference methods for sequential neural structured prediction, as well

as representative applications. This will provide a background for subsequent parts of the thesis (§II,III)

that analyze, and depart from, the conventional approach.

2.1 Preliminaries and Notation

We denote an output space as Y with elements y ∈ Y. We often use bold letters to emphasize the fact

that we are working with objects composed of multiple elements, such as vectors, sequences, or sets.

Often, y is a sequence, y = (y1, . . . , yT), where we write the sequence length as T instead of |y|, with

the understanding that sequence lengths can vary. Each element of a sequence, yi ∈ y, is called a token.

The finite set of all tokens V = {1, . . . , V } is called a vocabulary, where yi ∈ V for all i.

We denote an input space as X , where each element x ∈ X is called an input or a context. The context

x can be an arbitrary object, such as an image or set, and when x is a sequence it is denoted in a similar

manner as y, i.e. x = (x1, . . . , xT) with xi ∈ V.

We use pθ(y) to denote the mass or density function of a random variable y with support over a

subset of Y, parameterized by a vector θ. We overload notation by using pθ(y) to both denote the

function pθ : Y → [0, 1], as well as the function evaluated at a particular y ∈ Y. To emphasize the

former case we may use pθ(·). We denote conditional distributions in a similar manner, using pθ(y|x) or

pθ(·|x). We use pθ(yt|y<t,x) to denote the conditional distribution of a token yt given ‘previous’ tokens

y<t = (y1, . . . , yt−1), meaning the tokens are part of a sequence y = (y1, . . . , yt−1, yt, . . . , yT).

5

Fig. 1: An illustration of the saliency and prior-
ity maps influencing an eye movement (saccade).
From (Lamme and Roelfsema 2000).

Fig. 2: Human scanpaths (saccade sequences) for
the image on the left. Each heatmap indicates fix-
ation frequency. From (Peters et al. 2005).

3 Applications

In this section we overview three applications of sequential neural structured prediction that will be

visited throughout the thesis. These concrete applications can be kept in mind as we overview the con-

ventional model, learning, and inference methods at an abstract level in the subsequent sections.

3.1 Multisets: Multiple Object Classification

Picture yourself in a park, and consider the task of listing the objects that you see. One aspect to notice

is that this process is sequential. More specifically, in the human visual system, processing a scene with

multiple attentional shifts may be interpreted as a feed-forward process followed by sequential, recurrent

stages (Lamme and Roelfsema 2000). Computational models and various forms of psychophysical and

neuro-biological evidence suggest that the human visual system compiles visual input into a saliency map

that encodes the conspicuity of locations in the visual field in a parallel, feed-forward process (Koch and

Ullman 1985; Itti et al. 1998; Veale et al. 2017). Goal-specific relevance of locations are then incorporated

to form a priority map, which is used to select the next target of attention (Fecteau and Munoz 2006;

Veale et al. 2017). Viewing a scene consists of a sequence of these shifts in attention, with the salience

of previous attentional targets decreased by a process referred to as inhibition of return (Raymond M.

Klein 2000; Fecteau and Munoz 2006). Figure 1 illustrates one step of this procedure, and Figure 2

shows sequential viewings of an image. These findings in the human visual system motivate investigating

machine learning systems that sequentially process a scene after computing a representation from low-

level information. Strong performance of neural networks in both image classification and sequential

6

Fig. 3: A scene with a multiset of animals
{dog, dog, cat}. The green and yellow arrows se-
quentially represent the multiset as (cat, dog, dog)
and (dog, cat, dog), respectively.

Fig. 4: A multiset of digits. Any ordering of the dig-
its {0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 5, 5, 5, 6, 6, 6, 7, 7, 9, 9} is
a valid labeling. Is there a ‘natural’ ordering that
you use when listing the digits?

This is an example tree .

ROOT

A hearing is scheduled on the issue today .

ROOT

Fig. 5: Two example dependency trees.

tasks suggests that sequential neural structured prediction is a worthwhile approach to investigate for

this object listing task.

Returning to the imaginary park, a second aspect to notice is that the order in which you list the objects

does not matter. Moreover, certain objects can occur more than once. These two properties suggest that

the objects form a multiset, which is an unordered collection (set) that allows for duplicate elements.

Thus we can view this listing task, called multiple object classification, as mapping from an input image x

to a multiset y = {y1, . . . , yT }, which is an instance of multiset prediction. Figures 3 and 4 show example

images that each contain a multiset of objects. A näıve approach to sequential structured prediction

for multisets is to ignore the unordered nature of the multiset, and treat it as a sequence. However, it

is of scientific interest to develop methods which respect the unordered structure, in part because the

choice of a canonical ordering can impact performance. We will quantify this impact and explore multiset

prediction in more depth using a learning method that does not require selecting a canonical ordering,

and instead allows the model to choose any generation order (§13).

3.2 Trees: Dependency Parsing

The next application relates to tree-structured representations of natural language sentences, known as

dependency trees. A dependency tree is a directed, acyclic graph whose nodes are words in a sentence,

7

A B C

ROOT (shift, shift, L, shift, R, R) (Nivre 2003)
(B, ROOT, B) (FG & GR 2019)
(B, A, POP, C, POP) (Ma et al. 2018)
{ROOT→ B, B→ A, B→ C} (Welleck and Cho 2019)

Fig. 6: Sequence and set representations of the dependency tree on the left.

along with an extra root node. Each word is the target of exactly one directed edge, as seen in the

examples in Figure 5. The problem of mapping an input sentence x to a dependency tree y is called

dependency parsing.

There is a rich history of framing dependency parsing as sequential structured prediction, with creative

methods for representing a dependency tree y as a sequence. Figure 6 shows three example sequential

representations, along with a set-based representation. The traditional arc-standard method (Yamada

and Matsumoto 2003; Nivre 2003) processes text from left to right, representing a parse as a sequence

of operations {shift, L, R} involving an imaginary stack data structure. Recent variations build the

parse tree in left-to-right (Fernández-González and Gómez-Rodŕıguez 2019) or depth-first (Ma et al.

2018) orders. A natural alternative is to treat the dependency tree as a set of edges, with the constraint

that only certain sets are valid dependency trees. As in multiset prediction, it is unclear which ordering

of the edges is best to use for training a parsing model. We will develop a learning method that allows

the model to choose an edge ordering, rather than imposing a fixed ordering such as left-to-right or

depth-first (§14).

3.3 Sequences: Conditional Language Modeling and Generation

The next application deals with modeling and generating sequences, specifically text. Language modeling

is the task of learning a distribution pθ(y) over text sequences y. The learned distribution, called a

language model, can be used for scoring, i.e. measuring the probability of a sequence, and for generation,

i.e. producing a new sequence ŷ. In subsequent sections we will formally define language modeling and

discuss different way of generating sequences. For now, we will focus on applications, each of which

involves conditional language modeling, the task of modeling distributions pθ(y|x).

3.3.1 Text completion. In the task of text completion, a model is given a sub-sequence and must fill

in the remaining contents of the sequence. Commonly the model is given a prefix and the sequence is com-

pleted from left-to-right, called prefix completion. In this case, given a ground-truth sequence, y ∼ p∗(y),

we use its initial tokens as a context, x = (y1, . . . , yk), and produce a continuation (ŷk+1, . . . , ŷT) ∼ pθ(·|x)

with a conditional language model. In non-monotonic text completion, the model completes an arbitrary

8

Type Completions

Prefix my favorite food is mac and cheese !
my favorite food is pizza .
at the 2016 Olympics , Japan won twelve gold medals .
at the 2016 Olympics , Japan won three bronze medals in swimming.

Non-monotonic my favorite food is mac and cheese !
whats your favorite food ? mine is pizza !
at the 2016 Olympics , Japan won more gold medals than Ukraine .
in the 2012 Olympics , Japan won eight bronze medals in swimming .

Fig. 7: Text completion examples. Each context x is in plain text, and each continuation ŷ is underlined.

sub-sequence. That is, given a sequence y and a partition of its timesteps {tx1
, . . . , txm}, {ty1 , . . . , tyn}, the

context is x = (ytx1 , . . . , ytxm) and the model’s output is (ŷtŷ1 , . . . , ŷtŷn). Figure 7 shows examples.

Modeling. For prefix completion, the predominant modeling approach is to model next-token distri-

butions using the factorization pθ(y|x) =
∏T
t=1 pθ(yt|y<t,x), known as an autoregressive model. The

learned model is used to produce full continuations, for instance by choosing the most likely next-

token or sampling from the conditional distribution at each step. A model is trained using a dataset

D = {(x(i),y(i))}Ni=1 formed by extracting prefixes from a collection of sequences as discussed above. We

will formalize the model, generation, and training procedures further in the next section (§4.1.1).

Non-monotonic text completion requires modifying either the input and output format or the model.

For instance, Donahue et al. (2020) mark each uncompleted segment with a special mask token, then

predict the masked segments left-to-right, separated by another special token. Using their method, the

first non-monotonic example in Figure 7 would consist of x = (〈M〉 , favorite, food, 〈M〉 , !, 〈eos〉) and

y = (my, 〈∅〉 , is, mac, and, cheese, 〈∅〉). One can then train an auto-regressive model on examples of this

form. Instead of modifying the input and output format, we will explore an alternative that modifies the

model to generate sequences in a non-left-to-right, more generally a non-monotonic, order (§15).

Evaluation. Evaluating a text completion model typically consists of evaluating its language modeling

and generation capabilities. Intuitively, a good language model assigns high probability to sequences from

the true distribution that it is modeling. Thus language modeling capability is quantified by perplexity, a

metric that is inversely-proportional to the probability that the model assigns to a set of sequences,

perplexity(pθ,D) = 2
− 1
Ttotal

∑N
i=1 log2 pθ(y(i)|x(i))

, (1)

where D = {(x(i),y(i))}Ni=1 is a dataset of N examples with total length Ttotal =
∑N
i=1 |y(i)| that is

assumed to contain samples from the true distribution. Perplexity is defined on [1,∞), with 1 meaning

a perfect model (assigning probability 1 to D), and a higher perplexity meaning a worse model. For

9

0.4 0.1 0.5

0.3 0.3 0.4

0.4 0.6 0.0

A

B

〈bos〉

A B 〈eos〉

pθ1(col|row)

0.4 0.1 0.5

0.6 0.1 0.3

0.4 0.3 0.3

A

B

〈bos〉

A B 〈eos〉

pθ2(col|row)

D
(〈bos〉 , A,A, 〈eos〉)
(〈bos〉 , B,A, 〈eos〉)

Fig. 8: Two models with the same perplexity on the dataset D, but different generations under greedy
decoding. The conditional distributions are independent of time and only depend on the preceding token.
The log probability of D is log(0.4∗0.4∗0.5)+log(0.6∗0.3∗0.5) under both pθ1 and pθ2 , yielding the same
perplexity. Greedy decoding generates a sequence by beginning with ŷ0 = 〈bos〉, then repeatedly selecting
the most probable token given the preceding token, ŷt = arg max pθ(·|ŷt−1), until 〈eos〉 is selected. This
yields (〈bos〉 , B, 〈eos〉) for pθ1 and (〈bos〉 , A, 〈eos〉) for pθ2 .

autoregressive models, perplexity intuitively measures the average number of samples needed to obtain

the true next-token. Measuring perplexity does not involve generating sequences and hence does not

fully evaluate a model’s generation capability. For example, Figure 8 shows two models that have the

same perplexity on a dataset, yet generate different sequences when the most probable next-token is

repeatedly selected, called greedy decoding. As a result, we must additionally directly evaluate a model’s

generation capability.

Intuitively, a model is good at generation when it yields completions that resemble samples from the

true distribution that it is modeling. Unfortunately, the notion of ‘resemble’ is not well-defined, and we

do not have access to the true distribution. Furthermore, comparing a generation against a ground-truth

completion from the dataset is unreliable since there are often many sensible completions (e.g. consider

the my favorite food example in Figure 7). As a result, evaluating generation quality involves a mixture

of property-specific metrics and human evaluation. A property-specific metric measures a single aspect

of the generation, such as the amount of repetition, number of unique tokens or bigrams, or the length

distribution (mean, standard deviation, etc.) of generated sequences. Comparing these metrics against

those of the ground-truth data can identify weaknesses in a generation model.

Human evaluation is used to judge the overall quality of generations, including aspects such as ‘human-

ness’, ‘coherence’, and ‘style’ that are difficult to formally define and capture in property-specific metrics.

An example human evaluation setup presents a human evaluator with a context x and completions y1

and y2 that come from two different sources (e.g. the ground-truth data, different models), and the

evaluator picks the ‘better’ completion, where the notion of ‘better’ can be clarified through instructions

or examples given to the evaluator. With a sufficient number of evaluators and trials, one can perform a

hypothesis test to reject the null hypothesis that two sources result in equal evaluation scores. We will

see a detailed instantiation of this approach in the section on unlikelihood training (§7).

10

Discussion. Text completion is useful for studying the behavior of language models due to its gener-

ality (see, e.g. Sutskever et al. (2011); Graves (2013); Radford et al. (2018); Holtzman et al. (2020);

Welleck et al. (2020); Brown et al. (2020)). For instance, text completion encompasses story generation,

unconditional language modeling (for k = 0), and dialogue modeling where x is a dialogue history and a

continuation is the next utterance. The non-monotonic setting generalizes left-to-right completion, and

includes applications such as ancient text restoration (Assael et al. 2020; Shen et al. 2020).

3.3.2 Machine translation. Machine translation is the task of mapping a source sequence x to a

target sequence y, where the source and target sequences are written in different languages.

Modeling. The predominant modeling approach is to use a conditional language model pθ(y|x), where

x is a sequence in the source language (e.g. Japanese) and y is a sequence in the target language (e.g.

English). The standard approach is to use an autoregressive factorization, trained using a parallel corpus

D = {(x(i),y(i))}Ni=1, where y(i) is a ground-truth translation of x(i).

Evaluation. Bleu (Papineni et al. 2002) is a widely used metric for evaluating machine translation

systems. It is based on matching n-grams1 between the source and target sequence(s) in a dataset. Bleu

uses modified n-gram precision, which counts the number of predicted n-grams that occur in the target

sequence, clipped by the number of times each n-gram occurs in the target sequence. Specifically, letting

Y = {(ŷ,y)} be a set of (predicted, ground-truth) pairs,

pn(Y) =

∑
(ŷ,y)∈Ŷ

[∑
ŷn∈n-grams(ŷ)

[cclip(ŷn, ŷ,y)]

]
∑̂
y∈Ŷ

[∑
ŷn∈n-grams(ŷ)

[c(ŷn, ŷ)]

] , (2)

where n-grams(ŷ) = {(yt, . . . , yt+n) | t ∈ 1, . . . , |ŷ| − n} returns the set of n-grams in the sequence ŷ,

c(ŷn, ŷ) counts the number of times that the n-gram ŷn occurs in ŷ, and cclip = min (c(ŷn, ŷ), c(ŷn,y)).

Bleu is then defined as,

Bleu(Y) = BP(Y) · exp

 Ng∑
n=1

wn log pn(Y)

 , (3)

BP(Y) =


1

∑
ŷ |ŷ| >

∑
y |y|,

exp
(

1−
∑

y |y|∑
ŷ |ŷ|

) ∑
ŷ |ŷ| ≤

∑
y |y|,

(4)

1 An n-gram is a length-n consecutive subsequence. For instance, (a, b, c) contains the 2-grams (a, b) and (b, c).

11

where BP is a brevity penalty that penalizes short predictions, and
∑Ng
n=1 wn = 1 are weights. Other

machine translation metrics include Meteor (Banerjee and Lavie 2005), translation error rate (Snover

et al. 2006), and Ribes (Isozaki et al. 2010b).

Discussion. Machine translation has driven many advances in machine learning and natural language

processing, including learning methods (Och 2003; Shen et al. 2016), models (Bahdanau et al. 2015;

Vaswani et al. 2017), and evaluation (Papineni et al. 2002). Due in part to its prominence in the research

community and as a practical application, machine translation has well-known benchmark datasets that

are useful for evaluating the performance of new sequential structured prediction approaches.

3.3.3 Dialogue generation. Dialogue generation is the task of generating a conversation between

agents. A dialogue is a sequence of utterances u1, . . . ,uM , where an utterance is a sequence of tokens

representing a turn in a conversation, ut = (ut,1, . . . , ut,T) with ut,t′ ∈ V. Each utterance is made by an

agent. For instance, an alternating two-agent dialogue which starts with agent A and ends with agent

B is written as uA1 ,u
B
2 ,u

A
3 ,u

B
4 , . . . ,u

B
M . Often, the dialogue is accompanied by contextual information

represented as sentences {s1, . . . , sk}, which for instance can represent the ‘personality’ of each agent, a

scenario in which the conversation takes place, or background knowledge.2

Modeling. The predominant modeling approach frames dialogue generation as next utterance prediction.

In this setting, x = (s1, . . . , sk,u1, . . . ,ut−1) contains the context sentences and conversation history, and

y = (y1, . . . , yT) is the next utterance ut in the conversation. A model pθ(y|x) is trained using a dataset

D = {(x(i),y(i))}Ni=1 constructed from a collection of conversations and contextual information.

Evaluation. The intended outcome of dialogue generation varies. In goal-directed dialogue, the model

generates a dialogue to achieve a measurable outcome (e.g. the interlocutor presses a ‘buy’ button

on a website), and evaluation is based on the outcome measurement. In chit-chat dialogue, the model

generates a ‘human-like’ dialogue without a specified goal in mind, which often necessitates human

evaluation. Human evaluation of dialogue is itself difficult, leading to research on evaluation protocols

(Li et al. 2019b) and calibrating evaluation scores (Kulikov et al. 2019). Language modeling quality is

also measured, using perplexity on a held out dataset.

Discussion. Generating a full dialogue at evaluation time requires multiple sequential predictions, result-

ing in three properties that are not present in tasks with a single sequence as output (e.g. machine trans-

lation). First, the input contains entire predicted sequences, i.e. x = (ûmodel
1 ,uB2 , û

model
3 ,uB4 , . . . ,u

B
t−1),

meaning the model’s predictions are a function of its previous predicted utterances, which do not occur

2 In general, contextual information can be treated as a vector c ∈ Rd, though for the datasets we use in this
thesis it will be intuitively helpful to consider the case where contextual information is a set of sentences.

12

in the training data. Second, the dataset does not contain responses uB· to each predicted utterance,

necessitating human evaluation or a separate model for obtaining responses, known as self-chat (Li et al.

2019b). Third, each prediction must maintain contextual consistency with the preceding predictions; e.g.

if ûmodel
1 is i have a cat, then ûmodel

3 cannot be i don’t have pets. We will encounter dialogue gener-

ation and contextual consistency when we explore text degeneration and logical incoherence (§8).

4 Sequential Neural Structured Prediction

With the preceding applications in mind, we now formalize the model, learning, and inference methods

used in conventional sequential neural structured prediction.

4.1 Model

Each application above consists of inputs x ∈ X and outputs y ∈ Y. There may be many valid outputs

y for an input (e.g. consider Figure 7), which suggests modeling distributions pθ(y|x). We will assume

that each object y ∈ Y can be decomposed into tokens, y = {y1, . . . , yT }, where yt ∈ V. Furthermore, we

assume a canonical ordering σ that lets us treat each object as a sequence, y = (yσ(1), yσ(2), . . . , yσ(T))

where σ is a permutation of {1, . . . , T}. For example, when y is a multiset of digits in an image, we

may order the digits in increasing order. When y is a tree, we may order its nodes using a depth-first

traversal. When y is a sentence, we may order its words from left to right, meaning σ(t) = t.

4.1.1 Autoregressive models. The decomposition and ordering let us factorize pθ(y|x) into a prod-

uct of conditional token distributions. An autoregressive sequence model factorizes pθ(y|x) as,

pθ(y|x) =

T∏
t=1

pθ(yσ(t)|y<σ(t),x), (5)

where y<σ(t) = (yσ(1), . . . , yσ(t−1)), and y<σ(1) = ∅. Each conditional is a distribution over the vocabulary

V, which is much smaller than the sequence space. The factorization in (5) does not introduce any

conditional independence assumptions among the variables yt, and hence can exactly match any sequence

distribution in the limit of infinite parameters and data. This is unlike earlier models which assume that a

variable is independent of variables sufficiently far in the past (Chen and Goodman 1996), or conditionally

independent of all other variables given its neighbors (McCallum et al. 2000; Lafferty et al. 2001b). In this

thesis we will write pθ(yt|y<t,x) for brevity, unless the choice of σ is relevant for the discussion.

When the canonical order is left-to-right (σ(t) = t) or right-to-left (σ(t) = T − t+ 1), we call the model

monotonic. When the order σ is fixed for all x and y, we say the model is fixed-order. When σ varies

13

based on x or y, the model is adaptive-order. The conventional approach to neural text generation

uses fixed-order, monotonic autoregressive models, which we adopt when we analyze text generation in

Part II. Then we explore non-monotonic, adaptive-order models in Part III.

4.1.2 Recurrent parameterization. In this thesis, we will parameterize models pθ using neural

networks, so that θ is a vector of neural network parameters. The recurrent neural network is a natural

choice for parameterizing autoregressive models (Equation 5), since it can theoretically encode arbitrarily

long contexts. Specifically, a recurrent neural network sequence model pθ(y|x) =
∏T
t=1 pθ(yt|y<t,x)

computes the following conditional distribution at each time step,

pθ(yt = v | y<t,x) =
exp(u>v ht + cv)∑

v′∈V exp(u>v′ht + cv′)
, (6)

where ht = fθ(yt, ht−1) ∈ Rd is the hidden state, with h0 = gθ(x) ∈ Rd, and u, c, θ are parameters.

Practical variants of the recurrent neural network differ by the choice of transition function fθ (Elman

1990; Hochreiter and Schmidhuber 1997; Cho et al. 2014). The function gθ is called an encoder. In the

encoder-decoder framework (Bahdanau et al. 2015), the encoder is a separate neural network.

4.1.3 Self-attention parameterization. An alternative is to compute the hidden states using a

feed-forward network fθ(y1, . . . , yT ,x) → (h1, . . . , hT) structured as a series of L layers f `θ . Instead of

recurrence, meaning h`t = f `θ(h`t−1), the feed-forward network computes states at each layer that are a

function of all states from the previous layer, f `θ(h`−1
1:T)→ h`1:T , where h·1:T means (h·1, . . . , h

·
T).

The transformer sequence model (Vaswani et al. 2017) implements each layer f `θ using a mechanism

called self-attention. Here, an attention function maps a query vector qt, key vectors k1:T , and value

vectors v1:T to an output vector, a(qt, k1:T , v1:T)→ h̃t. The attention function produces a vector that is

a weighted sum of the values v1:T , with the weights determined by the similarity of the query with each

key. When the same vectors act as query, key, and value, i.e. a(h`−1
t , h`−1

1:T , h
`−1
1:T) → h̃`t, the function is

called self-attention. Intuitively, implementing each layer f `θ with self-attention lets the network produce

token representations ht that use information from the entire input sequence.

The self-attention function from Vaswani et al. (2017) applies multiple instances of self-attention, with

each instance linearly transforming each key, query, and value. The dot product is used to compute the

similarity of the query and keys, and the attention is applied for all timesteps (i.e. a(·) is applied with

qt for all t ∈ {1, . . . , T}). This overall design is called multihead scaled dot product attention and

14

can be computed efficiently with matrix operations,

amulti-head(Q,K, V) =
[
a(1)(Q,K, V); . . . ; a(H)(Q,K, V)

]
WO

a(i)(Q,K, V) = a(QW
(i)
Q ,KW

(i)
K , V W

(i)
V)

a(Q,K, V) = softmax

(
QK>√

d̃

)
V,

where H is the number of self-attention instances, [·; ·] is concatenation, d̃ = d
H , the matrices Q,K, V ∈

RT×d respectively contain stacked query, key, and value vectors, andW
(i)
{Q,K,V } ∈ Rd×d̃,WO ∈ RHd̃×d.

In summary, the transformer sequence model consists of L layers f `θ , each containing multihead scaled

dot product self-attention. Each output ht can be used to parameterize a conditional distribution,

pθ(yt = v|yO,x) =
exp(u>v ht + cv)∑

v′∈V exp(u>v′ht + cv′)
. (7)

For an autoregressive model, yO = y<t, the self-attention inputs from future timesteps cannot be used,

which is enforced efficiently in practice by setting h`−1
t+1:T = 0 with an upper-triangular matrix multi-

plication (see Vaswani et al. (2017) for details). Vaswani et al. (2017) demonstrated that transformer

sequence models outperformed recurrent models on machine translation benchmarks, and subsequently

transformers parameterized state-of-the-art models in other NLP tasks, e.g. Devlin et al. (2018); Brown

et al. (2020); Adiwardana et al. (2020); Raffel et al. (2020). We will use the transformer in several sections

of this thesis.

4.2 Learning

With a model parameterization specified, the next step is find parameters that minimize an objective

function. For autoregressive models, the conventional approach for this learning stage is to find param-

eters that maximize a likelihood function L(θ;D) defined using a training dataset.

4.2.1 Maximum likelihood estimation. Given a fixed-order autoregressive sequence model and a

dataset D = {(x(i),y(i))}Ni=1, maximum likelihood estimation (MLE) is defined as,

θMLE = arg max
θ∈Θ

L(θ) + Ω(θ)

= arg max
θ∈Θ

N∑
n=1

|y(n)|∑
t=1

[
log pθ(y

(n)
t |y

(n)
<t ,x

(n))
]

+ Ω(θ), (8)

15

where Ω : Θ → R is a regularization function. For notational brevity we will ignore the regularization

function from here on. Neural networks are trained by minimizing a differentiable loss function; the

per-example MLE loss corresponding to Equation 8 is,

LMLE(θ,x,y) =

|y|∑
t=1

LtMLE(θ, x, y≤t) (9)

= −
|y|∑
t=1

log pθ(yt|y<t,x), (10)

where LtMLE is called the per-step MLE loss. The problem in Equation 8 is solved in practice by mini-

mizing the loss LMLE using (a variant of) stochastic gradient descent on batches sampled from D.

4.2.1.1 Strengths. The maximum likelihood criterion in Equation 9 has become the standard approach

to training neural autoregressive sequence models in a variety of applications, such as machine translation

(Bahdanau et al. 2015), dialogue modeling (Vinyals et al. 2015), and language modeling (Radford et al.

2018). The strengths of MLE include (1) scalability, e.g. the transformer model (§4.1.3) can compute

the required per-step losses in parallel; (2) self-supervision, i.e. only requiring a dataset of sequences

for training; and (3) consistency in the limit of infinite data and model capacity. Since the required

supervision is often widely available, e.g. in the form of web documents, owing to its scalability MLE

has been used to train neural sequence models with billions of parameters on gigabytes of data (Radford

et al. 2018; Adiwardana et al. 2020; Brown et al. 2020).

4.2.1.2 Drawbacks. Despite this success, maximum likelihood training has several potential drawbacks.

MLE has a task cost mismatch, in that maximizing the likelihood of a dataset only acts as a surrogate

to minimizing a task cost, such as Bleu in the case of machine translation. MLE only trains using

ground-truth sequences y, and in particular does not train with sequences generated by the model. This

results in a distribution mismatch between the distribution of sequences used for training and those

encountered by decoding from the model. Finally, autoregressive sequence models trained with MLE

often have miscalibrated sequence probabilities in practice. For instance, the model may assign

higher probability to a single-token sequence than to a longer correct sequence (Sountsov and Sarawagi

2016b). We return to these drawbacks when we study neural text degeneration (§II).

4.3 Inference

After training a sequence model, we would like to use it to generate sequences, for instance representing

multisets, trees, or text. This generation process is called inference or decoding ; we use either term

interchangeably. The decoding process relies on a decoding algorithm.

16

Definition 1 (Decoding algorithm). A decoding algorithm F(pθ,x, ε) is a function that generates a

sequence ŷ given an autoregressive neural sequence model pθ, a context x, and noise ε ∼ pε. We write

ŷ ∼ F(pθ,x) to denote sampling from the stochastic function F with an implicit noise distribution pε.

For example, given a trained translation model pθ and a Japanese sentence x, we use a decoding algorithm

to obtain an English translation ŷ ∼ F(pθ,x). The decoding algorithm induces a distribution over

sequences that can differ from the model’s distribution.

Definition 2 (Induced sequence distribution). A decoding algorithm F , paired with a neural se-

quence model pθ and a context distribution px, induces a sequence distribution qF (y; pθ, px).

To clarify this idea, let us first introduce two basic decoding algorithms. Ancestral sampling samples

tokens from the model’s next-token distribution at each step, while greedy decoding places all of its

probability mass on the most-likely token at each step.

Definition 3 (Ancestral sampling). Ancestral sampling Fanc generates a sequence by recursively

sampling from pθ(yt | ŷ<t,x) until ŷt = 〈eos〉:

ŷt ∼ pθ(yt | ŷ<t,x).

Definition 4 (Greedy decoding). Greedy decoding Fgreedy generates a sequence by recursively select-

ing the most-likely token until ŷt = 〈eos〉:

ŷt ∼ qt(yt|ŷ<t,x, pθ), (11)

where qt =


1 yt = arg maxv∈V pθ(yt = v | ŷ<t,x)

0 otherwise.

(12)

Ancestral sampling induces a sequence distribution qFanc that is identical to the model pθ, since ancestral

sampling directly samples from the model’s conditional distributions. Greedy decoding, however, mod-

ifies the model’s conditional distributions so that the resulting induced sequence distribution qFgreedy

concentrates its mass on a single sequence per input x. Based on these two examples, we can see that

the decoding algorithm influences the induced sequence distribution, which in turn influences which

sequences are generated. We will study this phenomenon when we explore inconsistency (§6).

4.3.1 A classification of decoding algorithms. After staring at Definition 4, one sees that many

decoding algorithms can be devised by varying qt. One can also view decoding algorithms as traversing a

17

Exact Deterministic Complete Reference

Enumeration 3 3 7 -
Depth-first search 3 3 7 [146]
Minimum bayes risk 3 3 7 [76]

Greedy decoding 7 3 7 Def. 4
Beam search 7 3 7 Def. 10

Ancestral sampling 7 7 3 Def. 3
Top-k sampling 7 7 7 [37]
Nucleus sampling 7 7 7 [63]
Entmax sampling 7 7 7 [101]
Approx. min. bayes risk 7 7 3 [34]

Consistent top-k 7 7 3 §6
Consistent nucleus 7 7 3 §6
Table 3: Decoding methods for autoregressive neural sequence models.

lattice of tokens across time in various ways, where a path represents a decoded sequence. For instance,

greedy decoding selects a single path by choosing locally optimal tokens. With these two perspectives

in mind, we now survey common decoding algorithms for autoregressive sequence generation, classified

according to three properties, (1) exact vs. approximate, (2) stochastic vs. deterministic, and (3) complete

vs. incomplete. Table 3 summarizes the discussion which follows.

4.3.1.1 Exact vs. approximate decoding. One use of a decoding algorithm is to find a single optimal

generation for a given input. For instance, given a Japanese sentence x, in many applications we only want

a single, best English translation y. The argmax problem defines optimality by the model’s probability.

Definition 5 (Argmax problem). The argmax problem consists of finding an output sequence ŷ with

maximal conditional probability given a context x,

ŷ = arg max
y∈Y

pθ(y|x). (13)

The optimization problem in Definition 5 involves maximizing over a set Y whose size grows exponentially

in sequence length T (i.e. |V|T). An exact decoding algorithm solves the argmax problem exactly,

which is only tractable when |V| and the maximum sequence length are small. In this case, one option

is to enumerate each possible sequence, measure their probabilities, and choose one that has maxi-

mum probability. Another option is to perform a depth-first search on the tree of possible sequences

while pruning suboptimal branches. For instance, Stahlberg and Byrne (2019b) prune branches using

the monotonicity of sequence probabilities to perform exact inference with a neural translation model,

18

albeit with a large runtime. Instead of solving the argmax problem (Definition 5), minimum bayes

risk decoding (Kumar and Byrne 2004) finds the sequence that minimizes a task cost (e.g. Bleu) in

expectation,

arg min
ŷ∈Y

Ey∼pθ(y|x) [`(y, ŷ)] . (14)

As with the argmax problem, solving this minimum bayes risk problem (Equation 14) is intractable

in almost all practical applications, which have a large vocabulary and possibly unbounded sequence

length. Thus it is necessary to use an approximate decoding algorithm. The remaining algorithms

in Table 3 are approximate, and in this thesis we will only use approximate decoding algorithms in

experiments.

4.3.1.2 Stochastic vs. deterministic decoding. A second dimension along which we classify decoding

algorithms is whether the algorithm uses randomness. Ancestral sampling (Definition 3) uses randomness

by directly sampling from the model’s conditional distributions. One can then approximate the arg max

problem using Monte-Carlo sampling,

arg max
y∈Y

pθ(y|x) ≈ arg max
y(1),...,y(M)

pθ(y
(i)|x),

where y(m) ∼ Fanc(pθ,x). In a similar manner, Eikema and Aziz (2020) approximately minimize the

bayes risk (Equation 14).

A family of ancestral sampling variants sample from a proposal distribution qt(yt|y<t,x, θ) at each

decoding step. When the model’s conditional distribution is defined using the softmax3 operation, qt can

be formed by rescaling pθ(yt|y<t,x) using a temperature.

Definition 6 (Softmax Temperature Scaling (Hinton et al. 2015)). Softmax scaling with tem-

perature τ ∈ (0,∞) recursively samples from:

qt(yt|y<t,x, fθ) =
exp (fθ(yt, y<t,x)/τ)∑
y′t∈V

exp (fθ(y′t, y<t,x)/τ)
.

As τ → ∞ the distribution becomes uniform, and as τ → 0, the distribution’s mode receives all of the

probability mass while all other tokens receive zero mass, which is equivalent to greedy decoding. Only

placing positive probability on the mode can be generalized to the top-k most probable tokens.

3 pθ(yt|y<t,x) = exp fθ(yt,y<t,x)∑
y′t∈V

exp fθ(y
′
t,y<t,x)

.

19

Definition 7 (Top-k sampling (Fan et al. 2018)). Top-k sampling with k ∈ Z, 1 ≤ k ≤ |V|, recur-

sively samples from:

qt(yt|y<t,x, pθ) ∝


pθ(yt | y<t, X), if yt ∈ arg top-k

y
pθ(y | y<t,x),

0, otherwise.

Alternatively, qt can be defined so that mass is given only to the minimal subset of tokens whose total

probability is higher than a budget µ.

Definition 8 (Nucleus sampling (Holtzman et al. 2020)). Nucleus sampling with budget µ ∈ [0, 1)

recursively samples from:

q(v) ∝


pθ(v | y<t, C), if v ∈ {v1, . . . , vk},

0, otherwise,

where k is the least index of the vocabulary sorted by decreasing probability4 with
∑k
i=1 pθ(vi|y<t,x) > µ.

Top-k and nucleus sampling are often used in NLP applications to generate text that tends to be sub-

jectively better than ancestral sampling, by way of discarding low probability tokens.

In general, the sampling algorithms above produce different sequences each time they are run. In contrast,

deterministic decoding algorithms such as greedy decoding map a neural sequence model and an input

to a single output sequence. A deterministic decoding algorithm induces a conditional distribution with

mass on a single sequence per input.

qF (y|x, pθ) =


1 y = F(pθ,x)

0 otherwise.

The induced marginal probability of y is the total probability of inputs that map to y,

qF (y|pθ) =
∑

x:y=F(pθ,x)

px(x).

For instance, the induced probability of a translation y is the total probability of drawing any source

sentence x from the dataset that translates to y using the model and decoding algorithm.

4 pθ(vi | y<t, X) ≥ pθ(vj | y<t, X) for all i < j.

20

Above, we saw greedy decoding (Definition 4), which is a deterministic decoding algorithm. A general-

ization called beam search operates on the level of partial sequences or prefixes.

Definition 9 (Prefix). A prefix ρt is an ordered collection of items from V. The score of a prefix is

s(ρt) =

t∑
τ=1

log pθ(yτ = ρt[τ] | ρt[< τ], X),

where ρt[τ] is a token at time τ from ρt.

Beam search starts from a set of empty prefixes, and forms a new prefix set at each iteration by expanding

each prefix then choosing the highest scoring expanded prefixes.

Definition 10 (Beam search). Beam search with width k, Fbeam−k, generates a sequence from a re-

current language model pθ by maintaining a size-k prefix set Ptop
t . Starting with P top0 = ∅, at each

iteration t ∈ {1, 2, . . .} beam search forms a new prefix set Ptop
t by expanding the current set, Pt =⋃

ρ∈Ptop
t−1
{ρ ◦ v | v ∈ V } (where ρ ◦ v is concatenation), then choosing the k highest scoring elements,

Ptop
t = arg top-k

ρ∈Pt

s(ρ).

Any ρ ∈ Ptop
t ending with 〈eos〉 is restricted from being expanded further, and is added to a set S. Beam

search ends when S contains k sequences, and returns the highest scoring sequence in S.

Beam search with a width of k = 1 yields greedy decoding, and beam search with k = ∞ is an exact

decoding algorithm. In practice, the beam width k is finite and selected as a hyperparameter. Increasing

the beam width can lead to performance degradation (Koehn and Knowles 2017; Ott et al. 2018), since

the model can assign high probability to the empty sequence (Stahlberg and Byrne 2019b). Murray and

Chiang (2018) demonstrated that this is a consequence of the model’s local normalization (§4.1.1), and

can be alleviated with an approximated globally-normalized sequence score.

4.3.1.3 Complete vs. incomplete decoding. Several of the decoding algorithms above are incomplete in

that they only consider a strict subset of the the full vocabulary V at each time step.

Definition 11 (Incomplete Decoding). A decoding algorithm F is incomplete when for each context

x and prefix y<t, there is a strict subset V ′t (V such that

∑
v∈V ′t

qF (yt = v | y<t,x, pθ) = 1.

21

Greedy search, beam search, softmax temperature scaling in the limit of τ → ∞, top-k sampling, and

nucleus sampling are incomplete decoding algorithms.5 Incompleteness will be important later to our

investigation of a sequence model’s consistency (§6), where we will show that modifying an incomplete

algorithm so that it is complete prevents the algorithm from decoding an infinite-length sequence.

4.4 Summary

This part of the thesis contained an overview of applications, learning, models, and inference methods

for sequential neural structured prediction. In this thesis we generate multisets for multiple object clas-

sification, trees for dependency parsing, and sequences for dialogue modeling, machine translation, and

text completion. The predominant approach is to model conditional probabilities with an autoregressive

function parameterized by a transformer or recurrent neural network. The standard training method is

to sequentialize each structured object with a canonical ordering, then maximize the likelihood of the

resulting sequences. After training, a decoding algorithm such as nucleus sampling or greedy search is

used to generate sequences. In the next part of the thesis (§II), we will investigate abnormalities that

arise when using this standard approach in text generation, leading to new approaches.

5 Nucleus sampling is incomplete when for every context x and prefix y<t, minv∈V pθ(v|y<t,x) < 1− µ.

22

Part II

Neural Text Generation

23

5 Text Degeneration

In this part of the thesis, we will focus on generating sequences, specifically text. As we saw in Part I, the

standard approach to sequence generation consists of training a fixed-order neural autoregressive model

with maximum likelihood estimation (MLE), then using a decoding algorithm such as ancestral sampling

or beam search to generate sequences. This approach has led to strong performance in a variety of natural

language processing applications such as machine translation (Bahdanau et al. 2015), summarization

(Rush et al. 2015), dialogue modeling (Vinyals et al. 2015), and text completion (Sutskever et al. 2011;

Graves 2013; Radford et al. 2018; Brown et al. 2020). Despite this success, MLE-trained models are known

to have flaws which are surfaced in generated text. We will characterize these flaws as non-termination,

repetition, and logical coherence, collectively termed text degeneration.

5.1 Non-termination

Sequences that are used to train neural sequence models end with a special 〈eos〉 token that denotes the

end of the sequence. Decoding proceeds until 〈eos〉 is generated, which leaves open the possibility of a

non-terminating sequence when the decoding algorithm never generates 〈eos〉.

Definition 12 (Non-terminating sequence). A sequence y = (y1, y2, . . .) is non-terminating if yt 6=

〈eos〉 for all t ∈ {1, . . . ,∞}.

In practice, we must halt the decoding algorithm after a finite number of steps. As a proxy for measuring

true non-termination, we measure the proportion of decoded sequences that have not terminated after a

predefined number of steps L, called the non-termination rate:

nontermL(F , pθ,D) =
1

|D|

|D|∑
n=1

1(|ŷ(n)| ≥ L), (15)

where ŷ(n) ∼ F(pθ,x
(n)) for each input x(n) in dataset D. A non-termination rate that is greater than

zero means that some sequences did not terminate within L steps, which we interpret as evidence that

those sequences are non-terminating. Although sequences in the training set always terminate, neural

sequence models frequently generate non-terminating sequences when paired with incomplete decoding

algorithms such as greedy decoding. Table 4 shows examples.

24

5.2 Repetition

Generated text in open-ended applications such as text completion or dialogue generation has been

observed to contain excessive repetition compared to human-generated text (represented by a training

corpus), especially with decoding methods that approximately solve the argmax problem (Def. 5).

We distinguish between repetition that occurs in a model-generated sequence and repetition that occurs

when making next-token predictions given a correct history. For the first case, called sequence-level

repetition, one can get a sense of the issue by observing the samples in Table 4, which shows completions

from the large-scale MLE-trained GPT-2 language model (Radford et al. 2018) using prefixes from the

Wikitext-103 corpus (Merity et al. 2016). Greedy decoding as well as top-k and nucleus sampling exhibit

degenerate repetition (at certain hyper-parameter settings), although greedy decoding shows the worst

degradation. Repetition in a sequence y is quantified by the proportion of duplicate n-grams:

repn(y) = 1.0− |unique n-grams(y)|
|n-grams(y)|

. (16)

This metric, called the repetition rate, allows us to measure repetition similar to that of Table 4 occurs

frequently across a variety of prefixes. Indeed, across all prefixes from the Wikitext-103 validation set,

GPT-2 continuations with greedy decoding have an average repetition rate of roughly 50%, which far

exceeds that of the ground-truth text (0.5%), even after fine-tuning the model (46%).

Neural language models also frequently predict an incorrect and repeating next-token given a ground-

truth token history,

Pr (ŷt = arg max pθ(y|y<t) ∈ y<t) > Pr (yt ∈ y<t) , (17)

where y<t and yt are from a ground-truth continuation. For instance, GPT-2 predicted next-tokens that

appeared in the preceding 128 words roughly 60% of the time, versus 40% in the ground-truth data.

This token-level repetition is concerning since maximum-likelihood focuses on optimizing next-token

conditional distributions.

5.3 Logical Incoherence

A long standing issue faced by neural text generation models is logical coherence (Vinyals et al. 2015; Li

et al. 2016; Zhang et al. 2018). In dialogue modeling, an example from Vinyals et al. (2015) shows a two-

round dialogue in which their neural sequence model first responds to what is your job? with i’m a lawyer,

then responds to what do you do? with i’m a doctor. As seen in Figures 9 and 10, logical contradictions

25

Prefix Lyrically the song has excerpts of different languages including French , Spanish ,
GPT2-greedy German , Italian , Portuguese , Spanish , Portuguese , Portuguese , Portuguese

, Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese ,
Portuguese , Portuguese , Portuguese , Portuguese , ...

GPT2-top3 German , Italian , Portuguese , Spanish , Portuguese , Portuguese, Italian and Span-
ish. It is also available in English, French and Spanish. In addition to its lyrics, the
album features a number of original songs, ...

GPT2-nucleus-0.3 German , Italian , Portuguese , Spanish , Portuguese , Italian , Portuguese , Spanish
, Portuguese , Spanish , Portuguese , Spanish , Portuguese , Spanish , Portuguese ,
Spanish , Portuguese , Spanish , Portuguese , Spanish , Portuguese , ...

Prefix The first pair of pereiopods is armed with a large , asymm
GPT2-greedy etrical, and long-range laser cannon. The second pair is armed with a large , asym-

metrical, and long-range laser cannon. The third pair is armed with a large , asym-
metrical, and long-range laser cannon. The fourth pair is armed with a large ...

GPT2-top3 etrical, and highly mobile head, and the second pair has a small , asymmetrical, and
highly mobile head. The second pair has a large and highly mobile head, and the
third pair is armed with a large and highly mobile head. The first pair ...

GPT2-nucleus-0.3 etrical head and a large body. The first pair of pereiopods is armed with a large ,
asymmetrical head and a large body. The first pair of pereiopods is armed with a
large , asymmetrical head and a large body. The first pair of pereiopods is armed ...

Table 4: Non-termination and repetition in completions from GPT-2, a large-scale language model
trained with MLE (Radford et al. 2018). The examples contain single-word repetitions, phrase-level rep-
etitions, and structural repetitions where some tokens within a repeating phrase vary. Recently proposed
stochastic samplers (top-k, nucleus) exhibit degeneration based on hyper-parameter settings.

still occur in recent dialogue models and large-scale language models. Even when inconsistencies are

relatively rare and semantically plausible, they are jarring, and because semantic plausibility is not

enough to root them out, preventing them is challenging.

Logical incoherence is difficult to measure and define in general. As a first step, we will construct a dataset

that allows us to measure simple forms of logical incoherence in a specific dialogue setting (§8).

5.4 Other

Maximum-likelihood trained models have been shown to generate text with a mismatched unigram dis-

tribution compared to human text. That is, for each token y in a nontrivial subset V ⊆ V,

|pθ(y)− p∗(y)| > δ, (18)

where δ allows for small differences. Given a dataset D = {x(i),y(i)}Ni=1 and generations {ŷ(i)}, the

unigram distributions are approximated as (notice ŷ(i) versus y(i)),

pθ(y) ≈

∑N
i=1

∑|ŷ(i)|
t=1 I

[
ŷ

(i)
t = y

]
∑N
i=1 |ŷ(i)|

, p∗(y) ≈

∑N
i=1

∑|y(i)|
t=1 I

[
y

(i)
t = y

]
∑N
i=1 |y(i)|

. (19)

26

Fig. 9: Persona-based dialogue with a key-value
memory network (Zhang et al. 2018)

Fig. 10: Next-token probabilities from GPT-2.
Obtained with https://demo.allennlp.org/

next-token-lm.

In dialogue, models tend to overproduce common tokens (e.g. the, a, of) and underproduce rare tokens

compared to the ground-truth distribution For example, this was observed across all generative models

submitted to the ConvAI2 NeurIPS 2018 competition (Dinan et al. 2019a). In language modeling, the

work of Holtzman et al. (2020) highlighted problems with the unigram distribution and level of repetition

in model generations compared to human text. We will show that altering the learning algorithm can

address unigram distribution mismatch (§7).

Several studies have investigated other drawbacks of maximum-likelihood training, including label bias

(Lafferty et al. 2001a; Andor et al. 2016), exposure bias (Daumé III et al. 2009; Ross et al. 2011; Bengio

et al. 2015), and loss mismatch (Lee et al. 2020). Neural machine translation models trained with max-

imum likelihood have been shown to exhibit decreased performance with increased beam size (Koehn

and Knowles 2017; Ott et al. 2018) and a short-sequence bias (Sountsov and Sarawagi 2016a; Stahlberg

and Byrne 2019a), which have been attributed to label bias due to local normalization (Murray and

Chiang 2018). Investigating possible connections between these issues and the text degeneration issues

considered in this thesis is interesting future work.

5.5 Summary

In this section, we introduced text degeneration in terms of non-termination, repetition, and logical

incoherence. In the subsequent sections we will develop theory, data, and algorithms to study and address

these forms of degeneration.

27

https://demo.allennlp.org/next-token-lm
https://demo.allennlp.org/next-token-lm

6 Theory: Inconsistency

In this section we investigate the issue of non-termination (§5.1) in neural text generation. To do so, we

formalize and study the discrepancy between a learned model’s distribution and the distribution induced

by a decoding algorithm, in terms of a notion called consistency.

In Part I, we defined the notion of a decoding algorithm (Definition 1). We saw that decoding algorithms

are used to draw samples (Definition 3) or to approximate the argmax problem (Definition 5). In this

section we show that the distribution induced by a decoding algorithm can contradict these intended uses,

instead resulting in non-terminating (i.e. infinite-length) sequences that are assigned zero probability by

the underlying model. We will use the recurrent language model (Equation 6) in our investigation, but we

will see that in practice our findings also transfer to the transformer language model (Equation 7).

Our main finding is that a sequence which receives zero probability under a recurrent language model’s

distribution can receive nonzero probability under the distribution induced by a decoding algorithm.

This occurs when the recurrent language model always ranks the sequence termination token outside of

the set of tokens considered at each decoding step, yielding an infinite-length, zero probability sequence.

This holds whenever the decoding algorithm is incomplete (Definition 11), in the sense that the algorithm

excludes tokens from consideration at each step of decoding, which is the case for common methods such

as greedy search, beam search, top-k sampling, and nucleus sampling (recall §4.3). We formalize our main

finding using the notion of consistency (Chen et al. 2017b) – whether a distribution assigns probability

mass only to finite sequences – and prove that a consistent recurrent language model paired with an

incomplete decoding algorithm can induce an inconsistent sequence distribution.

Based on the insight that inconsistency occurs due to the behavior of the termination token under

incomplete decoding, we develop two methods for addressing inconsistency. First, we propose consistent

sampling methods which guarantee that the termination token is not excluded from selection during

decoding. Second, we introduce a self-terminating language model which ensures that the termination

token is eventually top-ranked, guaranteeing consistency under incomplete decoding.

To empirically measure inconsistency, we decode sequences from trained recurrent language models and

measure the proportion of sequences with lengths far exceeding the maximum training sequence length.

Our experiments on the Wikitext2 dataset (Merity et al. 2016) suggest that inconsistency occurs in

practice when using incomplete decoding methods, while the proposed consistent sampling methods and

self-terminating model parameterization prevent inconsistency and maintain language modeling quality.

Moreover, we empirically demonstrate inconsistency using the GPT-2 language model paired with greedy

28

decoding, suggesting that our analysis of recurrent models has implications for large-scale transformer

models that are widely used in practice.

The theoretical analysis reveals defects of existing decoding algorithms, providing a way to develop new

methods. Here, we present methods related to sampling and model parameterization. A later investigation

in Welleck and Cho (2020) addresses inconsistency through learning.

6.1 Method

Our investigation of non-terminating sequences uses consistency, which is a property of a sequence

distribution. A sequence distribution is consistent if it assigns probability mass only to finite sequences.

Definition 13 (Consistency of a sequence distribution). A sequence distribution p(y) is consistent

under a context distribution p(x) if p(|y| =∞) = 0. Otherwise, the distribution is said to be inconsistent.

We can use Definition 13 to study the consistency of a model pθ(y), or study the consistency of a decoding

algorithm’s induced distribution qF (y; pθ) (Definition 2). One useful property is that for a given context,

any sequence sampled from a consistent distribution is guaranteed to terminate.

Lemma 1. If a sequence distribution p is consistent, p(|y| =∞|x) = 0 for any probable context x.6

Figure 11 shows four scenarios involving the consistency of pθ and qF . Our goal is to understand which of

these occurs when we see a non-terminating generation in practice. First, we show that under practical

conditions, the model pθ is consistent, which rules out cases (b) and (c).

Lemma 2. A recurrent LM pθ is consistent if ‖ht‖p is uniformly bounded for some p ≥ 1.

Proof (Proof sketch). If ‖ht‖p is bounded, then each u>v ht is bounded, hence pθ(〈eos〉 |y<t,x) > ξ > 0

for a constant ξ. Thus pθ(|y| =∞) ≤ limt→∞(1− ξ)t = 0, meaning that pθ is consistent.

This condition is practical because layer normalization or bounded activation functions (Elman 1990; Cho

et al. 2014; Vaswani et al. 2017) result in bounded ht. Lemma 2 tells us that either case (a) or case (d)

from Figure 11 must describe the situation that underlies non-terminating sequences observed in practice.

Our next theorem tells us that non-terminating sequences in practice correspond to case (d). Specifically,

we prove that any incomplete decoding algorithm (Definition 11) can induce an inconsistent distribution,

because there is a recurrent language model that places 〈eos〉 outside of the decoding algorithm’s set of

probable tokens (V ′t) at every step of decoding.

6 Proofs of Lemmas 1-2 are in Appendix A.1.1.

29

Fig. 11: Four possibilities involving consistency of the model’s sequence distribution (light grey, solid
border) and the decoder’s induced sequence distribution (dark grey, dotted border). The white and
black rectangles depict the set of all finite and infinite sequences, respectively. In (a) the model and the
induced distribution are consistent. In (b) only the model is inconsistent, while in (c) both distributions
are inconsistent. Our analysis shows that non-terminating generations in practice correspond to case (d).

Theorem 1 (Inconsistency of an incomplete decoding algorithm). There exists a consistent

recurrent language model pθ from which an incomplete decoding algorithm F , that considers only up to

(|V | − 1)-most likely tokens according to pθ(yt | y<t,x) at each step t, finds an infinite-length sequence ỹ

with probability 1, i.e., qF (|y| =∞) = 1.

Proof. We prove this theorem by constructing a tanh RNN. We define the recurrent function fθ as

ht = fθ(yt, ht−1)

= tanh


Wh 0

0 I

ht−1 +

 0

e(yt)


 ,

where e(yt) ∈ R|V | is a one-hot representation of yt, Wh ∈ Rd×d where every entry is positive, and I is an

identity matrix of size |V |×|V |. h0 = gθ(x) is constructed to consist of positive values only. Because each

element of |ht| is bounded by 1, the constructed recurrent language model pθ is consistent by Lemma 2.

We set uv (see Equation 6) to

uv =

 ūv

e(v)

 , u〈eos〉 =

 ū〈eos〉

e(〈eos〉)

 ,

30

where v 6= 〈eos〉, all elements of ūv are positive, all elements of ū〈eos〉 are negative, and e(v) is a one-hot

representation of v. cv is set to zero.

This defines a valid recurrent language model (Equation 6), since the conditional distribution at each

time t is influenced by all the previous tokens. More specifically, the logit of a token v depends on∑t
t′=1 1(yt′ = v), where 1 is an indicator function.

This recurrent language model always outputs positive logits for non-〈eos〉 tokens, and outputs negative

logits for the 〈eos〉 token. This implies p(〈eos〉 | y<t,x) < p(v | y<t,x) for all v ∈ V \ {〈eos〉}. This means

that 〈eos〉 is always ranked last at each time step, so an incomplete decoding algorithm that considers

at most (|V | − 1) most probable tokens at each time step from pθ(yt | y<t,x) cannot decode 〈eos〉 and

thus always decodes an infinitely long sequence ŷ, i.e., qF (|y| = ∞|x) = 1 for any context x. It yields

qF (|y| =∞) = 1, while pθ(|y| =∞) = 0 due to consistency of the model pθ. ut

By this theorem, greedy decoding, beam search, top-k, and nucleus sampling are inconsistent.

6.1.1 Fixing the inconsistency. Our analysis shows that inconsistency in practice is depicted by

case (d) in Figure 11. To prevent inconsistency, we must ensure that qF places all of its mass on finite

sequences. This can be done by modifying the decoding algorithm F or by modifying the model pθ in a

way that guarantees that qF (y; pθ) in consistent. We now propose a decoding algorithm and a model that

provably do so. Subsequent work (Welleck and Cho 2020) suggests that changing the learning algorithm

can yield a model pθ with an empirically consistent distribution qF under greedy decoding.

Consistent sampling. The proof of Theorem 1 suggests that inconsistency of incomplete decoding

algorithms arises from the fact that 〈eos〉 may be excluded indefinitely from the set of top-ranked tokens.

We propose a simple modification to top-k (Definition 7) and nucleus sampling (Definition 8) that forces

〈eos〉 to be included at each step of decoding. First, we give a condition for when a particular model pθ

paired with a decoding algorithm F is consistent.

Theorem 2. Suppose a recurrent LM pθ has uniformly bounded ‖ht‖p for some p ≥ 1. If a decoding

algorithm F satisfies qF (〈eos〉 | y<t,x) ≥ pθ(〈eos〉 | y<t,x) for every prefix y<t and context x, then the

decoding algorithm F is consistent with respect to the model pθ.7

We define consistent variants of top-k and nucleus sampling which satisfy this condition.

7 See Appendix A.1.1 for the proof.

31

Definition 14 (Consistent top-k sampling). Consistent top-k sampling is top-k sampling with the

following modified proposal distribution:

q(v) ∝


pθ(v|y<t,x), if v ∈ V ′,

0, otherwise,

where V ′ = {〈eos〉} ∪ arg top-k
v′

pθ(v
′ | y<t,x).

Definition 15 (Consistent nucleus sampling). Consistent nucleus sampling is nucleus sampling

with the following modified proposal distribution:

q(v) ∝


pθ(v | y<t,x), if v ∈ Vµ ∪ {〈eos〉},

0, otherwise.

The induced probability of 〈eos〉 under these two algorithms is always equal to or larger than the model’s

probability. By Theorem 2, they are consistent with respect to any consistent recurrent LM.

Consistent model. Although these consistent sampling algorithms can be used with any recurrent

language model, their stochastic nature may not be suitable for finding a single, highly probable sequence

(see Definition 5). To avoid this limitation, we will modify pθ to guarantee that qF is consistent, even when

F is an incomplete decoding algorithm. To do so, we propose the self-terminating recurrent language

model (STRLM) which guarantees that the probability of 〈eos〉 monotonically increases over time.

Definition 16 (Self-terminating recurrent language model). A self-terminating recurrent lan-

guage model computes the following conditional probability at each time step:

pθ(v | y<t,x) =


1− α(ht), v = 〈eos〉 ,

α(ht) exp(u>v ht+cv)∑
v′∈V ′ exp(u>

v′ht+cv′)
,

(20)

α(h0) = σ(u>〈eos〉h0), (21)

α(ht) = σ(u>〈eos〉ht) [1− pθ(〈eos〉 |y<t−1,x)] , (22)

with σ : R→ [0, 1− ε] and ε ∈ (0, 1). ht is computed as in the original recurrent LM.

32

Fig. 12: The self-terminating recurrent language model uses the layer shown in grey instead of the stan-

dard softmax layer. The layer takes the logits (u>· ht), the previous step’s 〈eos〉 probability (p
〈eos〉
t−1), and

a hyper-parameter ε ∈ (0, 1). The layer computes α using Equation 22, which determines p
〈eos〉
t ∈ (ε, 1)

and guarantees that p
〈eos〉
t > p

〈eos〉
t−1 . The remaining probability mass is allocated to the non-〈eos〉tokens.

The underlying idea is that the probability of 〈eos〉 increases monotonically, since

p
〈eos〉
t = 1−

t∏
t′=0

σ(u>〈eos〉ht′).

Consequently, the STRLM is consistent when paired with greedy decoding or beam search; see Appendix

A.1.1 for formal statements and proofs. The self-terminating recurrent language model can be understood

as replacing the standard softmax layer with a self-terminating variant, depicted in Figure 12, which

guarantees p
〈eos〉
t ∈ (ε, 1) and p

〈eos〉
t > p

〈eos〉
t−1 .

6.2 Empirical Evaluation

The theoretical results rely on the existence of a model that results in inconsistency; it remains to be

shown that inconsistency with respect to incomplete decoding occurs with recurrent language models

encountered in practice. Moreover, while the proposed methods carry theoretical guarantees in terms

of consistency, we must check whether they retain language modeling quality. To do so, we perform

experiments using a text completion task. As we saw in (§3.3.1), text completion consists of decod-

ing a continuation ŷ ∼ F(pθ,x) given a length-k prefix x = (x1, . . . , xk), resulting in a completion

(x1, . . . , xk, ŷ1, . . . , ŷT). In each experiment, we measure the proportion of non-terminated continuations

in order to approximately measure inconsistency. The first experiment shows that inconsistency occurs

in practice, and the second experiment shows the effectiveness of the proposed approaches. The third

33

experiment shows that inconsistency also occurs frequently in GPT-2, a large-scale transformer language

model.

Experiment setup. For the first two experiments we use Wikitext2 (Merity et al. 2016), which consists

of paragraphs from English Wikipedia, since it has frequently been used to evaluate language models

(Grave et al. 2017; Melis et al. 2018; Merity et al. 2018). We use BPE8 tokenization, but we verified that

word tokenization gives analogous results. We split each paragraph into sentences using Spacy9. We split

each sentence, using the first k tokens as a context and the remaining tokens as a continuation. To ensure

that each sequence contains a prefix, we prepend padding tokens to make it length k. Special 〈bos〉 and

〈eos〉 tokens are inserted at the beginning and end of each sequence. We use k = 10. We define empirical

context distributions with prefixes from the train, valid, and test sets: p(x;D) = 1
|D|
∑|D|
n=1 1(x = x(n)),

where D = {(x(n),y(n))}Nn=1 is a dataset split.

To approximately measure inconsistency, we use nontermL (Equation 15). Recall from (§5.1) that a

value of nontermL greater than zero means that some sequences did not terminate within L steps.

When L is infinity, this implies that the model paired with the decoding algorithm is inconsistent. In

practice, we use a finite L and we interpret a non-zero nontermL as evidence that the model paired with

the decoding algorithm is inconsistent. We use L = 1500, which is more than 10 times the maximum

training sequence length.

We train recurrent language models for sequence completion with maximum likelihood, using the loss

L(pθ,y,x) = −
∑T
t=1 log pθ(yt | y<t,x), In practice we run the full completion (x,y) through a recurrent

model and zero the loss for the first k tokens, so that the first k steps correspond to learning a gθ that

encodes x. In each experiment, we report the mean and standard deviation of metrics across 10 inde-

pendent initializations. Unless specified otherwise, we report metrics using the test context distribution,

since the train, valid, and randomly generated context distributions had similar results.

We consider recurrent neural networks with hyperbolic tangent activations (tanh-RNN; Elman 1990) and

LSTM units (LSTM-RNN; Hochreiter and Schmidhuber 1997). We perform an initial hyper-parameter

sweep and select the best set of hyper-parameters for each of tanh-RNN and LSTM-RNN based on the

validation perplexities.10 With this best set of hyperparameters, we train each of these models with 10

different initializations. The choice of tanh and LSTM RNNs implies that all of the recurrent language

models that we train are consistent according to Lemma 2. Our LSTM models achieve similar test

perplexity (91.86±0.4, word tokenization) to those reported in previous work (Merity et al. 2018).

8 https://github.com/huggingface/tokenizers
9 https://spacy.io/

10 Refer to Appendix B.1.1 for the hyper-parameter ranges.

34

https://github.com/huggingface/tokenizers
https://spacy.io/

tanh-RNN LSTM-RNN

ancestral 0.00 ± 0.00 0.00 ± 0.00

greedy 12.35 ± 5.18 1.53 ± 1.41
beam-2 1.38 ± 0.95 0.07 ± 0.06
beam-4 0.25 ± 0.19 0.00 ± 0.01

topk-2 0.01 ± 0.01 0.01 ± 0.01
topk-4 0.00 ± 0.00 0.00 ± 0.01
nucleus-0.2 0.06 ± 0.02 0.13 ± 0.15
nucleus-0.4 0.04 ± 0.02 0.02 ± 0.01

consistent topk-2 0.00 ± 0.00 0.00 ± 0.01
consistent topk-4 0.00 ± 0.00 0.00 ± 0.00
consistent nucleus-0.2 0.04 ± 0.02 0.01 ± 0.01
consistent nucleus-0.4 0.02 ± 0.02 0.01 ± 0.01

Table 5: Non-termination (nontermL (%)) of de-
coded sequences using ancestral sampling, incom-
plete, and consistent decoding methods.

ST ε nontermL(%) perplexity

ta
n
h
-R

N
N ! 10−2 00.00 ± 0.00 229.09 ± 9.2

! 10−3 00.00 ± 0.00 191.63 ± 1.4

! 10−4 00.02 ± 0.02 188.36 ± 2.2
7 – 12.35 ± 5.20 186.44 ± 1.4

L
S
T

M

! 10−2 0.00 ± 0.00 219.71 ± 9.2

! 10−3 0.00 ± 0.00 186.04 ± 1.6

! 10−4 0.18 ± 0.35 183.57 ± 2.3
7 – 1.48 ± 1.43 178.19 ± 1.3

Table 6: Non-termination of greedy-decoded se-
quences and test perplexity for STRLMs.

Additionally, we train self-terminating tanh-RNN and LSTM-RNN variants (Definition 16) at various

values of ε, which controls a lower bound on the termination probability at each step. We use σ(x) =

(1− ε) · sigmoid(x). We use the hyper-parameters selected in the preceding grid search.

Experiment 1: Inconsistency occurs in practice. In this experiment, we demonstrate evidence

of inconsistency with incomplete decoding methods. Table 5 shows non-termination for the recurrent

language models using various decoding algorithms. Decoding with ancestral sampling always resulted

in sequences that terminated within L steps, since the induced distribution is the same as that of

the consistent model. On the other hand, the non-zero non-termination for the incomplete decoding

algorithms suggests inconsistency, providing evidence for Theorem 1.

Using greedy decoding, roughly 12% of all contexts resulted in a non-terminating continuation with

the tanh-RNN, and roughly 1% with the LSTM-RNN. Nucleus sampling also produced non-terminating

sequences with the tanh-RNN (0.06%, nuc-0.2) and LSTM-RNN (0.13%, nuc-0.2). Top-k sampling yielded

a small number of non-terminating samples. In general, non-termination approaches zero as k and µ

increase, since 〈eos〉 has a lower chance of being excluded. Our finding that non-termination occurs at

low settings of µ and k is relevant in practice, since low settings (e.g. µ ∈ {0.1, 0.3}) have been shown to

receive substantially better human evaluation scores in open-ended generation compared to high settings

(e.g. µ ∈ {0.7, 0.9}) (Zhang et al. 2020).

Beam search produced non-terminating sequences with both the tanh-RNN and LSTM-RNN models.

This means that 〈eos〉 was outside of the top tokens (determined by the beam width) considered at each

step, since in our experiments we terminated the beam search when a single beam prefix contained 〈eos〉.

Larger beam widths reduce or eliminate non-termination, similar to increasing k or µ.

35

Fig. 13: Ground-truth and greedy-decoded contin-
uation lengths from vanilla and self-terminating
LSTMs (Wikitext-2).

Experiment 2: Fixing the inconsistency. Ta-

ble 5 shows that consistent nucleus and top-k sam-

pling resulted in only terminating sequences, ex-

cept for a few cases that we attribute to the finite

limit L used to measure the non-termination ra-

tio. Consistent nucleus paired with tanh-RNN did

not reduce nontermL as much as when it was

paired with LSTM-RNN. Example continuations

are shown in Table 7. On prefixes that led to non-

termination with the baseline method, the quality

tends to improve with the consistent variant since

the continuation now terminates. Note that since the model’s non-〈eos〉 token probabilities at each step

are only modified by a multiplicative constant, the sampling process can still enter a repetitive cycle

(e.g., when the constant is close to 1), though it is guaranteed to terminate.

As seen in Table 6, the self-terminating recurrent language models are consistent with respect to greedy

decoding, at the expense of perplexity compared to the vanilla model. The value of ε from Definition

16, which controls a lower-bound on termination probability at each step, influences both nontermL

and perplexity. When ε is too large (ε = 10−2), perplexity degrades. When ε is too small (ε = 10−4),

the lower-bound grows slowly, so 〈eos〉 is not guaranteed to be top-ranked within L steps, resulting in

a positive nontermL. An ε of 10−3 balanced consistency and language modeling quality, with a zero

non-termination ratio and perplexity within 8 points of the baseline.

As shown in Figure 13, the self-terminating model matches the data length distribution better than the

baseline. Example decoded sequences are shown in Table 7. For prefixes that led to non-termination with

the baseline, the self-terminating models yields finite sequences with reasonable quality. The examples

suggest that some cases of degenerate repetition (§5.2) are attributed to inconsistency.

nontermL (%) perplexity

GPT2-117M 37.91 20.92
GPT2-117M ST 00.00 27.25

Table 8: Greedy non-termination for GPT2 the self-
terminating variant (ST).

Experiment 3: Inconsistency in a large-scale

transformer. We perform a final experiment with

GPT-2 117M (Radford et al. 2018), a transformer

language model with a byte-level BPE vocabulary

of 50k tokens, pre-trained with maximum likeli-

hood on WebText, a dataset of scraped web pages (refer to Radford et al. (2018) for details). We

fine-tune GPT-2 on the Wikitext-103 dataset (Merity et al. 2016), a large-scale collection of Wikipedia

articles with over 100 million words and 260 thousand unique tokens. We split the dataset into sequences

36

Prefix One Direction delivered a performance of “ Kiss You
nucleus ” , and the album ’s second album , “ The X @-@ Files ” , “ The A. ” , “ The Preder ” , “ We ’ve Have You

” , “ I ’ve You Wanna Stay ” , “ The Dream ” , “ The Bide ” , “ My Achievement ”, “ The B. B. ” , “ A Life
” . . .

c-nucleus ” , and “ My Boo ” was released on September 29 , 2010 . 〈eos〉
Prefix Boulter starred in two films in 2008 ,
nucleus and the band ’s music , and “ The Rise of Monkey ” , “ The One With the Way ” , “ The “ Always ” , ” “

Always Your ” , “ The Wift ” , “ The Baste ” , “ The Special With ” , “ The Way ” , “ The Special With
You ” . . .

c-nucleus and the latter was released in the United States . 〈eos〉
Prefix This period of unhappiness was the making of
Baseline the “ most important ” of the “ mad ” , and the “ “ most important ” of the ” “ ” , “ the most important ” ,

and the “ devil ” , “ The ” , “ The One ” , “ The One ” , “ The One ” , “ The One ” , “ The One ” , “ The
One ” , “ The One ” , “ The One ” , “ The One ” , “ The One ” , “ The One ” , “ The One ” , “ The One ”
, “ The One ” . . .

STRLM the first commandment of the poem . 〈eos〉
Prefix Du Fu ’s mother died shortly after he was
Baseline a member of the Order of the Order of the Order of the Order of the Order of the Order of the Order of the

Order of the Order of the Republic of the Republic of the Republic of the Republic of the Republic of . . .
STRLM a member of the Order of the British Empire . 〈eos〉

Table 7: Continuations with consistent nucleus sampling (µ = 0.2) and self-terminating LSTM (ε = 10−3).

according to the dataset’s newline boundaries, then split each sequence into a context x and continuation

y, resulting in a dataset of (x,y) pairs. Each continuation ends in an 〈eos〉 token. We use a context size

of k = 10 tokens, and discard sequences that are length k or shorter. The resulting dataset contains

874,556 training, 1,896 validation, and 2,162 test pairs.

Fig. 14: Ground-truth and greedy-decoded contin-
uation lengths from baseline and self-terminating
GPT-2 117M (Wikitext-103).

We fine-tune the pre-trained GPT-2 model using

maximum likelihood for 400k steps, and select the

model state with the lowest validation perplexity

(evaluated every 5k steps). Each training batch

contains a maximum of 1024 total tokens. We use

the implementation and default hyper-parameters

from the transformers library (Wolf et al. 2019).

We fine-tune the self-terminating GPT-2 mod-

els in a similar manner, starting from the pre-

trained GPT-2 model and using the same hyper-

parameters.

Each model is evaluated using greedy decoding with a maximum sequence length of 500, which was

selected so that each decoded validation batch could fit in GPU memory. The non-termination rate

(nontermL) also uses L = 500, which is more strict than the limit used in the preceding experiments,

yet still yields large differences between generations and the ground truth (e.g. Figure 14).

37

Table 8 shows non-termination and perplexity of the baseline and self-terminating GPT-2 models. The

self-terminating variant prevents non-termination, at the cost of perplexity. The model here uses ε =

2.5×10−3, which we selected after observing that at higher values of ε, e.g. 1.0×10−3, the self-terminating

model generated sequences longer than the limit used to determine termination (500). Figure 14 shows

the length distributions of the baseline GPT-2 continuations and those of the self-terminating GPT-2.

The GPT-2 117M model generates many sequences at or near the maximum sequence length (500),

unlike the ground-truth data. Introducing self-termination shifts the mass towards shorter sequences,

whose lengths are also present in the ground-truth data, though it does not match the ground-truth

length distribution as well as the self-terminating LSTM. The self-terminating GPT-2 would also place

〈eos〉 midway through a sentence, which we did not observe with the LSTM models.

6.3 Discussion

In this section, we analyzed non-termination through the notion of sequence distribution consistency.

We discovered a discrepancy between the model’s sequence distribution and the distribution induced by

a decoding algorithm: in practice, the model is consistent, yet the induced distribution is inconsistent.

We demonstrated how inconsistency can be prevented by changing either the decoding algorithm or the

model, and confirmed that empirical inconsistency occurs in practice.

A drawback of our proposed methods is that they are specifically designed for the inconsistency problem.

Moreover, when applied to GPT-2, the self-terminating layer led to a mismatched length distribution and

odd behavior such as placing 〈eos〉 in the middle of a sentence, suggesting that there is room for further

improving decoding algorithms or model parameterizations. Another approach is to address inconsistency

in the learning phase, as the lack of decoding during maximum-likelihood training may be a cause of

inconsistency.

38

7 Learning: Unlikelihood

In this section, we investigate how varying the learning algorithm can impact text degeneration. Reducing

repetition will be our motivation, but we develop a generic learning method that can also improve unigram

distribution mismatch and will prove useful later for reducing logical incoherence (§8).

As we discussed in (§5), model-generated text in open-ended applications such as language modeling

or dialogue has been observed to contain token, phrase, and sentence level repetition that does not

resemble the model’s training corpus. Moreover, generations are often dull, meaning that high frequency

tokens (e.g. the, of, how) are used too often and interesting content words are used too rarely (Dinan

et al. 2019a; Holtzman et al. 2020), which we formalized as a unigram distribution mismatch (§5.4).

Repetition and dullness are often addressed by using nucleus sampling (Definition 8, Holtzman et al.

(2020)) rather than using a decoding algorithm that approximates the argmax sequence (Definition 5),

or by blocking repeating tokens during beam search. However, avoiding particular decoding algorithms

or resorting to heuristics ignores the core issue: some of the model’s underlying sequence probabilities

are incorrect.

Several hypotheses for why neural text is degenerate have been posited, including degeneration being (i)

a by-product of the model architecture, e.g. the transformer architecture preferring repeats (Holtzman

et al. 2020), (ii) an intrinsic property of human language (Holtzman et al. 2020) rather than a modeling

deficiency, or that (iii) a training objective relying on fixed corpora cannot take into account the real

goal of using the language (Choi 2018). In this section we show that a primary factor is the use of the

likelihood objective itself, as we demonstrate that degeneration is alleviated if we replace the likelihood

objective with our proposal.

While low perplexity in the limit should lead to predicting the correct next target word, we hypothesize

that in practice there are at least two flaws of the likelihood objective which contribute to text degen-

eration: (i) it uses only positive supervision, relying solely on normalization to decrease probability; (ii)

it only uses ground-truth sequences, and in particular does not train on decoded sequences. The first

issue means that maximum-likelihood does not distinguish between errors – such as predicting a syn-

onym versus a repeating token – and does not allow for explictly penalizing known biases. The second

issue means that properties that are present in sequences sampled from the distribution induced by the

model and decoding algorithm but not present in the training data, such as excessive repetition, are not

encountered during likelihood training.

In this section, we introduce unlikelihood training, a general framework for incorporating negative su-

pervision into sequence model training, which alleviates the two aforementioned issues. It combines two

39

types of updates: a likelihood update on the true target tokens so that they are assigned high probability,

and an unlikelihood update on negative candidate tokens that are assigned too high of a probability. We

show how to construct negative candidates for next-token distributions – called token-level unlikelihood,

for decoded sequences – called sequence-level unlikelihood, and for sequences from an external dataset –

called external unlikelihood.

We evaluate unlikelihood on text completion and on dialogue modeling. On text completion, both token-

level and sequence-level unlikelihood training are shown to improve metrics that measure repetition and

dullness in generated text, while maintaining performance in other metrics such as perplexity compared to

the maximum likelihood baseline. According to human evaluations, the generations have vastly improved

quality compared to likelihood-trained models when both models use beam search decoding. Moreover,

our approach with beam search also significantly improves over likelihood-trained models using either

beam blocking or nucleus sampling, thus outperforming the current state-of-the-art.

On dialogue modeling, we confirm that unlikelihood can also reduce repetition in the dialogue domain,

and show that unlikelihood can be used to address unigram distribution mismatch. Unlikelihood opens

up many possibilities for incorporating negative supervision into sequence model training; later in the

thesis (§8), we show how it can be used to reduce logical incoherence.

7.1 Method

We will introduce the general unlikelihood objective, then consider special cases that correspond to

different training settings and applications.

The key idea behind unlikelihood training is decreasing the model’s probability of certain tokens at each

timestep, called negative candidates Ct, using the following unlikelihood loss,

LUL(pθ, C1:T ,x,y) = −
T∑
t=1

∑
yc∈Ct

β(yc) log (1− pθ(yc|y<t,x)) , (23)

where Ct ⊆ V is a subset of the vocabulary, β(yc) is a candidate-dependent scale that controls how

much the candidate token should be penalized, C1:T = {C1, . . . , CT }, and T = |y|. The unlikelihood loss

decreases as the model assigns smaller probability to each negative candidate.

Unlikelihood training then consists of mixing the likelihood and unlikelihood losses,

LULE(pθ, C1:T ,x,y,y∗) = LMLE(pθ,x,y∗) + αLUL(pθ,x,y), (24)

40

where α ∈ R≥0 is a scaling hyper-parameter. The likelihood term LMLE tries to model the overall

sequence distribution through increasing the probability of the ground truth continuation y∗. With

an autoregressive model, this corresponds to increasing the probability of the ground-truth next-token

in each conditional distribution pθ(y|y∗<t,x). The unlikelihood term LUL corrects for known biases by

decreasing the probability of negative candidate tokens.

We now introduce three training settings for unlikelihood, which amount to different choices of the

sequence y to which we apply the unlikelihood loss (Equation 24). After, we introduce different candidate

choices (Ct) and token-dependent weights (β) that yield applications of unlikelihood training.

Token-level unlikelihood. When y is the ground-truth sequence y∗, we call the resulting objective

token-level unlikelihood since it operates on the same next-token distributions as MLE:

LULE-token(pθ, C1:T ,x,y∗,y∗), (25)

where each time-step’s loss is,

LtULE-token = − log pθ(y
∗
t |y∗<t,x)− α ·

∑
yc∈Ct

β(yc) log (1− pθ(yc|y∗<t,x)) . (26)

Sequence-level unlikelihood. When y is a decoded sequence, ŷ ∼ F(pθ,x), we call the resulting

objective sequence-level unlikelihood,

LULE-seq(pθ, C1:T ,x, ŷ,y∗). (27)

The candidates are designed to penalize unwanted properties of the decoded sequences (e.g. repetition),

as we will discuss below (§7.1.1).

External unlikelihood. Unlikelihood can also be applied to sequences from an external dataset. We

assume access to two data collections,

D+ = {(x,y+)}, D− = {(x,y−)}. (28)

Intuitively, D+ represents behavior that we want to encourage, while D− contains behavior that we want

to discourage. Applying likelihood to y+ and unlikelihood to y− yields external unlikelihood,

LULE-ext(pθ, C1:T ,x,y
−,y+). (29)

41

Fig. 15: Per-step unlikelihood losses induced by candidate choices (C1:T) and token-dependent weights
(β(yc)) using sequence-level unlikelihood (LULE-seq). Each row shows a decoded continuation ŷ. Sequence-
level candidates determine whether to apply an unlikelihood loss (i.e. “penalize”) at each step by setting
Ct to either ∅ (no loss) or {yt} (loss). Darker values indicate larger unlikelihood losses for a fixed value of
(1−pθ(yt|y<t,x)). Crandom

1:T candidates penalize a random subset of timesteps. Crepeat
1:T candidates penalize

timesteps which are part of a repeating n-gram (here n = 3). Cidentity
1:T penalizes all timesteps, and β(yc)

scales the penalty. The final row shows a scaling based on unigram frequency (Equation 34); the dark
cells imply that A,B,C are over-produced by the model, especially A and C.

There is a raft of recent large-scale, high quality data that can be massaged into this form, from natural

language inference (NLI) tasks (Bowman et al. 2015; Williams et al. 2018) to commonsense reasoning

tasks (Zellers et al. 2019; Qin et al. 2019). Later (§8), we develop a dataset of this form and use it for

reducing logical incoherence with unlikelihood training.

7.1.1 Applications. The choice of negative candidates (Ct) and token-dependent weights (β(yc))

influence which behaviors are penalized. Figure 15 summarizes the following discussion.

Unspecified behavior. The simplest form of unlikelihood does not specify a behavior to penalize. In this

case, we use sequence-level unlikelihood to randomly penalize a subset of each decoded sequence,

Crandom
t =


{xt} if zt = 1

∅ if zt = 0,

(30)

where zt ∼ Bernoulli(ppenalize), and ppenalize ∈ [0, 1] is a hyperparameter. Intuitively, these candidates

treat the model’s generations as problematic, thus penalizing random timesteps in each generation.

Repetition. For reducing degenerate repetition, we propose candidates for token-level and sequence-level

unlikelihood. For token-level unlikelihood, we use the preceding context tokens,

Ccontext
t = {y1, . . . , yt−1} \ {yt}. (31)

42

Intuitively, these candidates make incorrect repeating tokens less likely, since repetition amounts to gen-

erating a token from the preceding context. Crucially, we never include the ground-truth token yt.

For sequence-level unlikelihood, we set the decoded token yt to be the single negative candidate for step

t if it is part of an n-gram that already appeared in y<t,

Crepeat
t =


{yt} yt ∈ repeat n-gram

∅ otherwise.

(32)

In summary, to reduce repetition we propose LUL-token(pθ, Ccontext
1:T ,x,y∗,y∗) and LUL-seq(Crepeat

1:T ,x, ŷ,y∗).

The former can be used for training from scratch, while the latter is used for fine-tuning a model since

decoding ŷ is computationally expensive.

Unigram distribution mismatch. Neural sequence models trained with maximum-likelihood suffer

from unigram distribution mismatch, meaning they tend to produce high frequency tokens too often

and low frequency tokens too rarely, where frequency is defined by the human token distribution (see

§5.4). We address this with unlikelihood by penalizing tokens according to the mismatch between the

model and ground-truth unigram distributions. Specifically, we first maintain an empirical estimate of

the model’s unigram distribution pθ(yt) and the ground-truth distribution p∗(yt),

pθ(y) ≈

∑N
i=1

∑|ŷ(i)|
t=1 I

[
ŷ

(i)
t = y

]
∑N
i=1 |ŷ(i)|

, p∗(y) ≈

∑N
i=1

∑|y(i)|
t=1 I

[
y

(i)
t = y

]
∑N
i=1 |y(i)|

, (33)

where {x(i),y(i)}Ni=1 is a subset of training data (e.g. the preceding 256 batches), and ŷ(i) ∼ F(pθ,x
(i)).

We wish to push down the probability of over-produced tokens, i.e. when pθ(yt) > p∗(yt). Each step’s

candidate is thus the current token, Cidentity
t = {yt}, and each token’s unlikelihood loss is scaled according

to the mismatch between the approximated model and human distributions,

β(yc) = pθ(yc) log

(
pθ(yc)

p∗(yc)

)
. (34)

The unlikelihood loss for a token yc is non-zero when the token occurs more often in the model’s estimated

unigram distribution. In summary, the resulting loss is LULE-seq(pθ, Cidentity
1:T ,x, ŷ,y∗), where ŷ ∼ F(pθ,x)

is a model-generated sequence.

7.1.2 Gradient analysis. To understand the behavior of unlikelihood compared to standard likeli-

hood training, we analyze the gradient of the per-step token-level unlikelihood objective (LtULE-token ,

43

rep4

Prefix ... Lyrically the song has excerpts of different languages including French , Spanish
LMLE , Italian , Spanish , Italian , Spanish , Italian , Spanish , Spanish , Portuguese , Portuguese , Portuguese , Portuguese

, Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Spanish ,
Portuguese , Portuguese , Portuguese , Portuguese , Portuguese . . .

0.744

LULE-token+seq , and German . In the first verse , the protagonist sings about being a “ girl who ’s been in love with someone else
” , while the second verse describes the relationship between the protagonist and her lover . In the third verse , the
protagonist sings . . .

0.063

Prefix ... starboard engines and was going to crash . “ We ’re going in ,”
LMLE he said . “ We ’re going to crash . We ’re going to crash . We ’re going to crash . We ’re going to crash . We ’re going

to crash . We ’re going to crash . We ’re going to crash . We ’re going to . . .
0.787

LULE-token+seq Hood said . “ I ’m going to make sure we ’re going to get back to the water . ” The order to abandon ship was given
by Admiral Beatty , who ordered the remaining two battlecruisers to turn away . At 18 : 25 , Hood turned his . . .

0.000

Prefix ... career - high 27 points on 8 - for - 11 shooting with three rebounds
LMLE and two assists . On January 3 , 2012 , he was named to the 2012 – 13 All - Atlantic 10 first team . On February 3 ,

2012 , he was named to the Atlantic 10 first team . On February 5 , 2012 , he was named . . .
0.277

LULE-token+seq and a career - high 7 assists against the Minnesota Timberwolves . On February 3 , 2012 , he was named to the 2012
All - NBA First Team . On March 7 , 2012 , he was named one of five finalists for the Naismith Award , which is . . .

0.064

Table 9: Example greedy completions showing representative examples of the MLE model’s degenerate
single-token repetition (top), phrase-level repetition (middle), and ‘structural’ repetition (bottom), as
well as the proposed method’s ability to fix these degenerate behaviors.

Equation 26). We assume pθ(yt|y∗<t,x) = softmax(a), and β(yc) = 1. With a single negative candidate,

the (negative) gradient with respect to a ∈ RV is:

∇aL = y∗ −m� p, mi =


(1− α pneg

1−pneg) if i 6= ineg

(1 + α) if i = ineg,

(35)

where y∗ ∈ {0, 1}V is a one-hot ground-truth vector, m ∈ RV , p = pθ(·|y<t,x), and pneg is the probability

of the negative candidate at index ineg.11

This unlikelihood gradient (Equation 35) differs from the likelihood gradient, (y∗ − p), due to the term

m which varies based on the hyper-parameter α and the model’s negative candidate probability, pneg.

At the ground-truth token index i∗, the unlikelihood gradient is positive, increasing the ground-truth

token’s probability with a magnitude that grows with pneg. Conversely, at the negative candidate index

ineg the gradient is negative. At all other token indices i 6∈ {i∗, ineg}, the gradient moves from negative

to positive as pneg increases. For instance, with α = 1.0 the gradient increases the probability of each

token xi when the model assigns high probability to the negative candidate (pneg > 0.5).

7.2 Empirical Evaluation

We evaluate unlikelihood training on text completion and dialogue modeling tasks. For text completion,

we focus on addressing degenerate repetition as it is a major issue in this task (Holtzman et al. 2020). To

this end, we evaluate the effects of using token-level and sequence-level unlikelihood with either repetition

11 See Appendix A.1.2 for the derivation and a generalization to multiple candidates.

44

candidates or random candidates. For dialogue, we evaluate unlikelihood for repetition as well as for

unigram distribution mismatch, which is a key issue in dialogue modeling (Dinan et al. 2019a).

7.2.1 Text completion. We follow a standard language modeling setup from Baevski and Auli (2019),

using a 16-layer transformer language model. We use the Wikitext-103 dataset (Merity et al. 2016), a

large-scale collection of Wikipedia articles containing over 100 million words.12

We train a token-level baseline with LMLE and a token-level unlikelihood model with LULE-token. We then

fine-tune each with sequence-level unlikelihood (LULE-seq) and call these fine-tuned models LULE-seq and

LULE-token+seq, respectively. For token-level unlikelihood we use Ccontext candidates and for sequence-level

unlikelihood we use 4-gram Crepeat candidates unless otherwise noted. Beam-search uses width 10.

Metrics. We use the portion of duplicate n-grams to quantify repetition (repn(y), see Equation 16),

averaged over continuations. repn is zero when the continuation has no repeating n-grams and increases

towards 1.0 as the model repeats. As a token-level metric for repetition, we use the fraction of next-token

predictions that occur in the previous ` tokens (rep-tok/`), defined as:

rep-tok/` =
1

|D|T
∑

x,y∈D

T∑
t=1

I
[
arg max pθ(y|y<t,x) ∈ yt−`−1:t−1

]
. (36)

A predicted token is called a “single-token repeat” when I [·] is 1. Some of these single-token repeats

also occur in the ground-truth sequences, and we thus report a variant which only counts single-token

repeats that are additionally not equal to the ground-truth next-token (wrep-tok/`).

As a rough proxy of a model’s token distribution diversity, we use the number of unique tokens in decoded

continuations (uniq) and in next-token predictions (uniq-tok). For language modeling quality we use

perplexity (ppl), and next-token prediction accuracy (acc).

7.2.1.1 Results. Token-level and sequence-level results on the test set are in Table 10.

Baseline. The baseline model trained with maximum likelihood (LMLE) achieved 25.64 test perplexity,

comparable to a current state-of-the-art system (Baevski and Auli 2019) (24.92). However, the greedy

baseline’s sequence-level repetition (rep4 .442) and single-token repeats (rep-tok .627) far exceed those

in ground-truth text (.006, .487 respectively). The baseline continuations have far fewer unique tokens

than ground-truth text (uniq 11.8k vs 19.8k), with a high rate of frequent tokens (Figure 28).

12 Code and trained models are available at https://github.com/facebookresearch/unlikelihood_training;
implemented with Fairseq (Ott et al. 2019).

45

https://github.com/facebookresearch/unlikelihood_training

Model decoding rep4 uniq ppl acc rep-tok wrep-tokuniq-tok

LMLE
greedy .442 10.8k

25.64 .395 .627 .352 11.8k
beam .523 9.5k

LUL-token
greedy .283 13.2k

26.91 .390 .577 .311 12.7k
beam .336 11.7k

LUL-seq
greedy .137 13.1k

25.42 .399 .609 .335 12.8k
beam .019 18.3k

LUL-token+seq
greedy .058 15.4k

26.72 .395 .559 .293 13.8k
beam .013 19.1k

Human - .006 19.8k - - .487 - 19.8k

Table 10: Token-level objectives and sequence-level fine-tuning (wikitext-103 test set).

Token-level objective. The token-level unlikelihood objective (LUL-token) reduced next-token wrong

repetition (wrep-tok .311 vs. .352) while increasing the number of unique next-tokens (uniq-tok 12.7k vs.

11.8k) compared to the baseline (LMLE). Perplexity and accuracy were similar.

Importantly, the token-level unlikelihood objective yielded substantial improvements in the quality of

decoded sequences. With greedy search, token-level unlikelihood training improved the 4-gram repetition

in continuations by 36% (rep4 .283 vs. .442) while generating roughly 22% more unique tokens than the

baseline (uniq 13.2k vs. 10.8k), and a more favorable rate of infrequent tokens (Figure 28). With beam

search, unlikelihood training showed similar improvements over the baseline.

Sequence-level objective. The sequence-level fine-tuning (LULE-token+seq) yielded further improve-

ments, with a 97% reduction in 4-gram repetitions rep4 .013 vs. .442) from the baseline level (greedy

LMLE), and 77% more unique tokens (uniq 19.1k vs. 10.8k) with beam search.

Candidates rep4 uniq ppl

LMLE .495 9.4k 24.59
Random (0.1) .274 13.1k 24.33
Random (0.5) .234 13.9k 25.57
Random (0.9) .231 13.5k 26.52
Repeat .018 16.8k 24.28

Human .005 18.9k –

Table 11: Fine-tuning LMLE using
sequence-level unlikelihood with the spec-
ified candidates. Metrics computed using
beam search on the wikitext-103 valid set.

Compared to the token-level unlikelihood model (LUL-token)

which was the starting point of fine-tuning, the fine-tuned

model’s repetition substantially improved (rep4 .058 vs.

.283), unique tokens increased (uniq 15.4k vs. 13.2k), and

token-level metrics such as perplexity improved (ppl 26.72

vs. 26.91), despite using only 1,500 updates. The token dis-

tribution also improved, with infrequent tokens produced

more often than the baseline, and frequent tokens ap-

proaching the ground-truth level (Figure 28). Finally, af-

ter sequence-level fine-tuning, beam search out-performed

greedy search.

46

Crowdworkers Experts

Winner Loser Win rate Win rate

LULE-token

beats

LMLE 57%
LULE-seq LMLE *71%
LULE-token+seq LMLE *82%
LULE-token+seq LULE-token *75%
LULE-token+seq LULE-seq 59%

LULE-token+seq beats
LMLE nucleus (p = 0.9) 59% *83%

LULE-token+seq LMLE beam block (4-gram) 60% *74%

Table 12: Human evaluation results. * denotes statistical significance (2-sided binomial test, p < .05).

To visualize how these improvements in metrics translate to generation quality, Table 9 shows greedy

completions that characterize the baseline’s degeneration and LULE-token+seq’s improved behavior.

Random candidates. Table 11 shows results for using sequence-level unlikelihood with random can-

didates (Crandom
t , Equation 30) for fine-tuning the MLE model. Penalizing 10% of the generated tokens

at random led to substantial improvements in repetition compared to the baseline (.274 vs. .495), and

improved perplexity (24.33 vs. 24.59). Penalizing more tokens further reduces repetition, at the cost of

perplexity. As expected, explicitly penalizing repeats yields the lowest repetition (.018). In summary,

unlikelihood improves the MLE model, even without explicitly using repetition to define the negative

candidates.

Human evaluation. We perform a crowdworker evaluation to judge the quality of the generations of our

proposed models compared to each other, the baseline, and two other generation methods. We employ

a pairwise setup: an evaluator is presented with a prefix and shown continuations from two different

models and asked to select which continuation they found more natural. Following Li et al. (2019a),

we filter workers using quality controls and limit the number of annotations that they may complete

(detailed in Welleck et al. (2020)). We also collected limited annotations from other NLP researchers.

These expert annotators were given the same UI as the crowdworkers, and not told about models they

were evaluating, but all annotators were familiar with language models. Prompts are from the Wikitext-

103 test set, and all models use beam search unless otherwise noted. We report the win rates for each

pairwise comparison.

Results are presented in Table 12. We find that all proposed models are preferred over the LMLE baseline,

and that congruent with automatic metrics, win rates improve after adding the sequence-level objective.

The best unlikelihood model also outperforms the baseline used with either nucleus sampling or beam

blocking, with statistical significance according to the expert annotators.

47

7.2.2 Dialogue modeling. In our dialogue experiments, we evaluate unlikelihood for reducing rep-

etition and controlling vocabulary usage (i.e. unigram distribution mismatch), and their downstream

effects on human judgments of dialogue quality.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
ELI5 Label Repeats

22

24

26

28

30

32

PP
L

Hu
m

an
 le

ve
l

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Fig. 16: ELI5: Perplexity vs. label repeats as α
varies in the unlikelihood objective.

Our experiments employ a large pre-trained seq2seq

transformer, which we then fine-tune for particular

tasks as specified.13 Recall from (§3.3.3) that dialogue

generation involves learning a model pθ(y|x), where the

context x = (s1, . . . , sk,u1, . . . ,ut−1) contains contex-

tual sentences (e.g. scenarios, personas, etc.) and the

conversation history, and y = (y1, . . . , yT) is the next

utterance ut.

7.2.2.1 Repetition and copying. We use sequence-level

unlikelihood and experiment with two candidate sets. As in text completion, we first consider penalizing

an output token if it is part of an n-gram which already occurred in the model’s output y<t, called label

repetition. Generative dialogue models are also known to rely too much on copying the given contextual

information or dialogue history contained in x, called context repetition. These two types of repetition

motivate two candidate sets,

Clabel-repeat
t =


{yt} yt ∈ repeat label n-gram

∅ otherwise

, Ccontext-repeat
t =


{yt} yt ∈ repeat context n-gram

∅ otherwise,

where yt is a token in a repeating context n-gram when yt is part of an n-gram that appeared in x.

We measure label repetition with the same repn(y) metric used in text completion, while we measure

context repetition with the fraction of generated n-grams that appear in the context x:

repcontext
n (x,y) =

|n-grams(y) ∩ n-grams(x)|
|n-grams(y)|

.

Results. Table 13 shows results on ConvAI2 persona-based dialogue (Zhang et al. 2018), Wizard of

Wikipedia knowledge-grounded dialogue (Dinan et al. 2019b) and ELI5 long-form question answering

(Fan et al. 2019). The maximum-likelihood baseline exhibits repetition that far exceeds the human (i.e.

ground-truth data) rate, with particularly high context repetition on ConvAI2 (.113) and Wizard of

Wikipedia (.441), and high label repetition on ELI5 (.617).

13 See Appendix B.1.2.

48

ConvAI2 Wizard ELI5

Model PPL F1 Context Label PPL F1 Context Label PPL F1 Context Label

Human - - .0223 .0004 - - .160 .001 - - .009 .010
MLE Baseline 11.4 .199 .1131 .0210 8.3 .368 .441 .014 21.0 .130 .033 .617

UL (Context only) 11.8 .194 .0330 .0069 8.8 .346 .229 .037 21.4 .163 .008 .322
UL (Label only) 11.4 .203 .0984 .0005 8.3 .371 .426 .001 21.4 .183 .015 .055
UL (Context + Label) 11.9 .193 .0352 .0023 8.5 .358 .313 .009 21.8 .184 .009 .078

Table 13: Evaluation on the ConvAI2, Wizard of Wikipedia, and ELI5 tasks, comparing standard likeli-
hood (MLE) with context and label repetition unlikelihood training. MLE exhibits a high level of context
or label repetition compared to humans, with severity and type of repetition depending on the task. Each
repetition type can be decreased depending on which form of unlikelihood is used.

Token frequency classes

Model PPL F1 Freq Med Rare Rarest

Human - - .400 .300 .200 .100
MLE Baseline 11.4 .199 .491 .282 .157 .068

UL, α = 100 11.4 .200 .483 .289 .163 .063
UL, α = 101 11.9 .201 .459 .328 .154 .058
UL, α = 102 12.5 .190 .430 .335 .163 .071
UL, α = 103 14.4 .174 .399 .339 .188 .073

Table 14: Vocabulary control with unlikelihood.

0.37 0.39 0.41 0.43 0.45 0.47 0.49
Frequent words cumulative mass

0.15

0.17

0.19

0.21

Ra
re

 w
or

ds
 c

um
ul

at
iv

e
m

as
s

Baseline

Human

1

10

100

1000

Fig. 17: Vocabulary control as α varies.

In all cases, unlikelihood using context-only candidates dramatically reduces context repetition (and

analogously for label-only candidates), and training with context and label candidates (i.e. Clabel-repeat
t ∪

Ccontext-repeat
t) reduces both types of repetition without a large cost to perplexity. In Figure 16 we study

how the hyperparameter α, which determines the unlikelihood loss’s weight, influences repetition and

perplexity. The hyperparameter α controls repeats smoothly, with only very high values resulting in

increased perplexity.

7.2.2.2 Vocabulary control. We evaluate unlikelihood for reducing the mismatch between model and

human token distributions (Equation 34), which we refer to as vocabulary control. We use the Con-

vAI2 dataset. Starting with a baseline MLE model, we then fine-tune several models using unlikelihood

(Equation 34) at logarithmically interpolated values of α ∈ [1, 1000].

We partition the vocabulary into ‘frequent’, ‘medium’, ‘rare’, and ‘rarest’ using the human unigram

distribution computed with the ConvAI2 training set, corresponding to the sorted token sets whose

cumulative mass accounts for the top 40%, the next 30%, the next 20% and the final 10% of usage,

respectively. We evaluate a model by generating utterances given contexts from the ConvAI2 validation

set, and compute the fraction of tokens within each class.

49

Results. Figure 17 shows how the unigram distribution obtained after unlikelihood training is affected by

the choice of mixing hyperparameter α: it can smoothly transition between the ground-truth distribution

(‘Human’) and the MLE-trained distribution (‘Baseline’). Table 14 compares the MLE baseline with

unlikelihood. The unlikelihood fine-tuning shifts probability mass from the over-represented frequent

words towards under-represented medium and rare words, with the effect strengthening as α increases.

At a small cost to perplexity and F1, unlikelihood reduced the overuse of common tokens by 9 points,

matching the human rate, while improving the production of rare tokens by 3 percentage points.

α = 101 α = 102
0%

25%

50%

75%

100%

W
in

ni
ng

P
er

ce
nt

ag
e

Repetition (ELI5) Vocabulary (ConvAI2)

MLE Baseline

Unlikelihood

Fig. 18: Human evaluation experiments for label un-
likelihood on ELI5 (left), and vocabulary unlikeli-
hood on ConvAI2 for two values of α (right).

Finally, we evaluate both repetition and vocabu-

lary unlikelihood with human judgments. Refer to

(Li et al. 2020) for details on the evaluation setup.

Results are shown in Figure 18, showing statisti-

cally significant improvements in human quality

judgments over the baseline (two-tailed binomial

test, p < 0.01) with both repetition (left) and vo-

cabulary control (right) unlikelihood.

7.3 Discussion

In this section, we investigated neural text degen-

eration through the lens of the learning algorithm.

In text completion and dialogue modeling tasks, we observed that state-of-the art models trained to max-

imize likelihood produce degenerate text characterized by excessive repetition and a mismatched token

distribution. We described unlikelihood training, an approach to training neural language models that

incorporates negative penalties. Unlikelihood training allows for controlled reduction of unwanted prop-

erties in generated sequences by specifying negative candidates and token-dependent weights.

50

8 Data: Dialogue Natural Language Inference

In this section we investigate the issue of logical incoherence (§5.3) in neural text generation, specifically

dialogue modeling. As we saw in Figures 9 and 10, a model may produce statements that logically

contradict its preceding statements. This phenomenon is often known as contextual inconsistency or

logical inconsistency, but we will use the term logical incoherence to avoid confusion with the separate

notion of consistency that we investigated in (§6). Studying logical incoherence requires a way to detect

and quantify logical contradictions, which is difficult to do with automatic metrics, since it requires

understanding logic and commonsense rather than surface-level statistics. In this section we will take a

first step towards doing so, by considering a restricted domain, reducing logical incoherence to a well-

studied problem, and using human evaluation in a scalable way.

We choose the domain of persona-based chit-chat dialogue (Zhang et al. 2018), in which each agent is

given a set of facts {s1, . . . , sk} that describe the agent’s personality (e.g. {i have a dog, i like sushi}),

then produces utterances that reflect its personality (e.g. i’ve always wanted to try the sushi at Tsukiji

market). This domain is suitable for studying logical incoherence, since (a) the personality sentences give

a well-defined set of facts that should not be contradicted (e.g. the agent should not generate i hate sushi),

and (b) the facts are typically simple statements, easing the process of checking contradictions.

We frame logical incoherence in dialogue in terms of natural language inference (NLI) (Dagan et al. 2006;

Maccartney and Manning 2009; Bowman et al. 2015), a well-studied problem that amounts to learning a

mapping between a sentence pair and an entailment category. This framing allows us to improve dialogue

performance and study logical incoherence using methods developed for NLI. Specifically, we create a

dataset, Dialogue NLI, which contains sentence pairs that are drawn from a dialogue domain and labeled

as entailment, neutral, or contradiction. We demonstrate that Dialogue NLI can be used to evaluate a

dialogue model’s incoherence, improve retrieval-based dialogue performance via a separate model, and

improve generative dialogue modeling through external unlikelihood training.

8.1 Method

Our setting is persona-based dialogue generation. Following the notation introduced in (§3.3.3), persona-

based dialogue generation is framed as next-utterance prediction, where a model is given a context

x = (p1, . . . ,pm,u1, . . . ,ut−1) containing sentences p1:m that represent an agent’s persona and the

conversation history u1:t−1, and the output y = (y1, . . . , yT) is the next utterance ut.

A coherence error, or contradiction, occurs when an agent produces an utterance that contradicts one

of its previous utterances. Similarly, a persona coherence error, or persona contradiction, occurs when

51

an agent produces an utterance that contradicts a subset of its persona. A contradiction may be a clear

logical contradiction, e.g. I have a dog vs. I do not have a dog, but in general is less clearly defined. In

addition to logical contradictions, we interpret a coherence error as being two utterances not likely to

be said by the same persona. For instance, “i’m looking forward to going to the basketball game this

weekend!” vs. “i don’t like attending sporting events”, as well as “i’m a lawyer” vs. “i’m a doctor” would

be viewed here as contradictions, although they are not strict logical inconsistencies. Similarly, a persona

coherence error is interpreted here as an utterance which is not likely to be said given a persona described

by a given set of persona sentences, in addition to logical contradictions. Despite these distinctions, we

will informally refer to the issue of producing coherence errors as logical incoherence.

Natural Language Inference (NLI) assumes a dataset D = {(s1, s2)i, yi}Ni=1 which associates an input

pair (s1, s2) to one of three classes y ∈ {entailment,neutral, contradiction}. Each input item sj comes

from an input space Sj , which in typical NLI tasks is the space of natural language sentences, i.e. sj is

a sequence of words (w1, . . . , wT) where each word wk is from a vocabulary V.

The input (s1, s2) are referred to as the premise and hypothesis, respectively, and each label is interpreted

as meaning the premise entails the hypothesis, the premise is neutral with respect to the hypothesis,

or the premise contradicts the hypothesis. The problem is to learn a function fNLI(s1, s2) → {E,N,C}

which generalizes to new input pairs.

Identifying utterances which contradict previous utterances or an agent’s persona can be reduced to

natural language inference by assuming that contradictions are contained in a sentence pair. That is,

given a persona PA = {pA1 , . . . ,pAm} for agent A and a length-T dialogue uA1 ,u
B
2 , ...u

A
T−1,u

B
T , it is

assumed that a dialogue contradiction for agent A is contained in an utterance pair (uAi ,u
A
j), and a

persona contradiction is contained in a pair (uAi ,p
A
k). Similarly, we assume that entailments and neutral

interactions are contained in sentence pairs. We do not consider relationships which require more than

two sentences to express. As we will detail below, under these assumptions we can use a natural language

inference model fNLI to identify entailing, neutral, or contradicting utterances.

8.1.1 Dialogue NLI dataset. The Dialogue NLI dataset consists of sentence pairs labeled as entail-

ment (E), neutral (N), or contradiction (C). The Dialogue NLI dataset consists of (ui,pj) and (pi,pj)

pairs from the Persona-Chat dataset (Zhang et al. 2018), but the dataset collection process is applicable

to other persona-based dialogue datasets.

In order to determine labels for our dataset, we require human annotation of the utterances and persona

sentences in Persona-Chat, as the original dataset does not contain this information. We perform such

annotation by first associating a human-labeled triple (e1, r, e2) with each persona sentence, and a subset

52

Triple Premise Hypothesis Triple Label

(i, like activity, chess) i listen to a bit of
everything . it helps
me focus for my chess
tournaments .

i like to play chess . (i, like activity, chess) E

- how are you today? i drink espresso . (i, like drink, espresso) N

(i, like goto, spain) i love spain so much ,
i been there 6 times .

i think i will retire in
a few years .

(i, want do, retire) N

(i, have vehicle, car) my vehicle is older
model car .

i have pets . (i, have pet, pets) N

(i, dislike, cooking) i really do not en-
joy preparing food
for myself .

i like to cook with
food i grow in my
garden .

(i, like activity, cooking) C

(i, physical attribute, short) height is missing
from my stature .

i am 7 foot tall . (i, physical attribute, tall) C

(i, have family, 3 sister) i have a brother and
3 sisters .

i have a brother and
four sisters .

(i, have family, 4 sister) C

Table 15: Examples from the Dialogue NLI validation set.

of all the utterances, detailed detailed below. Each triple contains the main fact conveyed by a persona

sentence, such as (i, have pet, dog) for the persona sentence I have a pet dog, or a fact mentioned in

an utterance, such as No, but my dog sometimes does.

Fig. 19: Relating triples, persona sentences, and utter-
ances to derive annotated sentence pairs. Shown here
is a “relation swap” contradiction.

Persona sentences and utterances are grouped

by their triple (e.g. see Figure 19), and pairs

(u,p) and (p,p) are defined as entailment, neu-

tral, or contradiction based on their triple ac-

cording to the criteria below. For examples and

a summary, see Tables 15–16.

Entailment. Each unique pair of sentences that

share the same triple are labeled as entail-

ment.

Neutral. Neutral pairs are obtained with three

different methods. First, a miscellaneous utter-

ance is a (u,p) pair of which u is not associated with any triple. This includes greetings (how are you

today?) and sentences unrelated to a persona sentence (the weather is ok today), so such utterances are

assumed to be neutral with respect to persona sentences.

The second method, persona pairing, takes advantage of the fact that each ground-truth persona is

typically neither redundant nor contradictory. A persona sentence pair (p,p′) is first selected from a

53

Train Valid Test Test-gold

Data-type Label (u, p) (p, p) (u, p) (p, p) (u, p) (p, p) (u, p) (p, p)
Matching Triple E 43,000 57,000 5,000 500 4,500 900 3,712 615
Misc. Utterance N 50,000 - 3,350 - 3,000 - 2,282 -
Persona Pairing N 20,000 10,000 2,000 - 2,000 - 1,466 -
Relation Swap N 20,000 - 150 - 400 - 260 -
Relation Swap C 19,116 2,600 85 14 422 50 279 44
Entity Swap C 47,194 31,200 4,069 832 3,400 828 2,246 591
Numerics C 10,000 - 500 - 1,000 - 881 -
Dialogue NLI Overall 310,110 16,500 16,500 12,376

Table 16: Dialogue NLI dataset statistics. (u, p) and (p, p) refer to (utterance, persona sentence) and
(persona sentence, persona sentence) pairs, respectively. Numerics consist of (u, u) (u, p) and (p, p) pairs.

persona if p and p′ do not share the same triple. Then each sentence associated with the same triple as

p is paired with each sentence associated with the same triple as p′.

Lastly, we specify relation swaps (r, r′) for certain relations (see Appendix B.1.3.3) whose triples are

assumed to represent independent facts, such as have vehicle and have pet. A sentence pair, whose

first sentence is associated with a triple (·, r, ·) and whose second sentence has triple (·, r′, ·), is labeled

as neutral. See Table 15 for an example.

Contradiction. We obtain contradictions using three methods. See Figure 19 for an example. First, the

relation swap method is used by specifying contradicting relation pairs (r, r′) (see Appendix B.1.3.3),

such as (like activity, dislike), then pairing each sentence associated with the triple (e1, r, e2) with

each sentence associated with (e1, r
′, e2).

Similarly, an entity swap consists of specifying relations, e.g., physical attribute, that would yield a

contradiction when the value of e2 is changed to a different value e′2, e.g., short→ tall (see Appendix

B.1.3.4). Sentences associated with (e1, r, e2) are paired with sentences associated with (e1, r, e
′
2).

Finally, a numeric contradiction is obtained by first selecting a sentence which contains a number that

appears in the associated triple (see Table 15). A contradicting sentence is generated by replacing the sen-

tence’s numeric surface form with a different randomly sampled integer in its numeric or text form.

Triple annotation. Each persona sentence is annotated with a triple (e1, r, e2) using an Amazon Me-

chanical Turk task. We first define a schema consisting of 〈category〉〈relation〉〈category〉 rules, such

as 〈person〉have pet〈animal〉, where the relation comes from a fixed set of relation types R, listed in

Appendix B.1.3.2. Given a sentence, the annotator selects a relation r from a drop-down populated with

the values in R. The annotator then selects the categories and values of the entities e1 and e2 using

drop-downs that are populated based on the schema rules. An optional drop-down contains numeric

values for annotating entity quantities (e.g., 3 brothers). If selected, the numeric value is concatenated

54

to the front of the entity value. The annotator can alternatively input an out-of-schema entity value in a

text-box. Using this method, each of the 10,832 persona sentences is annotated with a triple (e1, r, e2),

where r ∈ R, e1 ∈ E1, and e2 ∈ E2. Here E1 is the set of all annotated e1 from the drop-downs or the

text-box, and E2 is similarly defined.

Finally, utterances are associated with a triple as follows. Let p be a persona sentence with triple

(e1, r, e2). We start with all utterances, U , from agents that have p in their persona. An utterance u ∈ U

is then associated with the triple (e1, r, e2) and persona sentence p when e2 is a sub-string of u, or word

similarity14 sim(u,p) ≥ τ is suitably large.

Statistics. Table 16 summarizes the dataset and its underlying data types. The label, triple, and data

type are supplied as annotations for each sentence pair. We additionally create a gold-standard test

set (test-gold) by crowdsourcing three label annotations for each example in the test set. We keep each

test example for which two or more annotators agreed with its dataset label. All sentences in Dialogue

NLI were generated by humans during the crowdsourced dialogue collection process of the Persona-Chat

dataset (Zhang et al. 2018). The resulting sentence pairs are thus drawn from a natural dialogue domain

that differs from existing NLI datasets, which are either drawn from different domains such as image

captions or created using synthetic templates (Bowman et al. 2015; Demszky et al. 2018; Marelli et al.

2014; Poliak et al. 2018a; Wang et al. 2018; Williams et al. 2018).

8.1.2 Logical incoherence in dialogue. We now return to our primary focus: using the dialogue task

to study logical incoherence and how we can alleviate it. To this end, we propose methods that use Dia-

logue NLI to reduce dialogue incoherence in two different model classes: (a) retrieval-based models, and

(b) autoregressive models, which are the focus of this thesis. In the experiments, we demonstrate how to

use Dialogue NLI to quantify logical incoherence, and empirically evaluate the proposed methods.

Retrieval-based models. Given a persona P = {p1, . . . ,pm}, previous utterances u≤t, and a set of can-

didate next-utterances U , a retrieval-based dialogue model outputs a ranked list of scores s1, s2, . . . , s|U |

corresponding to next-utterance candidates u1,u2, ...,u|U |. Thus a retrieval-based dialogue model is a

function fdialogue(u≤t, P, U) → (s1, s2, . . . , s|U |). We propose to use an NLI model to re-rank candidate

utterances based on whether the candidate is predicted to contradict a persona sentence. If the NLI

model predicts that a candidate contradicts a persona sentence, the candidate’s score is penalized, with

the penalty weighted by the NLI model’s confidence15 scaled by a constant.

14 We use cosine similarity between the mean of TF-IDF weighted GloVe (Pennington et al. 2014) word vectors
and set τ = 0.9.

15 In our experiments, the softmax output corresponding to the contradiction class from Dialogue NLI.

55

Specifically, a Dialogue NLI model fNLI(u,p) → {E,N,C} is run on each (ui,pj) pair, predicting a

label yi,j ∈ {E,N,C} with confidence ci,j . Each candidate receives a contradiction score:

scontradict
i =


0, if yi,j 6= C ∀ pj ∈ P

max
j:yi,j=C

ci,j , otherwise.

That is, if the candidate ui does not contradict any persona sentence pj according to the NLI model,

scontradict
i is zero. If ui contradicts one or more persona sentences, scontradict

i is the highest confidence,

ci,j , out of the contradicting (ui,pj).
16 New candidate scores are then computed as

sre-rank
i = si − λ(s1 − sk)scontradict

i (37)

and the candidates are sorted according to sre-rank. Hyper-parameters λ and k control the NLI model’s

influence in re-ranking. For example, if the top candidate has a contradiction score of 1.0, then with

λ = 1, it will be moved to the k’th position in the ranking. λ = 0 corresponds to no re-ranking.

Autoregressive generative models. We propose to use external unlikelihood training (§7.1) to ‘push

down’ the probability of generating incoherent responses. We use Dialogue NLI to form collections

D+ = {(x(i),y(i)+)} D− = {(x(i),y(i)−)},

where D+ is coherent behavior, i.e. neutral or entailing data, and D− is incoherent behavior, i.e. contra-

dictions. Standard likelihood training can then be performed on coherent data D+, while the unlikelihood

loss is applied to D−. Recalling (Equation 29), this yields the objective,

LULE-ext(pθ, Cidentity
1:T ,x,y−,y+) = LMLE(pθ,x,y

+) + αLULE(Cidentity
1:T ,x,y−), (38)

where we penalize each token in the target (Cidentity
t = {y−t }). Hence, the loss makes generating the

contradicting sentences less likely. We consider two setups for D+ and D− which we describe in the

empirical evaluation (§8.2.3): a two utterance generation task, and a full dialogue generation task.

8.2 Empirical Evaluation

We first evaluate Dialogue NLI as a natural language inference task (8.2.1). Then we show how Dialogue

NLI is used to measure incoherence in retrieval-based dialogue models and evaluate the proposed NLI

re-ranking with automatic metrics and human judgements (8.2.2). Finally, we measure incoherence in a

16 Future work could consider filtering previous-utterance contradictions (ui,uj) as well.

56

Model Valid Test Test-gold

ESIM 86.31 88.20 92.45
InferSent 85.82 85.68 89.96

InferSent SNLI 47.86 46.36 47.03
InferSent Hyp-only 55.98 57.19 51.52
Most Common Class 33.33 34.54 34.96

ESIM Gold Triples 99.52 99.46 99.69

Table 17: Dialogue NLI results.

Data Type N Accuracy

Matching Triple (p, p) 615 83.58
Matching Triple (u, p) 3,712 91.25
Misc. Utterance 2,282 96.85
Persona Pairing 1,466 94.48
Relation Swap (p, p) 44 79.55
Relation Swap (u, p) 539 80.71
Entity Swap (p, p) 591 93.40
Entity Swap (u, p) 2,246 92.43
Numerics 881 96.25

Table 18: ESIM accuracy by data type (test-gold).

state-of-the-art generative model, and demonstrate how using external unlikelihood along with Dialogue

NLI can substantially reduce incoherence while maintaining language-modeling quality (8.2.3).

8.2.1 Experiment 1: NLI. Many NLI models can be categorized into sentence encoding methods

fMLP(genc(s1), genc(s2)), and attention-based methods of the form fMLP(gattn(s1, s2)) (Lan and Xu 2018).

We thus choose and train representative models of each type which have achieved competitive perfor-

mance on existing NLI benchmark datasets. For the sentence encoding method, we use InferSent (Con-

neau et al. 2017), which encodes a sentence using a bidirectional LSTM followed by max-pooling over the

output states. As the attention-based method we use the enhanced sequential inference model (ESIM,

(Chen et al. 2017a)), which computes an attention score for each word pair. We also report results from

a model trained and evaluated using only the hypothesis sentence (InferSent Hyp-only) (Gururangan

et al. 2018), a model trained on SNLI (Bowman et al. 2015) but evaluated on Dialogue NLI (InferSent

SNLI), and a model that returns the most common class from the Dialogue NLI training set.

Table 17 shows the performance of the two NLI models and three baselines on the Dialogue NLI val-

idation and test sets. The test performance of ESIM (88.2%) and InferSent (85.68%) is similar to the

performance reported on the existing SNLI dataset (88.0% (Chen et al. 2017a) and 85.5% (Conneau

et al. 2017), respectively), while the results on the Dialogue NLI gold test set (92.45%, 89.96%) are

higher. As seen in Table 17, however, an InferSent model trained on SNLI performs poorly when evalu-

ated on the proposed Dialogue NLI (47.03%). This is likely due to a mismatch in sentence distributions

between SNLI, which is derived from image captions, and Dialogue NLI, whose sentences more closely

resemble downstream dialogue applications. The hypothesis-only performance (51.52%) is lower than the

hypothesis-only baseline for SNLI (69.00% (Poliak et al. 2018b)), indicating that information from both

the utterance and persona sentence is necessary to achieve good performance on Dialogue NLI.

ESIM’s reasonably strong performance on Dialogue NLI suggests that the model may be useful in a

downstream task - a claim which we verify in the next experiment. However, there is also room for

57

Data-type Example Predicted Actual

Matching Triple

(p, p)
i am a hopeless bookworm.

Neutral Entail
when i have some spare time i read.

Matching Triple

(u, p)
i am from italy. i love the early mornings.

Neutral Entail
i like getting up bright and early.

Misc. Utterance
i do not understand football or baseball.

Contradict Neutral
i am employed as an engineer.

Persona Pairing
i lift weights every chance i get.

Entail Neutral
i work in a warehouse driving a forklift.

Relation Swap

(p, p)
canines make me shake with fear.

Entail Contradict
i love dogs but hate cats.

Relation Swap

(u, p)
i am heavy into fitness although i am rather large.

Entail Contradict
i do not like exercise or physical activity.

Entity Swap

(p, p)
hawaii is where i reside.

Neutral Contradict
i do not drive because i live in new york.

Entity Swap

(u, p)
tell me it was vegan food please , that is all i eat.

Neutral Contradict
i eat ham.

Numerics
i have two part time jobs.

Neutral Contradict
i have 7 part time jobs.

Table 19: Example ESIM mispredictions by data type on Test Gold.

improvement. In particular, we report the performance of a model which takes the ground-truth triples

as input instead of sentences. As shown in the last row of Table 17, each sentence’s underlying triple

contains sufficient information to achieve near-perfect accuracy (99.69%). We also show ESIM’s accuracy

by data type on test-gold in Table 18, along with example mispredictions in Table 19. The results suggest

that the NLI model could be improved further.

8.2.2 Experiment 2: Logical incoherence in retrieval-based dialogue models. In this and the

following experiments, we will show that logical incoherence happens often in state-of-the-art dialogue

models. First, we focus on retrieval-based dialogue models, demonstrating how to use the Dialogue NLI

dataset to measure incoherence and to evaluate the proposed NLI re-ranking.

Setup. As the retrieval-based dialogue model we train a key-value memory network (Zhang et al. 2018)

on the Persona-Chat dataset, which uses persona sentences and the conversation prefix as context. This

model achieved the best performance on Persona-Chat in Zhang et al. (2018). We train the model using

ParlAI (Miller et al. 2017) on the personachat:self original task, using the hyper-parameters given

for the KVMemnnAgent in the ConvAI2 competition.

Evaluation sets. To measure incoherence, we form evaluation sets which contain next-utterances that

are likely to yield contradictions or entailments between a generated utterance u with one or more of

the agent’s persona sentences {p1, . . . ,pm}. Each evaluation example is formed by first finding a next-

58

utterance ut in the Persona-Chat validation set which has an associated triple (e1, r, e2) of interest,

for instance (i, like music, country). If a sentence in the agent’s persona P has triple (e1, r, e2), we

form the validation example (P,u<t,ut). Each example is associated with candidates U , consisting of

the ground-truth utterance ut, 10 entailment candidates with the same triple as ut, 10 contradicting

candidates with a different triple than that of ut, and 10 random candidates. The dialogue model must

avoid ranking a contradicting candidate highly.

Specifically, suppose the ground-truth next-utterance ut is associated with triple (e1, r, e2), for instance

(i, have pet, dog). Entailment candidates are utterances u from the validation or training sets such

that u is associated with triple (e1, r, e2). Since by construction a sentence in the profile also has triple

(e1, r, e2), these candidates entail a profile sentence. A contradicting candidate is an utterance associated

with a specified contradicting triple (e′1, r
′, e′2), e.g., (i, not have, dog). We construct three evaluation

sets, Haves, Likes, and Attributes using this process.

Metrics. We introduce variants of the ranking metric hits@k, called contradict@k and entail@k. Contra-

dict@k measures the proportion of top-k candidates returned by the model which contradict candidates,

averaged over examples. This measures the propensity of a model to highly rank contradictions. Con-

tradiction@1 is the proportion of coherence errors made by the model. For this metric lower values are

better, in contrast to hits@k. Entail@k measures the proportion of top-k candidates returned by the

model which are entailment candidates, averaged over examples. Entailment candidates share the same

triple as the ground-truth next utterance, so this metric rewards highly ranked candidates that convey

similar meaning and logic to the ground-truth utterance. It is a more permissive version of hits@k.

Results. Table 20 shows results on the three evaluation sets before and after NLI re-ranking (λ =

1.0, k = 10). With the baseline model, logical incoherence appears frequently; for instance a contradicting

next-utterance is top-ranked in more than 30% of the examples in the Haves evaluation set. The

NLI re-ranking improves all three metrics on all the evaluation sets. Dialogue performance improves, as

measured by hits@1. The NLI re-ranking substantially reduces the number of contradicting utterances,

and increases the number of utterances which entail a profile sentence, as seen in the contradict@1 and

entail@1 scores.

To confirm that these improvements align with human judgments of quality, we perform human evalua-

tion, where consistency is judged by human annotators in an interactive persona-based dialogue setting.17

Table 21 shows the human evaluation results. According to human judgments, the baseline model con-

tradicts itself roughly as often as it is logically consistent (0.25 vs. 0.27), further confirming that logical

17 See Appendix B.1.3 for details on the evaluation setup.

59

Haves Likes Attributes

Original Rerank ∆ Original Rerank ∆ Original Rerank ∆
Hits@1 ↑ 30.2 37.3 +26% 16.9 18.7 +11% 35.2 36.4 +3%

Contra@1 ↓ 32.5 8.96 –72% 17.6 4.1 –77% 8.0 5.7 –29%
Entail@1 ↑ 55.2 74.6 +35% 77.9 90.6 +16% 87.5 88.6 +1%

Table 20: Incoherence and effects of NLI re-ranking in a retrieval-based dialogue model.

Overall Score ↑ % Consistent ↑ % Contradiction ↓
Raw Calibrated Raw Calibrated Raw Calibrated

KV-Mem 2.11 (1.12) 2.21 (0.26) 0.24 0.27 (0.07) 0.23 0.25 (0.08)
KV-Mem + NLI 2.34 (1.21) 2.38 (0.26) 0.28 0.35 (0.08) 0.19 0.16 (0.06)

Table 21: Human evaluation results, reported as mean (std. dev).

incoherence is an issue in neural dialogue models. The natural language inference re-ranking improves

all of the metrics, notably the fine-grained consistency score (0.27 vs. 0.35) and contradiction score (0.25

vs. 0.16). The results are consistent with the conclusions drawn using the evaluation sets.

8.2.3 Experiment 3: Logical incoherence in generative dialogue models. We now return to the

model class which is the focus of this thesis, autoregressive generative models. We quantify a state-of-the-

art model’s incoherence on two tasks, and show that unlikelihood training can improve coherence.

For the first task, called two utterance generation, we adapt the Dialogue NLI dataset by using

entailing and neutral training sentence pairs as plausible positive utterances, and contradicting pairs as

negatives. That is, if a pair (s1, s2) from Dialogue NLI has label E or N, the example (x,y) = (s1, s2)

is added to D+, otherwise (label C) it is added to D−. We consider two types of entailment: entailing

sentence pairs that appear together in a dialogue in the original Persona-Chat dataset and are therefore

natural (‘entailment’), and those that only entail via their triple relations (‘triple-entailment’). The

latter are more challenging, noisier targets. Evaluation is performed by measuring the test set perplexity

over the four target label types, where contradictions should have relatively higher perplexity. We also

evaluate a selection accuracy task, where for each test example there are two candidate responses: positive

and negative (contradicting). The candidate response with the lowest perplexity is considered to be the

model’s selection, and we measure the selection success rate.

For the second, full dialogue task, we align Dialogue NLI examples with Persona-Chat dialogues to

provide positive and negative continuations of the dialogue. An example (x,y) consists of a dialogue

history x = {p1, . . . ,pk,u1, . . . ,ut−1} and utterance y = s2, where (s1, s2) is a sentence pair from

Dialogue NLI, and at least one sentence in x has the same relation triple as s1. When the pair (s1, s2) is

labeled as E or N in Dialogue NLI, the example (x,y) is added to D+; otherwise it is added to D−.

60

Selection Accuracy Perplexity

Data + Model Entail Tr-Entail Neutral Entail Tr-Entail Neutral Contradict ConvAI2

MLE Baseline 72% 41% 18% 8.54 17.5 36.7 12.5 11.4
UL (Dialogue NLI) 96% 85% 78% 9.1 26.6 39.4 248.9 11.9

Table 22: Test evaluation on the Dialogue NLI two utterance generation task, comparing standard MLE
training with unlikelihood training (external unlikelihood with Dialogue NLI). Results are partitioned ac-
cording to whether the premise and positive candidate are entailing, triple-entailing, or neutral. Selection
Accuracy measures how often the model assigns lower perplexity to the positive candidate than to the
negative candidate in the pair. The MLE model’s perplexity is lower on contradicting utterances than on
neutral or triple-entailing utterances, showing partial failure at the coherence task. Unlikelihood training
yields large improvements on all coherence metrics, while minimally increasing overall perplexity.

LMLE LUL

Premise Hypothesis PPL PPL

Yes, I love watching baseball and basketball. I do not (C) I love running. 25.5 226.9
like running though. (E) I despise running. 29.9 9.4

Yes, I love watching baseball and basketball. I do like (E) I love running. 26.2 3.1
running though. (C) I despise running. 42.8 247.1

We did too but working in real estate for 12 years . (E) I have been working as a real estate
sucked up a lot of time agent for the past 12 years. 3.9 3.8

(C) We did too but working in real estate
for fifteen years sucked up a lot of time. 3.1 17.6

Table 23: Example perplexities of a baseline maximum likelihood model (LMLE) and an unlikelihood
trained model (LUL) when generating the hypotheses, given the premise. The MLE-trained model
assigns high probability (low perplexity) to contradictory generations, while unlikelihood does not.

We employ a large pre-trained seq2seq transformer as our base model.18 We fine-tune using maximum-

likelihood on next-utterance examples from the ConvAI2 persona-based dialogue dataset (Zhang et al.

2018) as well as examples from D+, and using unlikelihood on examples from D− (Equation 38).

Selection Accuracy (vs. Contradict) Perplexity

Data + Model Triple-Entail Neutral Triple-Entail Neutral Contradict ConvAI2

MLE Baseline 66.5% 36.8% 23.3 45.1 35.9 11.4
UL (Dialogue NLI) 89.0% 69.8% 21.5 40.3 63.5 11.8

Table 24: Test evaluation on the Full Dialogue NLI generation task. External unlikelihood training with
Dialogue NLI improves coherence metrics compared to likelihood (MLE) training. The unlikelihood-
trained model assigns higher probability (lower perplexity) to triple-entailing or neutral candidates than
to contradicting candidates, with higher selection accuracy for coherent labels.

Results. Our baseline model (LMLE) obtains a perplexity of 11.4, in line with state-of-the-art systems on

this task (Lewis et al. 2019). Unfortunately, despite being good on such standard metrics, our baseline

models fail at the coherence task. As seen in Table 22 for the two utterance task, the perplexity of

contradicting utterances (12.5) is on average lower than for neutral (36.7) or triple-entailing utterances

18 See Appendix B.1.3 for pretraining details.

61

(17.5), although it is higher than entailing utterances. We believe this is due to contradicting utterances

having high word overlap with the premise utterance, coupled with an inability to judge incoherence.

Viewed as a selection task between utterances, picking the utterance with the lowest perplexity, this

means the selection rates of non-contradicting utterances are very low, e.g. picking neutral utterances

over contradicting utterances only 18% of the time. Even fully entailing utterances are only picked 73%

of the time. Similar results are found on the full dialogue task as well; see Table 24.

Unlikelihood training brings large improvements in coherence metrics, whilst minimally impacting over-

all dialogue perplexity. After applying unlikelihood, perplexity for contradicting utterances has a clear

signature, with very large average values compared to entailing or neutral utterances, e.g. 248.9 vs. 9.1

for contradict vs. entail on the two utterance task. This converts to corresponding large increases in se-

lection accuracy across all types on both tasks, e.g., an increase from 18% to 78% on neutral statements

on the two utterance task, and from 37.4% to 69.8% on the full dialogue task.

Some example model predictions are given in Figure 23, comparing the MLE baseline and unlikelihood

model perplexities of generating the given hypotheses. The likelihood model cannot differentiate be-

tween contradicting and entailing statements easily, while there are large perplexity differences for the

unlikelihood model in these cases.

8.3 Discussion

In this section, we studied logical incoherence in neural text generation. To do so, we constructed a dataset

called Dialogue NLI which allowed us to measure incoherence on a persona-based dialogue modeling task.

We demonstrated that logical incoherence occurs to a non-trivial degree in both retrieval-based and

generative dialogue models. Even a large, state-of-the-art generative model frequently assigned higher

probabilities to contradicting utterances than to coherent ones. Furthermore, we showed two ways that

Dialogue NLI can be used to improve logical incoherence: (1) by re-ranking via a reduction to natural

language inference; and (2) by penalizing contradictions with unlikelihood training.

62

9 Discussion and Future Directions

In this part of the thesis, we focused on text generation, studying downsides of autoregressive models

trained with maximum-likelihood. We primarily characterized these downsides using three symptoms that

are observed in generated text: non-termination, repetition, and logical incoherence, collectively termed

text degeneration. Our investigations of inconsistency (§6), unlikelihood training (§7), and dialogue NLI

(§8) provide new theory, algorithms, and data for analyzing and measuring text degeneration, as well as

building improved text generators. As with most scientific endeavors, our investigation suggests future

avenues of inquiry.

In terms of inconsistency, future work may seek an understanding of why, or under what conditions,

maximum-likelihood results in a model whose induced distribution is inconsistent under an incomplete

decoding algorithm. This might involve studying the effects of scale, identifying task properties that

correlate with the degree of non-termination, or developing adversarial context distributions that result

in inconsistency. A drawback of our proposed consistent sampling and self-terminating methods is that

they are specifically designed for the consistency problem; thus another future direction is developing

generic model, learning, and inference methods that guarantee consistency.

Unlikelihood training allows for controlled reduction of unwanted properties in generated sequences by

specifying negative candidates and token-dependent weights. Unlikelihood training worked best when the

candidates and weights were designed specifically for a property, such as repetition or token frequency.

This can be seen as a benefit, allowing future exploration of more property-specific penalties that improve

downstream task performance. It can also be seen as a limitation; an appeal to simplicity would strive for

generic learning algorithms that do not require property-specific design choices. One step up in generality

is to directly optimize a task cost – a function which assigns a quality score to (a collection of) sequences.

In unlikelihood training we manually specify behaviors or properties that we do not want in the model’s

generations via negative candidates, whereas in task cost minimization the undesirable behaviors are

implicitly defined by the task cost. Subsequent findings in Welleck and Cho (2020) suggest that text

degeneration can be eliminated as a byproduct of minimizing a task cost, without explicitly specifying

the degenerate properties that we want to eliminate.

More generally, unlikelihood training is part of a larger question of how to teach machine learning al-

gorithms what not to do. Doing so may be crucial for preventing generation models from producing

offensive, biased, or incorrect content (Gehman et al. 2020; Brown et al. 2020). Finally, furthering our

understanding of why repetition occurs in MLE-trained autoregressive models is an important direc-

tion.

63

Our work on Dialogue NLI and its use with external unlikelihood training is a first step towards quan-

tifying and addressing logical incoherence in neural generation models. A key limitation of Dialogue

NLI is that it is specific to the persona-based dialogue generation task (and moreover, specific to the

Persona-Chat dataset). Developing ways to measure and improve logical coherence in general settings is

an interesting area of future work. On the other hand, the external unlikelihood approach is generic, in

the sense that it requires only specifying positive and negative pairs. This opens up many possibilities

for leveraging supervised datasets other than Dialogue NLI to improve text generation, e.g. by correcting

causal or commonsense reasoning errors (Zellers et al. 2019; Qin et al. 2019).

Despite its drawbacks, maximum-likelihood estimation is a simple and scalable method for training

autoregressive language models that is used in many state-of-the-art systems. This latter property, scal-

ability, is likely to be of continued interest as the size of neural sequence models increases (Radford et al.

2018; Brown et al. 2020; Adiwardana et al. 2020; Roller et al. 2020; Lepikhin et al. 2020; Henighan et al.

2020). Although scaling the model has not yet succeeded in eliminating text degeneration, its ultimate

effect on text degeneration might only be seen once even larger models are trained on even larger amounts

of data. Alternatively, it is an open question whether we can characterize scaling effects using smaller,

controlled, environments. Looking ahead, state-of-the-art neural text generators will either be trained

with maximum likelihood, or they will not. Regardless of the outcome, a deeper scientific understanding

of its properties and its potential alternatives will remain valuable into the future.

64

Part III

Non-Monotonic Generation

65

10 Non-Monotonic Generation

In this part of the thesis, we will depart from our preceding investigation into conventional text generation

methods in two ways. First, we will not only consider generating text, but also multisets and tree-

structured objects. Second, we will remove the restriction of a fixed generation order, thus requiring

an alternative to the fixed-order maximum-likelihood objective that we used throughout Part II. Our

investigation is centered around a new learning framework, called non-monotonic generation, that yields

models capable of selecting input-dependent generation orders. This flexibility is natural for set- and tree-

structured objects, which lack an inherent order. For text, the selected orders induce an interpretable

latent structure and let us study whether the canonical left-to-right order is optimal for learning.

Non-monotonic generation is developed from the perspective of imitation learning, where we treat a

generation model as a policy πθ that navigates a state space and is tasked with imitating an oracle π∗

that has knowledge of good actions to take in each state. We will provide background on this imitation

learning perspective (§11), present the non-monotonic generation framework (§12), then adapt and apply

it to generating multisets (§13), parse trees (§14), and text (§15).

11 Background

In this section we provide an overview of the imitation learning view of sequential structured prediction

(Daumé III et al. 2009; Ross et al. 2011; Vlachos et al. 2017). After introducing notation, we will see

how this perspective generalizes maximum-likelihood training. This will provide background for our

subsequent investigation of non-monotonic generation.

In the imitation learning view of sequential structured prediction, a generation model is a policy πθ that

navigates a state space and is tasked with imitating an oracle π∗ that has knowledge of good actions

to take in each state. For example, when viewing standard autoregressive text generation in this way,

the state consists of previously generated tokens along with an input, an action consists of choosing the

next token to generate, and the oracle, which has access to the ground-truth sequence, places probability

mass only on the true next-token.

The policy is trained by sampling states from a roll-in policy, and minimizing a cost at each sampled

state. At first glance, this framework may appear to amount to a change in notation, but varying the

roll-in, oracle, cost, as well as how we define states and actions, can lead to new formulations of sequential

generation. To see this, we first present these components of the framework more precisely.

66

11.1 Imitation Learning for Structured Prediction

Let π(a|s) denote a policy, which is a mapping from a state s ∈ S to a distribution over actions a ∈ A.

A sequential generation involves a trajectory τ = (s0, a1, s1, . . . , aT , sT), obtained by beginning in a start

state s0 ∼ p(s0), taking actions at ∼ π(a|st), and transitioning to new states st+1 ∼ p(s|st, at). The

final generation is extracted from the trajectory, denoted ŷ = g(τ). We will assume there is a ground-

truth generation y, which is formalized using an additional initial state, (s0, s̄0) ∼ p(s0). Continuing

our text generation example above, the initial state distribution is represented by a dataset, meaning

s0, s̄0 is a sampled (x,y) example, each state transition st+1 ∼ p(s|st, at) is deterministic, returning

st+1 = (ŷ<t+1,x) where at = ŷt, and g(τ) returns the generated tokens (ŷ1, . . . , ŷT) that are contained

in sT .

In addition to the learned policy πθ(a|s), the imitation learning framework considers an oracle policy

π∗(a|s̄) and a roll-in policy πin. The oracle policy has access to additional information in its state, s̄, from

which it can derive supervision. In our text generation example, the oracle’s state contains the ground

truth, s̄t = (st,y). The roll-in policy is used to obtain states to train on. In our example, selecting ground-

truth next-tokens (ŷt = y∗t) means the roll-in policy is the oracle policy (πin
∗), while sampling next-tokens

from the learned policy (ŷt ∼ πθ(·|st)) means the roll-in policy is the learned policy (πin
θ).

Ideally, we want to minimize a task cost C(ŷ,y), such as exact match. However, the task cost only

provides a single scalar of supervision for an entire trajectory, and lacks feedback about whether there are

equally valid alternative trajectories or about which alternative actions are bad. Moreover, in some tasks,

such as open-ended text generation, a good task cost is difficult to specify. Imitation learning instead

minimizes a surrogate loss between the learned and oracle policy at each state, Lt (πθ(·|st), π∗(·|s̄t)), such

as KL-divergence,

Lt = −
∑
a∈A

log π∗(a|s̄t) log

(
πθ(a|st)
π∗(a|s̄t)

)
. (39)

This loss is further generalized by specifying the cost-to-go, Q(st, a), of each possible action. An additional

roll-out policy πout can estimate the cost-to-go by taking action a then completing a trajectory, meaning

Q(st, a) = C(g(τ),y), where τ consists of reaching st with the roll-in policy, then taking action a, then

sampling actions from the roll-out policy. One then defines Lt using KL-divergence with a policy π(a|st) ∝

−Q(st, a). The loss (39) is the special case Q(st, a) = π∗(a|s̄t). The roll-out provides dense supervision

involving the task-cost, and incorporates the learned policy’s predictions when πout is πθ.

67

In summary, the general imitation learning for structured prediction framework solves,

arg min
θ

Es0,s̄0∼p(s0)Eτ∼πin

T∑
t=1

Lt(πθ, πout, st, s̄t). (40)

By varying the choice of πin, πout, and L one obtains different variants of imitation learning algorithms,

such as Searn (Daumé III et al. 2009), DAgger (Ross et al. 2011), v-DAgger (Vlachos and Clark 2014),

AggreVaTe (Ross and Bagnell 2014) or LOLS (Chang et al. 2015). Defining the state space, action space,

and oracle π∗ yields different applications (He et al. 2012a,b, 2014; Goldberg and Nivre 2012, 2013;

Goodman et al. 2016; Leblond et al. 2018). We now discuss how maximum-likelihood estimation is a

special case.

Maximum likelihood estimation. Let us see how training a fixed-order, autoregressive model with

maximum likelihood estimation is a special case of (40). Consider training a translation model on an

example (x,y) ∼ D. As in the example we discussed above, define states as the tokens predicted so far

along with the input sentence, st = (ŷ<t,x), actions as next-tokens, at = ŷt, and let g(τ) return the

predicted tokens in the final state, ŷ1, . . . , ŷT . The initial state distribution is represented by the dataset,

meaning s0, s̄0 ∼ p(s0) corresponds to sampling (x,y) ∼ D and setting s0 = (∅,x), s̄0 = (s0,y). Define

an oracle that at each step assigns all of its probability mass to the ground truth next-token,

πMLE
∗ (y|s̄t) =


1 y = yt

0 otherwise

, (41)

where s̄t = (st,y). Maximum-likelihood only trains on ground-truth histories y<t, meaning that the

roll-in policy is the oracle, πin = πMLE
∗ . The loss is KL-divergence without rollouts (39),

Lt(πθ, πMLE
∗ , st, s̄t) = DKL

(
πMLE
∗ (·|s̄t)‖π(·|st)

)
(42)

= −
∑
at∈A

πMLE
∗ (at|s̄t) log

(
π(at|st)

πMLE
∗ (at|s̄t)

)
(43)

∝ − log π(at|st) (44)

≡ − log pθ(yt|y<t,x), (45)

where the proportionality discards terms that do not depend on θ. In summary, learning a fixed-order

autoregressive model with maximum likelihood (§4.2.1), is a special case of imitation learning (40),

arg min
θ

E(x,y)∼DEτ∼πMLE
∗

T∑
t=1

[
Lt(πθ, πMLE

∗ , st, s̄t)
]
, (46)

68

with the loss and states defined as above. From this perspective, one can analyze the behavior of maximum

likelihood and develop alternatives. For instance, Ross et al. (2011) show that due to using oracle roll-

in, maximum-likelihood (alternatively known as ‘behavioral cloning’) suffers more from compounding

errors than a variant that uses a roll-in which is a mixture of the learned policy and the oracle, called

DAgger; see Ross et al. (2011); Chang et al. (2015) for details. In the subsequent sections we will develop

alternatives to the MLE oracle, and empirically evaluate the effect of roll-in choice.

12 Non-Monotonic Generation

Now we will introduce the general framework that we will apply to non-monotonic generation of sets,

trees, and text in the subsequent sections. This section presents the framework at an abstract level,

with the hope that a reader can apply it to problems beyond those in this thesis; subsequent sections

will show concrete applications to generating structured objects without requiring a specified generation

order. The framework can be seen as a special case of imitation learning for structured prediction that

includes the notion of a set of valid actions at each state.

Valid actions. Let πθ(a|s) be a policy, and suppose τ = (s0, a1, s1, . . . , aT , sT) ∼ πin. Our non-monotonic

generation framework requires defining a set of valid actions At ⊆ A at each state st ∈ τ . An action is

valid if taking it can lead to a correct structured output; that is, there exists a continuation τt+1:T such

that the overall trajectory τ = (τ1:t−1, a, τt+1:T) receives zero task cost, C(g(τ),y) = 0. Defining the

valid actions is application-specific, so we will see concrete examples in the subsequent sections.

Oracles. We define an oracle policy as any policy that only assigns probability to valid actions,

π∗(a|̄st) ∝


pa a ∈ At

0 otherwise,

(47)

where s̄t contains At. We will consider three different oracles, though many other variants are possible.

The first deterministically selects a single valid action,

πdet
∗ (a|̄st) =


1 a = σ(̄st)

0 otherwise,

(48)

where the selected action σ(̄st) ∈ At is a deterministic function of the oracle’s state. The determinis-

tic oracle πdet
∗ ignores alternative valid actions, and hence alternative valid trajectories, and requires

specifying the function σ(·). At the other extreme, the uniform oracle treats all valid actions as equally

69

likely,

πuniform
∗ (a|̄st) ∝


1
|At| a ∈ At

0 otherwise.

(49)

An issue with the uniform oracle is that it does not prefer any specific subset of the valid actions, making

it difficult for a parameterized policy to imitate. This gap between the learned policy and the oracle has

been noticed as a factor behind learning difficulty (He et al. 2012a). Motivated by He et al. (2012a), we

define a coaching oracle that weights each valid action according to the learned policy,

πcoaching
∗ (a|̄st) ∝ πuniform

∗ (a|̄st)πθ(a|st). (50)

Intuitively, the coaching oracle favors valid actions that are preferred by the current learned policy,

and reinforces these preferences. The coaching oracle is closer to the learned policy than the uniform

oracle,19

DKL

(
πcoaching
∗ ‖πθ

)
≤ DKL

(
πuniform
∗ ‖πθ

)
. (51)

Thus we expect the coaching oracle to be easier to imitate, a claim that we evaluate empirically.

Roll-in. As the roll-in policy, we use either the learned policy, πθ, the oracle π∗, or a mixture ztπθ+(1−

zt)π∗ where zt ∼ Bernoulli(βt) stochastically selects the policy to use at step t. In our applications, we

will treat the roll-in policy as a hyper-parameter and investigate the choice of roll-in empirically.

Roll-out. Since our applications involve large neural models, performing explicit rollouts to estimate the

cost-to-go of each action is prohibitively expensive. Thus in our framework we directly set the cost-to-go

using the oracle probability, Q(st, a) = −π∗(a|̄st). This corresponds to doing an explicit oracle roll-out for

each action, assuming a task cost that assigns maximal cost to non-optimal trajectories, and assigns cost

to optimal trajectories proportional to the oracle’s action probabilities. We leave incorporating explicit

roll-outs into large neural model training for future work.

Loss. Finally, as our loss we use the KL-divergence loss Lt (Equation 39).

In summary, our non-monotonic framework optimizes the following imitation learning objective,

arg min
θ

Es0,s̄0∼p(s0)Eτ∼πin

T∑
t=1

DKL (π∗(·|s̄t)‖πθ(·|st)) , (52)

19 Proof in Appendix A.2.

70

where we assume s̄t contains a valid action set At, and the oracle is defined as above. We will now apply

our framework to generating structured objects without requiring a pre-specified order, beginning with

multisets.

71

13 Multisets: Multiset Prediction

In this section, we show how the non-monotonic generation framework that we presented in §12 is used

for conditionally generating multisets20, which we call multiset prediction. Multiset prediction appears in

a variety of contexts. For instance, in the context of high-energy physics, one of the important problems in

a particle physics data analysis is to count how many physics objects, such as electrons, muons, photons,

taus, and jets, are in a collision event (Ehrenfeld et al. 2011). In computer vision, object counting

and automatic alt-text can be framed as multiset prediction (Lempitsky and Zisserman 2010; Welleck

et al. 2017). Our motivating application in this section will be multiple object classification, which we

introduced in §3.1, and is illustrated in Figure 20.

Fig. 20: Multiple object classification
consists of mapping an image to a
multiset of class labels. In this ex-
ample, any ordering of the digits
{0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 5, 5, 5, 6, 6, 6, 7, 7, 9, 9}
is a valid labeling.

In multiset prediction, there is no predefined order among

the items in each target multiset, and each item can ap-

pear more than once. These properties make the problem

of multiset prediction different from other well-studied

problems. It is different from sequence prediction, because

there is no known order among the items. It is not a rank-

ing problem, since each item may appear more than once.

It cannot be transformed into classification, because the

number of possible multisets grows exponentially with re-

spect to the maximum multiset size.

We propose a method for learning policies that sequen-

tially generate multisets, without imposing a particular

generation order during learning. Specifically, we use the non-monotonic generation framework (§12)

with the valid actions equal to the remaining unpredicted items in the target multiset. We use the

uniform oracle (Equation 49), which teaches the learned policy to generate any element of the target

multiset that has not yet been generated, irrespective of order. These settings yield a simplified form of

the non-monotonic generation objective (Equation 52), which we call the multiset loss.

We compare the multiset loss against an extensive set of baselines, including a sequential loss with

an arbitrary ordering function, a sequential loss with an input-dependent ordering function, and an

aggregated distribution matching loss and its one-step variant. We also test policy gradient, as was done

in Welleck et al. (2017) for multiset prediction. Our evaluation is conducted on two sets of datasets with

varying difficulties and properties. We find that the multiset loss outperforms all of the baselines.

20 A set that allows multiple instances, e.g. {x, y, x}.

72

13.1 Method

A multiset prediction problem is a generalization of classification, where a target is not a single class but

a multiset of classes. The goal is to find a mapping from an input x to a multiset Y =
{
y1, . . . , y|Y|

}
,

where yk ∈ C. Some of the core properties of multiset prediction are: (1) the input x is an arbitrary

vector, (2) there is no predefined order among the items yi in the target multiset Y, (3) the size of Y

may vary depending on the input x, and (4) each item in the class set C may appear more than once in

Y. Formally, Y is a multiset Y = (µ, C), where µ : C → N gives the number of occurrences of each class

c ∈ C in the multiset.

We adapt the non-monotonic generation framework (§12) for multiset prediction. The action space con-

sists of the class set C, meaning an action at is a class label yt, and a state is the previously predicted

classes along with the input, st = (ŷ<t, x). Thus the learned policy is of the form πθ(yt|ŷ<t, x).

Given an example (x,Y) sampled from a dataset, we generate a trajectory τ = (ŷ1, . . . , ŷT) from a roll-in

policy πin, stopping when either all the items in the target multiset have been predicted or a predefined

maximum number of steps have passed. Starting with A0 ← Y, we define the valid actions at time t as the

multiset of labels that remain to be predicted after the first t− 1 predictions by the roll-in policy,

At ← At−1 \ {ŷt−1}. (53)

We use the uniform oracle, which puts equal mass on all unpredicted items in the target multiset,

π∗(yt|x,At) =


1
|At| yt ∈ At

0 otherwise,

(54)

where as in (§12), the oracle’s state contains the valid actions. Using the uniform oracle, the valid

actions defined above, and the KL-divergence loss (Equation 39) lets us write a simplified non-monotonic

objective (Equation 52), which we call the multiset loss,

Definition 17. Multiset loss. The multiset loss for an example x and associated trajectory τ ∼ πin is,

Lmulti(τ, x, θ) = −
T∑
t=1

1

|At|
∑
y∈At

log πθ(y|ŷ<t, x), (55)

which follows from expanding the KL-divergence loss (Equation 39) using the uniform oracle and valid

actions defined above, and removing the entropy term since it is constant with respect to θ.

73

Permutation invariance. The multiset loss teaches the learned policy to generate any of the remaining

correct elements. As a result, there is no prescribed order in which the learned policy must generate the

target multiset. Formally, the loss is invariant to permuting a correct sequence of predictions,

Lmulti(τ, x, θ) = Lmulti(σ(τ), x, θ), (56)

where σ ∈ ST is an arbitrary permutation. This differs from the fixed-order maximum-likelihood objective

(Equation 8), which treats a single permutation σ∗ as the ground-truth generation order, meaning

LMLE(τ, x, θ) 6= LMLE(σ(τ), x, θ), (57)

unless σ = σ∗, and in particular LMLE can only minimized given the permutation σ∗(τ) (except in

degenerate cases). Fixed-order maximum-likelihood does not account for the unordered nature of the

multiset, in the sense that it penalizes all alternative generation orders.

Decreasing entropy. Intuitively, the uniform oracle policy over the valid actions defined above teaches

the learned policy which items in the class set C can be generated at each time step t without decreasing

the precision or recall of the resulting trajectory. By selecting an item according to the oracle, the valid

actions decrease in size. As a result, the uniform oracle policy’s entropy decreases over time,

H(π
(t)
∗) > H(π

(t+1)
∗), (58)

where H(π
(t)
∗) denotes the Shannon entropy of the oracle policy at time t, π∗(y|ŷ<t, x,At).

13.2 Related Problems in Supervised Learning

Variants of multiset prediction have been studied previously. We now discuss a taxonomy of approaches

in order to differentiate the multiset loss function from previous work and define strong baselines.

13.2.1 Set prediction. A related variant predicts a set rather than a multiset. One approach to set

prediction is ranking, which can be considered as learning a mapping from a pair of input x and one

of the items c ∈ C to its score s(x, c). All the items in the class set are then sorted according to the

score, and this sorted order determines the rank of each item. Taking the top-k items from this sorted

list results in a predicted set (e.g. Gong et al. (2013)). Similarly to multiset prediction, the input x is

arbitrary, and the target is a set without any prespecific order. However, ranking differs from multiset

prediction in that it is unable to handle multiple occurrences of a single item in the target set.

74

Another approach to set prediction is multi-label classification, which consists of learning a mapping

from an input x to a subset of classes identified as y ∈ {0, 1}|C|. This problem can be reduced to |C| binary

classification problems by learning a binary classifier for each possible class. Representative approaches

include binary relevance, which assumes classes are conditionally independent, and probabilistic classifier

chains which decompose the joint probability as p(y|x) =
∏|C|
c=1 p(yc|y<c, x) (Dembczyński et al. 2010;

Read et al. 2011; Hamid Rezatofighi et al. 2017). Since each p(yc|y<c, x) models binary class membership,

their predictions collectively form a set ŷ ∈ {0, 1}|C| rather than a multiset ŷ ∈ N|C|.

13.2.2 Parallel prediction. A brute-force approach called power multiset classification, based

on the combination method in multi-label classification (Tsoumakas and Katakis 2007; Read et al. 2011),

is to transform the class set C into a set M(C) of all possible multisets, then train a classifier π that maps

an input x to an element in M(C). However, the number of all possible multisets grows exponentially in

the maximum size of a target multiset,21 rendering this approach infeasible in practice.

Instead of considering the target multiset as an actual multiset, one can convert it into a distribution

over the class set, using each item’s multiplicity. That is, we consider a target multiset Y as a set of

samples from a single, underlying distribution q∗ over the class set C, empirically estimated as q∗(c|x) =

1
|Y|
∑
y∈Y Iy=c, where I· is an indicator function. A model then outputs a point qθ(·|x) in a |C|-dimensional

simplex and is trained by minimizing a divergence between qθ(·|x) and q∗(c|x), which we call one-step

distribution matching. The model also predicts the size l̂θ(x) of the target multiset, so that each

unique c ∈ C has a predicted cardinality µ̂(c) = round(qcθ(x) · l̂(x)), giving the objective:

L1-step(x,Y, θ) =
∑
c∈C

q∗(c|x) log qθ(c|x) + λ(l̂θ(x)− |Y|)2, (59)

where λ > 0 is a coefficient for balancing the contributions from the two terms. An un-normalized

variant could directly regress the cardinality of each class. A major weakness of these methods is the

lack of modeling dependencies among the items in the predicted multiset, a known issue in multi-label

classification (Dembczyński et al. 2010; Nam et al. 2017). We test L1-step in the experiments and observe

substantially worse prediction accuracy than other baselines.

13.2.3 Sequential methods. A sequence prediction problem is characterized as finding a mapping

from an input x to a sequence of classes Yseq = (y1, . . . , yT). It is different from multiset prediction since

a sequence has a predetermined order of items, while a multiset is an unordered collection. Multiset

prediction can however be treated as sequence prediction by defining an ordering for each multiset. We

21 The number of all possible multisets of size ≤ K is
∑K
k=1

(|C|+k−1)!
k!(|C|−1)!

.

75

can formalize this as a special case of our non-monotonic generation framework by using the deterministic

oracle (Equation 48),

πdet
∗ (a|̄st) =


1 a = σ(̄st)

0 otherwise.

(60)

By specifying an ordering function σ and using πdet
∗ as the roll-in, each target multiset Y is determin-

istically transformed into an ordered sequence Yseq = (y1, . . . , y|Y|). Using the KL-divergence loss (39)

and removing terms that are constant with respect to θ yields the objective,

Lseq(x,Yseq, θ) = −
T∑
t=1

log πθ(yt|y<t, x),

which is equivalent to maximizing the likelihood of Yseq. Sequential prediction can also be seen as using

the multiset loss with a deterministic oracle specifying a valid action at each step, At = {σ(s̄t)}.

Recently, multi-label classification (i.e. set prediction) was posed as sequence prediction with RNNs

(Wang et al. 2016; Nam et al. 2017), improving upon methods that do not model conditional label

dependencies. However, these approaches and the Lseq approach outlined above require a pre-specified,

often ad-hoc, ordering function, and performance can significantly vary based on the choice. Vinyals

et al. (2015) observed this variation in sequence-based set prediction (also observed in Nam et al. (2017);

Wang et al. (2016)), which we confirm for multisets in the experiments. This shows the importance of

our proposed method, which does not require a pre-specified ordering. We use Lseq as a baseline, finding

that it underperforms the multiset loss.

Another baseline is a sequential version of distribution matching, called aggregated distribution

matching. As in one-step distribution matching, a multiset is treated as a distribution q∗ over classes.

The sequential variant predicts a sequence of classes (y1, . . . , yT) by sampling from a predicted distribu-

tion q
(t)
θ (yt|y<t, x) at each step t. The per-step distributions q

(t)
θ are averaged into an aggregate distribu-

tion qθ, and a divergence between q∗ and qθ is minimized. We test L1 distance and KL-divergence,

L1
dm(x,Y, θ) = ‖q∗ − qθ‖1, (61)

LKL
dm(x,Y, θ) = −

∑
c∈C

q∗(c|x) log qθ(c|x). (62)

A major issue with this approach is that it may assign non-zero probability to an incorrect sequence of

predictions due to the aggregated distribution’s invariance to the order of predictions. This is reflected

in an increase in the entropy of q
(t)
θ over time, discussed in Experiment 3.

76

Reinforcement learning. In Welleck et al. (2017), an approach based on reinforcement learning (RL)

was proposed for multiset prediction. Instead of assuming the existence of an oracle policy, this approach

solely relies on a reward function r designed specifically for multiset prediction,

r(ŷt,At) =

1, if ŷt ∈ At

−1, otherwise.

The goal is then to maximize the expected sum of rewards over trajectories sampled from πθ,

LRL(x, θ) = −Eŷ∼πθ

[
T∑
t=1

r(ŷ<t,At)− λH(πθ(ŷ<t, x))

]
, (63)

where the valid actions are determined according to (Equation 53) for each sampled ŷ and the second term

inside the expectation is the negative entropy multiplied with a regularization coefficient λ. The second

term encourages exploration during training. As in (Welleck et al. 2017), we use REINFORCE (Williams

1992) to stochastically minimize the loss function above with respect to πθ. This loss function is optimal

in that the total reward is maximized when both the precision and recall are maximal (= 1).

13.2.4 Domain-Specific Methods In computer vision, object counting and object detection are

instances of multiset prediction. Typical object counting approaches in computer vision, e.g. Lempitsky

and Zisserman (2010); Zhang et al. (2016); Oñoro-Rubio and López-Sastre (2016), model the counting

problem as density estimation over image space, and assume that each object is annotated with a dot

specifying its location. Object detection methods (e.g. Stewart et al. (2016); Ren and Zemel (2017); He

et al. (2017)) also require object location annotations. Since these approaches exploit the fact the input is

an image and rely on additional annotated information, they are not directly comparable to our method

which only assumes annotated class labels and is agnostic to the input modality.

13.3 Empirical Evaluation

We empirically evaluate the multiset loss on multiset image classification tasks, where the policy must

generate the multiset of class labels present in each input image. In addition to comparing the multiset

loss against an extensive collection of baselines, we study how the roll-in policy affects learning, how

the sequential baseline performs based on the choice or ordering function, and how the learned policy’s

entropy evolves over time.

Datasets – MNIST Multiset. MNIST Multiset is a class of synthetic datasets. Each dataset consists

of multiple 100x100 images, each of which contains a varying number of digits from the original MNIST

77

(LeCun et al. 1998). We vary the size of each digit and also add clutter. In the experiments, we consider

variants of MNIST Multiset with |Y| = 4, |Y| ∈ {1, 2, 3, 4}, or |Y = 10|, where |Y| is the number of digits

in each image. Each variant has a training set with 70,000 examples and a test set with 10,000 examples.

We randomly sample 7,000 examples from the training set to use as a validation set, and train with the

remaining 63,000 examples.

Datasets – MS COCO. As a real-world dataset, we use Microsoft COCO (Lin et al. 2014) which

includes natural images with multiple objects. Compared to MNIST Multi, each image in MS COCO

has objects of more varying sizes and shapes, and there is a large variation in the number of object

instances per image which spans from 1 to 91. The problem is made even more challenging with many

overlapping and occluded objects. To better control the difficulty, we create two variants: COCO Easy

with |Y| = 2, 10k examples, and 24 classes, and COCO Medium with |Y| ∈ {1, . . . , 4}, 44k training

examples, and 23 classes.

In both variants, we only include images whose |Y| objects are large and of common classes. An object

is defined to be large if the object’s area is above the 40-th percentile across the training set of MS

COCO. After reducing the dataset to have |Y| large objects per image, we remove images containing

only objects of rare classes. A class is considered rare if its frequency is less than 1
|C| , where C is the

class set. These two stages ensure that only images with a proper number of large objects are kept. We

do not use fine-grained annotation (pixel-level segmentation and bounding boxes) except for creating

input-dependent order functions for the sequential baseline.

For each variant, we hold out a randomly sampled 15% of the training examples as a validation set. We

form separate test sets by applying the same filters to the COCO validation set. The test set sizes are

5,107 for COCO Easy and 21,944 for COCO Medium.

Models. For MNIST Multiset experiments, we use three convolutional layers of channel sizes 10, 10

and 32, followed by a convolutional long short-term memory (LSTM) layer (Xingjian et al. 2015). At

each step, the feature map from the convolutional LSTM layer is average-pooled spatially and fed to a

softmax classifier. For one-step distribution matching, the LSTM layer is skipped.

For MS COCO experiments, we use a ResNet-34 (He et al. 2016) pretrained on ImageNet (Deng et al.

2009) as a feature extractor. The final feature map from this ResNet-34 is fed to a convolutional LSTM

layer, as described for MNIST Multi above. We do not finetune the ResNet-34 feature extractor.

In all experiments, for predicting variable-sized multisets we use the termination policy approach since

it is easily applicable to all of the baselines, thus ensuring a fair comparison. An alternative is to predict

78

MNIST Multiset (4) COCO Easy

EM F1 EM F1
σrandom 0.088 0.507 0.459 0.555
σrandom-1 0.920 0.977 0.721 0.779
σarea 0.529 0.830 0.700 0.763
σspatial 0.917 0.976 0.675 0.738

Table 25: Performance of the sequential baseline
(§13.2.3) varies based on the ordering σ used by
the deterministic oracle πdet

∗ (Equation 60).

COCO Medium

EM F1
Greedy 0.475 ± 0.006 0.645 ± 0.016
Stochastic 0.475 ± 0.004 0.649 ± 0.009
Oracle 0.469 ± 0.002 0.616 ± 0.009

Table 26: Influence of the roll-in policy πin used
in the multiset loss (Equation 55). Using πθ as
the roll-in policy with either greedy selection or
sampling outperforms oracle π∗ roll-in.

Multiset (4) Multiset (1-4) Multiset (10)
EM F1 EM F1 EM F1

Lmulti 0.950 0.987 0.953 0.981 0.920 0.992
LRL 0.912 0.977 0.945 0.980 0.665 0.970
L1

dm 0.921 0.978 0.918 0.969 0.239 0.714
LKL

dm 0.908 0.974 0.908 0.962 0.256 0.874
Lseq 0.906 0.973 0.891 0.952 0.592 0.946
L1-step 0.210 0.676 0.055 0.598 0.032 0.854

Table 27: MNIST Multiset results.

Easy Medium
EM F1 EM F1

Lmulti 0.702 0.788 0.481 0.639
LRL 0.672 0.746 0.425 0.564
L1

dm 0.533 0.614 0.221 0.085
LKL

dm 0.714 0.763 0.444 0.591
Lseq 0.709 0.774 0.457 0.592
L1-step 0.552 0.664 0.000 0.446

Table 28: MS COCO results.

a special 〈eos〉 token to determine termination, but it is unclear how to extend this approach to the

distribution matching baselines.

Training and evaluation. For each loss, a model was trained for 200 epochs (350 for MNIST Multi

10). After each epoch, exact match was computed on the validation set. The model with the highest

validation exact match was used for evaluation on the test set. When evaluating a trained policy, we use

greedy decoding. Each predicted multiset is compared against the ground-truth target multiset, and we

report the exact match accuracy (EM) and F-1 score (F1).

13.3.1 Experiment 1: Influence of order function on sequential baseline. First, we investigate

the sequence loss function Lseq (§13.2.3), while varying the order function σ, which determines how each

target multiset is transformed into a sequence (Equation 60). We test four alternatives: random ordering

functions generated for each training batch (σrandom), a random order function generated before training

and held fixed (σrandom-1), and two input-dependent order functions σspatial and σarea. σspatial orders labels

in left-to-right, top-to-bottom order, and σarea orders labels by decreasing object area. We compare Lseq

with these order functions on MNIST Multi (4) and COCO Easy.

We present the results in Table 25. It is clear from the results that the performance of the sequence

prediction loss function is dependent on the choice of ordering function. On MNIST Multiset the area-

based rank function was far worse than the other choices. However, this was not true on COCO Easy,

where the spatial rank function was worst among the three. In both cases, we have observed that the fixed

79

random ordering function (σrandom-1) performed best, so for the remaining experiments we use σrandom-1

for the sequence prediction loss. This set of experiments firmly suggests the need of an order-invariant

multiset loss function, such as our multiset loss function.

13.3.2 Experiment 2: Roll-in policy for the multiset loss. In this experiments, we compare three

roll-in policies for the multiset loss function. They are greedy decoding, ŷt = arg maxyt πθ(yt|ŷ<t, x),

stochastic sampling, ŷt ∼ πθ(yt|ŷ<t, x), and oracle sampling, ŷt ∼ π∗(yt|x,At). We test them on the

most challenging dataset, COCO Medium, and report the mean and standard deviation for the evaluation

metrics across 5 runs.

As shown in Table 26, greedy decoding and stochastic sampling, both of which consider states that are

likely to be visited by the learned policy, outperform the oracle sampling, which only considers states

on optimal trajectories. This is particularly apparent in the F1 score, which can be increased even after

visiting a state that is not on an optimal trajectory. The results are consistent with the theory from Ross

et al. (2011); Chang et al. (2015). The performance difference between greedy decoding and stochastic

sampling was not significant, so from here on we choose the simpler method, greedy decoding, when

training a model with the multiset loss.

13.3.3 Experiment 3: Loss function comparison. We now compare the proposed multiset loss

function against the five baseline loss functions (see §13.2): reinforcement learning LRL, aggregate dis-

tribution matching (L1
dm and LKL

dm), its one-step variant L1-step, and sequence prediction Lseq.

MNIST Multiset. We present the results on the MNIST Multiset variants in Table 27). On all three

variants and according to both metrics, the multiset loss function outperforms all the others. The rein-

forcement learning based approach closely follows behind. Its performance, however, drops as the number

of items in a target multiset increases. This is understandable, as the variance of policy gradient grows

as the trajectory length grows. A similar behavior was observed with sequence prediction as well as

aggregate distribution matching. We were not able to train any decent models with the one-step variant

of aggregate distribution matching. This was true especially in terms of exact match (EM), which we at-

tribute to the one-step variant not being capable of modeling dependencies among the predictions.

MS COCO. Similar to the results on the variants of MNIST Multiset, the multiset loss function matches

or outperforms all the others on the two variants of MS COCO, as presented in Table 28. On COCO

Easy, with only two objects to predict per example, both aggregated distribution matching (with KL

divergence) and the sequence loss functions are as competitive as the proposed multiset loss. The other

loss functions significantly underperform these three loss functions, as they did on MNIST Multiset.

80

Fig. 21: Each row shows a trajectory from a learned policy πθ, with each image representing a timestep.
Each digit with class yt is highlighted according to its probability, πθ(yt|ŷ<t, x), normalized by the
highest class’s probability. Brighter squares represent higher probabilities. A green box denotes the class
predicted by the policy, ŷt = arg maxyt πθ, and a blue border denotes a class with normalized probability
exceeding a threshold τ = 0.1. Top: a policy trained with Lmultiset. Bottom: a policy trained with Lseq

using the spatial ordering function.

The performance gap between the proposed loss and the others, however, grows substantially on the

more challenging COCO Medium, which has more objects per example. The multiset loss outperforms

aggregated distribution matching with KL divergence by 3.7 percentage points on exact match and 4.8

on F1. This is analogous to the experiments on MNIST Multiset, where the performance gap increased

when moving from four to ten digits.

Fig. 22: Comparison of per-step entropies of
predictive distributions (validation set).

Analysis: Entropy evolution. Recall that the entropy of

the uniform oracle’s predictive distribution decreases over

time, i.e., H(π
(t)
∗) > H(π

(t+1)
∗) (Equation 58). This nat-

urally follows from the fact that there is no pre-specified

rank function, because the oracle policy cannot prefer any

item from the others in a free label multiset. Hence, we

examine here how the policy learned based on each loss

function compares to the oracle policy in terms of per-step

entropy. We consider the policies trained on MNIST Mul-

tiset (10), where the differences among them were most clear. As shown in Fig. 22, the policy trained

on MNIST Multiset (10) using the proposed multiset loss closely follows the oracle policy. The entropy

decreases as the predictions are made. The decreases can be interpreted as concentrating probability

mass on progressively smaller valid action sets. The variance is quite small, indicating that this strategy

is uniformly applied for any input.

Figure 21 shows an example which illustrates this learned strategy. Interestingly, we noticed that the

policy learned to consistently place slightly higher probability on classes that have multiple unpredicted

81

instances (e.g. 6, 7 on the first two steps), despite the fact that the uniform oracle places equal probability

on classes in the valid set independent of the number of instances.

The policy trained with reinforcement learning retains a relatively low entropy across steps, with a

decreasing trend in the second half. We carefully suspect the low entropy in the earlier steps is due to

the greedy nature of policy gradient. The policy receives a high reward more easily by choosing one of

many possible choices in an earlier step than in a later step. This effectively discourages the policy from

exploring all trajectories during training.

On the other hand, the policy found by aggregated distribution matching (LKL
dm) has the opposite be-

haviour. The entropy in general grows as more predictions are made. To see why this is sub-optimal,

consider the final step. Assuming the first nine predictions were correct, there is only one correct class

left for the final prediction. The high entropy, however, indicates that the model is placing a significant

amount of probability on incorrect sequences. Such a policy may result because LKL
dm cannot properly

distinguish between policies with increasing and decreasing entropies.

13.4 Discussion

In this section we showed how the non-monotonic generation framework is used to learn policies that

conditionally generate multisets, which we call multiset prediction. Using the uniform oracle along with

valid actions that respect the unordered nature of multisets, we derived an objective specifically designed

for multiset prediction, called the multiset loss. The multiset loss is invariant to the order in which the

multiset is generated, unlike typical sequential losses. The experiments on two families of datasets, MNIST

Multiset and MS COCO, demonstrated the effectiveness of the multiset loss over reinforcement learning,

sequence, and aggregated distribution matching loss functions. This success brings new opportunities

for applying the multiset loss – and more generally, the non-monotonic generation framework – to other

domains. We do so in the next section, where we use a similar approach for dependency parsing.

82

14 Trees: Sequential Graph Dependency Parser

In this section, we will show how the non-monotonic generation framework (§12) is used for conditionally

generating dependency trees. Our motivation here is to develop a sequential parsing method that does

not impose a generation order like typical sequential dependency parsing methods (Ma et al. 2018;

Fernández-González and Gómez-Rodŕıguez 2019). To do so, we view parsing as incrementally building a

graph by adding edges to an edge set. Since edges do not have a pre-specified order, we adopt the non-

monotonic generation framework to obtain parsers with learned, input-dependent generation orders by

using a variant of the coaching oracle and a roll-in policy that only explores the space of valid dependency

trees. Experimentally, we find that that these sequential, non-monotonic parsers give performance gains

over strong one-step methods.

14.1 Method

Given a sentence x = (x1, . . . , xN), a dependency parser constructs a graph G = (V,E) with V =

(x0, x1, . . . , xN) and E = {(i, j)1, . . . (i, j)N}, where x0 is a special root node, and E forms a dependency

tree.22 First, we will describe a family of sequential graph-based dependency parsers that we will use in

this work. Then we will discuss learning a parser with the non-monotonic generation framework.

14.1.1 Sequential graph dependency parser. We describe a family of graph-based dependency

parsers which generate a sequence of graphs, where V is fixed and E =
⋃T
t=1Et:

Henc = fenc(x0, . . . , xN) (64)

Hhead
t , Hdep

t = fV(Henc, E<t, ht−1) (65)

St = fE(Hhead
t , Hdep

t , St−1) (66)

Et = fdec(St, E<t). (67)

Steps (2-4) run for T ≤ N time-steps. At each time-step, first fV generates head and dependent rep-

resentations for each vertex, H ·t ∈ RV×dH , based on vertex representations Henc ∈ RV×d, previously

predicted edges E<t, and a recurrent state ht−1 ∈ Rd. Then fE computes a score for every possible edge,

St ∈ RV×V , and the scores are used by fdec to predict a set of edges Et.

This general sequential family includes the biaffine parser of Dozat and Manning (2017) as a one-step

special case, as well as a recurrent variant which we discuss below.

22 See properties (1-5) in Appendix A.2.2.

83

Biaffine one-step. The Biaffine parser of Dozat and Manning (2017) is a one-step variant, implementing

steps (1-4) using a bidirectional LSTM, head and dependent neural networks, a biaffine scorer, and a

maximum spanning tree decoder, respectively:

Henc = BiLSTM(x1, . . . , xN)

Hhead, Hdep = MLPh(Henc),MLPd(Henc)

S = BiAffine(Hhead, Hdep)

E = MST(S),

where each row of scores S(i) is interpreted as a distribution over i’s potential head nodes:

p((j → i)|x) ∝ softmaxj(S
(i)),

and MST(·) is an off-the-shelf maximum-spanning-tree algorithm. This model assumes conditional inde-

pendence of the edges.

Recurrent weight. We propose a variant which iteratively adjusts a distribution over edges at each

step, based on the predictions so far. A recurrent function generates a weight matrix W which is used

to form vertex embeddings and in turn adjust edge scores.

Specifically, we obtain an initial score matrix S0 using the biaffine one-step parser, and initialize a

recurrent hidden state h0 using a linear transformation of fenc’s final hidden state. We define fV as:

W,ht = LSTM(femb(Et−1), ht−1)

Hhead
t = embh(0, . . . , N)W

Hdep
t = embd(0, . . . , N)W,

and fE(Hhead
t , Hdep

t , St−1) is defined as:

S∆
t = BiAffine(Hhead

t , Hdep
t)

St = St−1 + S∆
t ,

where t ranges from 1 to N , W ∈ Rdemb×dH , and each emb(·) : N→ Rdemb is a learned embedding layer,

yielding emb(·)(0, . . . , N) in RV×demb . We use a bidirectional LSTM as fenc.

84

The scores at each step yield a distribution over all V × V edges, which we denote by π:

π((i→ j)|E<t, x) ∝ softmax(flatten(St)). (68)

Unlike the one-step model, this recurrent model can predict edges based on past predictions.

Valid decoding. At inference time, we must ensure the incrementally decoded edges E =
⋃T
t=1Et

form a valid dependency tree. To do so, we choose fdec to be a decoder which greedily selects valid

edges,

Et = fvalid(St, E<t),

which we refer to as the valid decoder, detailed in Appendix A.2.2. We only predict one edge per step

(|Et| = 1), leaving the setting of multiple predictions per step as future work.

Embedding edges. We embed a predicted edge Et = { ˆ(i, j)} as:

femb(Et) = eedge; ehead; edependent,

eedge = WeH
enc
(i) −WeH

enc
(j) , ehead = embh(i), edependent = embd(j),

where Henc
(·) ∈ Rd are row vectors, We ∈ Rde×d is a learned weight matrix, emb(·) are learned embedding

layers, and ; is concatenation.

14.1.2 Non-monotonic dependency parsing. In this investigation, we restrict to the case of pre-

dicting a single edge ˆ(i, j) per step, so that the recurrent weight model generates a sequence of edges

with the goal of matching a target edge set, i.e.
⋃N
t=1

ˆ(i, j)t = E. Since the target edges E are a set,

the model’s generation order is not determined a priori. As we saw in the preceding section (§13), the

non-monotonic generation framework is effective for predicting set-structured objects, and thus we adopt

the non-monotonic generation framework for training our sequential graph parser.

For our sequential graph parser, an action is an edge (i, j) ∈ E , and a state st is an input sentence x

along with the edges predicted so far, Ê<t. The policy is a conditional distribution over E ,

πθ((i, j)|Ê<t,x),

such as the distribution in Equation 68.

85

As we discussed in §12, learning consists of minimizing the KL-divergence between an oracle policy and

the learned policy, computed on states from a roll-in policy πin (Equation 52). In the case of dependency

parsing this means,

arg min
θ

Ex,E∗∼DEs1,...,s|x|∼πin

|x|∑
t=1

DKL (π∗(· | s̄t)‖πθ(· | st)) , (69)

where x is a sentence sampled from a dataset with ground-truth tree E, and the states st = (x, Ê<t) are

obtained by sampling a sequence of edges from the roll-in policy. We now describe our choices for valid

actions, oracle, and roll-in.

Valid actions and oracles. Analogous to the valid actions that we used for multiset prediction (§13),

we define a free edge set containing the un-predicted target edges at time t:

Etfree = E \
t−1⋃
t′=1

ˆ(i, j)t′ , (70)

where E0
free = E. The free edges act as the valid actions, meaning an oracle policy places non-zero

probability mass only on free edges. We will consider the three oracles introduced in §12. The uniform

oracle assigns a uniform probability to each free edge:

πuniform
∗ ((i, j)|Etfree) =


1

|Etfree|
(i, j) ∈ Etfree

0 otherwise,

which treats each permutation of the target edge set as equally likely. The coaching oracle weights free

edges by πθ:

πcoaching
∗ ((i, j)|Etfree) ∝ π∗unif(·|Etfree)πθ(·|E<t, X).

This oracle prefers certain edge permutations over others, reinforcing πθ’s preferences. We use two tech-

niques when using the coaching oracle in practice. First, the coaching and uniform oracles are mixed to

ensure each free edge receives probability mass:

βπuniform
∗ + (1− β)πcoaching

∗ , (71)

where β ∈ [0, 1]. Second, we can begin training with the uniform oracle and gradually introducing the

coaching oracle by annealing the β term as training progresses, which we call annealed coaching. This

may prevent the coaching oracle from reinforcing sub-optimal permutations early in training.

86

Finally, we consider the deterministic oracle (Equation 48), which linearizes each edge set E into a

sequence Eseq. The oracle selects the t’th element of Eseq at time t with probability 1. We linearize each

edge set in increasing edge-index order: (i1, j1) precedes (i2, j2) if (i1, j1) < (i2, j2). This oracle serves as

a baseline that is analogous to the fixed generation orders used in conventional parsers.

Roll-in. The roll-in policy determines the state distribution that πθ is trained on, which can address

the mismatch between training and testing state distributions or narrow the set of training trajectories.

Although existing theory suggests that learned policy roll-in ((i, j) ∼ πθ) is optimal (e.g see Chang

et al. (2015)), in practice we observed that for dependency parsing, using learned policy roll-in failed to

train. We suspect this is since a poorly-trained policy generates many invalid dependency trees, making

learning difficult.

As a result, we propose two variants of learned policy roll-in: coaching roll-in, (i, j) ∼ πθ � πuniform
∗ ,

and valid-policy roll-in, (i, j) ∼ valid(πθ), where valid(πθ) restricts the policy’s distribution to the set

of edges that keeps the predicted tree as a valid dependency tree (i.e properties (1-5) hold). These roll-ins

choose edge permutations that are preferred by the policy. Coaching roll-in incorporates preferences over

correct edges, while valid-policy roll-in allows for certain incorrect predictions.

14.2 Empirical Evaluation

We first evaluate the effect of the multi-step model versus a single-step model, then evaluate the effect

the varying the roll-in and oracle policy. For these initial evaluations we use English, German, Chinese,

and Ancient Greek dependency parsing datasets since they vary with respect to projectivity, size, and

performance in past work (Qi et al. 2018). Based on these development set results, we then test our

strongest model on a large suite of languages.

En De Grc Zh

D&M (2017) 91.14 90.38 78.99 86.50
Qi et al. (2018) 92.11 89.46 81.35 86.73
One-step 91.74 91.07 79.60 86.61
Recurrent (U) 91.92 91.02 79.15 86.69
Recurrent (C) 91.99 91.19 79.93 86.77

Table 29: Development set UAS for single
vs. multi-step methods. (U) is uniform or-
acle and roll-in, (C) is coaching with valid
roll-in. D&M is an abbreviation for (Dozat
and Manning 2017).

Experimental setup. We use datasets from the CoNLL

2018 Shared Task (Zeman et al. 2018). We build our im-

plementation from the open-source version of Qi et al.

(2018),23 and use their experimental setup (pre-processing,

data-loading, pre-trained vectors, evaluation) which follows

the shared task setup. Our model uses the same encoder from

Qi et al. (2018). For the Qi et al. (2018) baseline, we use their

pretrained models and evaluation script.24 For the Dozat and

Manning (2017) baseline, we use the Qi et al. (2018) im-

23 https://github.com/stanfordnlp/stanfordnlp.
24 https://stanfordnlp.github.io/stanfordnlp/installation_download.html.

87

https://github.com/stanfordnlp/stanfordnlp
https://stanfordnlp.github.io/stanfordnlp/installation_download.html

Oracle Roll-in UAS Loss

Determin. πdet
∗ 81.03 0.04

Uniform π∗uniform 91.02 0.35
Coaching π∗uniform 91.04 0.17

Uniform π∗coaching 90.93 0.45

Coaching π∗coaching 91.17 0.33

Annealed π∗coaching 90.89 0.34

Uniform πvalid
θ 90.99 0.51

Coaching πvalid
θ 91.19 0.31

Annealed πvalid
θ 90.91 0.30

Table 30: Varying the oracle and roll-in
policies (German dataset).

Fig. 23: Per-step edge distributions from recurrent weight mod-
els trained with the given oracle.

plementation with auxiliary outputs and losses disabled, and train with the default hyper-parameters

and training script. For our models, we changed the learning rate schedule (and model-specific hyper-

parameters), after observing diverging loss in preliminary experiments with the default learning rate.

Our models did not require the additional AMSGrad technique used in Qi et al. (2018). We evaluate

validation UAS every 2k steps (vs. 100 for the baseline). Models are trained for up to 100k steps, and

the model with the highest validation unlabeled attachment score (UAS) is saved.

14.2.1 Experiment 1: Multi-step learning. In this experiment we evaluate the sequential aspect

of the proposed recurrent model by comparing it with one-step baselines. We compare against a baseline

(‘one-step’) that simply uses the first step’s score matrix S0 from the recurrent weight model and min-

imizes the loss for one time-step using a uniform oracle. At test time the valid decoder uses S0 for all

timesteps. We also compare against the biaffine one-step model of Dozat and Manning (2017) which uses

Chu-Liu-Edmonds maximum spanning tree decoding instead of valid decoding. Since we only evaluate

UAS, we disable its edge label output and loss. Finally, we compare against Qi et al. (2018) which is

based on Dozat and Manning (2017) plus auxiliary losses for length and linearization prediction.

Results are shown in Table 29, including results for a recurrent model trained with coaching (‘Recur-

rent (C)’) using a mixture (eq. 71) with β = 0.5. The one-step baseline is strong, even outperforming

the uniform recurrent variant on some languages. The recurrent weight model with coaching, however,

outperforms the one-step and Dozat and Manning (2017) baselines on all four languages. Adding in aux-

iliary losses to the Dozat and Manning (2017) model yields improved UAS as seen in the Qi et al. (2018)

performance, suggesting that our recurrent model might be improved further with auxiliary losses.

Temporal distribution adjustment. Figure 23 shows per-step edge distributions on an eight-edge

example. The recurrent weight variants learned to adjust their distributions over time based on past

88

predictions. The model trained with the uniform oracle has a decreasing number of high probability

edges per step since it aims to place equal mass on each free edge (i, j) ∈ Êtfree. The model trained with

coaching learned to prefer certain free edges over others, but with β = 0.5 the uniform term in the loss

still encourages placing mass on multiple edges per step. By annealing β, however, the coaching model

exhibits vastly different behavior than the uniform-trained policy. The low entropy distributions at early

steps followed by higher entropy distributions later on (e.g. t ∈ {5, 6}) indicates easy-first behavior.

14.2.2 Experiment 2: Oracle and roll-in choice. In this experiment, we study the effects of varying

the oracle and roll-in distributions. Table 30 shows results on German, analyzed below. Models trained

with coaching (C) use a mixture with β = 0.5, after observing lower UAS in preliminary experiments

with lower β. The π∗coaching and πvalid
θ roll-ins use a mixture with β = 0.5 and greedy decoding, which

generally outperformed stochastic sampling.

Set-based learning. The model trained with the deterministic oracle (UAS 81.03), which teaches the

model to adhere to a pre-specified generation order, underperforms the set-based models (UAS ≥ 90.89),

which do not have a pre-specified generation order and can learn strategies such as easy-first.

Coaching. Models trained with coaching (C, UAS ≥ 91.04) had higher UAS and lower loss than models

trained with the uniform oracle (U, UAS ≤ 91.02), for all roll-in methods. This suggests that for the

proposed model, weighting free edges in the loss based on the model’s distribution is more effective

than a uniform weighting. Annealing the β parameter generally did not further improve UAS (CA vs.

C), possibly due to the annealing schedule or overfitting; despite lower losses with annealing, eventually

validation UAS decreased as training progressed.

Roll-in policy. With the coaching oracle (C), the choice of roll-in impacted UAS, with coaching roll-

in (π∗coaching, 91.17) and valid roll-in (πvalid
θ , 91.19) achieving higher UAS than uniform oracle roll-in

(π∗uniform, 91.04). This suggests that when using coaching, narrowing the set of training trajectories to

those preferred by the policy may be more effective than sampling uniformly from the set of all correct

trajectories. Based on these results, we use the coaching oracle and valid roll-in for training our final

model in the next experiment.

14.2.3 Experiment 3: CoNLL 2018 comparison. In this experiment, we evaluate our best model

on a diverse set of multi-lingual datasets. We use the CoNLL 2018 shared task datasets that have at

least 200k examples, along with the four datasets used in the previous experiments. We train a recurrent

weight model for each dataset using the coaching oracle and valid roll-in. We compare against Qi et al.

89

(2018) which placed highly in the CoNLL 2018 competition, reporting test UAS evaluated using their

pre-trained models.

Table 31 shows the results on the 19 datasets from 17 different languages. The recurrent model trained

with the coaching oracle and a valid roll-in achieves a higher UAS than the one-step Qi et al. (2018)

model on 12 of the 19 datasets, plus two ties.

14.3 Related Work

Ours Qi et al.

AR 88.22 88.35
CA 94.13 94.13
CS (CAC) 93.53 93.22
CS (PDT) 93.80 93.21
DE 88.39 87.21
EN (EWT) 91.28 91.21
ES 93.70 93.38
ET 89.56 89.40
FR (GSD) 91.07 90.90
GRC (Perseus) 80.90 82.77
HI 96.78 96.78
IT (ISDT) 94.06 94.24
KO (KAIST) 91.02 90.55
LA (ITTB) 93.66 93.00
NO (Bokmaal) 94.63 94.27
NO (Nynorsk) 94.44 94.02
PT 91.22 91.67
RU (SynTagRus) 94.57 94.42
ZH 87.31 88.49

Table 31: Test set results (UAS) on datasets
from the CoNLL 2018 shared task with greater
than 200k examples, plus the Ancient Greek
(GRC) and Chinese (ZH) datasets. Bold de-
notes the highest UAS on each dataset.

Transition-based dependency parsing has a rich his-

tory, with methods generally varying by the choice

of transition system and feature representation. Tradi-

tional stack-based arc-standard and arc-eager (Yamada

and Matsumoto 2003; Nivre 2003) transition systems

only parse projectively, requiring additional operations

for pseudo-non-projectivity (Gómez-Rodŕıguez et al.

2014) or projectivity (Nivre 2009), while list-based non-

projective systems have been developed (Nivre 2008).

Recent variations assume a generation order such as

top-down (Ma et al. 2018) or left-to-right (Fernández-

González and Gómez-Rodŕıguez 2019). Other recent

models focus on unsupervised settings (Kim et al.

2019). Our focus is a non-projective transition system

and learning method which does not assume a particu-

lar generation order.

A separate thread of research in sequential modeling

has demonstrated that generation order can affect per-

formance (Vinyals et al. 2015), in tasks with set-structured outputs as we discussed in section 13, graphs

(Li et al. 2018), and in NLP tasks such as language modeling (Ford et al. 2018). We investigate this for

dependency parsing, framing the problem as sequential set generation.

Finally, our work is inspired by techniques for improving upon maximum likelihood training through error

exploration and dynamic oracles (Goldberg and Nivre 2012, 2013), and related techniques in imitation

learning for structured prediction (Daumé III et al. 2009; Ross et al. 2011; He et al. 2012a; Goodman

et al. 2016). We detailed this relationship when we introduced our non-monotonic generation framework

from the perspective of imitation learning (§12).

90

14.4 Discussion

In this section we showed how the non-monotonic generation framework is used to learn policies that con-

ditionally generate trees for the application of dependency parsing. We described a family of dependency

parsers which construct a dependency tree by generating a sequence of edge sets, and use non-monotonic

generation for learning without a prescribed generation order. Experimentally, we found that coaching,

which weights actions in the loss according to the model, improves parsing accuracy compared to a uni-

form weighting and allows the parser to learn preferred, input-dependent generation orders. The model’s

sequential aspect, along with coaching and training on a state distribution which resembles the model’s

own behavior, yielded improvements in dependency parsing over strong one-step baselines.

In this section and the preceding section on multiset prediction (§13), we generated objects that do

not have a natural order. In the next section, we will show that even when the underlying data has a

sequential order, we can still use non-monotonic generation to vary the model’s generation order.

91

15 Sequences: Binary Tree Generation Policy

In this section, we will show how the non-monotonic generation framework (§12) is used for generat-

ing text. Unlike our previous applications of non-monotonic generation (§13, §14), text is a sequence.

are

how
?

you <end>

<end>

<end>

<end>

<end>

1

2 3

4 5

6 7

8 9

4

1

8

3

2

5

6

7

9

Fig. 24: A sequence, “how are you ?”, generated
by the proposed approach trained on utterances
from a dialogue dataset. The model first gener-
ated the word “are” and then recursively gen-
erated left and right subtrees (“how” and “you
?”, respectively) of this word. At each produc-
tion step, the model may either generate a to-
ken, or an 〈end〉 token, which indicates that this
subtree is complete. The full generation is per-
formed in a level-order traversal, and the out-
put is read off from an in-order traversal. The
numbers in green squares denote generation or-
der (level-order); those in rounded blue squares
denote location in the final sequence (in-order).

Most sequence generation models, from n-grams

(Bahl et al. 1983) to neural language models (Ben-

gio et al. 2003) generate sequences in a purely left-

to-right, monotonic order. This raises the question of

whether alternative, non-monotonic orders are worth

considering (Ford et al. 2018), especially given the

success of “easy first” techniques in natural language

tagging (Tsuruoka and Tsujii 2005), parsing (Gold-

berg and Elhadad 2010), and coreference (Stoyanov

and Eisner 2012), which allow a model to effectively

learn their own ordering.

In this section, we use our non-monotonic generation

framework (§12) for training sequential text genera-

tion models which learn a generation order without

having to specifying an order in advance. An example

generation from our model is shown in Figure 24. As

before, we frame the learning problem as an imita-

tion learning problem, in which we aim to learn a generation policy that mimics the actions of an oracle

generation policy. Because the best generation order is unknown, the oracle policy cannot know the exact

correct actions to take; to remedy this we show that annealing towards the coaching oracle (Equation 50)

can yield a policy with learned generation orders, by gradually moving from imitating a maximum en-

tropy oracle to reinforcing the policy’s own preferences. Experimental results demonstrate that using

the proposed framework, it is possible to learn policies which generate text without pre-specifying a

generation order, achieving easy first-style behavior. The policies achieve performance metrics that are

competitive with or superior to conventional left-to-right generation in language modeling, word reorder-

ing, and machine translation.25

25 Code and trained models available at https://github.com/wellecks/nonmonotonic_text.

92

https://github.com/wellecks/nonmonotonic_text

15.1 Method

We consider the problem of sequentially generating a sequence of discrete tokens y = (w1, . . . , wN),

such as a natural language sentence, where wi ∈ V , a finite vocabulary. Let Ṽ = V ∪ {〈end〉}. Unlike

conventional approaches with a fixed generation order, often left-to-right (or right-to-left), our goal is

to build a sequence generator that generates these tokens in an order automatically determined by the

sequence generator, without any extra annotation nor supervision of what might be a good order.

Binary tree generation policy. We propose a binary tree generation policy which does so by generating

a word at an arbitrary position, then recursively generating words to its left and words to its right, yielding

a binary tree like that shown in Figure 24. In order to learn such a policy with the non-monotonic

generation framework (§12) we must first define the states and actions.

Each state s ∈ S corresponds to a sequence of tokens from Ṽ . We interpret this sequence of tokens as a

top-down traversal of a binary tree, where 〈end〉 terminates a subtree. The initial state s0 is the empty

sequence. For example, in Figure 24, s1 = 〈are〉, s2 = 〈are,how〉, · · · , s4 = 〈are,how, ?, 〈end〉〉. An action

a is an element of Ṽ which is deterministically appended to the state. Terminal states are those for which

all subtrees have been 〈end〉’ed. If a terminal state sT is reached, we have that T = 2N + 1, where N is

the number of words (non-〈end〉 tokens) in the tree. We use τ(t) to denote the level-order traversal index

of the t-th node in an in-order traversal of a tree, so that 〈aτ(1), . . . , aτ(T)〉 corresponds to the sequence

of discrete tokens generated. The final sequence returned is this, postprocessed by removing all 〈end〉’s.

In Figure 24, τ maps from the numbers in the blue squares to those in the green squares.

The policy π is then a (possibly) stochastic mapping from states to actions, and we denote the probability

of an action a ∈ Ṽ given a state s as π(a | s). The binary tree generation policy π’s behavior decides

which and whether words appear before and after the token of the parent node. Typically there are

many unique binary trees with an in-order traversal equal to a sequence y. Each of these trees has

a different level-order traversal, thus the policy is capable of choosing from many different generation

orders for y, rather than a single predefined order. Note that left-to-right generation can be recovered if

π(〈end〉 | st) = 1 if and only if t is odd (or non-zero and even for right-to-left generation).

Objective. As in multiset prediction (§13) and graph-based dependency parsing (§14), we will use the

non-monotonic generation objective, which involves minimizing the distance between the learned policy

πθ and an oracle policy π∗ on states sampled from a roll-in policy πin (Equation 52),

arg min
θ

Ex,y∼DEs1,...,sT∼πin

T∑
t=1

DKL (π∗(· | s̄t)‖πθ(· | st)) , (72)

93

where x is a sentence sampled from a dataset, and the states are obtained by sampling a sequence of

edges from the roll-in policy. We now describe our choices for roll-in, valid actions, and oracle.

Roll-in. As we have seen in preceding sections, the roll-in policy determines the state distribution over

which the learned policy πθ is to be trained. In most formal analyses, the roll-in policy is a stochastic

mixture of the learned policy π and the oracle policy π∗, ensuring that π is eventually trained on

its own state distribution (Daumé III et al. 2009; Ross et al. 2011; Ross and Bagnell 2014; Chang

et al. 2015). Despite this, experimentally, it has often been found that simply using the oracle’s state

distribution is optimal (Ranzato et al. 2016; Leblond et al. 2018). This is likely because the noise incurred

early on in learning by using π’s state distribution is not overcome by the benefit of matching state

distributions, especially when the the policy class is sufficiently high capacity so as to be nearly realizable

on the training data (Leblond et al. 2018). In preliminary experiments, we observed the same is true

in our setting: simply rolling in according to the oracle policy yielded the best results experimentally.

Fig. 25: A sampled tree for the sentence “a b c d” with
an action space Ṽ = (a,b,c,d,e,〈end〉), showing an or-
acle’s distribution π∗ and valid actions (consecutive
subsequences) Yt for t ∈ {0, 1, 2, 3, 6}. Each oracle dis-
tribution is depicted as 6 boxes showing π∗(at+1|st)
(lighter = higher probability). After b is sampled at
the root, two empty left and right child nodes are cre-
ated, associated with valid actions (a) and (c, d), re-
spectively. Here, π∗ only assigns positive probability
to tokens in Yt.

Therefore, despite the fact that this can lead to

inconsistency in the learned model (Chang et al.

2015), all experiments use oracle roll-ins.

Valid actions. To use the non-monotonic gen-

eration framework, we must specify the valid ac-

tions which keep the trajectory on a path to-

wards a correct prediction (i.e. a tree whose in-

order traversal equals the ground truth sequence

y). The key idea is to define the valid actions at

the first step as all words in y, then after picking

a valid action w, in a quicksort-esque manner,

all words to the left of w in y are defined as the

valid actions on the left, all words to the right

are defined as the valid actions on the right, and

the procedure repeats recursively.

Specifically, let y be the ground-truth output and st be the current state. We interpret the state st

as a partial binary tree and a “current node” in that binary tree where the next prediction will go. A

roll-in trajectory proceeds as a top-down level-order construction of a tree, with valid actions, denoted

Yt, defined at each state st. At s0 (the root node), the valid actions contains all words, Y0 = y. When

an action a is selected at st, this “splits” the sub-sequence Yt = (w′1, . . . , w
′
N ′) into left and right sub-

sequences,
←−
Y t = (w′1, . . . , w

′
i−1) and

−→
Y t = (w′i+1, . . . , w

′
N ′), where i is the index of a in Yt. (This split

94

may not be unique due to duplicated words in Yt, in which case we choose a valid split arbitrarily.) These

are “passed” to the left and right child nodes, respectively. This continues as the tree is descended, so

that at each st the valid actions Yt contain a consecutive subsequence Yt = (w′j , . . . , w
′
k). For instance,

in Figure 25, after sample b for the root, the valid actions (a, b, c, d) are split into (a) for the left child

and (c, d) for the right child. When no tokens remain after a split, the valid actions are set to (〈end〉);

see Y3 and Y6 in Figure 25.

Oracle policies. An oracle policy is a policy that places probability mass only over valid actions,

π∗(a | s̄t) =


pa if a ∈ Yt

0 otherwise,

(73)

where the oracle’s state contains the valid actions, s̄t = (Yt, st), and the pa’s satisfy pa ≥ 0 and
∑
a∈Y pa =

1. See Figure 25 for an example.

As in our investigation of parsing (§14), we consider the three oracles introduced in §12. The uniform

oracle treats all possible generation orders that lead to the target sequence y as equally likely,

πuniform
∗ (a | s̄t) =


1
|Yt| a ∈ Yt

0 otherwise.

As we discussed in (§12), the uniform oracle may be difficult for a learned policy to imitate since the

oracle does not prefer any particular orders; intuitively, it may be too difficult for a policy to learn all

valid generation orders. As a result, we consider the coaching oracle (Equation 50):

πcoaching
∗ (a | s̄t) ∝ πuniform

∗ (a | s̄t)πθ(a | st).

The coaching oracle prefers actions according to the current learned policy, reinforcing the selection by

the current policy if it is valid. The multiplicative nature of the coaching oracle gives rise to an issue,

especially in the early stage of learning, as it does not encourage learning to explore a diverse set of

generation orders. We thus design a mixture of the uniform and coaching policies, which we refer to as

the annealed coaching oracle:

πannealed
∗ (a|s̄t) = βπuniform

∗ (a | s̄t) + (1− β)πcoaching
∗ (a | s̄t). (74)

We anneal β from 1 to 0 over learning, on a linear schedule.

95

We also experiment with a deterministic oracle that corresponds to generating the target sequence from

left to right: πleft-right
∗ always selects the first un-produced word as the correct action, with probability

1. When the roll-in and oracle policies are both set to the left-to-right oracle πleft-right
∗ , the proposed

approach recovers fixed-order maximum likelihood learning (Equation 8).

15.1.1 Neural network parameterization. We use a neural network to implement the binary tree

generating policy, which takes as input a partial binary tree, or equivalently a sequence of nodes in this

partial tree by level-order traversal, and outputs a distribution over the action set Ṽ .

LSTM policy. The first policy we consider is implemented as a recurrent network with long short-term

memory (LSTM) units (Hochreiter and Schmidhuber 1997) by considering the partial binary tree as a

flat sequence of nodes in a level-order traversal (a1, . . . , at). The recurrent network encodes the sequence

into a vector ht and computes a categorical distribution over the action set:

π(a | st) ∝ exp(u>a ht + ba) (75)

where ua and ba are weights and bias associated with a. This LSTM structure relies entirely on the

linearization of a partial binary tree, and minimally takes advantage of the actual tree structure or the

surface order. We did experiment with additionally conditioning π’s action distribution on the parent of

the current node in the tree, but preliminary experiments did not show gains.

Transformer policy. We additionally implement a policy using a transformer Vaswani et al. (2017).

The level-order sequence a1, . . . , at is again summarized by a vector ht, here computed using a multi-

head attention mechanism; see (§4.1.3) for background. As in the LSTM policy, the vector ht is used to

compute a categorical distribution over the action set (Equation 75).

Auxiliary 〈end〉 prediction. We also consider separating the action prediction into token (ai ∈ V)

prediction and 〈end〉 prediction. The policy under this view consists of a categorical distribution over to-

kens (Equation 75) as well as an 〈end〉 predictor that parameterizes a Bernoulli distribution, πend(〈end〉 |

st) ∝ σ(u>e ht + be), where πend(〈end〉 = 1 | st) means at is 〈end〉, and at is determined by π according to

(Equation 75) otherwise. At test time, we threshold the predicted 〈end〉 probability at a threshold τ . In

our experiments, we only use this approach with the transformer policy.

15.2 Empirical Evaluation

We evaluate our non-monotonic text generation framework across four tasks. The first two are uncon-

ditional generation tasks: language modeling and non-monotonic text completion. Our analysis in these

96

tasks is primarily qualitative: we seek to understand what the non-monotonic policy is learing and how it

compares to a left-to-right model. The second two tasks are conditional generation tasks: word reordering

and machine translation.

Oracle Novel Unique Tokens Span Bleu

left-right 17.8 97.0 11.9 1.00 47.0
uniform 98.3 99.9 13.0 1.43 40.0
annealed 93.1 98.2 10.6 1.31 56.2

validation 97.0 100 12.1 - -

Table 32: Statistics computed over 10,000 sam-
pled sentences (in-order traversals of sampled
trees with 〈end〉 tokens removed) for policies
trained on Persona-Chat. A sample is novel
when it is not in the training set. Percent unique
is the cardinality of the set of sampled sentences
divided by the number of sampled sentences.

15.2.1 Language modeling. We begin by consid-

ering generating samples from our model, trained as

a language model. Our goal in this section is to qual-

itatively understand what our model has learned. It

would be natural also to evaluate our model according

to a score like perplexity. Unfortunately, unlike conven-

tional autoregressive language models, it is intractable

to compute the probability of a given sequence in the

non-monotonic generation setting, as it requires us to

marginalize out all possible binary trees that lead to the sequence.

Setup. We use a dataset derived from the Persona-Chat (Zhang et al. 2018) dialogue dataset, which

consists of multi-turn dialogues between two agents. Our dataset here consists of all unique persona

sentences and utterances in Persona-Chat. We derive the examples from the same train, validation,

and test splits as Persona-Chat, resulting in 133,176 train, 16,181 validation, and 15,608 test examples.

Sentences are tokenized by splitting on spaces and punctuation. The training set has a vocabulary size

of 20,090 and an average of 12.0 tokens per example. We use a uni-directional LSTM that has 2 layers

of 1024 LSTM units. See Appendix B.2.1 for more details.

Basic statistics. We draw 10,000 samples from each trained policy (by varying the oracle) and analyze

the results using the following metrics: percentage of novel sentences, percentage of unique, average

number of tokens, average span size26 and Bleu (Figure 32). We use Bleu to quantify the sample

quality by computing the Bleu score of the samples using the validation set as reference, following (Yu

et al. 2016; Zhu et al. 2018). We see that the non-monotonically trained policies generate many more

novel sentences, and build trees that are bushy (span ≈ 1.3), but not complete binary trees. The policy

trained with the annealed oracle is most similar to the validation data according to Bleu.

Content analysis. We investigate the content of the models in Table 33, which shows samples from

policies trained with different oracles. Each of the displayed samples are not a part of the training set.

26 The average span is the average number of children for non-leaf nodes excluding the special token 〈end〉,
ranging from 1.0 (chain, as induced by the left-right oracle) to 2.0 (full binary tree).

97

We additionally examined word frequencies and part-of-speech tag frequencies, finding that the samples

from each policy typically follow the validation set’s word and tag frequencies.

π∗ Samples

le
ft

-r
ig

h
t

◦ hey there , i should be !
◦ not much fun . what are you doing ?
◦ not . not sure if you .
◦ i love to always get my nails done .
◦ sure , i can see your eye underwater

while riding a footwork .

u
n
if

o
rm

◦ i just got off work .
◦ yes but believe any karma , it is .
◦ i bet you are . i read most of good tvs

on that horror out . cool .
◦ sometimes , for only time i practice

professional baseball .
◦ i am rich , but i am a policeman .

a
n
n
ea

le
d

◦ i do , though . do you ?
◦ i like iguanas . i have a snake . i wish

i could win . you ?
◦ i am a homebody .
◦ i care sometimes . i also snowboard .
◦ i am doing okay . just relaxing ,

and you ?

Table 33: Samples from unconditional generation policies
trained on Persona-Chat for each training oracle. The first sam-
ple’s underlying tree is shown.

Generation order. We analyze the

generation order of our various models

by inspecting the part-of-speech (POS)

tags each model tends to put at differ-

ent tree depths (i.e. number of edges

from node to root). Figure 26 shows

POS counts by tree depth, normalized

by the sum of counts at each depth

(we only show the four most frequent

POS categories). We also show POS

counts for the validation set’s depen-

dency trees, obtained with an off-the-

shelf parser. Not surprisingly, policies

trained with the uniform oracle tend to

generate words with a variety of POS

tags at each level. Policies trained with

the annealed oracle on the other hand,

learned to frequently generate punctuation at the root node, often either the sentence-final period or

a comma, in an “easy first” style, since most sentences contain a period. Furthermore, we see that the

policy trained with the annealed oracle tends to generate a pronoun before a noun or a verb (tree depth

1), which is a pattern that policies trained with the left-right oracle also learn. Nouns typically appear in

the middle of the policy trained with the annealed oracle’s trees. Aside from verbs, the annealed policy’s

trees, which place punctuation and pronouns near the root and nouns deeper, follow a similar structure

as the dependency trees.

15.2.2 Non-monotonic text completion. In text completion, where given a context x the model

‘fills in’ a completion y (§3.3.1). A major weakness of the conventional left-to-right autoregressive model

is that it cannot be easily used to fill in missing parts of a sentence except at the end. This is especially

true when the number of tokens per missing segment is not provided.

Our proposed approach, on the other hand, can naturally fill in missing segments in a sentence, which

we call non-monotonic text completion. Using models trained as language models (§15.2.1), we can

98

Fig. 26: POS tag counts by tree-depth, computed by tagging 10,000 sampled sentences. Counts are
normalized across each row (depth), then the marginal tag probabilities are subtracted. Light values
mean the probability of the tag occurring at that depth exceeds the prior probability of the tag occurring.

achieve this by initializing a binary tree with observed tokens in a way that they respect their relative

positions. Generally, an initial tree with nodes (wi, . . . , wk) ensures that each wj appears in the completed

sentence, and that wi appears at some position to the left of wj in the completed sentence when wi is a

left-descendant of wj (analogously for right-descendants).

Initial Tree Samples

◦ lasagna is my favorite food !
◦ my favorite food is mac and cheese !
◦ what is your favorite food ? pizza , i love it !
◦ whats your favorite food ? mine is pizza !
◦ seafood is my favorite . and mexican food !

what is yours ?

◦ hello ! i like classical music . do you ?
◦ hello , do you enjoy playing music ?
◦ hello just relaxing at home listening to

fine music . you ?
◦ hello , do you like to listen to music ?
◦ hello . what kind of music do you like ?

◦ i am a doctor or a lawyer .
◦ i would like to feed my doctor , i aspire

to be a lawyer .
◦ i am a doctor lawyer . 4 years old .
◦ i was a doctor but went to a lawyer .
◦ i am a doctor since i want to be a lawyer .

Table 34: Non-monotonic text completion samples from a pol-
icy trained on Persona-Chat with the uniform oracle. The left
column shows the initial seed tree. Seed words are in bold.

For instance, the first example shown

in Table 34 can be seen as the tem-

plate “ favorite food !

” with variable-length missing seg-

ments. Concretely, we forward an action

sequence st = (a1, . . . , at) correspond-

ing to a tree containing (wi, . . . , wk)

through the policy πθ, then sample ac-

tion sequences (at+1, . . . , aT) ∼ πθ be-

ginning at st. The resulting sequence

(a1, . . . , aT) is a tree whose level or-

der traversal is the completed se-

quence.

To quantify completion quality, we

first create a collection of initial trees

by randomly sampling three words

(wi, wj , wk) from each sentence y = (w1, . . . , wN) from the Persona-Chat validation set. We then sample

one completion for each initial tree and measure the Bleu of each sample using the validation set as

99

reference. According to Bleu, the policy trained with the annealed oracle sampled completions that were

more similar to the validation data (Bleu 44.7) than completions from the policies trained with the uni-

form (Bleu 38.9) or left-to-right (Bleu 14.3) oracles. In Table 34, we present some sample completions

using the policy trained with the uniform oracle. The completions illustrate a property of non-monotonic

generation that is not available in left-to-right generation.

15.2.3 Word reordering. We first evaluate the non-monotonic models for conditional generation on

the word reordering task, also known as bag translation (Brown et al. 1990) or linearization (Schmaltz

et al. 2016). In this task, a sentence y = (w1, . . . , wN) is given as an unordered collection x = {w1, . . . , wN},

and the task is to reconstruct y from x. We assemble a dataset of (x,y) pairs using sentences y from

the Persona-Chat sentence dataset (§15.2.1). We do not force the the non-monotonic policies to produce

a particular permutation of the input, instead letting them learn this automatically.

Model. For encoding each unordered input x = {w1, . . . , wN}, we use a simple bag-of-words encoder:

f enc({w1, . . . , wN}) = 1
N

∑N
i=1 emb(wi). We implement emb(wi) using an embedding layer followed by

a linear transformation. The embedding layer is initialized with GloVe (Pennington et al. 2014) vectors

and updated during training. As the policy (decoder) we use a flat LSTM with 2 layers of 1024 LSTM

units. The decoder hidden state is initialized with a linear transformation of f enc({w1, . . . , wN}).

Results. Figure 35 shows Bleu, F1 score, and exact match for policies trained with each oracle. The

non-monotonic policies (uniform, annealed) outperform the left-right policy in F1 score (0.96 and 0.95

vs. 0.903). The policy trained using the annealed oracle also matches the left-right policy’s performance

in terms of Bleu score (46.0 vs. 46.3) and exact match (0.212 vs. 0.208). The model trained with the

uniform policy does not fare as well on Bleu or exact match.

Easy-first analysis. Figure 27 shows the entropy of each model as a function of depth in the tree

(normalized to fall in [0, 1]). The left-right-trained policy has high entropy on the first word and then

drops dramatically as additional conditioning from prior context kicks in. The uniform-trained policy

exhibits similar behavior. The annealed-trained policy, however, makes its highest confidence (“easiest”)

predictions at the beginning (consistent with Figure 26) and defers harder decisions until later.

15.2.4 Machine translation. Next we evaluate the non-monotonic models on machine translation,

specifically the IWSLT’16 German → English (196k pairs) translation task. The data sets consist of

TED talks. We use TED tst2013 as a validation dataset and tst-2014 as test.

We use a transformer policy, following the architecture of Vaswani et al. (2017). We use auxiliary 〈end〉

prediction by introducing an additional output head, after observing a low brevity penalty in preliminary

100

Validation Test

Oracle Bleu F1 EM Bleu F1 EM
left-right 46.6 0.910 0.230 46.3 0.903 0.208
uniform 44.7 0.968 0.209 44.3 0.960 0.197
annealed 46.8 0.960 0.230 46.0 0.950 0.212

Table 35: Word Reordering results on Persona-
Chat, reported according to Bleu score, F1 score,
and exact match. Fig. 27: Normalized entropy of π(·|s) as a func-

tion of tree depth for policies trained with each of
the oracles. The annealing-trained policy, unlike
the others, makes low entropy decisions early.

Validation Test

Oracle Bleu (BP) Meteor YiSi Ribes Bleu (BP) Meteor YiSi Ribes
left-right 32.30 (0.95) 31.96 69.41 84.80 28.00 (1.00) 30.10 65.22 82.29

uniform 24.50 (0.84) 27.98 66.40 82.66 21.40 (0.86) 26.40 62.41 80.00

annealed 26.80 (0.88) 29.67 67.88 83.61 23.30 (0.91) 27.96 63.38 80.91
+tree-encoding 28.00 (0.86) 30.15 68.43 84.36 24.30 (0.91) 28.59 63.87 81.64
+〈end〉-tuning 29.10 (0.99) 31.00 68.81 83.51 24.60 (1.00) 29.30 64.18 80.53

Table 36: Machine translation results for different training oracles across four different evaluation metrics.

experiments. For the 〈end〉 prediction threshold τ we use 0.5, and also report a variant (+〈end〉 tuning)

in which τ is tuned based on validation Bleu (τ = 0.67). Finally, we report a variant which embeds each

token by additionally encoding its path from the root (+tree-encoding) based on (Shiv and Quirk 2019).

See Appendix B.2.1 for additional details.

Results. Results on validation and test data are in Table 36 according to four (very) different evaluation

measures: Bleu, Meteor (Banerjee and Lavie 2005), YiSi (Lo 2018), and Ribes (Isozaki et al. 2010a). First

focusing on the non-monotonic models, the annealed policy outperforms the uniform policy on all metrics,

with tree-encoding yielding further gains. Adding 〈end〉 tuning to the tree-encoding model decreases the

Ribes score but improves the other metrics, notably increasing the Bleu brevity penalty.

Compared to the best non-monotonic model, the left-to-right model has superior performance according

to Bleu. As previously observed (Callison-Burch et al. 2006; Wilks 2008), Bleu tends to strongly prefer

left-to-right language models because it focuses on getting a large number of 4-grams correct. The other

three measures of translation quality are significantly less sensitive to exact word order and focus more on

whether the “semantics” is preserved (for varying definitions of “semantics”). For those, we see that the

best annealed model is more competitive, typically within one percentage point of left-to-right.

101

15.3 Discussion

We described a method that uses the non-monotonic generation framework (§12) to learn policies capable

of generating text in non-monotonic orders that fall out naturally as the result of learning. We explored

several different oracle models for imitation, and found that an annealed “coaching” oracle performed

best, and learned a “best-first” strategy for language modeling, where it appears to significantly outper-

form alternatives. On a word re-ordering task, we found that this approach essentially ties left-to-right

decoding, a rather promising finding given the decades of work on left-to-right models. In a machine

translation setting, we found that the model learns to translate in a way that tends to preserve meaning

but not n-grams.

102

16 Discussion and Future Directions

In this part of the thesis, we focused on sequential generation without a pre-specified generation order.

We introduced a learning framework based on imitation learning that yields generation policies which

learn to determine their own input-dependent generation orders. The key idea behind the framework,

called non-monotonic generation (§12), is to define a set of valid actions at each generation step, then

imitate an oracle policy which places probability only on these valid actions. We saw how the framework

can be used for generating multisets (§13), dependency trees (§14), and text (§15). Our investigations

suggest several avenues for future work.

One avenue deals with settings that our non-monotonic framework does not currently cover. In multiset

prediction, we considered only discrete-valued elements. While this setting is still of interest (e.g. Lo-

catello et al. (2020)), a more generic setting involves predicting (multi-)sets with vector-valued elements

(Kosiorek et al. 2020), which would require extensions to our framework.

For tree generation, we treated the tree as an edge set, relied on the decoding algorithm to enforce tree

constraints, and used an architecture that is agnostic to the tree structure. Future work could incorporate

node labels and evaluate the effect of architectures that leverage tree structure. One promising application

is modeling symbolic mathematical statements, which may be represented by expression trees (Piotrowski

et al. 2019; Lample and Charton 2020); little investigation has been done on whether the generation order

or tree representation impacts generalization and sample efficiency.

In general, graphs do not come with a specified generation order, and face the additional complication of

needing to deal with isomorphic structures under node relabeling, making graph generation a challenging

application area for non-monotonic generation. Several sequential methods have been developed for

graphs, which rely on hand-specified generation orders (Li et al. 2018; You et al. 2018; Liao et al. 2019).

Though these could be sufficient for practical purposes, it is of scientific interest to develop a method

that does not require a specified generation order.

For text – and generally, sequences – a natural direction is developing models that can consider any

generation order (rather than those considered by our binary tree formulation), and seeking to exceed

performance of left-to-right models. Since our work presented in (§15), several non-monotonic methods

have been developed (e.g. Stern et al. (2019); Gu et al. (2019); Emelianenko et al. (2019); Mansimov

et al. (2019)). Typically machine translation is used as the gold-standard for evaluating these methods,

where the non-monotonic methods either underperform or show marginal gains. It is reasonable to expect

left-to-right generation to be strong in machine translation, but it is also reasonable to suspect that there

may be other tasks that might benefit from alternative generation orders more than machine translation.

103

Some potential tasks might include language tasks such as table-to-text (Chen et al. 2020), but also

non-language tasks such as music (Huang et al. 2019; Roberts et al. 2018; Payne 2019) or image (Oord

et al. 2016; Jain et al. 2020) generation.

Rather than aiming to outperform left-to-right models, one can further study or leverage the unique

properties of non-monotonic models. Non-monotonic text completion (§3.3.1) offers a setting that is

natural for non-monotonic models, while training with multiple generation orders has shown promise as

a pre-training objective (Yang et al. 2019). Finally, an intriguing finding of our investigation was that the

‘bottleneck’ of choosing a generation order can induce a latent structure in the data (§15.2.1). Exploring

this further by modeling the generation order as a latent variable, or leveraging the latent structure for

planning are interesting directions for future investigation.

104

Part IV

Appendices

105

A Derivations & Proofs

A.1 Neural Text Generation (Part II)

A.1.1 Theory: Inconsistency

Lemma 1 If a sequence distribution p(y) is consistent, p(|y| =∞|x) = 0 for any probable context x.

Proof. Suppose there exists a probable context x̃ such that p(|y| =∞| x̃) > 0. Then

pθ(|y| =∞) = E [pθ(|y| =∞|x)]

≥ p(x̃)pθ(|y| =∞| x̃) > 0,

which contradicts the consistency of p(y).

Lemma 2 A recurrent language model pθ is consistent if ‖ht‖p is uniformly bounded for some p ≥ 1.

Proof. Let B > 0 be an upper bound such that ‖ht‖p < B for all t. Let q be the conjugate of p satisfying

1/p+ 1/q = 1. Then we have from Hölder’s inequality, for all v ∈ V and t,

u>v ht ≤ ‖u>v ht‖1 ≤ ‖ht‖p‖uv‖q < Bu+,

where u+ = maxv∈V ‖uv‖q. Note that

log
∑
v∈V

eu
>
v ht+cv ≤ log

(
max
v∈V

eu
>
v ht+cv × |V |

)
≤ max

v∈V
{u>v ht + cv}+ log |V |

< Bu+ + c+ + log |V |,

where c+ = maxv∈V cv. For a given y<t and context x,

log pθ(〈eos〉 | y<t,x)

=(u>〈eos〉ht + c〈eos〉)− log
∑
v∈V

eu
>
v ht+cv

>(−Bu+ + c〈eos〉)− (Bu+ + c+ + log |V |) > −∞,

106

and it follows that pθ(〈eos〉 | y<t,x) > ξ > 0 for some strictly positive constant ξ. Then

pθ(|y| =∞) = lim
t→∞

pθ(|y| > t)

= lim
t→∞

E [pθ(|y| > t |x)]

= E
[

lim
t→∞

pθ(|y| > t |x)
]

≤ E
[

lim
t→∞

(1− ξ)t
]

= 0,

and hence pθ is consistent.

Theorem 2 Suppose a recurrent language model pθ has uniformly bounded ‖ht‖p for some p ≥ 1. If a

decoding algorithm F satisfies qF (〈eos〉 | y<t,x) ≥ pθ(〈eos〉 | y<t,x) for every prefix y<t and context x,

then the decoding algorithm F is consistent with respect to the model pθ.

Proof. By Lemma 2 the model pθ is consistent and pθ(〈eos〉 | y<t,x) > δ for some positive value δ. Thus,

qF (〈eos〉 | y<t,x) ≥ pθ(〈eos〉 | y<t,x) > δ. For t ≥ 1,

qF (|y| > t |x) = qF (y1 6= 〈eos〉 , · · · , yt 6= 〈eos〉 |x)

≤ (1− δ)t.

Taking the limit t→∞ and expectation over x, we have

qF (|y| =∞) = Ex

[
lim
t→∞

qF (|y| > t |x)
]

≤ lim
t→∞

(1− δ)t = 0,

from which the decoding algorithm is consistent.

Theorem 4.2 Greedy decoding is consistent with respect to any self-terminating recurrent LM.

Proof. Let p
〈eos〉
t denote pθ(〈eos〉 | y<t,x) and a

〈eos〉
t denote u>〈eos〉ht + c〈eos〉. By Definition 16 we have

p
〈eos〉
t = 1− σ(a

〈eos〉
t)(1− p〈eos〉

t−1)

= 1−
t∏

t′=0

σ(a
〈eos〉
t′) ≥ 1− (1− ε)t+1.

Take B = − log 2/ log(1− ε). We then have p
〈eos〉
t > 1/2 for all t > B, which implies that 〈eos〉 is always

the most probable token after time step B. Hence, the sequence length is less than B with probability 1.

107

Theorem 4.3 Beam search with width k is consistent with respect to any self-terminating recurrent

language model.

Proof. Let S(ρ) be the size-k set of sequences kept by Fbeam−k that start with a prefix ρ.

Take B = − log 2/ log(1− ε) as in the proof of Theorem 4.2. Suppose that there exists at least one prefix

ρ̂ ∈ P top
B which does not end with 〈eos〉.

We first want to show that ρ̂ induces at most k more steps in beam search with width k, that is, y ∈ S(ρ̂)

implies |y| ≤ B + k.

We know from the proof of Theorem 4.2 that an STRLM pθ satisfies: for any context x and v ∈ V \{〈eos〉},

pθ(〈eos〉 | ρ̂,x) > pθ(v | ρ̂,x).

For any subsequence y = (y1, . . . , yl) with y1 6= 〈eos〉,

pθ(ρ̂ ◦ y | ρ̂,x) =

l∏
i=1

pθ(yi | ρ̂ ◦ y<i, C)

≤ pθ(y1 | ρ̂,x)

< pθ(〈eos〉 | ρ̂,x).

Thus, ρ̂ ◦ 〈eos〉 is the most probable sequence among sequences starting with the prefix ρ̂, and it follows

that ρ̂ ◦ 〈eos〉 ∈ S(ρ̂).

Thus, in S(ρ̂), there are (k− 1) sequences starting with ρ̂ ◦ v for v ∈ V \ {〈eos〉}. By the same argument,

at each step at least one sequence ending with 〈eos〉 is added to S(ρ̂), and therefore at time step (B+k),

k sequences ending with 〈eos〉 are in S(ρ̂).

Note that the result set S by Fbeam−k (Definition 2.11) satisfies

S ⊆
⋃

ρ∈P top
B

S(ρ).

Since each ρ ∈ P top
B induces sequences of length at most B + k, we have

pθ(|y| > B + k |x) = 0.

Taking the expectation over x yields consistency of the model pθ.

108

A.1.2 Learning: Unlikelihood

A.1.2.1 Unlikelihood gradient. Let y∗t be the true next-token (index i∗ ∈ V) at step t, and let yneg

be a negative candidate (index ineg). Let p = p(yt|y<t,x) ∈ RV be the output of softmax(a) where

a ∈ RV .

Denote the probability of an element i ∈ {1, . . . , V } as pi = p(yit|y<t), and let p∗, pneg, and p̃i be

probabilities of the true next-token, negative-candidate token, and any other token with i 6∈ {i∗, ī}.

The (negative) token-level loss with a single candidate is,

Lt = log p(y∗t |y<t) + α · log(1− p(yneg|y<t)),

and its gradient with respect to a logit ai ∈ R is:

∂L
∂pi

∂pi
∂ai

= (I[i = i∗]− pi)− α
pneg

1− pneg
(I[i = ineg]− pi) .

We consider the gradient when i is the true next-token, a negative-candidate, and any other token.

True Next-Token (i = i∗)

∂L
∂p∗

∂p∗
∂ai∗

= (1− p∗)− α
pneg

1− pneg
(0− p∗)

= 1− p∗(1− α
pneg

1− pneg
).

Negative Candidate (i = ineg)

∂L
∂pneg

∂pneg

∂aneg
= (0− pneg)− α pneg

1− pneg
(1− pneg)

= −pneg(1 + α).

Other Token (i 6∈ {i∗, ineg})

∂L
∂p̃i

∂p̃i
∂ai

= (0− p̃i)− α
pneg

1− pneg
(0− p̃i)

= −p̃i(1− α
pneg

1− pneg
).

109

Combining the three cases above, we get:

∇La = y∗ −m� p,

where y∗ ∈ {0, 1}V is 1 at index i∗ and 0 otherwise, and m ∈ RV is:

mi =


(1− α pneg

1−pneg) i 6= ineg

(1 + α) i = ineg. ut
(76)

A.1.2.2 Unlikelihood gradient – multiple candidates. In general, the token-level unlikelihood objective

considers multiple negative candidates (i.e. |Ct| ≥ 1):

LtULE-token(pθ(·|y<t,x), Ct) = −α ·
∑
yc∈Ct

log(1− pθ(yc|y<t,x))− log pθ(yt|y<t,x).

We regroup the token-level objective to be a weighted sum of per-candidate losses:

−LtUL-token =
1

|Ct|
∑
yc∈Ct

(
log pθ(yt|y<t,x) + αc · log(1− pθ(yc|y<t,x))

)
,

where αc = α · |Ct|. Now the gradient takes the same form as Eqn. 76, but with αc in place of α.

A.2 Non-Monotonic Generation (Part III)

A.2.1 Coaching oracle KL-divergence.

DKL

(
πcoaching
∗ ‖πθ

)
≤ DKL

(
πuniform
∗ ‖πθ

)
.

Proof: Let At denote the valid actions at time t, and πu denote the uniform oracle. For the uniform

oracle, we have

DKL

(
πuniform
∗ ‖πθ

)
=
∑
a∈At

πu log

(
πu
πθ

)
=

1

|At|
∑
a∈At

[
log

1

|At|
− log πθ(a)

]
= − log |At| −

1

|At|
∑
a∈At

log πθ(a).

110

Now we denote the coaching as πc and write it as,

πc(a) =
πu(a)πθ(a)∑

a′∈At πu(a′)πθ(a′)

=

1
|At|πθ(a)

1
|At|

∑
a′∈At πθ(a

′)

=
πθ(a)∑

a′∈At πθ(a
′)

=
πθ(a)

Z(θ)
.

Then we have,

DKL

(
πcoaching
∗ ‖πθ

)
=
∑
a∈At

πc log

(
πc
πθ

)
=
∑
a∈At

πθ(a)

Z(θ)
log

(
πθ(a)/Z(θ)

πθ(a)

)
= −

∑
a∈At

πθ(a)

Z(θ)
log (Z(θ))

= − logZ(θ)

Z(θ)

∑
a∈At

πθ(a)︸ ︷︷ ︸
Z(θ)

= − logZ(θ)

= − log

(∑
a∈At

πθ(a)

)

= − log |At| − log

(
1

|At|
∑
a∈At

πθ(a)

)

≤ − log |At| −
1

|At|
∑
a∈At

log πθ(a)

= DKL

(
πuniform
∗ ‖πθ

)
where the inequality invokes Jensen’s inequality on the convex function f(x) = − log(x). ut

A.2.2 Dependency parsing – sequential valid decoder. We wish to sequentially sample E1, E2, . . . , ET

from score matrices S1, S2, . . . , ST , respectively, such that E =
⋃
tEt is a dependency tree. A dependency

tree must satisfy:

1. The root node has no incoming edges.

2. Each non-root node has exactly one incoming edge.

111

3. There are no duplicate edges.

4. There are no self-loops.

5. There are no cycles.

We first consider predicting one edge per step |Et| = 1, then address the case |Et| ≥ 1.

A.2.2.1 One Edge Per Step Let x = x0, x1, . . . , xN where x0 is a root node. We define a function

fvalid(St, E<t) → (i, j) which chooses the highest scoring edge (i, j) such that E<t ∪ {(i, j)} is a depen-

dency tree, given edges E<t and scores St. We represent E<t as an adjacency matrix A<t, and implement

fvalid(St, A<t) by masking St to yield scores S̃ that satisfy (1-5) as follows:

1. S̃·,0 = −∞

2. Ai,j = 1 implies S̃·,j = −∞

3. Ai,j = 1 implies S̃i,j = −∞

4. S̃i,i = −∞ for all i

5. Ri,j = 1 implies S̃j,i = −∞, where R ∈ {0, 1}N×N is the reachability matrix (transitive closure) of

A. That is, Ri,j = 1 when there is a directed path from i to j. 27

The selected edge is then arg max(i,j) S̃i,j .

A full tree is decoded by calling fvalid for T steps, using the current step scores St and an adjacency

matrix A<t =
⋃t−1
t′=1{(i, j)t′}.

A.2.2.2 Multiple Edges Per Step To decode multiple edges per step, i.e. |Et| ≥ 1, we propose to

repeatedly call fvalid, adding the returned edge to the adjacency matrix after each call, and stopping

once the returned edge’s score is below a pre-defined threshold τ .

B Experimental Details

B.1 Neural Text Generation (Part II)

B.1.1 Theory: Inconsistency Experiments 1 and 2. Each model is trained on a single Nvidia

P40 GPU for up to 100 epochs, stopping when validation perplexity does not decrease for 10 consecutive

epochs. A grid search was performed on hidden size ∈ {256 , 512, 1024}, dropout ∈ {0.1,0.3, 0.5}, and

embedding weight tying ∈{True, False}. The values selected for the LSTM-RNN are shown in bold, and

for the tanh-RNN are shown in italics.
27 The reachability matrix R can be computed with batched matrix multiplication as

∑t
k=1A

k where t is the
maximum path length; other methods could potentially improve speed.

112

B.1.2 Learning: Unlikelihood

B.1.2.1 Dialogue pretraining. Following previous work (Humeau et al. 2019), we pre-train our model

on dialogue data, using a previously existing Reddit dataset extracted and obtained by a third party and

made available on pushshift.io, training to generate a comment conditioned on the full thread leading

up to the comment, spanning ∼ 2200M training examples. Our Transformer model consists of an 8 layer

encoder, 8 layer decoder with 512-dimensional embeddings and 16 attention heads, and is based on the

ParlAI implementation of Miller et al. (2017). The model was trained with a batch size of 3072 sequences

for approximately 3M updates using a learning rate of 5e-4, and an inverse square root scheduler. This

pre-training took approximately two weeks using 64 NVIDIA V100s.

B.1.3 Data: Dialogue Natural Language Inference

B.1.3.1 Human evaluation. We use ParlAI Miller et al. (2017) which integrates with Amazon Mechani-

cal Turk for human evaluation. A human annotator is paired with a model, and each is randomly assigned

a persona from 1,155 persona sets. The human and model are then asked to make a conversation of at

least either five or six turns (randomly decided). After the conversation, the annotator assigns three

scores to the conversation, described below. Each annotator is allowed to participate in at most ten

conversations per model, and we collect 100 conversations per model. We evaluate the key-value memory

network without re-ranking (KV-Mem), and with re-ranking (KV-Mem + NLI).

Following a conversation, an annotator is shown the conversation and the model’s persona, and assigns

three scores: an overall score of how well the model represented its persona ({1,2,3,4,5}), a marking of

each model utterance that was consistent with the model’s persona ({0,1}), and a marking of each model

utterance that contradicted a previous utterance or the model’s persona ({0,1}).

We use Bayesian calibration to adjust for annotator bias, following Kulikov et al. (2019). We assume a

model with observed scores Sij and latent variables Mi for the unobserved score of model i and Bj for

the bias of annotator j. We then estimate the posterior mean and variance for the unobserved scores

given the observed scores. We use Pyro Bingham et al. (2018) and the no-u-turn sampler Hoffman and

Gelman (2014) for posterior inference. Refer to Kulikov et al. (2019) for further details on the Bayesian

calibration.

B.1.3.2 Schema. Relation t ypes: place origin, live in citystatecountry, live in general, nationality, em-

ployed by company, employed by general, has profession, previous profession, job status, teach, school status,

has degree, attend school, like general, like food, like drink, like animal, like movie, like music, like read,

like sports, like watching, like activity, like goto, dislike, has hobby, has ability, member of, want do,

113

want job, want, favorite food, favorite color, favorite book, favorite movie, favorite music, favorite music artist,

favorite activity, favorite drink, favorite show, favorite place, favorite hobby, favorite season, favorite animal,

favorite sport, favorite, own, have, have pet, have sibling, have children, have family, have vehicle, phys-

ical attribute, misc attribute, has age, marital status, gender, other.

Additional triples with a not have relation were extracted using a dependency tree pattern.

Entity categories: ability, activity, animal, color, citystate, country, company, cuisine, degree type, drink,

family, food, gender, general location, job status, language, marital, media genres, media other, movie title,

music artist, music genre, music instrument, noun, number, organization, person, person attribute, per-

son label, personality trait, profession, read author, read genre, read title, read other, school name, school status,

school type, season, sport type, subject, time, vehicle, location, other.

B.1.3.3 Relation swaps. Relation swaps for contradictions include (have *, not have),

(own, not have),

(has hobby, not have),

(like *, dislike),

(favorite *, dislike).

Neutral relation swaps include (have x, have y), e.g. have pet, have sibling. Additional (have *

A, not have B) swaps were defined for entities A which are a super-type of B, namely (A,B) pairs

({pet, animal}, {dog, cat}), ({sibling}, {brother, sister}), ({child, kid}, {son, daughter}), ({vehicle},

{car, truck}); this includes sentence pairs such as “i have a sibling”, “i do not have a sister”. Similarly,

(not have B, have * A) swaps were defined using the (A, B) pairs above.

B.1.3.4 Entity swaps. For contradictions, swapping entities for the following relation types was assumed

to yield a contradiction:

attend school, employed by company, employed by general, favorite animal, favorite book, favorite color,

favorite drink, favorite food, favorite hobby, favorite movie, favorite music, favorite music artist, favorite place,

favorite season, favorite show, favorite sport, gender, has profession, job status, live in citystatecountry,

marital status, nationality, place origin, previous profession, school status, want job.

Additionally, for physical attribute, misc attribute, or other relations, an entity swap was done

using all WordNet antonym pairs in the personality trait and person attribute entity categories, as well

as the swaps ({blonde}, {brunette}), ({large}, {tiny}), ({carnivore, omnivore}, {vegan, vegetarian}),

({depressed}, {happy, cheerful}), ({clean}, {dirty}) where each entity in the left set is swapped with

each entity in the right set.

114

B.2 Non-Monotonic Generation (Part III)

B.2.1 Sequences: Binary Tree Generation Policy

B.2.1.1 Language modeling and word reordering. The decoder is a 2-layer LSTM with 1024 hidden units,

dropout of 0.0, based on a preliminary grid search of nlayers ∈ {1, 2}, nhidden ∈ {512, 1024, 2048},dropout ∈

{0.0, 0.2, 0.5}. Word embeddings are initialized with GloVe vectors and updated during training. All pre-

sented word reordering results use greedy decoding.

For πannealed
∗ , β is linearly annealed from 1.0 to 0.0 at a rate of 0.05 each epoch, after a burn-in period

of 20 epochs in which β is not decreased. We use greedy decoding when πcoaching
∗ is selected at a roll-in

step; we did not observe significant performance variations with stochastically sampling from πcoaching
∗ .

These settings are based on a grid search of βrate ∈ {0.01, 0.05}, βburn-in ∈ {0, 20}, coaching-rollin ∈

{greedy, stochastic} using the model selected based on the preliminary grid search above.

Each model was trained on a single GPU using a maximum of 500 epochs, batch size of 32, Adam

optimizer, gradient clipping with maximum `2-norm of 1.0, and a learning rate starting at 0.001 and

multiplied by a factor of 0.5 every 20 epochs. For evaluation we select the model state which had the

highest validation Bleu score, which is evaluated after each training epoch.

For language modeling, we use the same settings as word reordering, except we always use stochastic sam-

pling from π∗coaching during roll-in. For evaluation we select the model state at the end of training.

B.2.1.2 Machine translation. We use the default Moses tokenizer script (Koehn et al. 2007) and segment

each word into a subword using BPE (Sennrich et al. 2015) creating 40k tokens for both source and target.

Similar to (Bahdanau et al. 2015), during training we filter sentence pairs that exceed 50 words.

Transformer policy. The transformer policy uses 4 layers, 4 attention heads, hidden dimension 256,

feed-forward dimension 1024, and is trained with batch-size 32 and a learning rate 1e−5. For this model

and experiment, we define an epoch as 1,000 model updates. The learning rate is divided by a factor of

1.1 every 100 epochs. For πannealed
∗ , β is linearly annealed from 1.0 to 0.0 at a rate of 0.01 each epoch,

after a burn-in period of 100 epochs. We compute metrics after each validation epoch, and following

training we select the model with the highest validation Bleu.

Loss with auxiliary 〈end〉 predictor A binary cross-entropy loss is used for the 〈end〉 predictor for all

time-steps, so that the total loss is Lbce(π∗, πend)+LKL(π∗, π). For time-steps in which 〈end〉 is sampled,

LKL is masked, since the policy’s token distribution is not used when at is 〈end〉. LKL is averaged

over time by summing the loss from unmasked time-steps, then dividing by the number of unmasked

time-steps.

115

Tree position encodings. We use an additional tree position encoding, based on (Shiv and Quirk

2019), which may make it easier for the policy to identify and exploit structural relationships in the

partially decoded tree. Each node is encoded using its path from the root, namely a sequence of left

or right steps from parent to child. Each step is represented as a 2-dimensional binary vector ([0, 0] for

the root, [1, 0] for left and [0, 1] for right), so that the path is a vector e(ai) ∈ {0, 1}2∗max-depth after

zero-padding. Finally, e(ai) is multiplied element-wise by a geometric series of a learned parameter p,

that is, e(ai) ·
[
1, p, p, p2, p3, ...

]
.

C Additional Results

C.1 Neural Text Generation (Part II)

very rare (10%) rare (20%) medium (30%) frequent (40%)
Token frequency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 o

f g
en

er
at

ed
 to

ke
ns

Token generation frequency distribution
Human
L_tok+seq
L_seq
L_tok
L_mle

Fig. 28: Different combinations of unlikelihood

very rare (10%) rare (20%) medium (30%) frequent (40%)
Token frequency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 o

f g
en

er
at

ed
 to

ke
ns

Token generation frequency distribution
Human
L_tok+seq
Nucleus
Beam Block

Fig. 29: Unlikelihood vs. stochastic decoding

116

Bibliography

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan,

Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, and Quoc V. Le. Towards a Human-

like Open-Domain Chatbot. 2020. URL https://www.msxiaobing.com/http://arxiv.org/abs/

2001.09977.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav

Petrov, and Michael Collins. Globally normalized transition-based neural networks. In 54th Annual

Meeting of the Association for Computational Linguistics, ACL 2016 - Long Papers, 2016. ISBN

9781510827585. doi: 10.18653/v1/p16-1231.

Yannis Assael, Thea Sommerschield, and Jonathan Prag. Restoring ancient text using deep learning: A

case study on Greek epigraphy. In EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in

Natural Language Processing and 9th International Joint Conference on Natural Language Processing,

Proceedings of the Conference, 2020. ISBN 9781950737901. doi: 10.18653/v1/d19-1668.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In 7th

International Conference on Learning Representations, ICLR 2019, 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning

to align and translate. In 3rd International Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/

1409.0473.

Lalit R Bahl, Frederick Jelinek, and Robert L Mercer. A maximum likelihood approach to continuous

speech recognition. IEEE transactions on pattern analysis and machine intelligence, 5(2):179–190,

1983.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with improved

correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic

evaluation measures for machine translation and/or summarization, 2005.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence

prediction with recurrent neural networks. In Advances in Neural Information Processing Systems,

2015.

117

https://www.msxiaobing.com/ http://arxiv.org/abs/2001.09977
https://www.msxiaobing.com/ http://arxiv.org/abs/2001.09977
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language

model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Kar-

aletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep Universal Proba-

bilistic Programming. arXiv preprint arXiv:1810.09538, 2018. URL https://arxiv.org/pdf/1810.

09538.pdf.

Samuel R Bowman, Gabor Angeli, Christopher Potts, Christopher D Manning, and Stanford Linguistics.

A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 632–642. Association for Computational

Linguistics, 2015. URL https://doi.org/10.18653/v1/D15-1075.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek, John D.

Lafferty, Robert L. Mercer, and Paul S. Roossin. A statistical approach to machine translation.

Comput. Linguist., 16(2):79–85, June 1990. ISSN 0891-2017. URL http://dl.acm.org/citation.

cfm?id=92858.92860.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. Language models are few-shot learners, 2020.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluation the role of bleu in machine

translation research. In 11th Conference of the European Chapter of the Association for Computational

Linguistics, 2006.

Kai Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé, and John Langford. Learning to

search better than your teacher. In 32nd International Conference on Machine Learning, ICML 2015,

2015. ISBN 9781510810587.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced LSTM

for Natural Language Inference. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 1657–1668. Association for Computational

Linguistics, 2017a. URL https://doi.org/10.18653/v1/P17-1152.

118

https://arxiv.org/pdf/1810.09538.pdf
https://arxiv.org/pdf/1810.09538.pdf
https://doi.org/10. 18653/v1/D15-1075
http://dl.acm.org/citation.cfm?id=92858.92860
http://dl.acm.org/citation.cfm?id=92858.92860
https://doi.org/10.18653/v1/P17-1152

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for language mod-

eling. 1996. doi: 10.3115/981863.981904.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and William Yang Wang. Logical natural language

generation from open-domain tables. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 7929–7942, Online, July 2020. Association for Computational

Linguistics. doi: 10.18653/v1/2020.acl-main.708. URL https://www.aclweb.org/anthology/2020.

acl-main.708.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent neural

networks as weighted language recognizers. arXiv preprint arXiv:1711.05408, 2017b.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of

neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop

on Syntax, Semantics and Structure in Statistical Translation, pages 103–111, Doha, Qatar, October

2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-4012. URL https://www.

aclweb.org/anthology/W14-4012.

Yejin Choi. The missing representation in neural (language) models. 3rd Workshop on Representation

Learning for NLP (RepL4NLP), 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised Learn-

ing of Universal Sentence Representations from Natural Language Inference Data. In Proceedings of

the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670–680, Copen-

hagen, Denmark, 2017. Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/D17-1070.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL Recognising Textual Entailment

Challenge. pages 177–190. Springer, Berlin, Heidelberg, 2006. doi: 10.1007/11736790{\ }9. URL

http://link.springer.com/10.1007/11736790_9.

Hal Daumé III, John Langford, and Daniel Marcu. Search-based Structured Prediction. Technical report,

2009. URL https://arxiv.org/pdf/0907.0786.pdf.

Krzysztof Dembczyński, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal multilabel classification

via probabilistic classifier chains. In Proceedings of the 27th International Conference on International

Conference on Machine Learning, ICML’10, pages 279–286, USA, 2010. Omnipress. ISBN 978-1-60558-

907-7. URL http://dl.acm.org/citation.cfm?id=3104322.3104359.

119

https://www.aclweb.org/anthology/2020.acl-main.708
https://www.aclweb.org/anthology/2020.acl-main.708
https://www.aclweb.org/anthology/W14-4012
https://www.aclweb.org/anthology/W14-4012
https://www.aclweb.org/anthology/D17-1070
https://www.aclweb.org/anthology/D17-1070
http://link.springer.com/10.1007/11736790_9
https://arxiv.org/pdf/0907.0786.pdf
http://dl.acm.org/citation.cfm?id=3104322.3104359

Dorottya Demszky, Kelvin Guu, and Percy Liang. Transforming Question Answering Datasets Into

Natural Language Inference Datasets. arXiv preprint arXiv:1809.02922, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference

on, pages 248–255. IEEE, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. 2018. URL http://arxiv.org/abs/1810.

04805.

Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack Urbanek,

Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, et al. The second conversational intelligence

challenge (convai2). arXiv preprint arXiv:1902.00098, 2019a. URL https://arxiv.org/pdf/1902.

00098.pdf.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. Wizard of

wikipedia: Knowledge-powered conversational agents. In Proceedings of the International Conference

on Learning Representations, 2019b. URL https://openreview.net/forum?id=r1l73iRqKm.

Chris Donahue, Mina Lee, and Percy Liang. Enabling language models to fill in the blanks. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2492–2501, Online,

July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.225. URL

https://www.aclweb.org/anthology/2020.acl-main.225.

Timothy Dozat and Christopher D Manning. Deep Biaffine Attention for Neural Dependency Parsing.

In International Conference on Learning Representations (ICLR), 2017. URL https://arxiv.org/

pdf/1611.01734.pdf.

W Ehrenfeld, R Buckingham, J Cranshaw, T Cuhadar Donszelmann, T Doherty, E Gallas, J Hrivnac,

D Malon, M Nowak, M Slater, F Viegas, E Vinek, Q Zhang, and the ATLAS Collaboration. Using tags

to speed up the atlas analysis process. Journal of Physics: Conference Series, 331(3):032007, 2011.

URL http://stacks.iop.org/1742-6596/331/i=3/a=032007.

Bryan Eikema and Wilker Aziz. Is map decoding all you need? the inadequacy of the mode in neural

machine translation, 2020.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Dmitrii Emelianenko, Elena Voita, and Pavel Serdyukov. Sequence modeling with uncon-

strained generation order. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché

120

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/pdf/1902.00098.pdf
https://arxiv.org/pdf/1902.00098.pdf
https://openreview.net/forum?id=r1l73iRqKm
https://www.aclweb.org/anthology/2020.acl-main.225
https://arxiv.org/pdf/1611.01734.pdf
https://arxiv.org/pdf/1611.01734.pdf
http://stacks.iop.org/1742-6596/331/i=3/a=032007

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems

32, pages 7700–7711. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/

8986-sequence-modeling-with-unconstrained-generation-order.pdf.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In ACL 2018 - 56th

Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long

Papers), 2018. ISBN 9781948087322. doi: 10.18653/v1/p18-1082.

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5:

Long form question answering. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 3558–3567, Florence, Italy, July 2019. Association for Computational

Linguistics. doi: 10.18653/v1/P19-1346. URL https://www.aclweb.org/anthology/P19-1346.

Jillian H. Fecteau and Douglas P. Munoz. Salience, relevance, and firing: a priority map for target

selection. Trends in Cognitive Sciences, 10(8):382 – 390, 2006. ISSN 1364-6613. doi: https://doi.org/

10.1016/j.tics.2006.06.011.

Daniel Fernández-González and Carlos Gómez-Rodŕıguez. Left-to-right dependency parsing with pointer

networks. 2019.

Nicolas Ford, Daniel Duckworth, Mohammad Norouzi, and George E Dahl. The importance of generation

order in language modeling. arXiv preprint arXiv:1808.07910, 2018.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Realtoxici-

typrompts: Evaluating neural toxic degeneration in language models, 2020.

Yoav Goldberg and Michael Elhadad. An efficient algorithm for easy-first non-directional dependency

parsing. In Human Language Technologies: The 2010 Annual Conference of the North American Chap-

ter of the Association for Computational Linguistics, pages 742–750. Association for Computational

Linguistics, 2010.

Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager dependency parsing. In 24th Inter-

national Conference on Computational Linguistics - Proceedings of COLING 2012: Technical Papers,

2012.

Yoav Goldberg and Joakim Nivre. Training Deterministic Parsers with Non-Deterministic Oracles.

Transactions of the Association for Computational Linguistics, 2013. ISSN 2307-387X. doi: 10.1162/

tacl a 00237.

Carlos Gómez-Rodŕıguez, Francesco Sartorio, and Giorgio Satta. A polynomial-time dynamic oracle for

non-projective dependency parsing. In Proceedings of the 2014 Conference on Empirical Methods in

121

http://papers.nips.cc/paper/8986-sequence-modeling-with-unconstrained-generation-order.pdf
http://papers.nips.cc/paper/8986-sequence-modeling-with-unconstrained-generation-order.pdf
https://www.aclweb.org/anthology/P19-1346

Natural Language Processing (EMNLP), pages 917–927. Association for Computational Linguistics,

2014. doi: 10.3115/v1/D14-1099. URL http://aclweb.org/anthology/D14-1099.

Yunchao Gong, Yangqing Jia, Thomas Leung, Alexander Toshev, and Sergey Ioffe. Deep convolutional

ranking for multilabel image annotation. arXiv preprint arXiv:1312.4894, 2013.

James Goodman, Andreas Vlachos, and Jason Naradowsky. Noise reduction and targeted exploration

in imitation learning for Abstract Meaning Representation parsing. In 54th Annual Meeting of the

Association for Computational Linguistics, ACL 2016 - Long Papers, 2016. ISBN 9781510827585. doi:

10.18653/v1/p16-1001.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a contin-

uous cache. In 5th International Conference on Learning Representations, ICLR 2017 - Conference

Track Proceedings, 2017.

Alex Graves. Generating Sequences With Recurrent Neural Networks. 2013. URL http://arxiv.org/

abs/1308.0850.

Jiatao Gu, Changhan Wang, and Jake Zhao. Levenshtein Transformer. Neural Information Processing

Systems (NeurIPS), 2019. URL https://github.com/pytorch/fairseq/tree/http://arxiv.org/

abs/1905.11006.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R Bowman, and Noah A

Smith. Annotation Artifacts in Natural Language Inference Data. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 2 (Short Papers), pages 107–112, New Orleans, Louisiana, 2018. As-

sociation for Computational Linguistics. URL http://aclweb.org/anthology/N18-2017.

S. Hamid Rezatofighi, Vijay Kumar B G, Anton Milan, Ehsan Abbasnejad, Anthony Dick, and Ian Reid.

Deepsetnet: Predicting sets with deep neural networks. In The IEEE International Conference on

Computer Vision (ICCV), Oct 2017.

He He, Hal Daumé, and Jason Eisner. Imitation learning by coaching. In Advances in Neural Information

Processing Systems, 2012a. ISBN 9781627480031.

He He, Hal Daumé, and Jason Eisner. Cost-sensitive Dynamic Feature Selection. In International

Conference on Machine Learning (ICML) workshop on Inferning: Interactions between Inference and

Learning, 2012b.

He He, Hal Daumé, and Jason Eisner. Learning to search in branch-and-bound algorithms. In Advances

in Neural Information Processing Systems, 2014.

122

http://aclweb.org/anthology/D14-1099
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://github.com/pytorch/fairseq/tree/ http://arxiv.org/abs/1905.11006
https://github.com/pytorch/fairseq/tree/ http://arxiv.org/abs/1905.11006
http://aclweb.org/anthology/N18-2017

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,

2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. arXiv preprint

arXiv:1703.06870, 2017.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun,

Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Radford, Aditya

Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam McCandlish. Scaling

laws for autoregressive generative modeling, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. 2015.

URL http://arxiv.org/abs/1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–

1780, 1997.

Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively setting path lengths

in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014. ISSN 1532-4435. URL

http://dl.acm.org/citation.cfm?id=2627435.2638586.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural

text degeneration. In International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=rygGQyrFvH.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam Shazeer,

Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music transformer. In

International Conference on Learning Representations, 2019. URL https://openreview.net/forum?

id=rJe4ShAcF7.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. Poly-encoders: Transformer

architectures and pre-training strategies for fast and accurate multi-sentence scoring. arXiv preprint

arXiv:1905.01969, 2019. URL https://arxiv.org/abs/1905.01969.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. Automatic eval-

uation of translation quality for distant language pairs. In Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing, pages 944–952. Association for Computational

Linguistics, 2010a.

123

http://arxiv.org/abs/1503.02531
http://dl.acm.org/citation.cfm?id=2627435.2638586
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rJe4ShAcF7
https://openreview.net/forum?id=rJe4ShAcF7
https://arxiv.org/abs/1905.01969

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. Automatic evalu-

ation of translation quality for distant language pairs. In EMNLP 2010 - Conference on Empirical

Methods in Natural Language Processing, Proceedings of the Conference, 2010b. ISBN 1932432868.

L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254–1259, 1998. ISSN 01628828.

doi: 10.1109/34.730558. URL http://ieeexplore.ieee.org/document/730558/.

Ajay Jain, Pieter Abbeel, and Deepak Pathak. Locally masked convolution for autoregressive models.

In Conference on Uncertainty in Artificial Intelligence (UAI), 2020.

Yoon Kim, Alexander M Rush, Lei Yu, Adhiguna Kuncoro, Chris Dyer, and Gábor Melis. Unsupervised

Recurrent Neural Network Grammars. 2019. URL https://github.com/harvardnlp/urnnghttp:

//arxiv.org/abs/1904.03746.

C Koch and S Ullman. Shifts in selective visual attention: towards the underlying neural circuitry.

Human neurobiology, 4(4):219–27, 1985. ISSN 0721-9075. URL http://www.ncbi.nlm.nih.gov/

pubmed/3836989.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In Proceedings of the

First Workshop on Neural Machine Translation, pages 28–39, Vancouver, August 2017. Association for

Computational Linguistics. doi: 10.18653/v1/W17-3204. URL https://www.aclweb.org/anthology/

W17-3204.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,

Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra

Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine translation. In

Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions,

pages 177–180. Association for Computational Linguistics, 2007.

Adam R Kosiorek, Hyunjik Kim, and Danilo J Rezende. Conditional set generation with transformers,

2020.

Ilia Kulikov, Alexander Miller, Kyunghyun Cho, and Jason Weston. Importance of search and evalua-

tion strategies in neural dialogue modeling. In Proceedings of the 12th International Conference on

Natural Language Generation, pages 76–87, Tokyo, Japan, October–November 2019. Association for

Computational Linguistics. doi: 10.18653/v1/W19-8609. URL https://www.aclweb.org/anthology/

W19-8609.

124

http://ieeexplore.ieee.org/document/730558/
https://github.com/harvardnlp/urnng http://arxiv.org/abs/1904.03746
https://github.com/harvardnlp/urnng http://arxiv.org/abs/1904.03746
http://www.ncbi.nlm.nih.gov/pubmed/3836989
http://www.ncbi.nlm.nih.gov/pubmed/3836989
https://www.aclweb.org/anthology/W17-3204
https://www.aclweb.org/anthology/W17-3204
https://www.aclweb.org/anthology/W19-8609
https://www.aclweb.org/anthology/W19-8609

Shankar Kumar and William Byrne. Minimum Bayes-Risk Decoding for Statistical Machine Translation.

In HLT-NAACL 2004: Main Proceedings, 2004.

John Lafferty, Andrew McCallum, and Fernando C N Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. ICML ’01 Proceedings of the Eighteenth Interna-

tional Conference on Machine Learning, 2001a. ISSN 1750-2799. doi: 10.1038/nprot.2006.61.

John Lafferty, Andrew McCallum, and Fernando C N Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. ICML ’01 Proceedings of the Eighteenth Interna-

tional Conference on Machine Learning, 2001b. ISSN 1750-2799. doi: 10.1038/nprot.2006.61.

Victor A.F. Lamme and Pieter R. Roelfsema. The distinct modes of vision offered by feedforward

and recurrent processing. Trends in Neurosciences, 23(11):571 – 579, 2000. ISSN 0166-2236. doi:

https://doi.org/10.1016/S0166-2236(00)01657-X. URL http://www.sciencedirect.com/science/

article/pii/S016622360001657X.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International Con-

ference on Learning Representations, 2020. URL https://openreview.net/forum?id=S1eZYeHFDS.

Wuwei Lan and Wei Xu. Neural Network Models for Paraphrase Identification, Semantic Textual Simi-

larity, Natural Language Inference, and Question Answering. In Proceedings of the 27th International

Conference on Computational Linguistics, pages 3890–3902, Santa Fe, New Mexico, USA, 2018. Asso-

ciation for Computational Linguistics. URL http://aclweb.org/anthology/C18-1328.

Rémi Leblond, Jean Baptiste Alayrac, Anton Osokin, and Simon Lacoste-Julien. SeaRNN: Training rnNs

with global-local losses. In 6th International Conference on Learning Representations, ICLR 2018 -

Conference Track Proceedings, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jason Lee, Dustin Tran, Orhan Firat, and Kyunghyun Cho. On the discrepancy between density esti-

mation and sequence generation. arXiv preprint arXiv:2002.07233, 2020.

V. Lempitsky and A. Zisserman. Learning to count objects in images. In Advances in Neural Information

Processing Systems, 2010.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim

Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation

and automatic sharding, 2020.

125

http://www.sciencedirect.com/science/article/pii/S016622360001657X
http://www.sciencedirect.com/science/article/pii/S016622360001657X
https://openreview.net/forum?id=S1eZYeHFDS
http://aclweb.org/anthology/C18-1328

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural

language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019. URL

https://arxiv.org/abs/1910.13461.

Jiwei Li, Michel Galley, Chris Brockett, Georgios P Spithourakis, Jianfeng Gao, and Bill Dolan. A

Persona-Based Neural Conversation Model. In Proceedings of the 54th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers), pages 994–1003, Berlin, Germany, 2016.

Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1094.

Margaret Li, Jason Weston, and Stephen Roller. Acute-eval: Improved dialogue evaluation with optimized

questions and multi-turn comparisons. arXiv preprint arXiv:1909.03087, 2019a. URL https://arxiv.

org/pdf/1909.03087.pdf.

Margaret Li, Jason Weston, and Stephen Roller. Acute-eval: Improved dialogue evaluation with optimized

questions and multi-turn comparisons, 2019b.

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, and Jason

Weston. Don’t say that! making inconsistent dialogue unlikely with unlikelihood training. In Proceed-

ings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4715–4728,

Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.428.

URL https://www.aclweb.org/anthology/2020.acl-main.428.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative

models of graphs. In ICML 2018, 2018.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud,

Raquel Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent

attention networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché Buc,

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,

pages 4255–4265. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/

8678-efficient-graph-generation-with-graph-recurrent-attention-networks.pdf.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,

and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on

computer vision, pages 740–755. Springer, 2014.

Chi-kiu Lo. YiSi: A semantic machine translation evaluation metric for evaluating languages with dif-

ferent levels of available resources. Unpublished, 2018. URL http://chikiu-jackie-lo.org/home/

126

https://arxiv.org/abs/1910.13461
http://www.aclweb.org/anthology/P16-1094
https://arxiv.org/pdf/1909.03087.pdf
https://arxiv.org/pdf/1909.03087.pdf
https://www.aclweb.org/anthology/2020.acl-main.428
http://papers.nips.cc/paper/8678-efficient-graph-generation-with-graph-recurrent-attention-networks.pdf
http://papers.nips.cc/paper/8678-efficient-graph-generation-with-graph-recurrent-attention-networks.pdf
http://chikiu-jackie-lo.org/home/index.php/yisi
http://chikiu-jackie-lo.org/home/index.php/yisi

index.php/yisi.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,

Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention,

2020.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard Hovy. Stack-Pointer

Networks for Dependency Parsing. Technical report, 2018. URL https://arxiv.org/pdf/1805.

01087.pdf.

Bill Maccartney and Christopher D Manning. An extended model of natural logic. Technical report,

2009. URL http://www.aclweb.org/anthology/W09-3714.

Elman Mansimov, Alex Wang, and Kyunghyun Cho. A generalized framework of sequence generation

with application to undirected sequence models. 2019.

M Marelli, S Menini, M Baroni, L Bentivogli, R Bernardi, and R Zamparelli. A SICK cure for the

evaluation of compositional distributional semantic models. In Proceedings of the Ninth International

Conference on Language Resources and Evaluation (LREC-2014), Reykjavik, Iceland, 2014. Euro-

pean Language Resources Association (ELRA). URL http://www.lrec-conf.org/proceedings/

lrec2014/pdf/363_Paper.pdf.

Pedro Henrique Martins, Zita Marinho, and André F. T. Martins. Sparse text generation, 2020.

Andrew McCallum, Dayne Freitag, and Fernando C N Pereira. Maximum Entropy Markov Models for

Information Extraction and Segmentation. In Proceedings of the Seventeenth International Conference

on Machine Learning, 2000. ISBN 1-55860-707-2.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language

models. In 6th International Conference on Learning Representations, ICLR 2018 - Conference Track

Proceedings, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.

arXiv preprint arXiv:1609.07843, 2016.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM language

models. In 6th International Conference on Learning Representations, ICLR 2018 - Conference Track

Proceedings, 2018.

127

http://chikiu-jackie-lo.org/home/index.php/yisi
http://chikiu-jackie-lo.org/home/index.php/yisi
https://arxiv.org/pdf/1805.01087.pdf
https://arxiv.org/pdf/1805.01087.pdf
http://www.aclweb.org/anthology/W09-3714
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu, Dhruv Batra, Antoine Bordes, Devi Parikh, and

Jason Weston. ParlAI: A Dialog Research Software Platform. arXiv preprint:1705.06476, 2017. URL

http://parl.ai.

Kenton Murray and David Chiang. Correcting length bias in neural machine translation. In Proc. WMT,

pages 212–223, 2018.

Jinseok Nam, Eneldo Loza Menćıa, Hyunwoo J Kim, and Johannes Fürnkranz. Maxi-

mizing subset accuracy with recurrent neural networks in multi-label classification. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages

5419–5429. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7125-maximizing-subset-accuracy-with-recurrent-neural-networks-in-multi-label-classification.

pdf.

Joakim Nivre. An efficient algorithm for projective dependency parsing. In Proceedings of the Eighth

International Workshop on Parsing Technologies (IWPT, pages 149–160, Nancy, France, 2003. URL

https://www.aclweb.org/anthology/W03-3017.

Joakim Nivre. Algorithms for deterministic incremental dependency parsing. Comput. Linguist., 34(4):

513–553, December 2008. ISSN 0891-2017. doi: 10.1162/coli.07-056-R1-07-027. URL http://dx.doi.

org/10.1162/coli.07-056-R1-07-027.

Joakim Nivre. Non-projective dependency parsing in expected linear time. In Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP, pages 351–359. Association for Computational Linguistics,

2009. URL http://aclweb.org/anthology/P09-1040.

Franz Josef Och. Minimum error rate training in statistical machine translation. 2003. doi: 10.3115/

1075096.1075117.

Daniel Oñoro-Rubio and Roberto J. López-Sastre. Towards perspective-free object counting with deep

learning. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV

2016, pages 615–629, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46478-7.

Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. volume 48

of Proceedings of Machine Learning Research, pages 1747–1756, New York, New York, USA, 20–22 Jun

2016. PMLR. URL http://proceedings.mlr.press/v48/oord16.html.

128

http://parl.ai.
http://papers.nips.cc/paper/7125-maximizing-subset-accuracy-with-recurrent-neural-networks-in-multi-label-classification.pdf
http://papers.nips.cc/paper/7125-maximizing-subset-accuracy-with-recurrent-neural-networks-in-multi-label-classification.pdf
http://papers.nips.cc/paper/7125-maximizing-subset-accuracy-with-recurrent-neural-networks-in-multi-label-classification.pdf
https://www.aclweb.org/anthology/W03-3017
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://aclweb.org/anthology/P09-1040
http://proceedings.mlr.press/v48/oord16.html

Myle Ott, Michael Auli, David Grangier, and Marc’aurelio Ranzato. Analyzing uncertainty in neural

machine translation. In 35th International Conference on Machine Learning, ICML 2018, 2018. ISBN

9781510867963.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and

Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT

2019: Demonstrations, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-jing Zhu. BLEU : a Method for Automatic

Evaluation of Machine Translation. Computational Linguistics, 2002.

Christine Payne. MuseNet, apr 2019. URL https://openai.com/blog/musenet/.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global Vectors for Word

Representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,

2014. URL http://www.aclweb.org/anthology/D14-1162.

R.J. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze allocation in natural images.

Vision Research, 2005. ISSN 0042-6989.

Bartosz Piotrowski, Josef Urban, Chad E Brown, and Cezary Kaliszyk. Can Neural Networks Learn

Symbolic Rewriting? ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data,

2019. URL http://arxiv.org/abs/1911.04873.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J Edward Hu, Ellie Pavlick, Aaron Steven White,

and Benjamin Van Durme. Collecting Diverse Natural Language Inference Problems for Sentence

Representation Evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 67–81. Association for Computational Linguistics, 2018a. URL http:

//aclweb.org/anthology/D18-1007.

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme. Hy-

pothesis Only Baselines in Natural Language Inference. In The Seventh Joint Conference on Lexical

and Computational Semantics (*SEM), 2018b. URL https://leonidk.com/.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christopher D. Manning. Universal dependency parsing

from scratch. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to

Universal Dependencies, pages 160–170, Brussels, Belgium, October 2018. Association for Computa-

tional Linguistics. URL https://nlp.stanford.edu/pubs/qi2018universal.pdf.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, and Yejin Choi.

Counterfactual story reasoning and generation. In Proceedings of the 2019 Conference on Empiri-

129

https://openai.com/blog/musenet/
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1911.04873
http://aclweb.org/anthology/D18-1007
http://aclweb.org/anthology/D18-1007
https://leonidk.com/
https://nlp.stanford.edu/pubs/qi2018universal.pdf

cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 5043–5053, Hong Kong, China, November 2019. Asso-

ciation for Computational Linguistics. doi: 10.18653/v1/D19-1509. URL https://www.aclweb.org/

anthology/D19-1509.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language

Models are Unsupervised Multitask Learners. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi

Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/

papers/v21/20-074.html.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training

with recurrent neural networks. In 4th International Conference on Learning Representations, ICLR

2016 - Conference Track Proceedings, 2016.

Raymond M. Klein. Inhibition of return. Trends in cognitive sciences, 4(4):138–147, 4 2000. ISSN

1879-307X. URL http://www.ncbi.nlm.nih.gov/pubmed/10740278.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-label clas-

sification. Machine Learning, 85(3):333, Jun 2011. ISSN 1573-0565. doi: 10.1007/s10994-011-5256-5.

URL https://doi.org/10.1007/s10994-011-5256-5.

Mengye Ren and Richard S. Zemel. End-to-end instance segmentation with recurrent attention. In The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. A hierarchical latent

vector model for learning long-term structure in music. volume 80 of Proceedings of Machine Learning

Research, pages 4364–4373, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL

http://proceedings.mlr.press/v80/roberts18a.html.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,

Kurt Shuster, Eric M. Smith, Y-Lan Boureau, and Jason Weston. Recipes for building an open-domain

chatbot, 2020.

Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret

learning. CoRR, abs/1406.5979, 2014. URL http://arxiv.org/abs/1406.5979.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and

structured prediction to no-regret online learning. In Journal of Machine Learning Research, 2011.

130

https://www.aclweb.org/anthology/D19-1509
https://www.aclweb.org/anthology/D19-1509
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://www.ncbi.nlm.nih.gov/pubmed/10740278
https://doi.org/10.1007/s10994-011-5256-5
http://proceedings.mlr.press/v80/roberts18a.html
http://arxiv.org/abs/1406.5979

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for sentence sum-

marization. In Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural

Language Processing, 2015. ISBN 9781941643327.

Allen Schmaltz, Alexander M. Rush, and Stuart Shieber. Word ordering without syntax. In Pro-

ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2319–

2324. Association for Computational Linguistics, 2016. doi: 10.18653/v1/D16-1255. URL http:

//aclweb.org/anthology/D16-1255.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with

subword units. arXiv preprint arXiv:1508.07909, 2015.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. Minimum risk

training for neural machine translation. In 54th Annual Meeting of the Association for Computational

Linguistics, ACL 2016 - Long Papers, 2016. ISBN 9781510827585. doi: 10.18653/v1/p16-1159.

Tianxiao Shen, Victor Quach, Regina Barzilay, and Tommi Jaakkola. Blank language models. 2020.

Vighnesh Leonardo Shiv and Chris Quirk. Novel positional encodings to enable tree-structured trans-

formers. 2019. URL https://openreview.net/forum?id=SJerEhR5Km.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study of

translation edit rate with targeted human annotation. In AMTA 2006 - Proceedings of the 7th Confer-

ence of the Association for Machine Translation of the Americas: Visions for the Future of Machine

Translation, 2006.

Pavel Sountsov and Sunita Sarawagi. Length bias in encoder decoder models and a case for global

conditioning. In EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing,

Proceedings, 2016a. ISBN 9781945626258. doi: 10.18653/v1/d16-1158.

Pavel Sountsov and Sunita Sarawagi. Length bias in encoder decoder models and a case for global

conditioning. In EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing,

Proceedings, 2016b. ISBN 9781945626258. doi: 10.18653/v1/d16-1158.

Felix Stahlberg and Bill Byrne. On NMT search errors and model errors: Cat got your tongue? In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3354–3360,

Hong Kong, China, November 2019a. Association for Computational Linguistics. doi: 10.18653/v1/

D19-1331. URL https://www.aclweb.org/anthology/D19-1331.

131

http://aclweb.org/anthology/D16-1255
http://aclweb.org/anthology/D16-1255
https://openreview.net/forum?id=SJerEhR5Km
https://www.aclweb.org/anthology/D19-1331

Felix Stahlberg and Bill Byrne. On NMT search errors and model errors: Cat got your tongue? In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3356–3362,

Hong Kong, China, November 2019b. Association for Computational Linguistics. doi: 10.18653/v1/

D19-1331. URL https://www.aclweb.org/anthology/D19-1331.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion Transformer: Flexible se-

quence generation via insertion operations. In 36th International Conference on Machine Learning,

ICML 2019, 2019. ISBN 9781510886988.

Russell Stewart, Mykhaylo Andriluka, and Andrew Y. Ng. End-to-end people detection in crowded

scenes. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Veselin Stoyanov and Jason Eisner. Easy-first coreference resolution. Proceedings of COLING 2012,

pages 2519–2534, 2012.

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent neural networks.

In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, 2011. ISBN

9781450306195.

Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. Int J Data Ware-

housing and Mining, 2007:1–13, 2007.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. Bidirectional inference with the easiest-first strategy for tagging

sequence data. In Proceedings of the conference on human language technology and empirical methods

in natural language processing, pages 467–474. Association for Computational Linguistics, 2005.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing

Systems, 2017.

Richard Veale, Ziad M. Hafed, and Masatoshi Yoshida. How is visual salience computed in the brain?

Insights from behaviour, neurobiology and modelling. Philosophical Transactions of the Royal Society

of London B: Biological Sciences, 372(1714), 2017. URL http://rstb.royalsocietypublishing.

org/content/372/1714/20160113.

Oriol Vinyals, Google Quoc, and V Le. A Neural Conversational Model. In ICML Deep Learning

Workshop, 2015.

132

https://www.aclweb.org/anthology/D19-1331
http://rstb.royalsocietypublishing.org/content/372/1714/20160113
http://rstb.royalsocietypublishing.org/content/372/1714/20160113

Andreas Vlachos and Stephen Clark. A new corpus and imitation learning framework for context-

dependent semantic parsing. Transactions of the Association for Computational Linguistics, 2:547–560,

2014. doi: 10.1162/tacl a 00202. URL https://www.aclweb.org/anthology/Q14-1042.

Andreas Vlachos, Gerasimos Lampouras, and Sebastian Riedel. Imitation learning for structured predic-

tion in natural language processing. In Proceedings of the 15th Conference of the European Chapter

of the Association for Computational Linguistics: Tutorial Abstracts, Valencia, Spain, April 2017. As-

sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/E17-5003.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. GLUE:

A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. arXiv preprint

arXiv:1804.07461, 2018. URL https://arxiv.org/pdf/1804.07461.pdf.

Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu. Cnn-rnn: A unified

framework for multi-label image classification. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

Sean Welleck and Kyunghyun Cho. Sequential graph dependency parser. In Proceedings of the In-

ternational Conference on Recent Advances in Natural Language Processing (RANLP 2019), pages

1338–1345, Varna, Bulgaria, September 2019. INCOMA Ltd. doi: 10.26615/978-954-452-056-4 153.

URL https://www.aclweb.org/anthology/R19-1153.

Sean Welleck and Kyunghyun Cho. Mle-guided parameter search for task loss minimization in neural

sequence modeling, 2020.

Sean Welleck, Jialin Mao, Kyunghyun Cho, and Zheng Zhang. Saliency-based sequential image at-

tention with multiset prediction. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-

gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Sys-

tems 30, pages 5173–5183. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7102-saliency-based-sequential-image-attention-with-multiset-prediction.pdf.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. Neural

text generation with unlikelihood training. In International Conference on Learning Representations,

2020. URL https://openreview.net/forum?id=SJeYe0NtvH.

Yorick Wilks. Machine translation: its scope and limits. Springer Science & Business Media, 2008.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A Broad-Coverage Challenge Corpus for Sen-

tence Understanding through Inference. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1

133

https://www.aclweb.org/anthology/Q14-1042
https://www.aclweb.org/anthology/E17-5003
https://arxiv.org/pdf/1804.07461.pdf
https://www.aclweb.org/anthology/R19-1153
http://papers.nips.cc/paper/7102-saliency-based-sequential-image-attention-with-multiset-prediction.pdf
http://papers.nips.cc/paper/7102-saliency-based-sequential-image-attention-with-multiset-prediction.pdf
https://openreview.net/forum?id=SJeYe0NtvH

(Long Papers), pages 1112–1122, New Orleans, Louisiana, 2018. Association for Computational Lin-

guistics. URL http://aclweb.org/anthology/N18-1101.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine Learning, 1992. ISSN 0885-6125. doi: 10.1007/bf00992696.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric

Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers:

State-of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Con-

volutional lstm network: A machine learning approach for precipitation nowcasting. In Advances in

neural information processing systems, pages 802–810, 2015.

H. Yamada and Y. Matsumoto. Statistical Dependency Analysis with Support Vector machines. In The

8th International Workshop of Parsing Technologies (IWPT2003), 2003.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet:

Generalized autoregressive pretraining for language understanding. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. dAlché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems 32, pages 5753–5763. Curran Associates, Inc., 2019. URL http://papers.nips.cc/

paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.

pdf.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. GraphRNN: Generat-

ing realistic graphs with deep auto-regressive models. In 35th International Conference on Machine

Learning, ICML 2018, 2018. ISBN 9781510867963.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets

with policy gradient. CoRR, abs/1609.05473, 2016. URL http://dblp.uni-trier.de/db/journals/

corr/corr1609.html#YuZWY16.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine

really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics, pages 4791–4800, Florence, Italy, July 2019. Association for Computational

Linguistics. doi: 10.18653/v1/P19-1472. URL https://www.aclweb.org/anthology/P19-1472.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter, Joakim Nivre, and

Slav Petrov. CoNLL 2018 shared task: Multilingual parsing from raw text to universal dependencies.

In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal

134

http://aclweb.org/anthology/N18-1101
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://dblp.uni-trier.de/db/journals/corr/corr1609.html#YuZWY16
http://dblp.uni-trier.de/db/journals/corr/corr1609.html#YuZWY16
https://www.aclweb.org/anthology/P19-1472

Dependencies, pages 1–21, Brussels, Belgium, October 2018. Association for Computational Linguistics.

URL http://www.aclweb.org/anthology/K18-2001.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and Arvind Neelakantan. Trading off diversity and

quality in natural language generation, 2020.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Per-

sonalizing Dialogue Agents: I have a dog, do you have pets too? In Proceedings of the 56th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages

2204–2213, Melbourne, Australia, 2018. Association for Computational Linguistics. URL http:

//aclweb.org/anthology/P18-1205.

Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single-image crowd counting via multi-column con-

volutional neural network. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 589–597, June 2016. doi: 10.1109/CVPR.2016.70.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen: A

benchmarking platform for text generation models. SIGIR, 2018.

135

http://www.aclweb.org/anthology/K18-2001
http://aclweb.org/anthology/P18-1205
http://aclweb.org/anthology/P18-1205

	Acknowledgments
	Abstract
	I Sequential Neural Structured Prediction
	II Neural Text Generation
	III Non-Monotonic Generation
	IV Appendices
	Bibliography

