
Unsupervised Learning with

Regularized Autoencoders

by

Junbo Zhao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2019

Professor Yann LeCun

c© Junbo Zhao (Jake)

All Rights Reserved, 2019

Dedication

To my family.

iii

Acknowledgements

To pursue a PhD has been the best decision I made in my life. First and foremost,

I must thank my advisor Yann LeCun. To work with Yann, after flying half a

globe from China, was indeed an unbelievable luxury. Over the years, Yann has

had a huge influence on me. Some of these go far beyond research—the dedication,

visionary thinking, problem-solving methodology and many others.

I thank Kyunghyun Cho. We have never stopped communications during my

PhD. Every time we chat, Kyunghyun is able to give away awesome advice, whether

it is feedback on the research projects, startup and life. I am in his debt. I also

must thank Sasha Rush and Kaiming He for the incredible collaboration experience.

I greatly thank Zhilin Yang from CMU, Saizheng Zhang from MILA, Yoon Kim and

Sam Wiseman from Harvard NLP for the nonstopping collaboration and friendship

throughout all these years.

I am grateful for having been around the NYU CILVR lab and the Facebook AI

Research crowd. In particular, I want to thank Michael Mathieu, Pablo Sprechmann,

Ross Goroshin and Xiang Zhang for teaching me deep learning when I was a newbie

in the area. I thank Mikael Henaff, Martin Arjovsky, Cinjon Resnick, Emily Denton,

Will Whitney, Sainbayar Sukhbaatar, Ilya Kostrikov, Jason Lee, Ilya Kulikov,

Roberta Raileanu, Alex Nowak, Sean Welleck, Ethan Perez, Qi Liu and Jiatao Gu

for all the fun, joyful and fruitful discussions. I also want to thank Jinyang Li, Rob

Fergus, Douwe Kiela, Joan Bruna, Sam Bowman, Branden Lake, Authur Szlam

and Zheng Zhang for keeping giving useful feedback on my research projects.

I thank all my Chinese friends who were very supportive of me: Wenjia Wu,

James Zhou, William Li, Minjie Wang, Shane Gu, Jiwei Li and Edison Xiao. Lastly,

iv

I thank my parents, Yuting Gui, Nan Zhao and Zeyu Chen for their unconditional

loving support.

Jake Zhao

September 2019

v

Abstract

Deep learning has enjoyed remarkable successes in a variety of domains. These

successes often emerge at the cost of large annotated datasets and training compu-

tationally heavy neural network models. The learning paradigm for this is called

supervised learning. However, to reduce the sample complexity while improving

the universality of the trained models is a crucial next step that may to artificial

intelligence. Unsupervised Learning, in contrast to supervised learning, aims to

build neural network models with more generic loss objectives requiring little or no

labelling effort, and therefore it does not reside in any specific domain-task.

In spite of the brevity of its goal, unsupervised learning is a broad topic that

relates or includes several sub-fields, such as density estimation, generative modeling,

world model, etc. In this thesis, we primarily adopt an energy-based view unifying

these different fields [LeCun et al., 2006]. The desired energy function reflects the

data manifold by differentiating the energy assigned to the points on the data

manifold against points off the manifold. Basing on this foundation, we first cast

the popular autoencoder and adversarial learning framework into an energy-based

perspective. Then, we propose several techniques or architectures with a motivation

to improve learning the energy function in an unsupervised setting.

The thesis is organized as follows. First, we list out a number of common

strategies to shape a good energy function by learning. Among these, we mainly

target at two strategies and extend the frontier of them. The resulted models

from this thesis demonstrate several applications made possible by using no or few

labeled data. It covers a wide spectrum of computer vision and language tasks, such

as generation, text summarization, text style-transfer and transfer/semi-supervised

vi

learning.

vii

Contents

Dedication iii

Acknowledgements iv

Abstract vi

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Energy-based learning . 2

1.2 Strategies to build a meaningful energy function 3

1.3 Autoencoders as energy-based models 4

1.4 Generative models . 5

1.5 Transfer learning . 6

1.6 Thesis Outline . 7

2 Related Work 8

2.1 Regularized autoencoders . 8

2.2 Semi-supervised learning . 12

viii

2.3 Transfer learning . 12

3 Energy-based Generative Adversarial Networks 14

3.1 Motivation . 14

3.2 Introduction . 15

3.3 The EBGAN Model . 18

3.4 Related work . 24

3.5 Experiments . 25

3.6 Outlook . 31

3.7 Technical points of section 3.3.2 . 32

3.8 Setting a good margin value . 34

4 Adversarially Regularized Autoencoder 36

4.1 Introduction . 37

4.2 Related Work . 39

4.3 Background . 41

4.4 Model: Adversarially Regularized Autoencoder 42

4.5 Methods and Architectures . 45

4.6 Experiments . 47

4.7 Sample Generations . 57

4.8 Vector Arithmetic . 57

4.9 Optimality Property . 58

5 Unsupervised Text Summarization by Using Language Models as

Regularizers 62

5.1 Introduction . 63

5.2 Discrete sequence autoencoders . 64

ix

5.3 Unsupervised text summarization 66

5.4 Language model regularization . 68

5.5 Results . 70

5.6 Conclusion . 73

5.7 Technicality points . 74

6 Stacked What-Where Autoencoders 76

6.1 Motivation: the “what” and “where” 77

6.2 SWWAE model architecture . 79

6.3 Experiments . 82

6.4 Discussions . 86

7 Unsupervised Learning of Transferable Relational Graphs 89

7.1 Motivation . 89

7.2 Introduction . 90

7.3 Unsupervised Relational Graph Learning 92

7.4 Experiments . 99

7.5 Discussion . 106

8 Conclusions and Future Work 107

Bibliography 109

x

List of Figures

3.1 EBGAN architecture with an auto-encoder discriminator. 22

3.2 (Zooming in on pdf file is recommended.) Histogram of the

inception scores from the grid search. The x-axis carries the inception

score I and y-axis informs the portion of the models (in percentage)

falling into certain bins. Left (a): general comparison of EBGANs

against GANs; Middle (b): EBGANs and GANs both constrained by

nLayer[GD]<=4; Right (c): EBGANs and GANs both constrained

by nLayer[GD]<=3. 26

3.3 (Zooming in on pdf file is recommended.) Histogram of the

inception scores grouped by different optimization combinations,

drawn from optimD, optimG and lr (See text). 27

3.4 Generation from the grid search on MNIST. Left(a): Best GAN

model; Middle(b): Best EBGAN model. Right(c): Best EBGAN-PT

model. 28

3.5 Generation from the LSUN bedroom dataset. Left(a): DCGAN

generation. Right(b): EBGAN-PT generation. 29

3.6 Generation from the CelebA dataset. Left(a): DCGAN generation.

Right(b): EBGAN-PT generation. 30

xi

3.7 ImageNet 128× 128 generations using an EBGAN-PT. 31

3.8 ImageNet 256× 256 generations using an EBGAN-PT. 32

3.9 Generation from the EBGAN auto-encoder model trained with dif-

ferent m settings. From top to bottom, m is set to 1, 2, 4, 6, 8,

12, 16, 32 respectively. The rest setting is nLayerG=5, nLayerD=2,

sizeG=1600, sizeD=1024, dropoutD=0, optimD=ADAM, optimG=ADAM,

lr=0.001. 35

4.1 ARAE architecture. The model can be used as an autoencoder,

where a structure x is encoded and decoded to produce x̂, and as a

GAN (ARAE-GAN), where a sample z is passed though a generator

gθ to produce a code vector, which is similarly decoded to x̃. The

critic function fw is only used at training to help approximate W . 44

4.2 Left: `2 norm of encoder code c and generator code c̃ during ARAE

training. The encoder c is normalized by the model, whereas the generator

learns to match this as training progresses. Middle: Sum of the dimension-

wise variances of the encoder codes Pr and generator codes Pg compared

to that of the standard AE. Right: Average cosine similarity of nearby

sentences (edit-distance wise) for the ARAE and AE. 48

4.3 Sample interpolations from the ARAE-GAN. Constructed by lin-

early interpolating in the latent space and decoding to the output

space. Word changes are highlighted in black. Results of the ARAE.

The top block shows output generation of the decoder taking fake

hidden codes generated by the GAN; the bottom block shows sample

interpolation results. 55

xii

4.4 Quantitative evaluation of transformations. Match % refers to the

% of samples where at least one decoder samples (per 100) had

the desired transformation in the output, while Prec. measures the

average precision of the output against the original sentence. 56

4.5 Examples (out of 100 decoder samples per sentence) where the offset

vectors produced successful transformations of the original sentence.

See section 4.8 for full methodology. 56

4.6 Text samples generated from ARAE-GAN, a simple AE, and from a

baseline LM trained on the same data. To generate from an AE we

fit a multivariate Gaussian to the learned code space and generate

code vectors from this Gaussian. 57

6.1 Left (a): pooling-unpooling. Right (b): model architecture. For

brevity, fully-connected layers are omitted in this figure. 81

6.2 Reconstruction of SWWAE-upsample (left) and SWWAE (right).

The pooling sizes are respectively 2, 4, 8, 16 up-to-down. 83

xiii

6.3 Capsule-alike scatter plots. The x-axis represents the “what” or

“where” from one feature map for an untranslated digit image while

the y-axis is the “what” or “where” output from the counterpart of

the same set of translated images. Translation can happen in either

horizontal or vertical directions. From left to right, the figures are

respectively: first (a): “what” of horizontally translated digits versus

original digits; second (b): “where” of horizontally translated digits

versus original digits; third (c): “what” of vertically translated digits

versus original digits; fourth (d): “where” of vertically translated

digits versus original digits. Note that circles are used to feature +3

translation and triangles for -3. In the “where” related plots, x and

y denote two dimensions of the “where” respectively. 87

6.4 Validation-error v.s. λL2∗ on a range of datasets for SWWAE semi-

supervised experiments. Left (a): MNIST. Right (b): SVHN. Differ-

ent curves denote different number of labels being used. 88

7.1 Traditional transfer learning versus our new transfer learning framework.

Instead of transferring features, we transfer the graphs output by a net-

work. The graphs are multiplied by task-specific features (e.g. embeddings

or hidden states) to produce structure-aware features. 93

xiv

7.2 Overview of our approach GLoMo. During the unsupervised learning

phase, the feature predictor and the graph predictor are jointly trained

to perform context prediction. During the transfer phase, the graph

predictor is frozen and used to extract graphs for the downstream tasks.

An RNN decoder is applied to all positions in the feature predictor, but

we only show the one at position “A” for simplicity. “Select one” means

the graphs can be transferred to any layer in the downstream task model.

“FF” refers to feed-forward networks. The graphs output by the graph

predictor are used as the weights in the “weighted sum” operation (see

Eq. 7.2). 96

7.3 Visualization of the graphs on the MNLI dataset. The graph predictor

has not been trained on MNLI. The words on the y-axis “attend” to the

words on the a-axis; i.e., each row sums to 1. 103

7.4 Visualization. Left: a shark image as the input. Middle: weights of

the edges connected with the central pixel, organized into 24 heads

(3 layers with 8 heads each). Right: weights of the edges connected

with the bottom-right pixel. Note the use of masking. 104

xv

List of Tables

3.1 Grid search specs . 26

3.2 The comparison of LN bottom-layer-cost model and its EBGAN

extension on PI-MNIST semi-supervised task. Note the results are

error rate (in %) and averaged over 15 different random seeds. . . . 28

4.1 Top. Reconstruction error (negative log-likelihood averaged over

sentences) of the original sentence from a corrupted sentence. Here k

is the number of swaps performed on the original sentence. Bottom.

Samples generated from AE and ARAE where the input is noised

by swapping words. 50

4.2 Experiments on sentiment transfer. Left shows the automatic met-

rics (Transfer/BLEU/PPL/Reverse PPL) while right shows human

evaluation metrics (Transfer/Similarity/Naturalness). Cross-Aligned

AE is from Shen et al. [2017] . 52

4.3 Sentiment transfer results. Original sentence and transferred out-

put (from ARAE and the Cross-Aligned AE) of 6 randomly-drawn

examples. 53

xvi

4.4 Random samples from Yahoo topic transfer. Note the first row is

from ARAE trained on titles while the following ones are from replies. 60

4.5 Top. Semi-Supervised accuracy on the natural language inference

(SNLI) test set, respectively using 22.2% (medium), 10.8% (small),

5.25% (tiny) of the supervised labels of the full SNLI training set

(rest used for unlabeled AE training). Bottom. Perplexity (lower is

better) of language models trained on the synthetic samples from a

GAN/AE/LM, and evaluated on real data (Reverse PPL). 61

5.1 The quality of generated summaries as measured by ROUGE-L,

contrasting our unsupervised approach with the adversarial transfer

learning approach of Wang and Lee [2018] (W&L). 70

5.2 Validation examples together with the associated ground-truth head-

lines and the summaries generated by the proposed approach (URSAE-

Major) and the state-of-the-art approach by Wang and Lee [2018].

. 71

5.3 Perplexity results. Alhough comparable in terms of ROUGE-L, the

summaries generated by the proposed approach are more language-

like. 71

5.4 More qualitative results . 74

6.1 SWWAE against other published results on SVHN with 1000 avail-

able labels. 85

6.2 SWWAE against other published results on STL-10. 85

xvii

6.3 Accuracy of SWWAE on CIFAR-10 and CIFAR-100 in comparison

with best published single-model results. Our results are obtained

with the common augmentation setup applying contrast normaliza-

tion, small translation and horizontal mirroring. 86

7.1 Main results on natural language datasets. Self-attention modules

are included in all baseline models. All baseline methods are feature-

based transfer learning methods, including ELMo and GloVe. Our

methods combine graph-based transfer with feature-based transfer.

Our graphs operate on various sets of features, including GloVe

embeddings, ELMo embeddings, and RNN states. “mism.” refers to

the “mismatched” setting. 100

7.2 Ablation study. 102

7.3 CIFAR-10 classification results. We adopt a 42,000/8,000 train/-

validation split—once the best model is selected according to the

validation error, we directly forward it to the test set without doing

any validation set place-back retraining. We only used horizontal

flipping for data augmentation. The results are averaged from 5

rounds of experiments. 105

xviii

Chapter 1

Introduction

The revival of deep learning has influenced many domains in recent years, from

computer vision [Krizhevsky et al., 2012], to natural language processing [Sutskever

et al., 2014], to game AI [Silver et al., 2017] and a few others [LeCun et al., 2015].

Among all these successes, the paradigm of supervised learning plays the most

pivotal role. This means huge costs spent on dataset curation and vast computing

powers for achieving each one of the specific tasks.

Unsupervised learning, however, aims to learn relatively more generic models

based on loss objectives that require minimal or significantly less labelling efforts.

For example, autoencoders are trained to perform self-reconstruction, generative

adversarial networks are trained by a minimax game on distinguishing real from

generated samples, while the video predictive models aim to capture the dynamics

of the world by watching live videos.

1

1.1 Energy-based learning

Despite many interpretations of unsupervised learning, in this thesis we primarily

adopt an energy-based perspective from LeCun et al. [2006]. Formally, let us define

two sets of variables, X and Y , with the end goal being to capture the dependency

between them. Following a grand introduction by LeCun et al. [2006], one can

build an energy-based model E(X, Y) that the energy function E(·) returns a scalar

value measuring the compatibility between the given values to the variables. At

inference time, if to predict Y based on X, we can solve the following optimization

problem minimizing an energy:

Y ∗ = arg min
Y ∈Y

E(X, Y), (1.1)

where Y denotes the set of possible values can be assigned to Y .

To give a more concrete example, let us use variable X as a 2-D array of the

pixel values in an image and Y is the corresponding annotated label. This is

equivalent to a classical image recognition setup. Similarly, when Y represents

the next one or few frames in a video sequence and X represents its past frames,

modeling the joint dependencies between X and Y is a video prediction problem.

Moreover, if we turn this to be a unary variable problem by just setting Y to X,

the energy function is essentially parametrized by some of form of reconstruction.

One can bridge the energy-based models with other probabilistic models by

casting the energy values into probabilities—for example through a Gibbs distribu-

2

tion:

P (Y |X) =
exp−βE(X,Y)∫

Y ∈Y exp−βE(X,Y)
, (1.2)

assuming Y is a continuous variable and β tunes the probability distribution

as a temperature hyperparameter. As it stands, energies can be understood as

unnormalized density. This frees us from calculating normalization factors which

are often intractable in the probabilistic models.

1.2 Strategies to build a meaningful energy func-

tion

How can we characterize good energy functions against the bad ones? In a

nutshell, a desirable energy function ought to reflect the shape of the data manifold.

By definition from LeCun et al. [2006], energy should be low assigning to the

points on-manifold and high to everywhere else.

In this thesis, we mainly focus on extending the horizon of two most popular

strategies:

• Push down of the energy of data points while pulling up on the chosen

locations;

• Develop a regularizer which limits the volume the space that has low energies.

3

1.3 Autoencoders as energy-based models

In this section, we examine a simple, flexible but powerful architecture—the

autoencoders—and discuss it from an energy-based perspective.

To begin with, an autoencoder is trained to reconstruct a given input:

given(x) ∈ P∗, gψ(fθ(x)) ≈ x, (1.3)

where the P∗ denotes the data distribution. The encoder fθ and the decoder gψ are

trained jointly to minimize a form of reconstruction error. For continuous data like

images, the reconstruction error is often defined by

Eθ,ψ(x) = ‖gψ(fθ(x))− x‖2. (1.4)

Recapping the energy-based learning pipeline, here we essentially have an unary

variable objective by setting variable Y to be X.

Although autoencoders are trained to merely “copy” the input, an ideal autoen-

coder should not just copy everything. It is desirable to only reconstruct the data

points on the manifold while leaving the points off-manifold unreconstructed. This

corresponds to the desired energy function conditions.

An alternative interpretation is grounded on representation learning. Early

studies [Ng et al., 2013] of autoencoders pointed out that a two-layer linear autoen-

coder performs similarly to the Principle Component Analysis algorithm, with the

restriction that the number of the hidden layer being smaller than the input size.

What is more, a multi-layer autoencoder was proposed by Hinton and Salakhutdinov

[2006]. This model consists of multiple Restricted Boltzmann Machine modules and

4

is trained with a layerwise training protocol. One important architectural choice

is to reduce the size of the hidden layer progressively from layer to layer. This

work pioneered using autoencoders to do dimensionality reduction, or more broadly

speaking, representation learning.

The goal of representation learning is to learn a compact, smooth and possibly

lower-dimensional code. An ideal representation learning model may contain two

components: an encoder performing efficient inference from the input and a decoder

mapping the code back to the corresponding input. To let autoencoders learn

good representation, what is missing, apart from its reconstruction objective, is

an “information bottleneck” being placed in at the code layer. Simply put, this

bottleneck can be constructed by a reduced dimensionality, imposing priors like

sparsity, etc. We review the literature from this respect in chapter 2. We can also

connect the information bottleneck composition to reducing the low-energy area

from the energy-based view.

1.4 Generative models

Learning the density function of some complex distribution P∗ can be very

challenging. Traditional sampling approaches such as MCMC often fail to capture

a multimodal distribution, because the sampling may either be too slow or biased.

However, the recent progress on deep generative modeling shows the possibility

of generating realistic and high-resolution images [Brock et al., 2018], or human-

readable text [Bowman et al., 2015c]. The fundamental technique is to rely on a

high-capacity neural network as a generator, G, and we train it to approximate

the real data distribution P∗, such that PG ∼ P∗. To introduce the necessary

5

uncertainty, G is devised to map a latent vector z, which is obtained from an

easy-to-sample distribution, to the real data space. There are two most popular

frameworks in this domain—the variational autoencoder [Kingma and Welling,

2013] and generative adversarial network [Goodfellow et al., 2014]. More details

about the backgrounds of these models are written in chapter 2.

In chapter 3 of this thesis, we propose the Energy-based Generative Adversarial

Network to further embrace generative modeling with the energy-based learning.

1.5 Transfer learning

For years, transfer learning has been used as a paradigm deploying what has

been learned from an unsupervisedly trained model to benefit downstream tasks.

In computer vision, researchers cache the weights obtained from an unsupervised

autoencoder and use them to initialize the neural network performing image

classification [Rifai et al., 2011a]. Fine-tuning, which means slightly altering

the pretrained weights in favor of the downstream task, is another standardized

technique in transfer learning.

More recently, transfer learning has had considerable success in natural language

processing. Researchers have shown that training an autoencoder at scale, based on

certain forms of maksed reconstrcuction [Devlin et al., 2018], enables significant gain

on a variety of language-related tasks such as question-answering [Rajpurkar et al.,

2016], natural language inference [Bowman et al., 2015a] and many others. This area

is still growing fast with potentials. In this thesis, we propose GLoMo in chapter 7,

a structure-oriented transfer learning framework that aims at transferring the

first-order dependency between pairwise input units (such as a word in a sentence,

6

or pixels of an image). GLoMo is complementary to the feature-embedding legacy

as most of the researches we mentioned in this section target at, and ideally can be

used in combination with the feature embeddings.

Finally, it is worth noting that besides having an unsupervised objective in

the first training phase, supervised transfer learning is an alternative paradigm,

particularly in computer vision. It mostly relies on training a deep convolution-

based network, such as ResNet [He et al., 2016], on the ImageNet dataset [Deng

et al., 2009]. This pretrained ResNet can be used as a feature extractor afterward

to perform downstream tasks such as visual question answering [Agrawal et al.,

2017] or image captioning [Chen et al., 2015].

1.6 Thesis Outline

The thesis is organized as follows. In chapter 2, we review the prior related

work. Chapter 3, 4, 5 introduce three ways following the strategy (i), that the

energy of the points on the manifold is pushed down while some other deliberately

chosen locations are being pulled up. These three different strategies involve

adversarial training and discretization in the code space. Chapter 6 develops a

hierarchical autoencoder model that involves convolution, deconvolution, pooling

and unpooling, that limits the volume of the space carrying low energies. Chapter 7

proposes GLoMo, a hierarchical masked-autoencoder model aiming to capture

the dependency between atomic units from the input, and we experiment it in a

transfer learning scenario. Finally, chapter 8 concludes the thesis and envisions

future directions.

7

Chapter 2

Related Work

In this chapter, we present the prior work that is relevant to the thesis. First,

in section 2.1, we cover the literature of training autoencoder framework and all its

variants. Then we cover semi-supervised learning and transfer learning paradigms

in section 2.2 and section 2.3 respectively.

2.1 Regularized autoencoders

Autoencoders are energy-based models trained with reconstruction energy.

However, an overcapacity and unregularized autoencoder result in learning an

identity function on the whole input space. When it does so, this amounts to

having zero energy everywhere and the representation learned in the code space

would likely be useless. From the energy-based learning perspective, we need to

introduce certain regularization mechanism to restrict the low-energy area. This

corresponds to preventing the autoencoder from merely copying everything by an

identity function.

8

Information bottleneck in the hidden layer One approach to restrict the

low-energy area of an autoencoder is to place an information bottleneck in the hidden

layer. Specifically, sparse autoencoder [Boureau et al., 2008] and predictive sparse

decomposition [Kavukcuoglu et al., 2010a] utilizes a sparsity prior by penalizing

the l1 norm of the obtained code. This encourages only a few coordinates in the

code space to be non-zero. Extension of this framework includes the K-sparse

autoencoder [Makhzani and Frey, 2013] where strictly only k hidden elements

are active, and the winner-take-all autoencoder [Makhzani and Frey, 2015] as an

extreme case that only the largest coordinate are preserved.

Learning encoder as a contraction Other than restricting the code layer, one

can also enforce the encoder to learn a contraction function. The constractive

autoencoder framework [Rifai et al., 2011a] designs a penalty term of Frobenius

norm of the Jacobian matrix of the encoder activations with respect to the input,

and by doing so to force the encoder to be locally contractive.

Injecting noise to the code space The popular variational autoencoder (VAE)

framework has been proved to be effective in semi-supervised learning, disentangle-

ment of variation of factors, and generating samples [Kingma and Welling, 2013]. As

with all the other autoencoder models, VAE can be cast to an energy-based model,

trained with reconstruction energy. VAEs differ from regular autoencoders because

it minimizes a variational lowerbound such that the code c, obtained from its

encoder, follows a predefined Gaussian distribution. A VAE instantiation consists

of (i)-an encoder that converts input examples into a posterior distribution, and

(ii)-a decoder trained to reconstruct the input conditioned on the sampled vectors

from the posterior. The ELBO bound incorporates another KL term measuring

9

the difference between the posterior distribution and the predefined Gaussian dis-

tribution. The end goal of VAE is to both build a latent variable generative model

(decoder-output pathway) as well as an inference model (input-encoder pathway).

The output of the VAE encoder has a bi-variable structure: mean µ and

covariance matrix σ parametrizing a normal distribution. The reparametrization

technique it proposes can be thought of as injecting noise to the code layer. In

this case, the encoder has to pull the samples away from each other in the latent

space for reconstruction, as later interpreted by WAE [Tolstikhin et al., 2017].

This was proved an effective regularizer in tasks like semi-supervised learning on

MNIST [Kingma et al., 2014].

Input/target differentiation Traditional autoencoders are built upon a recon-

struction objective using the same input vector as the target. Despite the simplicity,

this choice of loss function has made autoencoder tend to copy information over

without learning useful representations. Instead of trying to restrict the low-energy

area by putting bottleneck in the code space or encoder capacity, an orthogonal

way is to differentiate the target from the input. For instance, denoising autoen-

coders [Vincent et al., 2010] purposely pollute the input image by adding Gaussian

noise and let the autoencoder recover the clean image. This framework can be

understood as using the noisy images as the negative examples where the model

assigns relatively high energy (the model does not map the noisy input back to

where they are, but to the data manifold. This results in high reconstruction energy

at the noisy examples’ area). This technique is also employed in natural language

processing, notably in unsupervised neural machine translation [Artetxe et al., 2017;

Lample et al., 2018]. However, because texts are discrete data, the noise injected

10

here is also more structural—for example, word deletion, swap and addition.

Masked reconstruction One particular way to set up the autoencoder re-

construction loss objective is through masking. Specifically, the most common

factorization is based on an autoregressive prior, by which the model is only allowed

to see the input coordinates t < T when trying to reconstruct the timestep T .

Autoencoders applying this version of masked reconstruction on text are referred

to as “language model” while its generalized version in computer vision includes

pixelRNN [Oord et al., 2016], pixelCNN [Van den Oord et al., 2016] etc.

Formally, we can write down this version of masked reconstruction objective by

L(x) =
∑
t

logP (xt|xt′<t), (2.1)

where x denotes the input and t is the considered timestep. Note that the dis-

cretization is often conducted in the output space, even for continuous data like

images [Oord et al., 2016]. Unlike regular autoencoders, applying this factorization

an estimation directly at the likelihood, which is grounded on the autoregressive

prior.

More recently, BERT [Devlin et al., 2018] challenges this autoregressive left-

to-right or right-to-left factorization. It proposes an alternative version of masked

reconstruction by randomly masking out tokens in the input sentence while training a

transfomer-based [Vaswani et al., 2017] autoencoder to recover the blanks. Although

this compromises the capability of likelihood estimation, the authors show that

BERT achieves tremendous results on a variety of benchmarks under the transfer

learning paradigm.

11

2.2 Semi-supervised learning

Semi-supervised learning (SSL) paradigm was proven successful in many stan-

dard tasks. For example, Kingma et al. [2014] show that the error rate of MNIST

can be reduced to be around 1% in an extreme condition when only using 100

labelled samples. This paradigm builds a connection between unsupervised learning

and supervised learning, and mainly targets at the scenarios where labels are lacked.

Unlike supervised learning, SSL does not require all data to be labelled. Instead, it

makes leverage of the unlabeled data while being capable to train with labels.

General philosophy is to use the unlabeled data to train an energy function,

then combine it with the actual supervised loss from labelled data. Such approach

harnesses the knowledge from the unlabeled data to discover the data manifold.

A few past works can be understood by this philosophy. For example, the lad-

der network [Rasmus et al., 2015] combining reconstruction energies at several

abstraction levels achieves less than 1% error rate on MNIST with only 100 labels.

In this thesis, we also explore this domain and propose the stacked what-where

autoencoder in chapter 6, and the energy-based adversarial network in chapter 3.

2.3 Transfer learning

There is an overwhelming amount of evidence on the success of transferring

pre-trained representation across different tasks in deep learning. Notably in

natural language processing, since word2vec [Mikolov et al., 2013a] was proposed,

transferring word-level embedding has become a standard step serving many NLP

tasks. Some other well-known embeddings include GLoVe [Pennington et al., 2014],

12

ELMo [Peters et al., 2018], and more recently—BERT [Devlin et al., 2018]—thanks

to the emerging transformer architecture.

In computer vision, it remains a standard practice to use features learned in

supervised learning on the ImageNet dataset for other downstream tasks.

In chapter 7, we introduce GLoMo, a structure-oriented transfer learning ap-

proach that is complementary to these aforementioned approaches.

13

Chapter 3

Energy-based Generative

Adversarial Networks

In this chapter, we propose a new framework, Energy-based Generative Ad-

versarial Network (EBGAN). This new framework combines two unsupervised

models, Generative Adversarial Networks and Autoencoders. On one side, the

resulted model offers a new perspective that views the discriminator in a GAN

framework via an energy function. On the other, we show that when using an

autoencoder-based energy function in place of the discriminator, the generator can

be used as a negative-sample provider leading to regularize the energy function.

3.1 Motivation

We introduce the “Energy-based Generative Adversarial Network” model which

views the discriminator as an energy function that attributes low energies to the

regions near the data manifold and higher energies to other regions. Similar to the

14

probabilistic GANs, a generator is seen as being trained to produce contrastive

samples with minimal energies, while the discriminator is trained to assign high

energies to these generated samples. Viewing the discriminator as an energy function

allows to use a wide variety of architectures and loss functionals in addition to the

usual binary classifier with logistic output. Among them, we show one instantiation

of EBGAN framework as using an auto-encoder architecture, with the energy being

the reconstruction error, in place of the discriminator. We show that this form of

EBGAN exhibits more stable behavior than regular GANs during training. We

also show that a single-scale architecture can be trained to generate high-resolution

images.

3.2 Introduction

3.2.1 Energy-based model

The essence of the energy-based model [LeCun et al., 2006] is to build a function

that maps each point of an input space to a single scalar, which is called “energy”.

The learning phase is a data-driven process that shapes the energy surface in such

a way that the desired configurations get assigned low energies, while the incorrect

ones are given high energies. Supervised learning falls into this framework: for each

X in the training set, the energy of the pair (X, Y) takes low values when Y is

the correct label and higher values for incorrect Y ’s. Similarly, when modeling X

alone within an unsupervised learning setting, lower energy is attributed to the

data manifold. The term contrastive sample is often used to refer to a data point

causing an energy pull-up, such as the incorrect Y ’s in supervised learning and

points from low data density regions in unsupervised learning.

15

3.2.2 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014] have led to

significant improvements in image generation [Denton et al., 2015; Radford et al.,

2015; Im et al., 2016; Salimans et al., 2016], video prediction [Mathieu et al., 2015]

and a number of other domains. The basic idea of GAN is to simultaneously train

a discriminator and a generator. The discriminator is trained to distinguish real

samples of a dataset from fake samples produced by the generator. The generator

uses input from an easy-to-sample random source, and is trained to produce fake

samples that the discriminator cannot distinguish from real data samples. During

training, the generator receives the gradient of the output of the discriminator

with respect to the fake sample. In the original formulation of GAN in Goodfellow

et al. [2014], the discriminator produces a probability and, under certain conditions,

convergence occurs when the distribution produced by the generator matches the

data distribution. From a game theory point of view, the convergence of a GAN is

reached when the generator and the discriminator reach a Nash equilibrium.

3.2.3 Energy-based Generative Adversarial Networks

In this work, we propose to view the discriminator as an energy function (or a

contrast function) without explicit probabilistic interpretation. The energy function

computed by the discriminator can be viewed as a trainable cost function for the

generator. The discriminator is trained to assign low energy values to the regions

of high data density, and higher energy values outside these regions. Conversely,

the generator can be viewed as a trainable parameterized function that produces

samples in regions of the space to which the discriminator assigns low energy. While

16

it is often possible to convert energies into probabilities through a Gibbs distribution

[LeCun et al., 2006], the absence of normalization in this energy-based form of

GAN provides greater flexibility in the choice of architecture of the discriminator

and the training procedure.

The probabilistic binary discriminator in the original formulation of GAN can

be seen as one way among many to define the contrast function and loss functional,

as described in LeCun et al. [2006] for the supervised and weakly supervised

settings, and Ranzato et al. [2007a] for unsupervised learning. We experimentally

demonstrate this concept, in the setting where the discriminator is an auto-encoder

architecture, and the energy is the reconstruction error.

Our main contributions are summarized as follows:

• An energy-based formulation for generative adversarial training.

• A proof that under a simple hinge loss, when the system reaches convergence,

the generator of EBGAN produces points that follow the underlying data

distribution.

• An EBGAN framework with the discriminator using an auto-encoder archi-

tecture in which the energy is the reconstruction error.

• A set of systematic experiments to explore hyper-parameters and architectural

choices that produce good result for both EBGANs and probabilistic GANs.

• A demonstration that EBGAN framework can be used to generate reasonable

high-resolution images from the ImageNet dataset at 256×256 pixel resolution,

without a multi-scale approach.

17

3.3 The EBGAN Model

Let pdata be the underlying probability density of the distribution that produces

the dataset. The generator G is trained to produce a sample G(z), for instance an

image, from a random vector z, which is sampled from a known distribution pz, for

instance N (0, 1). The discriminator D takes either real or generated images, and

estimates the energy value E ∈ R accordingly, as explained later. For simplicity,

we assume that D produces non-negative values, but the analysis would hold as

long as the values are bounded below.

3.3.1 Objective functional

The output of the discriminator goes through an objective functional in order

to shape the energy function, attributing low energy to the real data samples and

higher energy to the generated (“fake”) ones. In this work, we use a margin loss,

but many other choices are possible as explained in LeCun et al. [2006]. Similarly

to what has been done with the probabilistic GAN [Goodfellow et al., 2014], we

use a two different losses, one to train D and the other to train G, in order to get

better quality gradients when the generator is far from convergence.

Given a positive margin m, a data sample x and a generated sample G(z), the

discriminator loss LD and the generator loss LG are formally defined by:

LD(x, z) = D(x) + [m−D
(
G(z)

)
]+ (3.1)

LG(z) = D
(
G(z)

)
(3.2)

18

where [·]+ = max(0, ·). Minimizing LG with respect to the parameters of G is

similar to maximizing the second term of LD. It has the same minimum but

non-zero gradients when D(G(z)) ≥ m.

3.3.2 Optimality of the solution

In this section, we present a theoretical analysis of the system presented in

section 3.3.1. We show that if the system reaches a Nash equilibrium, then the

generator G produces samples that are indistinguishable from the distribution of

the dataset. This section is done in a non-parametric setting, i.e. we assume that

D and G have infinite capacity.

Given a generator G, let pG be the density distribution of G(z) where z ∼ pz.

In other words, pG is the density distribution of the samples generated by G.

We define:

V (G,D) =

∫
x,z

LD(x, z)pdata(x)pz(z)dxdz (3.3)

U(G,D) =

∫
z

LG(z)pz(z)dz (3.4)

We train the discriminator D to minimize the quantity V and the generator G to

minimize the quantity U .

A Nash equilibrium of the system is a pair (G∗, D∗) that satisfies:

V (G∗, D∗) ≤ V (G∗, D) ∀D (3.5)

U(G∗, D∗) ≤ U(G,D∗) ∀G (3.6)

Theorem 1. If (D∗, G∗) is a Nash equilibrium of the system, then pG∗ = pdata

19

almost everywhere, and V (D∗, G∗) = m.

Proof. First we observe that

V (G∗, D) =

∫
x

pdata(x)D(x)dx+

∫
z

pz(z) [m−D(G∗(z))]+ dz (3.7)

=

∫
x

(
pdata(x)D(x) + pG∗(x) [m−D(x)]+

)
dx. (3.8)

The analysis of the function ϕ(y) = ay + b(m− y)+ (see lemma 1 in appendix 3.7

for details) shows:

(a) D∗(x) ≤ m almost everywhere. To verify it, let us assume that there exists a

set of measure non-zero such that D∗(x) > m. Let D̃(x) = min(D∗(x),m). Then

V (G∗, D̃) < V (G∗, D∗) which violates equation 3.5.

(b) The function ϕ reaches its minimum in m if a < b and in 0 otherwise. So

V (G∗, D) reaches its minimum when we replace D∗(x) by these values. We obtain

V (G∗, D∗) = m

∫
x

1pdata(x)<pG∗ (x)pdata(x)dx+m

∫
x

1pdata(x)≥pG∗ (x)pG∗(x)dx(3.9)

= m

∫
x

(
1pdata(x)<pG∗ (x)pdata(x) +

(
1− 1pdata(x)<pG∗ (x)

)
pG∗(x)

)
dx(3.10)

= m

∫
x

pG∗(x)dx+m

∫
x

1pdata(x)<pG∗ (x)(pdata(x)− pG∗(x))dx (3.11)

= m+m

∫
x

1pdata(x)<pG∗ (x)(pdata(x)− pG∗(x))dx. (3.12)

The second term in equation 3.12 is non-positive, so V (G∗, D∗) ≤ m.

By putting the ideal generator that generates pdata into the right side of equa-

20

tion 3.6, we get

∫
x

pG∗(x)D∗(x)dx ≤
∫
x

pdata(x)D∗(x)dx. (3.13)

Thus by (3.8),

∫
x

pG∗(x)D∗(x)dx+

∫
x

pG∗(x)[m−D∗(x)]+dx ≤ V (G∗, D∗)(3.14)

and since D∗(x) ≤ m, we get m ≤ V (G∗, D∗).

Thus, m ≤ V (G∗, D∗) ≤ m i.e. V (G∗, D∗) = m. Using equation 3.12, we

see that can only happen if
∫
x
1pdata(x)<pG(x)dx = 0, which is true if and only if

pG = pdata almost everywhere (this is because pdata and pG are probabilities densities,

see lemma 2 in the appendix 3.7 for details).

Theorem 2. A Nash equilibrium of this system exists and is characterized by (a)

pG∗ = pdata (almost everywhere) and (b) there exists a constant γ ∈ [0,m] such that

D∗(x) = γ (almost everywhere).1.

Proof. See appendix 3.7.

3.3.3 Using auto-encoders

In our experiments, the discriminator D is structured as an auto-encoder:

D(x) = ||Dec(Enc(x))− x||. (3.15)

The diagram of the EBGAN model with an auto-encoder discriminator is

depicted in figure 3.1. The choice of the auto-encoders for D may seem arbitrary

at the first glance, yet we postulate that it is conceptually more attractive than a

1This is assuming there is no region where pdata(x) = 0. If such a region exists, D∗(x) may
have any value in [0,m] for x in this region.

21

z G

x

"D"

EEnc Dec MSE

Figure 3.1: EBGAN architecture with an auto-encoder discriminator.

binary logistic network:

• Rather than using a single bit of target information to train the model, the

reconstruction-based output offers a diverse targets for the discriminator. With

the binary logistic loss, only two targets are possible, so within a minibatch, the

gradients corresponding to different samples are most likely far from orthogonal.

This leads to inefficient training, and reducing the minibatch sizes is often not

an option on current hardware. On the other hand, the reconstruction loss will

likely produce very different gradient directions within the minibatch, allowing

for larger minibatch size without loss of efficiency.

• Auto-encoders have traditionally been used to represent energy-based model and

arise naturally. When trained with some regularization terms (see section 3.3.3.1),

auto-encoders have the ability to learn an energy manifold without supervision

or negative examples. This means that even when an EBGAN auto-encoding

model is trained to reconstruct a real sample, the discriminator contributes to

discovering the data manifold by itself. To the contrary, without the presence

of negative examples from the generator, a discriminator trained with binary

logistic loss becomes pointless.

22

3.3.3.1 Connection to the regularized auto-encoders

One common issue in training auto-encoders is that the model may learn little

more than an identity function, meaning that it attributes zero energy to the whole

space. In order to avoid this problem, the model must be pushed to give higher

energy to points outside the data manifold. Theoretical and experimental results

have addressed this issue by regularizing the latent representations [Vincent et al.,

2010; Rifai et al., 2011a; Marc’Aurelio Ranzato and Chopra, 2007; Kavukcuoglu

et al., 2010c]. Such regularizers aim at restricting the reconstructing power of the

auto-encoder so that it can only attribute low energy to a smaller portion of the

input points.

We argue that the energy function (the discriminator) in the EBGAN framework

is also seen as being regularized by having a generator producing the contrastive

samples, to which the discriminator ought to give high reconstruction energies.

We further argue that the EBGAN framework allows more flexibility from this

perspective, because: (i)-the regularizer (generator) is fully trainable instead of being

handcrafted; (ii)-the adversarial training paradigm enables a direct interaction

between the duality of producing contrastive sample and learning the energy

function.

3.3.4 Repelling regularizer

We propose a “repelling regularizer” which fits well into the EBGAN auto-

encoder model, purposely keeping the model from producing samples that are

clustered in one or only few modes of pdata. Another technique “minibatch discrim-

ination” was developed by Salimans et al. [2016] from the same philosophy.

23

Implementing the repelling regularizer involves a Pulling-away Term (PT) that

runs at a representation level. Formally, let S ∈ Rs×N denotes a batch of sample

representations taken from the encoder output layer. Let us define PT as:

fPT (S) =
1

N(N − 1)

∑
i

∑
j 6=i

(ST
i Sj

‖Si‖‖Sj‖
)2

. (3.16)

PT operates on a mini-batch and attempts to orthogonalize the pairwise sample

representation. It is inspired by the prior work showing the representational power

of the encoder in the auto-encoder alike model such as Rasmus et al. [2015] and Zhao

et al. [2015]. The rationale for choosing the cosine similarity instead of Euclidean

distance is to make the term bounded below and invariant to scale. We use the

notation “EBGAN-PT” to refer to the EBGAN auto-encoder model trained with

this term. Note the PT is used in the generator loss but not in the discriminator

loss.

3.4 Related work

Our work primarily casts GANs into an energy-based model scope. On this

direction, the approaches studying contrastive samples are relevant to EBGAN,

such as the use of noisy samples [Vincent et al., 2010] and noisy gradient descent

methods like contrastive divergence [Carreira-Perpinan and Hinton, 2005]. From

the perspective of GANs, several papers were presented to improve the stability of

GAN training, [Salimans et al., 2016; Denton et al., 2015; Radford et al., 2015; Im

et al., 2016; Mathieu et al., 2015].

Kim and Bengio [2016] propose a probabilistic GAN and cast it into an energy-

based density estimator by using the Gibbs distribution. Quite unlike EBGAN,

24

this proposed framework doesn’t get rid of the computational challenging partition

function, so the choice of the energy function is required to be integratable.

3.5 Experiments

3.5.1 Exhaustive grid search on MNIST

In this section, we study the training stability of EBGANs over GANs on a

simple task of MNIST digit generation with fully-connected networks. We run an

exhaustive grid search over a set of architectural choices and hyper-parameters for

both frameworks.

Formally, we specify the search grid in table 3.1. We impose the following

restrictions on EBGAN models: (i)-using learning rate 0.001 and Adam [Kingma

and Ba, 2014] for both G and D; (ii)-nLayerD represents the total number of layers

combining Enc and Dec. For simplicity, we fix Dec to be one layer and only tune

the Enc #layers; (iii)-the margin is set to 10 and not being tuned. To analyze the

results, we use the inception score [Salimans et al., 2016] as a numerical means

reflecting the generation quality. Some slight modification of the formulation were

made to make figure 3.2 visually more approachable while maintaining the score’s

original meaning, I ′ = ExKL(p(y)||p(y|x))2 Briefly, higher I ′ score implies better

generation quality.

Histograms We plot the histogram of I ′ scores in figure 3.2. We further

separated out the optimization related setting from GAN’s grid (optimD, optimG

and lr) and plot the histogram of each sub-grid individually, together with the

2This form of the “inception score” is only used to better analyze the grid search in the scope
of this work, but not to compare with any other published work.

25

Table 3.1: Grid search specs

Settings Description EBGANs GANs

nLayerG number of layers in G [2, 3, 4, 5] [2, 3, 4, 5]
nLayerD number of layers in D [2, 3, 4, 5] [2, 3, 4, 5]
sizeG number of neurons in G [400, 800, 1600, 3200] [400, 800, 1600, 3200]
sizeD number of neurons in D [128, 256, 512, 1024] [128, 256, 512, 1024]
dropoutD if to use dropout in D [true, false] [true, false]
optimD to use Adam or SGD for D adam [adam, sgd]
optimG to use Adam or SGD for G adam [adam, sgd]
lr learning rate 0.001 [0.01, 0.001, 0.0001]
#experiments: - 512 6144

EBGAN I ′ scores as a reference, in figure 3.3. The number of experiments for

GANs and EBGANs are both 512 in every subplot. The histograms evidently show

that EBGANs are more reliably trained.

Digits generated from the configurations presenting the best inception score are

shown in figure 3.4.

Figure 3.2: (Zooming in on pdf file is recommended.) Histogram of the
inception scores from the grid search. The x-axis carries the inception score I and
y-axis informs the portion of the models (in percentage) falling into certain bins.
Left (a): general comparison of EBGANs against GANs; Middle (b): EBGANs and
GANs both constrained by nLayer[GD]<=4; Right (c): EBGANs and GANs both
constrained by nLayer[GD]<=3.

26

Figure 3.3: (Zooming in on pdf file is recommended.) Histogram of the
inception scores grouped by different optimization combinations, drawn from
optimD, optimG and lr (See text).

3.5.2 Semi-supervised learning on MNIST

We explore the potential of using the EBGAN framework for semi-supervised

learning on permutation-invariant MNIST, collectively on using 100, 200 and 1000

labels. We utilized a bottom-layer-cost Ladder Network (LN) [Rasmus et al., 2015]

with the EGBAN framework (EBGAN-LN). Ladder Network can be categorized as

an energy-based model trained with multiple levels of reconstruction energies.

One crucial technique in enabling EBGAN framework for semi-supervised

learning is the margin value m decay, in equation 3.1. The reason is to let the

discriminator punish generator less when pG gets closer to the data manifold. Due

to that neural networks are continuous functions, we can think of the extreme case

where the contrastive samples are exactly pinned on the data manifold. This is

when these examples are not contrastive anymore, so the energy function should

27

Figure 3.4: Generation from the grid search on MNIST. Left(a): Best GAN model;
Middle(b): Best EBGAN model. Right(c): Best EBGAN-PT model.

not pull up their energies afterwards. With the margin decay scheduling, when

m = 0, the EBGAN-LN model essentially falls back to be a normal Ladder Network.

The undesirability of a non-decay dynamics for using the discriminator in the

GAN or EBGAN framework is also indicated by Theorem 2: on convergence, the

discriminator reflects a flat energy surface. However, through semi-supervised

learning experments reported in table 3.2, we argue that the contrastive/negative

examples the generative provides allows effective regularization on the discrimintor.

In addition, the generated contrastive samples can be thought as an augmentation

to the dataset.

Note that due to a discrepancy between the reported results between Rasmus

et al. [2015] and Pezeshki et al. [2015], we report both results along with our own

implementation of the Ladder Network of the same settings.

Table 3.2: The comparison of LN bottom-layer-cost model and its EBGAN extension
on PI-MNIST semi-supervised task. Note the results are error rate (in %) and
averaged over 15 different random seeds.

model 100 200 1000

LN reported in Pezeshki et al. [2015] 1.69±0.18 - 1.05±0.02
LN reported in Rasmus et al. [2015] 1.09±0.32 - 0.90±0.05

LN reproduced in this work 1.36±0.21 1.24±0.09 1.04±0.06
EBGAN-LN 1.04±0.12 0.99±0.12 0.89±0.04
Relative percentage improvement 23.5% 20.2% 14.4%

28

3.5.3 LSUN & CelebA

Figure 3.5: Generation from the LSUN bedroom dataset. Left(a): DCGAN
generation. Right(b): EBGAN-PT generation.

We apply the EBGAN framework with deep convolutional architecture to

generate 64 × 64 RGB images, a more realistic task, using the LSUN bedroom

dataset [Yu et al., 2015] and the large-scale face dataset CelebA under alignment

[Liu et al., 2015]. To compare EBGANs with DCGANs [Radford et al., 2015],

we train a DCGAN model under the same configuration and show its generation

side-by-side with the EBGAN model, in figures 3.5 and 3.6.

3.5.4 ImageNet

Finally, we trained EBGANs to generate high-resolution images on ImageNet

[Russakovsky et al., 2015]. Compared with the datasets we have experimented so

far, ImageNet presents an extensively larger and wilder space, so modeling the

data distribution by a generative model becomes very challenging. We devised an

29

Figure 3.6: Generation from the CelebA dataset. Left(a): DCGAN generation.
Right(b): EBGAN-PT generation.

experiment to generate 128× 128 images, trained on the full ImageNet-1k dataset,

which contains roughly 1.3 million images from 1000 different categories. We also

trained a network to generate images of size 256× 256, on a dog-breed subset of

ImageNet, using the wordNet IDs provided by Vinyals et al. [2016]. The results

are shown in figures 3.7 and 3.8. Despite the difficulty of generating images on a

high-resolution level, we observe that EBGANs are able to learn about the fact that

objects appear in the foreground, together with various background components

resembling grass texture, sea under the horizon, mirrored mountain in the water,

buildings, etc. In addition, our 256× 256 dog-breed generations, although far from

realistic, do reflect some knowledge about the appearances of dogs such as their

body, furs and eye.

30

Figure 3.7: ImageNet 128× 128 generations using an EBGAN-PT.

3.6 Outlook

We bridge two classes of unsupervised learning methods – GANs and auto-

encoders – and revisit the GAN framework from an alternative energy-based

perspective. EBGANs show better convergence pattern and scalability to generate

high-resolution images. A family of energy-based loss functionals presented in

LeCun et al. [2006] can easily be incorporated into the EBGAN framework. For the

future work, the conditional setting [Denton et al., 2015; Mathieu et al., 2015] is a

promising setup to explore. We hope the future research will raise more attention

on a broader view of GANs from the energy-based perspective.

31

Figure 3.8: ImageNet 256× 256 generations using an EBGAN-PT.

3.7 Technical points of section 3.3.2

Lemma 1. Let a, b ≥ 0, ϕ(y) = ay + b [m− y]+. The minimum of ϕ on [0,+∞)

exists and is reached in m if a < b, and it is reached in 0 otherwise (the minimum

may not be unique).

Proof. ϕ is defined on [0,+∞), its derivative is defined on [0,+∞)\{m} and

ϕ′(y) = a− b if y ∈ [0,m) and ϕ′(y) = a if y ∈ (m,+∞).

So when a < b, the function is decreasing on [0,m) and increasing on (m,+∞).

Since it is continuous, it has a minimum in m. It may not be unique if a = 0 or

a− b = 0.

On the other hand, if a ≥ b the function ϕ is increasing on [0,+∞), so 0 is a

minimum.

Lemma 2. If p and q are probability densities, then
∫
x
1p(x)<q(x)dx = 0 if and only

if
∫
x
1p(x)6=q(x)dx = 0.

32

Proof. Let’s assume that
∫
x
1p(x)<q(x)dx = 0. Then

∫
x

1p(x)>q(x)(p(x)− q(x))dx (3.17)

=

∫
x

(1− 1p(x)≤q(x))(p(x)− q(x))dx (3.18)

=

∫
x

p(x)dx−
∫
x

q(x)dx+

∫
x

1p(x)≤q(x)(p(x)− q(x))dx (3.19)

= 1− 1 +

∫
x

(
1p(x)<q(x) + 1p(x)=q(x)

)
(p(x)− q(x))dx (3.20)

=

∫
x

1p(x)<q(x)(p(x)− q(x))dx+

∫
x

1p(x)=q(x)(p(x)− q(x))dx (3.21)

= 0 + 0 = 0 (3.22)

So
∫
x
1p(x)>q(x)(p(x)− q(x))dx = 0 and since the term in the integral is always non-

negative, 1p(x)>q(x)(p(x)− q(x)) = 0 for almost all x. And p(x)− q(x) = 0 implies

1p(x)>q(x) = 0, so 1p(x)>q(x) = 0 almost everywhere. Therefore
∫
x
1p(x)>q(x)dx = 0

which completes the proof, given the hypothesis.

Proof of theorem 2 The sufficient conditions are obvious. The necessary

condition on G∗ comes from theorem 1, and the necessary condition on D∗(x) ≤ m

is from the proof of theorem 1.

Let us now assume that D∗(x) is not constant almost everywhere and find a

contradiction. If it is not, then there exists a constant C and a set S of non-zero

measure such that ∀x ∈ S, D∗(x) ≤ C and ∀x 6∈ S, D∗(X) > C. In addition we

can choose S such that there exists a subset S ′ ⊂ S of non-zero measure such that

pdata(x) > 0 on S ′ (because of the assumption in the footnote). We can build a

generator G0 such that pG0(x) ≤ pdata(x) over S and pG0(x) < pdata(x) over S ′. We

33

compute

U(G∗, D∗)− U(G0, D
∗) =

∫
x

(pdata − pG0)D∗(x)dx (3.23)

=

∫
x

(pdata − pG0)(D∗(x)− C)dx (3.24)

=

∫
S
(pdata − pG0)(D∗(x)− C)dx+ (3.25)∫
RN\S

(pdata − pG0)(D∗(x)− C)dx (3.26)

> 0 (3.27)

which violates equation 3.6.

3.8 Setting a good margin value

It is crucial to set a proper energy margin value m in the framework of EBGAN,

from both theoretical and experimental perspective. Here, we provide a few tips:

• Delving into the formulation of the discriminator loss made by equation 3.1,

we suggest a numerical balance between its two terms which concern real

and fake sample respectively. The second term is apparently bounded by

[0,m] (assuming the energy function D(x) is non-negative). It is desirable to

make the first term bounded in a similar range. In theory, the upper bound

of the first term is essentially determined by (i)-the capacity of D; (ii)-the

complexity of the dataset.

• In practice, for the EBGAN auto-encoder model, one can run D (the auto-

encoder) alone on the real sample dataset and monitor the loss. When it

converges, the consequential loss implies a rough limit on how well such

34

setting of D is capable to fit the dataset. This usually suggests a good start

for a hyper-parameter searching on m.

• m being overly large results in a training instability/difficulty, while m being

too small is prone to the mode-dropping problem. This property of m is

depicted in figure 3.9.

Abstracting away from the practical experimental tips, the theoretical under-

standing of EBGAN in section 3.3.2 also provides some insight for setting a feasible

m. For instance, as implied by Theorem 2, setting a large m results in a broader

range of γ to which D∗(x) may converge. Instability may come after an overly large

γ because it generates two strong gradients pointing to opposite directions, from

loss 3.1, which would perhaps demand more careful hyperparamter setting.

Figure 3.9: Generation from the EBGAN auto-encoder model trained with different
m settings. From top to bottom, m is set to 1, 2, 4, 6, 8, 12, 16, 32 respectively. The
rest setting is nLayerG=5, nLayerD=2, sizeG=1600, sizeD=1024, dropoutD=0,
optimD=ADAM, optimG=ADAM, lr=0.001.

35

Chapter 4

Adversarially Regularized

Autoencoder

While autoencoders are a key technique in representation learning for continuous

structures, such as images or wave forms, developing general-purpose autoencoders

for discrete structures, such as text sequence or discretized images, has proven

to be more challenging. In particular, discrete inputs make it more difficult to

learn a smooth encoder that preserves the complex local relationships in the

input space. In this work, we propose an adversarially regularized autoencoder

(ARAE) with the goal of learning more robust discrete-space representations. ARAE

jointly trains both a rich discrete-space encoder, such as an RNN, and a simpler

continuous space generator function, while using generative adversarial network

(GAN) training to constrain the distributions to be similar. This method yields a

smoother contracted code space that maps similar inputs to nearby codes, and also

an implicit latent variable GAN model for generation. Experiments on text and

discretized images demonstrate that the GAN model produces clean interpolations

36

and captures the multimodality of the original space, and that the autoencoder

produces improvements in semi-supervised learning as well as state-of-the-art

results in unaligned text style transfer task using only a shared continuous-space

representation.

4.1 Introduction

Recent work on regularized autoencoders, such as variational [Kingma and

Welling, 2014; Rezende et al., 2014] and denoising [Vincent et al., 2008] variants,

has shown significant progress in learning smooth representations of complex, high-

dimensional continuous data such as images. These code-space representations

facilitate the ability to apply smoother transformations in latent space in order to

produce complex modifications of generated outputs, while still remaining on the

data manifold.

Unfortunately, learning similar latent representations of discrete structures, such

as text sequences or discretized images, remains a challenging problem. Initial work

on VAEs for text has shown that optimization is difficult, as the decoder can easily

degenerate into a unconditional language model [Bowman et al., 2015c]. Recent

work on generative adversarial networks (GANs) for text has mostly focused on

getting around the use of discrete structures either through policy gradient methods

[Che et al., 2017; Hjelm et al., 2017; Yu et al., 2017] or with the Gumbel-Softmax

distribution [Kusner and Hernandez-Lobato, 2016]. However, neither approach can

yet produce robust representations directly.

A major difficulty of discrete autoencoders is mapping a discrete structure to a

continuous code vector while also smoothly capturing the complex local relationships

37

of the input space. Inspired by recent work combining pretrained autoencoders with

deep latent variable models, we propose to target this issue with an adversarially

regularized autoencoder (ARAE). Specifically we jointly train a discrete structure

encoder and continuous space generator, while constraining the two models with a

discriminator to agree in distribution. This approach allows us to utilize a complex

encoder model, such as an RNN, and still constrain it with a very flexible, but

more limited generator distribution. The full model can be then used as a smoother

discrete structure autoencoder or as a latent variable GAN model where a sample

can be decoded, with the same decoder, to a discrete output. Since the system

produces a single continuous coded representation—in contrast to methods that

act on each RNN state—it can easily be further regularized with problem-specific

invariants, for instance to learn to ignore style, sentiment or other attributes for

transfer tasks.

Experiments apply ARAE to discretized images and sentences, and demonstrate

that the key properties of the model. Using the latent variable model (ARAE-GAN),

the model is able to generate varied samples that can be quantitatively shown to

cover the input spaces and to generate consistent image and sentence manipulations

by moving around in the latent space via interpolation and offset vector arithmetic.

Using the discrete encoder, the model can be used in a semi-supervised setting to

give improvement in a sentence inference task. When the ARAE model is trained

with task-specific adversarial regularization, the model improves the current best

results on sentiment transfer reported in Shen et al. [2017] and produces compelling

outputs on a topic transfer task using only a single shared code space. All outputs

are listed in the Section ?? and code is available at (removed for review).

38

4.2 Related Work

In practice unregularized autoencoders often learn a degenerate identity mapping

where the latent code space is free of any structure, so it is necessary to apply some

method of regularization. A popular approach is to regularize through an explicit

prior on the code space and use a variational approximation to the posterior,

leading to a family of models called variational autoencoders (VAE) [Kingma

and Welling, 2014; Rezende et al., 2014]. Unfortunately VAEs for discrete text

sequences can be challenging to train—for example, if the training procedure is

not carefully tuned with techniques like word dropout and KL annealing [Bowman

et al., 2015c], the decoder simply becomes a language model and ignores the latent

code (although there has been some recent successes with convolutional models

[Semeniuta et al., 2017; Yang et al., 2017b]). One possible reason for the difficulty

in training VAEs is due to the strictness of the prior (usually a spherical Gaussian)

and/or the parameterization of the posterior. There has been some work on making

the prior/posterior more flexible through explicit parameterization [Rezende and

Mohamed, 2015; Kingma et al., 2016; Chen et al., 2017b]. A notable technique is

adversarial autoencoders (AAE) [Makhzani et al., 2015] which attempt to imbue the

model with a more flexible prior implicitly through adversarial training. In AAE

framework, the discriminator is trained to distinguish between samples from a fixed

prior distribution and the input encoding, thereby pushing the code distribution to

match the prior. While this adds more flexibility, it has similar issues for modeling

text sequences and suffers from mode-collapse in our experiments. Our approach has

similar motivation, but notably we do not sample from a fixed prior distribution—

our ‘prior’ is instead parameterized through a flexible generator. Nonetheless, this

39

view (which has been observed by various researchers [Tran et al., 2017; Mescheder

et al., 2017; Makhzani and Frey, 2017]) provides an interesting connection between

VAEs and GANs.

The success of GANs on images have led many researchers to consider applying

GANs to discrete data such as text. Policy gradient methods are a natural way

to deal with the resulting non-differentiable generator objective when training

directly in discrete space [Glynn, 1987; Williams, 1992a]. When trained on text

data however, such methods often require pre-training/co-training with a maximum

likelihood (i.e. language modeling) objective [Che et al., 2017; Yu et al., 2017; Li

et al., 2017]. This precludes there being a latent encoding of the sentence, and is

also a potential disadvantage of existing language models (which can otherwise

generate locally-coherent samples). Another direction of work has been through

reparameterizing the categorical distribution with the Gumbel-Softmax trick [Jang

et al., 2017; Maddison et al., 2017]—while initial experiments were encouraging on

a synthetic task [Kusner and Hernandez-Lobato, 2016], scaling them to work on

natural language is a challenging open problem. There has also been a flurry of

recent, related approaches that work directly with the soft outputs from a generator

[Gulrajani et al., 2017; Sai Rajeswar, 2017; Shen et al., 2017; Press et al., 2017]. For

example, Shen et al. [Shen et al., 2017] exploits adversarial loss for unaligned style

transfer between text by having the discriminator act on the RNN hidden states

and using the soft outputs at each step as input to an RNN generator, utilizing

the Professor-forcing framework [Lamb et al., 2016]. Our approach instead works

entirely in code space and does not require utilizing RNN hidden states directly.

40

4.3 Background

Discrete Structure Autoencoders Define X = Vn to be a set of discrete

structures where V is a vocabulary of symbols and Px to be a distribution over

this space. For instance, for binarized images V = {0, 1} and n is the number

of pixels, while for sentences V is the vocabulary and n is the sentence length.

A discrete autoencoder consists of two parameterized functions: a deterministic

encoder function encφ : X 7→ C with parameters φ that maps from input to code

space and a conditional decoder distribution pψ(x | c) over structures X with

parameters ψ. The parameters are trained on a cross-entropy reconstruction loss:

Lrec(φ, ψ) = − log pψ(x | encφ(x))

The choice of the encoder and decoder parameterization is specific to the structure

of interest, for example we use RNNs for sequences. We use the notation, x̂ =

arg maxx pψ(x | encφ(x)) for the (approximate) decoder mode. When x = x̂ the

autoencoder is said to perfectly reconstruct x.

Generative Adversarial Networks GANs are a class of parameterized implicit

generative models [Goodfellow et al., 2014]. The method approximates drawing

samples from a true distribution c ∼ Pr by instead employing a latent variable z

and a parameterized deterministic generator function c̃ = gθ(z) to produce samples

c̃ ∼ Pg. Initial work on GANs minimizes the Jensen-Shannon divergence between

the distributions. Recent work on Wasserstein GAN (WGAN) [Arjovsky et al.,

2017], replaces this with the Earth-Mover (Wasserstein-1) distance.

GAN training utilizes two separate models: a generator gθ(z) maps a latent

41

vector from some easy-to-sample source distribution to a sample and a critic/dis-

criminator fw(c) aims to distinguish real data and generated samples from gθ.

Informally, the generator is trained to fool the critic, and the critic to tell real from

generated. WGAN training uses the following min-max optimization over generator

parameters θ and critic parameters w,

min
θ

max
w∈W

Ec∼Pr [fw(c)]− Ec̃∼Pg [fw(c̃)], (4.1)

where fw : C 7→ R denotes the critic function, c̃ is obtained from the generator,

c̃ = gθ(z), and Pr and Pg are real and generated distributions. If the critic

parameters w are restricted to an 1-Lipschitz function set W , this term correspond

to minimizing Wasserstein-1 distance W (Pr,Pg). We use a naive approximation to

enforce this property by weight-clipping, i.e. w = [−ε, ε]d [Arjovsky et al., 2017].

4.4 Model: Adversarially Regularized Autoen-

coder

Ideally, a discrete autoencoder should be able to reconstruct x from c, but

also smoothly assign similar codes c and c′ to similar x and x′. For continuous

autoencoders, this property can be enforced directly through explicit regularization.

For instance, contractive autoencoders [Rifai et al., 2011b] regularize their loss by

the functional smoothness of encφ. However, this criteria does not apply when

inputs are discrete and we lack even a metric on the input space. How can we

enforce that similar discrete structures map to nearby codes?

Adversarially regularized autoencoders target this issue by learning a parallel

42

continuous-space generator with a restricted functional form to act as a smoother

reference encoding. The joint objective regularizes the autoencoder to constrain

the discrete encoder to agree in distribution with its continuous counterpart:

min
φ,ψ,θ

Lrec(φ, ψ) + λ(1)W (Pr,Pg)

Above W is the Wasserstein-1 distance between Pr the distribution of codes from

the discrete encoder model (encφ(x) where x ∼ P(x)) and Pg is the distribution of

codes from the continuous generator model (gθ(z) for some z, e.g. z ∼ N (0, I)).

To approximate Wasserstein-1 term, the W function includes an embedded critic

function which is optimized adversarially to the encoder and generator as described

in the background. The full model is shown in Figure 4.1.

To train the model, we use a block coordinate descent to alternate between

optimizing different parts of the model: (1) the encoder and decoder to minimize

reconstruction loss, (2) the WGAN critic function to approximate the W term, (3)

the encoder and generator to adversarially fool the critic to minimize W :

1) min
φ,ψ

Lrec(φ, ψ)

2) min
w∈W

Lcri(w) = max
w∈W

Ex∼Px [fw(encφ(x))]− Ec̃∼Pg [fw(c̃)]

3) min
φ,θ

Lencs(φ, θ) = min
φ,θ

Ex∼Px [fw(encφ(x))]− Ec̃∼Pg [fw(c̃)]

The full training algorithm is shown in Algorithm 1.

Extension: Code Space Transfer One benefit of the ARAE framework is that

it compresses the input to a single code vector. This framework makes it ideal

43

discrete struct. encoder code (Pr) decoder reconstruction loss

x ∼ Px
encφ

c
pψ

x̃ Lrec+

z ∼ N
gθ

c̃
fw

W W (Pg,Pr)

latent var. generator code (Pg) critic regularization

Figure 4.1: ARAE architecture. The model can be used as an autoencoder, where
a structure x is encoded and decoded to produce x̂, and as a GAN (ARAE-GAN),
where a sample z is passed though a generator gθ to produce a code vector, which
is similarly decoded to x̃. The critic function fw is only used at training to help
approximate W .

for manipulating discrete objects while in continuous code space. For example,

consider the problem of unaligned transfer, where we want to change an attribute of

a discrete input without supervised examples, e.g. to change the topic or sentiment

of a sentence. First, we extend the decoder to condition on a transfer variable

denoting this attribute y which is known during training, to learn pψ(x | c, y).

Next, we train the code space to be invariant to this attribute, to force it to be

learned fully by the decoder. Specifically, we further regularize the code space to

map similar x with different attribute labels y near enough to fool a code space

attribute classifier, i.e.:

min
φ,ψ,θ

Lrec(φ, ψ) + λ(1)W (Pr,Pg)− λ(2)Lclass(φ, u)

where Lclass(φ, u) is the loss of a classifier pu(y | c) from code space to labels

(in our experiments we always set λ(2) = 1). To incorporate this additional

44

Algorithm 1 ARAE Training

for number of training iterations do
(1) Train the autoencoder for reconstruction [Lrec(φ, ψ)].

Sample {x(i)}mi=1 ∼ Px and compute code-vectors c(i) = encφ(x(i)).
Backpropagate reconstruction loss, Lrec = − 1

m

∑m
i=1 log pψ(x(i) |c(i), [y(i)]),

and update.
(2) Train the critic [Lcri(w)] (Repeat k times)

Sample {x(i)}mi=1 ∼ Px and {z(i)}mi=1 ∼ N (0, I).
Compute code-vectors c(i) = encφ(x(i)) and c̃(i) = gθ(z

(i)).
Backpropagate loss − 1

m

∑m
i=1 fw(c(i)) + 1

m

∑m
i=1 fw(c̃(i)), update, clip the

critic w to [−ε, ε]d.
(3) Train the generator and encoder adversarially to critic [Lencs(φ, θ)]

Sample {x(i)}mi=1 ∼ Px and {z(i)}mi=1 ∼ N (0, I)
Compute code-vectors c(i) = encφ(x(i)) and c̃(i) = gθ(z

(i)).
Backpropagate adversarial loss 1

m

∑m
i=1 fw(c(i))− 1

m

∑m
i=1 fw(c̃(i)) and up-

date.

regularization, we simply add two more gradient update steps: (2b) training a

classifier to discriminate codes, and (3b) adversarially training the encoder to fool

this classifier. The algorithm is shown in Algorithm 2. Note that similar technique

has been introduced in other domains, notably in images [Lample et al., 2017] and

video modeling [Denton and Birodkar, 2017].

Algorithm 2 ARAE Transfer Extension

[Each loop additionally:]
(2b) Train the code classifier [minu Lclass(φ, u)]

Sample {x(i)}mi=1 ∼ Px, lookup y(i), and compute code-vectors c(i) = encφ(x(i)).
Backpropagate loss − 1

m

∑m
i=1 log pu(y(i)|c(i)), update.

(3b) Train the encoder adversarially to code classifier [maxφ Lclass(φ, u)]
Sample {x(i)}mi=1 ∼ Px, lookup y(i), and compute code-vectors c(i) = encφ(x(i)).
Backpropagate adversarial classifier loss − 1

m

∑m
i=1 log pu(1− y(i) | c(i)), update.

4.5 Methods and Architectures

We experiment with three different ARAE models: (1) an autoencoder for

discretized images trained on the binarized version of MNIST, (2) an autoencoder

45

for text sequences trained using the Stanford Natural Language Inference (SNLI)

corpus [Bowman et al., 2015b], and (3) an autoencoder trained for text transfer

(Section 4.6.2) based on the Yelp and Yahoo datasets for unaligned sentiment and

topic transfer. All three models utilize the same generator architecture, gθ. The

generator architecture uses a low dimensional z with a Gaussian prior p(z) = N (0, I),

and maps it to c. Both the critic fw and the generator gθ are parameterized as

feed-forward MLPs.

The image model uses fully-connected NN to autoencode binarized images.

Here X = {0, 1}n where n is the image size. The encoder used is a feed-forward

MLP network mapping from {0, 1}n 7→ Rm, encφ(x) = MLP(x;φ) = c. The

decoder predicts each pixel in x as a parameterized logistic regression, pψ(x | c) =∏n
j=1 σ(h)xj(1− σ(h))1−xj where h = MLP(c;ψ).

The text model uses a recurrent neural network (RNN) for both the encoder

and decoder. Here X = Vn where n is the sentence length and V is the vocabulary

of the underlying language. Define an RNN as a parameterized recurrent function

hj = RNN(xj,hj−1;φ) for j = 1 . . . n (with h0 = 0) that maps a discrete input

structure x to hidden vectors h1 . . .hn. For the encoder, we define encφ(x) = hn = c.

For decoding we feed c as an additional input to the decoder RNN at each time

step, i.e. h̃j = RNN(xj, h̃j−1, c;ψ), and further calculate the distribution over V

at each time step via softmax, pψ(x | c) =
∏n

j=1 softmax(Wh̃j + b)xj where W

and b are parameters (part of ψ). Finding the most likely sequence x̃ under this

distribution is intractable, but it is possible to approximate it using greedy search

or beam search. In our experiments we use an LSTM architecture [Hochreiter and

Schmidhuber, 1997] for both the encoder/decoder and decode using greedy search.

The text transfer model uses the same architecture as the text model but extends

46

it with a code space classifier p(y|c) which is modeled using an MLP and trained

to minimize cross-entropy.

Our baselines utilize a standard autoencoder (AE) and the cross-aligned autoen-

coder [Shen et al., 2017] for transfer. Note that in both our ARAE and standard

AE experiments, the encoded code from the encoder is normalized to lie on the unit

sphere, and the generated code is bounded to lie in (−1, 1)n by the tanh function

at output layer. We additionally experimented with the sequence VAE introduced

by Bowman et al. [2015c] and the adversarial autoencoder (AAE) model [Makhzani

et al., 2015] on the SNLI dataset. However despite extensive parameter tuning we

found that neither model was able to learn meaningful latent representations—the

VAE simply ignored the latent code and the AAE experienced mode-collapse and re-

peatedly generated the same samples. The Section ?? includes detailed descriptions

of the hyperparameters, model architecture, and training regimes.

4.6 Experiments

Our experiments consider three aspects of the model. First we measure the

empirical impact of regularization on the autoencoder. Next we apply the discrete

autoencoder to two applications, unaligned style transfer and semi-supervised

learning. Finally we employ the learned generator network as an implicit latent

variable model (ARAE-GAN) over discrete sequences.

4.6.1 Impact of Regularization on Discrete Encoding

Our main goal for ARAE is to regularize the model produce a smoother encoder

by requiring the distribution from the encoder to match the distribution from

the continuous generator over a simple latent variable. To examine this claim we

47

Figure 4.2: Left: `2 norm of encoder code c and generator code c̃ during ARAE training.
The encoder c is normalized by the model, whereas the generator learns to match this as
training progresses. Middle: Sum of the dimension-wise variances of the encoder codes
Pr and generator codes Pg compared to that of the standard AE. Right: Average cosine
similarity of nearby sentences (edit-distance wise) for the ARAE and AE.

consider two basic statistical properties of the code space during training of the text

model on SNLI, shown in Figure 4.2. On the left, we see that the `2 norm of c and

code c̃ converge quickly in ARAE training. The encoder code is always restricted

to be on the unit sphere, and the generated code c̃ quickly learns to match it. The

middle plot shows the convergence of the trace of the covariance matrix between

the generator and the encoder as training progresses. We find that variance of the

encoder and the generator match after several epochs. To check the smoothness of

the model, for both ARAE/AE, we take a sentence and calculate the average cosine

similarity of 100 randomly-selected sentences that had an edit-distance of at most 5

to the original sentence. We do this for 250 sentences and calculate the mean of the

average cosine similarity. Figure 2 (right) shows that the cosine similarity of nearby

sentences is quite high for the ARAE than in the case for the AE. Edit-distance is

not an ideal proxy for similarity in sentences, but it is often a sufficient condition.

Finally an ideal representation should be robust to small changes of the input

around the training examples in code space [Rifai et al., 2011b]. We can test this

property by feeding a noised input to the encoder and (i) calculating the score

given to the original input, and (ii) checking the reconstructions. Table 4.1 (right)

48

shows an experiment for text where we add noise by permuting k words in each

sentence. We observe that the ARAE is able to map a noised sentence to a natural

sentence, (though not necessarily the denoised sentence). Table 4.1 (left) shows

empirical results for these experiments. We obtain the reconstruction error (i.e.

negative log likelihood) of the original (non-noised) sentence under the decoder,

utilizing the noised code. We find that when k = 0 (i.e. no swaps), the regular AE

better reconstructs the input as expected. However, as we increase the number of

swaps and push the input further away from the data manifold, the ARAE is more

likely to produce the original sentence. We note that unlike denoising autoencoders

which require a domain-specific noising function [Hill et al., 2016; Vincent et al.,

2008], the ARAE is not explicitly trained to denoise an input, but learns to do so

as a byproduct of adversarial regularization.

4.6.2 Applications of Discrete Autoencoder

Unaligned Text Transfer A smooth autoencoder combined with low recon-

struction error should make it possible to more robustly manipulate discrete objects

through code space without dropping off the data manifold. To test this hypothesis,

we experimented with two unaligned text transfer tasks. For these tasks, we attempt

to change one attribute of a sentence without aligned examples of this change. To

perform this transfer, we learn a code space that can represent an input that is

agnostic to this attribute, and a decoder that can incorporate the attribute (as

described in Section 4.4). We experiment with unaligned transfer of sentiment on

the Yelp corpus and topic on the Yahoo corpus [Zhang et al., 2015].

For sentiment we follow the same setup as Shen et al. [2017] and split the Yelp

corpus into two sets of unaligned positive and negative reviews. We train an ARAE

49

k AE ARAE

0 1.06 2.19
1 4.51 4.07
2 6.61 5.39
3 9.14 6.86
4 9.97 7.47

Original A woman wearing sunglasses .
Noised A woman sunglasses wearing .
AE A woman sunglasses wearing sunglasses .
ARAE A woman wearing sunglasses .

Original Pets galloping down the street .
Noised Pets down the galloping street .
AE Pets riding the down galloping .
ARAE Pets congregate down the street near a ravine .

Original They have been swimming .
Noised been have They swimming .
AE been have been swimming .
ARAE Children have been swimming .

Original The child is sleeping .
Noised child The is sleeping .
AE The child is sleeping is .
ARAE The child is sleeping .

Table 4.1: Top. Reconstruction error (negative log-likelihood averaged over sen-
tences) of the original sentence from a corrupted sentence. Here k is the number of
swaps performed on the original sentence. Bottom. Samples generated from AE
and ARAE where the input is noised by swapping words.

50

as an autoencoder with two separate decoders, one for positive and one for negative

sentiment, and incorporate adversarial training of the encoder to remove sentiment

information from the code space. We test by encoding in sentences of one class

and decoding, greedily, with the opposite decoder.

Our evaluation is based on four automatic metrics, shown in Table 4.2: (i)

Transfer: measuring how successful the model is at transferring sentiment based

on an automatic classifier (we use the fastText library [Joulin et al., 2016]). (ii)

BLEU: measuring the consistency between the transferred text and the original.

We expect the model to maintain as much information as possible and transfer only

the style; (iii) Perplexity: measuring the fluency of the generated text; (iv) Reverse

Perplexity: measuring the extent to which the generations are representative of the

underlying data distribution.1 Both perplexity numbers are obtained by training

an RNN language model.

We additionally perform human evaluations on the cross-aligned AE and our

best ARAE model. We randomly select 1000 sentences (500/500 positive/negative),

obtain the corresponding transfers from both models, and ask Amazon Mechanical

Turkers to evaluate the sentiment (Positive/Neutral/Negative) and naturalness

(1-5, 5 being most natural) of the transferred sentences. We create a separate task

in which we show the Turkers the original and the transferred sentences, and ask

them to evaluate the similarity based on sentence structure (1-5, 5 being most

similar). We explicitly ask the Turkers to disregard sentiment in their similarity

assessment.

In addition to comparing against the cross-aligned AE of Shen et al. [2017],

1This reverse perplexity is calculated by training a language model on the generated data and
measuring perplexity on held-out, real data (i.e. reverse of regular perplexity). We also found
this metric to be helpful for early-stopping based on validation data.

51

Automatic Evaluation Human Evaluation
Model Transfer BLEU PPL Reverse PPL Transfer Similarity Naturalness

Cross-Aligned AE 77.1% 17.75 65.9 124.2 57% 3.8 2.7
AE 59.3% 37.28 31.9 68.9 - - -

ARAE, λ
(1)
a 73.4% 31.15 29.7 70.1 - - -

ARAE, λ
(1)
b

81.8% 20.18 27.7 77.0 74% 3.7 3.8

Table 4.2: Experiments on sentiment transfer. Left shows the automatic metrics
(Transfer/BLEU/PPL/Reverse PPL) while right shows human evaluation metrics
(Transfer/Similarity/Naturalness). Cross-Aligned AE is from Shen et al. [2017]

we also conduct an ablation study by comparing against an AE trained without

the adversarial regularization. For ARAE, we experimented with different λ(1)

weighting on the adversarial loss (see section 4) with λ
(1)
a = 1, λ

(1)
b = 10. We

generally set λ(2) = 1 which weights the code classifier component. Experimentally

the adversarial regularization enhances transfer and perplexity, but tends to make

the transferred text less similar to the original, compared to the AE. Some randomly

selected sentences are shown in figure 4.3 and more samples are shown available in

Section ??.

The same method can be applied to other style transfer tasks, for instance

the more challenging Yahoo QA data [Zhang et al., 2015]. For Yahoo we chose

3 relatively distinct topic classes for transfer: Science & Math, Entertainment &

Music, and Politics & Government. As the dataset contains both questions and

answers, we separated our experiments into titles (questions) and replies (answers).

The qualitative results are showed in table 4.4. See Section ?? for additional

generation examples.

Semi-Supervised Training We further utilize ARAE in a standard AE setup

for semi-supervised training. We experiment on a natural language inference task,

shown in Table 4.5 (right). We use 22.2%, 10.8% and 5.25% of the original labeled

training data, and use the rest of the training set for unlabeled training. The

52

Positive ⇒ Negative

great indoor mall .
ARAE no smoking mall .
Cross-AE terrible outdoor urine .

it has a great atmosphere , with wonderful service .
ARAE it has no taste , with a complete jerk .
Cross-AE it has a great horrible food and run out service .

we came on the recommendation of a bell boy and the food was amazing .
ARAE we came on the recommendation and the food was a joke .
Cross-AE we went on the car of the time and the chicken was awful .

Negative ⇒ Positive

hell no !
ARAE hell great !
Cross-AE incredible pork !

small , smokey , dark and rude management .
ARAE small , intimate , and cozy friendly staff .
Cross-AE great , , , chips and wine .

the people who ordered off the menu did n’t seem to do much better .
ARAE the people who work there are super friendly and the menu is good .
Cross-AE the place , one of the office is always worth you do a business .

Table 4.3: Sentiment transfer results. Original sentence and transferred output
(from ARAE and the Cross-Aligned AE) of 6 randomly-drawn examples.

labeled set is randomly picked. The full SNLI training set contains 543k sentence

pairs, and we use supervised sets of 120k, 59k and 28k sentence pairs respectively

for the three settings. As a baseline we use an AE trained on the additional data,

similar to the setting explored in Dai and Le [2015]. For ARAE we use the subset

of unsupervised data of length < 15, which roughly includes 655k single sentences

(due to the length restriction, this is a subset of 715k sentences that were used for

AE training). As observed by Dai and Le [2015], training on unlabeled data with

an AE objective improves upon a model just trained on labeled data. Training

with adversarial regularization provides further gains.

53

4.6.3 A Latent Variable Model for Discrete Structures

After training, an ARAE can also be used as an implicit latent variable model

controlled by z and the generator gθ, which we refer to as ARAE-GAN. While

models of this form have been widely used for generation in other modalities, they

have been less effective for discrete structures. In this section, we attempt to

measure the effectiveness of this induced discrete GAN.

A common test for a GANs ability mimic the true distribution Pr is to train

a simple model on generated samples from Pg. While there are pitfalls of this

evaluation [Theis et al., 2016], it provides a starting point for text modeling. Here

we generate 100k samples from (i) ARAE-GAN, (ii) an AE2, (iii) a RNN LM trained

on the same data, and (iv) the real training set (samples from the models are shown

in section 4.7). All models are of the same size to allow for fair comparison. We

train an RNN language model on generated samples and evaluate on held-out data

to calculate the reverse perplexity. As can be seen from Table 4.5, training on real

data (understandably) outperforms training on generated data by a large margin.

Surprisingly however, we find that a language model trained on ARAE-GAN data

performs slightly better than one trained on LM-generated/AE-generated data. We

further found that the reverse PPL of an AAE [Makhzani et al., 2015] was quite

high (980) due to mode-collapse.

Another property of GANs (and VAEs) is that the Gaussian form of z induces

the ability to smoothly interpolate between outputs by exploiting the structure

of the latent space. While language models may provide a better estimate of

the underlying probability space, constructing this style of interpolation would

2To “sample” from an AE we fit a multivariate Gaussian to the code space after training and
generate code vectors from this Gaussian to decode back into sentence space.

54

A man is on the corner in a sport area .
A man is on corner in a road all .
A lady is on outside a racetrack .
A lady is outside on a racetrack .
A lot of people is outdoors in an urban
setting .
A lot of people is outdoors in an urban
setting .
A lot of people is outdoors in an urban
setting .

A man in a cave is used an escalator .

A man in a cave is used an escalator
A man in a cave is used chairs .
A man in a number is used many equip-
ment
A man in a number is posing so on a big
rock .
People are posing in a rural area .
People are posing in a rural area.

Figure 4.3: Sample interpolations from the ARAE-GAN. Constructed by linearly
interpolating in the latent space and decoding to the output space. Word changes
are highlighted in black. Results of the ARAE. The top block shows output
generation of the decoder taking fake hidden codes generated by the GAN; the
bottom block shows sample interpolation results.

require combinatorial search, which makes this a useful feature of text GANs. We

experiment with this property by sampling two points z0 and z1 from p(z) and

constructing intermediary points zλ = λz1 + (1− λ)z0. For each we generate the

argmax output x̃λ. The samples are shown in Figure 4.3 (left) for text and in

Figure 4.3 (right) for a discretized MNIST ARAE-GAN.

A final intriguing property of image GANs is the ability to move in the latent

space via offset vectors (similar to the case with word vectors [Mikolov et al.,

2013b]). For example, Radford et al. [Radford et al., 2016] observe that when

the mean latent vector for “men with glasses” is subtracted from the mean latent

vector for “men without glasses” and applied to an image of a “woman without

glasses”, the resulting image is that of a “woman with glasses”. To experiment with

this property we generate 1 million sentences from the ARAE-GAN and compute

vector transforms in this space to attempt to change main verbs, subjects and

modifier (details in section 4.8). Some examples of successful transformations are

shown in Figure 4.5 (right). Quantitative evaluation of the success of the vector

transformations is given in Figure 4.5 (left).

55

Transform Match % Prec

walking 85 79.5
man 92 80.2
two 86 74.1
dog 88 77.0
standing 89 79.3
several 70 67.0

Figure 4.4: Quantitative evaluation of transformations. Match % refers to the % of
samples where at least one decoder samples (per 100) had the desired transformation
in the output, while Prec. measures the average precision of the output against the
original sentence.

A man in a tie is sleeping and clapping on balloons . ⇒walking

A man in a tie is clapping and walking dogs .
A person is standing in the air beneath a criminal . ⇒walking

A person is walking in the air beneath a pickup .
The jewish boy is trying to stay out of his skateboard . ⇒man

The jewish man is trying to stay out of his horse .
The people works in a new uniform studio . ⇒man

A man works in a new studio uniform .
Some child head a playing plastic with drink . ⇒Two

Two children playing a head with plastic drink .
A baby workers is watching steak with the water . ⇒Two

Two workers watching baby steak with the grass .
The people shine or looks into an area . ⇒dog

The dog arrives or looks into an area .
The boy ’s babies is wearing a huge factory . ⇒dog

The dog ’s babies is wearing a huge ears .
A women are walking outside near a man . ⇒standing

Three women are standing near a man walking .
The dogs are sleeping in front of the dinner . ⇒standing

Two dogs are standing in front of the dinner .
A side child listening to a piece with steps playing on a table . ⇒Several

Several child playing a guitar on side with a table .
Two children are working in red shirt at the cold field . ⇒Several

Several children working in red shirt are cold at the field .

Figure 4.5: Examples (out of 100 decoder samples per sentence) where the offset
vectors produced successful transformations of the original sentence. See section
4.8 for full methodology.

56

4.7 Sample Generations

See Figure 4.6.

ARAE-GAN Samples
A woman preparing three fish .
A woman is seeing a man in the river .
There passes a woman near birds in the
air .
Some ten people is sitting through their
office .
The man got stolen with young dinner
bag .
Monks are running in court .
The Two boys in glasses are all girl .
The man is small sitting in two men that
tell a children .
The two children are eating the balloon
animal .
A woman is trying on a microscope .
The dogs are sleeping in bed .

AE Samples
Two Three woman in a cart tearing over
of a tree .
A man is hugging and art .
The fancy skier is starting under the drag
cup in .
A dog are ¡unk¿ a
A man is not standing .
The Boys in their swimming .
A surfer and a couple waiting for a show
.
A couple is a kids at a barbecue .
The motorcycles is in the ocean loading
I ’s bike is on empty
The actor was walking in a a small dog
area .
no dog is young their mother

LM Samples
a man walking outside on a dirt road ,
sitting on the dock .
A large group of people is taking a photo
for Christmas and at night .
Someone is avoiding a soccer game .
The man and woman are dressed for a
movie .
Person in an empty stadium pointing at
a mountain .
Two children and a little boy are ¡unk¿ a
man in a blue shirt .
A boy rides a bicycle .
A girl is running another in the forest .
the man is an indian women .

Figure 4.6: Text samples generated from ARAE-GAN, a simple AE, and from a
baseline LM trained on the same data. To generate from an AE we fit a multivariate
Gaussian to the learned code space and generate code vectors from this Gaussian.

4.8 Vector Arithmetic

We generate 1 million sentences from the ARAE-GAN and parse the sentences

to obtain the main verb, subject, and modifier. Then for a given sentence, to change

the main verb we subtract the mean latent vector (t) for all other sentences with

the same main verb (in the first example in Figure 4.5 this would correspond to all

sentences that had “sleeping” as the main verb) and add the mean latent vector

for all sentences that have the desired transformation (with the running example

this would be all sentences whose main verb was “walking”). We do the same to

transform the subject and the modifier. We decode back into sentence space with

the transformed latent vector via sampling from pψ(g(z + t)). Some examples of

successful transformations are shown in Figure 4.5 (right). Quantitative evaluation

of the success of the vector transformations is given in Figure 4.5 (left). For each

57

original vector z we sample 100 sentences from pψ(g(z + t)) over the transformed

new latent vector and consider it a match if any of the sentences demonstrate

the desired transformation. Match % is proportion of original vectors that yield

a match post transformation. As we ideally want the generated samples to only

differ in the specified transformation, we also calculate the average word precision

against the original sentence (Prec) for any match.

4.9 Optimality Property

One can interpret the ARAE framework as a dual pathway network mapping

two distinct distributions into a similar one; encφ and gθ both output code vectors

that are kept similar in terms of Wasserstein distance as measured by the critic.

We provide the following proposition showing that under our parameterization of

the encoder and the generator, as the Wasserstein distance converges, the encoder

distribution (c ∼ Pr) converges to the generator distribution (c̃ ∼ Pg), and further,

their moments converge.

This is ideal since under our setting the generated distribution is simpler than

the encoded distribution, because the input to the generator is from a simple

distribution (e.g. spherical Gaussian) and the generator possesses less capacity

than the encoder. However, it is not so simple that it is overly restrictive (e.g. as

in VAEs). Empirically we observe that the first and second moments do indeed

converge as training progresses (Section 4.6.1).

Proposition 1. Let P be a distribution on a compact set χ, and (Pn)n∈N be a

sequence of distributions on χ. Further suppose that W (Pn,P) → 0. Then the

following statements hold:

58

(i) Pn P (i.e. convergence in distribution).

(ii) All moments converge, i.e. for all k > 1, k ∈ N,

EX∼Pn
[d∏
i=1

Xpi
i

]
→ EX∼P

[d∏
i=1

Xpi
i

]

for all p1, . . . , pd such that
∑d

i=1 pi = k

Proof. (i) has been proved in Villani [2008] Theorem 6.9.

For (ii), using The Portmanteau Theorem, (i) is equivalent to:

EX∼Pn [f(X)]→ EX∼P[f(X)] for all bounded and continuous function f : Rd → R,

where d is the dimension of the random variable.

The k-th moment of a distribution is given by

E
[d∏
i=1

Xpi
i

]
such that

d∑
i=1

pi = k

Our encoded code is bounded as we normalize the encoder output to lie on the

unit sphere, and our generated code is also bounded to lie in (−1, 1)n by the tanh

function. Hence f(X) =
∏d

i=1 X
qi
i is a bounded continuous function for all qi > 0.

Therefore,

EX∼Pn
[d∏
i=1

Xpi
i

]
→ EX∼P

[d∏
i=1

Xpi
i

]
where

∑d
i=1 pi = k

59

Original Science

what is an event horizon with regards to black holes ?
Music what is your favorite sitcom with adam sandler ?
Politics what is an event with black people ?

take 1ml of hcl (concentrated) and dilute it to 50ml .
Music take em to you and shout it to me
Politics take bribes to islam and it will be punished .

just multiply the numerator of one fraction by that of the other .
Music just multiply the fraction of the other one that
Politics just multiply the same fraction of other countries .

Original Music

do you know a website that you can find people who want to join bands
?

Science do you know a website that can help me with science ?
Politics do you think that you can find a person who is in prison ?

all three are fabulous artists , with just incredible talent ! !
Science all three are genetically bonded with water , but just as many substances

, are capable of producing a special case .
Politics all three are competing with the government , just as far as i can .

but there are so many more i can
Science but there are so many more of the number of questions .
Politics but there are so many more of the can i think of today .

Original Politics

republicans : would you vote for a cheney / satan ticket in 2008 ?
Science guys : how would you solve this question ?
Music guys : would you rather be a good movie ?

4 years of an idiot in office + electing the idiot again = ?
Science 4 years of an idiot in the office of science ?
Music 4 ¡unk¿ in an idiot , the idiot is the best of the two points ever !

anyone who doesnt have a billion dollars for all the publicity cant win .
Science anyone who doesnt have a decent chance is the same for all the other .
Music anyone who doesnt have a lot of the show for the publicity .

Table 4.4: Random samples from Yahoo topic transfer. Note the first row is from
ARAE trained on titles while the following ones are from replies.

60

Model Medium Small Tiny

Supervised Encoder 65.9% 62.5% 57.9%
Semi-Supervised AE 68.5% 64.6% 59.9%
Semi-Supervised ARAE 70.9% 66.8% 62.5%

Data for LM Reverse PPL

Real data 27.4
LM samples 90.6
AE samples 97.3
ARAE-GAN samples 82.2

Table 4.5: Top. Semi-Supervised accuracy on the natural language inference (SNLI)
test set, respectively using 22.2% (medium), 10.8% (small), 5.25% (tiny) of the
supervised labels of the full SNLI training set (rest used for unlabeled AE training).
Bottom. Perplexity (lower is better) of language models trained on the synthetic
samples from a GAN/AE/LM, and evaluated on real data (Reverse PPL).

61

Chapter 5

Unsupervised Text

Summarization by Using

Language Models as Regularizers

It has been shown that neural networks can learn to optimize a combinatorial

latent space for text summarization with limited supervision. Miao and Blunsom

[2016] used semi-supervised learning to train a discrete sequence autoencoder,

imposing constraints to make the latent sequence more language-like. Wang and Lee

[2018] more recently showed that adversarial learning could make latent sequences

more language-like by training a discriminator to distinguish true summaries

from generated ones. However, both cases require summary data for the training

procedure, making them not fully unsupervised. In this short but focused research

contribution, we propose an alternative learning strategy that does not require

any summaries for training at all. Experiments on the Gigaword summarization

task Rush et al. [2015] reveal that the proposed unsupervised approach is competitive

62

in terms of ROUGE-L, without requiring any target summary data at all.

5.1 Introduction

Unsupervised text summarization can be viewed as training a discrete sequence

autoencoder with a combinatorial hidden space [Kaiser et al., 2018]. The hidden

space consists of sequences of discrete tokens in a vocabulary that overlaps with

the input vocabulary. By constraining the hidden sequence to be shorter than the

original sequence, the autoencoder produces a succinct summary of the original

sequence. This idea was first discussed and empirically investigated by Miao and

Blunsom [2016], who used semi-supervised learning and pointer networks [Vinyals

et al., 2015] to make hidden sequences more language-like. More recently, Wang and

Lee [2018] proposed to use adversarial learning to encourage hidden sequences to be

more language-like. Both approaches did not rely on paired examples, but used two

disjoint sets of original text and summaries. Orthogonal to these approaches, Fevry

and Phang [2018] constructed a summarization task by adding noise to expand

sentences and train a denoising auto-encoder to recover the original unexpanded

input.

In this paper, we propose a novel approach to fully unsupervised text summariza-

tion. Contrary to previous work, our approach does not require any summary data

at all. Motivated by recent observations that well-trained neural language models

generate well-formed sentences even when their internal hidden states are perturbed,

suggesting that language model effectively shape their combinatorial output space

to emphasize language-like sequences [Cho, 2016; Gu et al., 2017; Chen et al.,

2018], our algorithm consists of two stages. First, the latent sequence generator

63

is pretrained as an unconditional language model, ignoring the input sequence.

Subsequently, all the other parts of the network are trained as an autoencoder

while the pretrained latent sequence generator is kept fixed.

We evaluate the proposed approach on the headline generation task built using

English Gigaword [Rush et al., 2015]. Our experiments reveal that the summaries

generated by this model are competitive with those from the state-of-the-art discrete

autoencoder model by Wang and Lee [2018], without requiring any target summary

data at all. We analyze the model by investigating the perplexity of generated

summaries in various language models.1

5.2 Discrete sequence autoencoders

Let X ∈ V T
x be a sequence of discrete tokens, where Vx is a set of all unique

tokens and T is its length. A discrete sequence autoencoder first encodes such a

sequence X as a distribution over a hidden set of discrete configurations: penc(Z|X).

Given a sample Z̃ from this encoder distribution, the discrete autoencoder computes

the distribution over the original sequence space V T
x : pdec(X|Z̃). Both penc and

pdec are parameterized using differentiable neural networks.

We are interested in a combinatorial hidden space, where each configuration Z

in the hidden set is constructed as a sequence of T ′ discrete symbols drawn from a

common vocabulary Vz, i.e., Z ∈ V T ′
z . The discrete symbols within each hidden

configuration Z strongly depend on each other, which must be captured explicitly,

i.e., penc(Z|X) 6= ∏T ′

t′=1 p(Zt′ |X). Hence, we model the encoder distribution in an

1All code and data will published at [GITHUB LINK].

64

autoregressive manner:

penc(Z|X) =
T ′∏
t′=1

penc(zt′|z<t′ , X), (5.1)

where z<t′ = (z1, . . . , zt′−1).

Learning For each training example X ∈ Dtrain, the discrete sequence autoen-

coder defines the following reconstruction log-probability, its lowerbound and the

stochastic approximation to the lower-bound:

log p(X|X) ≥ L(X) (5.2)

=EZ∼penc(Z|X) [log pdec(X|Z)]

≈LK(X) =
1

K

K∑
k=1

log pdec(X|Zk), (5.3)

where Zk is the k-th sample from penc. We can then maximize the lowerbound

using gradient-based optimization.

The gradient of LK w.r.t. log pdec(X|Zk) is easily and tractably computed

using backpropagation. To compute the gradient w.r.t. penc we have to rely on

REINFORCE [Williams, 1992b], due to the discrete bottleneck:

∇encL = EZ [(log pdec(X|Z)− V (X))

×∇ log penc(Z|X)] , (5.4)

where V (X) is a baseline estimator. We set the baseline according to self-critical

65

sequence training [Rennie et al., 2017]:

V (X) = log pdec(X|Ẑ). (5.5)

Ẑ = (ẑ1, . . . , ẑT ′) is a greedily-decoded sequence, where ẑt′ = arg maxzt′ penc(zt′ |z<t′ , X).

5.3 Unsupervised text summarization

Discrete autoencoders can be employed as unsupervised text summarization

systems by imposing appropriate constraints on the combinatioral hidden space,

namely:

1. Shorter hidden sequence: T ′ < T .

2. Shared vocabulary: Vz = Vx.

3. Language-like hidden sequence.

The first constraint can be satisfied by simply terminating inference prematurely

by setting p(zT̃ ′ = 〈eos〉 |z<T̃ ′ , X) = 1, where 〈eos〉 is a special token indicating

the end of a sequence. As it stands, T̃ ′ is less than T ′ when the model chooses to

end the generation early otherwise equals to T ′ which amounts to a forced stop.

Because we regularize the hidden sequence to be language like (see section 5.4),

the model trained this way is encouraged to end the generated sentence early in

order to meet the 〈eos〉 token. The second constraint can be either implemented

by simply sharing the vocabulary or using a pointer network Vinyals et al. [2015],

of which the latter may severely restrict the fluency and diversity of summaries.

The third constraint is where scientific creativity is necessary, as there is no single

66

agreed-upon metric for measuring the language-likeness. There have been two

notable approaches in recent years, both of which we describe briefly below.

Semi-Supervised Learning Miao and Blunsom [2016] build a sentence simpli-

fication model using a discrete sequence autoencoder with a combinatorial hidden

space. They use a pointer network to model the encoder distribution in order to

reduce the size of the hidden space and to ensure no word outside the original

sequence appears in its summary. To make it work, they rely heavily on semi-

supervised learning, in which a small set of annotated examples (sentence-summary

pairs) is used to encourage the hidden sequences to be more language-like. Since the

source code for this approach was not made publicly available, we do not compare

our approach against it.

Adversarial (Transfer) learning Wang and Lee [2018] relaxes the need of

paired examples used by Miao and Blunsom [2016] by using adversarial learn-

ing [Goodfellow et al., 2014; Ganin et al., 2016]. They introduce a discriminator

network that learns to distinguish between real and generated summaries, and use

the reversed gradient of the discriminator’s output with respect to the encoder

to encourage it to generate a language-like hidden sequence. This approach has

two weaknesses: first, it relies on the availability of summaries for training the

discriminator; and second, the generator is pre-trained using the CNN/Daily Mail

dataset, effectively reducing their setup to transfer learning rather than unsupervised

learning.

67

5.4 Language model regularization

We propose a simpler approach for encouraging the hidden combinatorial space

to be more language-like. This approach furthermore does not require the availability

of even unpaired summaries, although they could be used if available.

The model for penc can be decomposed as a sequence-to-sequence model [Cho

et al., 2014; Sutskever et al., 2014], comprising two parts: “read” and “write”. At

time t′, the first part “read” extracts a vector representation of the input sequence

conditioned on the current context (z1, . . . , zt′−1):

νt′ = fread(z1, . . . , zt′−1) ∈ Rd,

which can be implemented as an attention mechanism [Bahdanau et al., 2014;

Vaswani et al., 2017]. The “write” part then computes the distribution over the

next token given νt′ and the context z<t′ :

penc(zt′ |z<t′ , X) ∝ exp(f
zt′
write(νt′ , z<t′)).

If νt′ is fixed to 0, the latent encoder reduces simply to an autoregressive language

model with an unbounded context [Mikolov et al., 2010].

Based on this observation, we propose a two-stage algorithm for training a

discrete autoencoder as an unsupervised summarizer.

(1) Language Model Pretraining The first stage is thus to train the “write”

part of the discrete latent encoder while fixing νt′ = 0 on a large unlabelled corpus

as an “unconditional” language model. This shapes the combinatorial hidden space

68

to which the encoder maps input sequences, assigning (much) higher probability to

language-like sequences.

(2) Global Training Next, we train the decoder pdec and only fread of penc. fwrite

is held fixed as the pretrained language model. Although it has learned to shape

the hidden space to mostly include language-like sequences, we further encourage

fread to generate language-like sequences only by introducing two modifications to

the learning procedure described in Section 5.2.

First, we replace log pdec(X|Z) in Eqs. (5.4)–(5.5), which acts as a reward in

policy gradient, with

log pdec(X|Z) + λ log penc(Z|0),

where penc(Z|0) is the probability assigned by the encoder when νt′ was held at 0.

λ ≥ 0 is a weighting coefficient. This prevents fread from learning to generate a

hidden sequence that is unlikely under the pretrained language model.

Second, we down-weight tokens that do not appear in the original sequence

during training:

p′enc(zt′|z<t′ , X) ∝



penc(zt′|z<t′ , X),

if zt′ ∈ X

ηpenc(zt′ |z<t′ , X),

otherwise

,

where η ∈ [0, 1]. We start with a small η = 10−6 and gradually increase it toward 1

over training.

69

ROUGE-L

Transfer Learning from CNN/Daily Mail
W&L 25.16

Unsupervised Learning
URSAE-Major (no pretrain) 15.60
URSAE-Major 20.77
URSAE-Minor 20.14

Table 5.1: The quality of generated summaries as measured by ROUGE-L, con-
trasting our unsupervised approach with the adversarial transfer learning approach
of Wang and Lee [2018] (W&L).

5.5 Results

We evaluate the proposed approach on headline generation and use the data

prepared by Rush et al. [2015] based on the English Gigaword [Graff et al., 2003].

It contains 119M and 31M words on the article and headline sides respectively.

We build two URSAE—short for Unsupervised Recurrent Sequential Auto-

Encoder—models that are distinguished by the corpus that was used to pretrain the

encoder as a language model. We use either the longer input sequences (articles)

or the shorter output sequences (headlines) to pretrain the encoder, and call

the resulting models URSAE-Major and URSAE-Minor, respectively. These

models are trained as described above. Please see the supplementary materials for

more details.

5.5.1 Main result

We compare the proposed approach against the adversarial transfer learning

approach of Wang and Lee [2018]. We use ROUGE-L [Lin, 2004] to measure the

similarity between the generated summary and the ground-truth headline. We

70

Input consumer and business confidence in the european union slumped
in november to the lowest level in ## years in the face of looming
recession , according to an eu survey on thursday

GS eu consumer business confidence hits ##-year low : survey
URSAE-Major the european union on thursday slumped to ##
URSAE-Minor the european union confidence on thursday slumped
W&L consumer confidence in ## years november

Input finland scored three goals in a ##-second span of the first period
tuesday night for a #-# victory over the czech republic in their world
cup of hockey opener

GS finland routs czech republic at world cup
URSAE-Major finland scored a #-# victory over the czech republic in world cup

first tuesday
URSAE-Minor finland scored in world cup first tuesday
W&L finland three goals in world cup opener

Table 5.2: Validation examples together with the associated ground-truth headlines
and the summaries generated by the proposed approach (URSAE-Major) and the
state-of-the-art approach by Wang and Lee [2018].

Headlines GPT2

W&L 380.79 661.34

URSAE-Major 514.10 506.23
URSAE-Minor 192.23 744.88

Table 5.3: Perplexity results. Alhough comparable in terms of ROUGE-L, the
summaries generated by the proposed approach are more language-like.

present our main result in Table 5.1. Although the proposed URSAE-Major had

not seen a single ground-truth summary, unlike W&L, the quality of generated

summaries from URSAE-Major only slightly lags behind that of W&L in terms of

ROUGE-L.

We further did ablation study in Table 5.1 with result for training without

pretraining. This clearly demonstrates the necessity for pretraining. Without

pretraining, we found learning to be unstable, and even when learning was successful,

the resulting model significantly underperformed the model trained following the

proposed approach.

71

5.5.2 Perplexity analysis

The ROUGE-L metric measures the quality of summarization, based largely

on content overlap, which may not necessarily correspond to how language-like a

generated summary is. To that end, we also examine the perplexity of a generated

summary by a recurrent language model. We use two language models to better

understand what our models have learned, reported in Table 5.3.

In one case, we train a language model from scratch2 on headlines, ensuring

that the language model follows the same distribution, and then use it to calculate

the perplexity. In the other case, we used the recently released state-of-the-art

GPT2 language model Radford et al. [2019], the perplexity of which serves as an

indicator of the language-likeness of the generated summaries.

As can be seen, the summaries from URSAE-Major are more fluent than W&L.

We observe that the generated summaries stay similar to the corpus used to pretrain

the encoder, as URSAE-Minor more closely mirrors headline data.

5.5.3 Qualitative evaluation

In Table 5.2, we show two randomly selected examples. First, we observe

the difference in linguistic styles between URSAE-Major and URSAE-Minor, of

which the encoders were pretrained and fixed using two different corpora (articles

and headlines, respectively), demonstrating the effectiveness of language model

pretraining in URSAEs. Second, URSAE-Major, which never saw a headline during

training, creates well-formed summaries of the input sequence, albeit with a few

factual mistakes. We believe these examples indicate that the proposed approach

2https://github.com/kpu/kenlm

72

is a promising step forward in fully unsupervised text summarization.

5.6 Conclusion

We introduced a novel method for unsupervised text summarization, using

discrete sequential auto-encoders. Contrary to previous approaches, our method

does not require any target summary data whatsoever, and can learn to produce

summaries using article data only. In future work, we aim to investigate additional

reward structures that might produce even better results.

73

5.7 Technicality points

5.7.1 Additional Experiment Details

Language model We train a 2-layer LSTM language model, with 300 hidden

units and dropout at 0.2. We trained the LM with standard SGD optimizer, with

learning rate 1 and weight clipping by l2 norm of 5.

Vocabulary We use a vocabulary size 30,000 throughout all the experiments.

Model-encoder The encoder is parameterized by a word embedding layer fol-

lowed by a standard attention module, with 300 hidden units. In particular inside

the attention module, the query is the hidden state of the LSTM LM from previ-

ous time step while the keys are the encoder output. We additionally added the

positional-embedding to the keys. We constrain the summary length to be less

Input vietnam is among the countries most vulnerable to the chronic hep-
atitis b virus with more than eight percent of vietnamese people
contracting the virus , the local newspaper the youth reported tues-
day

GS vietnamese people vulnerable to hepatitis b virus : experts
DSeqAE-IN more than eight people reported to the virus is among most of vietnam
DSeqAE-OUT vietnam to UNK with the people of more than eight percent
W&L vietnam among most than eight percent

Input a reggae festival in new york which was created to promote peace
among cultures is being denounced by gay and lesbian groups for
allowing performers with a history of anti-gay lyrics

GS gay lesbian groups protest ny reggae concert because of anti-gay music
DSeqAE-IN a new york festival is being created in history
DSeqAE-OUT a new york festival in peace with history of gay
W&L new york peace festival in

Table 5.4: More qualitative results

74

than 15.

Model-decoder The decoder is a convolution based Seq2seq model implemented

by Fairseq 3. The sub-level encoder inside is a 4-layer convolutional network with

300 feature maps and kernel size 4. The sub-level decoder inside is a 3-layer

convolutional network with 300 feature maps and kernel size 3. Note that this is

the standard configuration fconv iwslt de en in the official Fairseq repository.

Model-training Our model is trained using a standard SGD optimizer with

Nesterov momentum of 0.9. The learning rate was initially set to 0.25 and decayed

by a factor of 10 when training reached a plateau as measured by validation set

reconstruction.

Weighing hyperparameter λ is set to 1.

5.7.2 Additional qualitative results

We show three more qualitative results in Table 5.4.

3https://github.com/pytorch/fairseq

75

Chapter 6

Stacked What-Where

Autoencoders

In this chapter, we present a novel architecture, the “stacked what-where auto-

encoders” (SWWAE), which integrates discriminative and generative pathways

and provides a unified approach to supervised, semi-supervised and unsupervised

learning without requiring sampling. An instantiation of SWWAE is essentially a

convolutional net (ConvNet) (LeCun et al. [1998]) coupled with a deconvolutional

net (Deconvnet) (Zeiler et al. [2010]). The objective function includes reconstruction

terms that penalize the hidden states in the Deconvnet for being different from

the hidden state of the ConvNet. Each pooling layer is seen producing two sets

of variables: the “what” which are fed to the next layer, and its complementary

variable “where” that are fed to the corresponding layer in the generative decoder.

76

6.1 Motivation: the “what” and “where”

A desirable property of learning models is the ability to be trained in supervised,

unsupervised, or semi-supervised mode with a single architecture and a single

learning procedure. Another desirable property is the ability to exploit advantageous

discriminative and generative models. A popular approach is to pre-train auto-

encoders in a layer-wise fashion, and subsequently fine-tune the entire stack of

encoders (the feed-forward pathway) in a supervised discriminative manner [Erhan

et al., 2010; Gregor and LeCun, 2010; Henaff et al., 2011; Kavukcuoglu et al., 2009,

2008, 2010b; Ranzato et al., 2007b; Ranzato and LeCun, 2007]. This approach fails

to provide a unified mechanism to unsupervised and supervised learning. Another

approach, which has all the right properties, is the deep boltzmann machine (DBM)

model (Hinton et al. [2006]; Larochelle and Bengio [2008]). Each layer in a DBM is a

restricted boltzmann machine (RBM), which can be seen as a kind of auto-encoder.

Deep RBMs have all the desirable properties, but the learning procedure misuses

sampling, which tends to be inefficient. The main issue with stacked auto-encoders

is asymmetry. The mapping implemented by the feed-forward pathway is often

many-to-one, for example mapping images to invariant features or to class labels.

Conversely, the mapping implemented by the feedback (generative) pathway is

one-to-many, e.g. mapping class labels to image reconstructions. The common way

to deal with this is to view the reconstruction mapping as probabilistic. This is the

approach of RBMs and DBMs: the missing information that allows reconstructing

an image from a category label is dreamed up by sampling. This tends to be

complicated and inefficient.

If the mapping from input to output of the feed-forward pathway were one-to-one,

77

the mappings in both directions would be well-defined functions and there would

be no need for sampling while reconstructing. But if the internal representations

are to possess good invariance properties, it is desirable that the mapping from

one layer to the next being many-to-one. For example, in a ConvNet, invariance is

achieved through layers of max-pooling and subsampling.

The main idea of the approach we propose here is very simple: whenever a

layer implements a many-to-one mapping, we compute a set of complementary

variables that enable reconstruction. In the max-pooling layers of ConvNets, we

view the position of the max-pooling “switches” as the complementary information

necessary for reconstruction. The model we proposed consists of a feed-forward

ConvNet, coupled with a feed-back Deconvnet. Each stage in this architecture is

what we call a “what-where auto-encoder” (WWAE).

More specifically, each encoder in the WWAE consists of a max-pooling layer

as drawn from the first convolutional network [LeCun et al., 1998]. The output

of the max-pooling is the “what” variable, which is fed to the next layer. The

complementary variables are the max-pooling “switch” positions, which can be seen

as the “where” variables. The “what” variables inform the next layer about the

content with incomplete information about the position, while the “where” variables

inform the corresponding feedback decoder about where interesting (dominant)

features are located. The feedback (generative) decoder reconstructs the input

by “unpooling” the “what” using the “where”, and running the result through a

reconstructing convolutional layer. Such what-where convolutional auto-encoders

can be stacked and trained jointly without requiring alternate optimization (Zeiler

et al. [2010]). The reconstruction penalty at each layer constrains the hidden

states of the feedback pathway to be close to the hidden states of the feed-forward

78

pathway. The system can be trained in purely supervised manner: the bottom

input of the feed-forward pathway is given the input, the top layer of the feedback

pathway is given the desired output, and the weights are updated to minimize

the sum of the reconstruction costs. If only to top-level cost is used, the model

reverts to purely supervised backprop. If the hidden layer reconstruction costs are

used, the model can be seen as supervised with a reconstruction regularization. In

unsupervised mode, the top-layer label output is left unconstrained and simply

copied from the output of the feed-forward pathway. The model becomes a stacked

what-where auto-encoder. As with boltzmann machines (BM), the underlying

learning algorithm doesn’t change between the supervised and unsupervised modes.

As with BMs the only thing that changes is what is clamped or left unclamped. The

model is particularly suitable when one is faced with a large amount of unlabeled

data and a relatively small amount of labelled data. The fact that no sampling (or

contrastive divergence method) is required gives the model good scaling properties.

It’s essentially just backprop in a particular architecture.

6.2 SWWAE model architecture

We write down the loss function of SWWAE as follow:

L = λNLLLNLL + λL2recLL2rec + λL2MLL2M , (6.1)

where LNLL is a classification loss if available, LL2rec the reconstruction loss at the

input level while LL2M penalizes the difference at the intermediate levels between

the two pathways. λ∗’s are the weighing terms.

As we mentioned before, the pooling layer from an encoder in the feedforward

79

pathway branches out information into “what” and “where”, depicted in figure

6.1(a). For one thing, the “what” component is essentially the output of a con-

ventional max-pooling layer. For another, the “where” variable complements the

information by preserving an argmax information. A simplest definition of “where”

is to store all the “switches” information which indicates the location of the maxi-

mally activated pixel inside each pooling region. To connect each separate WWAE

modules, the “what” component is fed up to the next layer in the feed-forward

pathway, just like a normal feedforward convolutional network. The “where” vari-

ables are maintained to be used at the same level at the feedback pathway. More

specifically, in each WWAE module in the feedback pathway, a decoder unpools

the value from the upper layer by using the “where” variable that it obtains from

its feedforward counterpart. This pooling and unpooling procedure are depicted in

Figure 6.1(a).

The reconstruction energies are normal mean square losses:

LL2rec = ‖x− x̃‖2, LL2M = ‖xm − x̃m‖2, (6.2)

where x∗ and x̃∗ are feature maps (or pixels) from the feedforward and feedback

pathways respectively. m indexes the layer number. The entire architecture is

depicted in figure 6.1(b).

80

inputinput

“what” “what”

“where”
Pooling Unpooling

L2ML2M

L2recL2rec

L2ML2M
NLLNLL

“what” “what”

“where”

Pooling Unpooling

4 1 5

1 6 4

9 2 3

0 0 0

0 0 0

8.9 0 0

“where”

“what”

9

-1 -1

8.9

2 9 1

7 3 4

8 6 0

0 7.8 0

0 0 0

0 0 0

“where”

“what”

9

0 1

7.8

Convolution/ReLU Convolution

Convolution/ReLU Convolution/ReLU

Figure 6.1: Left (a): pooling-unpooling. Right (b): model architecture. For brevity,
fully-connected layers are omitted in this figure.

6.2.1 Phase pooling: “what” and “where”

Recently, Goroshin et al. [2015] introduces a soft version of max and argmax

operators within each pooling region:

mk =
∑
Nk

z(x, y)
eβz(x,y)∑

Nk

eβz(x,y)
≈ max

Nk
z(x, y) (6.3)

pk =
∑
Nk

x
y

 eβz(x,y)∑
Nk

eβz(x,y)
≈ arg max

Nk

z(x, y), (6.4)

where z(x, y) is the activation and x, y are spatial locations (for brevity we take

normalized value from -1 to 1). Nk is the kth pooling region. We use linera

interpolation at the unpooling stage to handle the continuous switches. In addition,

β is a non-negative hyper-parameter: larger β behaves like max-pooling while

81

smaller β makes this pooling resemble a mean-pooling.

6.2.2 Training with joint losses and regularization

SWWAE provides a solution to integrate different learning paradigms by a

single architecture and single learning algorithm, i.e. stochastic gradient descent

and backprop:

• for supervised learning, we can mask out the entire Deconvnet pathway by

setting λL2∗ to 0 and the SWWAE falls back to vanilla ConvNet.

• for unsupervised learning, we remove the classification facilities on top of the

encoding pathway and set λNLL to 0.

• for semi-supervised learning, we train the model with the interplay of all loss

terms.

• for generation-related tasks, we focus on the output from the feedback path-

way.

The idea behind using reconstruction as a regularizer was studied in earlier

works such as Erhan et al. [2010], and revived by parallel work Rasmus et al. [2015].

6.3 Experiments

6.3.1 Necessity of the “where”

In this section, we demonstrate the necessity of the “where” variables. In

particular, we compare a standard SWWAE model with an upsampling-based

alternative. Essentially, upsampling is an operation contrary to a WWAE that

82

it copies the value to all locations within each pooling region. This operation is

agnostic of any switches information from the feedforward pathway. In Figure 6.2,

we show the reconstructed digits that are generated by an SWWAE (left) and an

SWWAE-upsample (right) while we progressively increase the pooling region size

from 2 to 16. It is obvious that the “where” information is necessary to get good

quality reconstruction, especially with the pooling size growing large.

Figure 6.2: Reconstruction of SWWAE-upsample (left) and SWWAE (right). The
pooling sizes are respectively 2, 4, 8, 16 up-to-down.

6.3.2 Invariance and Equivariance

In this section, we study the behavior of SWWAE by analyzing the “what” and

“where” variables from a perspective given by Hinton et al. [2011]—invariance and

equivariance. We setup the experiements as follows:

(i) we train an SWWAE-unsup model using just horizontally and/or vertically

translated MNSIT images;

(ii) during testing, we first feed a batch of untranslated images to the trained

SWWAE and we cache both “what” and “where” components on the top

level from the feedforward pathway;

(iii) we horizontally translate the same batch of the images then do the same

caching as (ii);

83

(iv) we plot respectively the “what” and “where” components from the untrans-

lated images with respected to their translated counterparts;

(v) repeat (iii)-(iv) for vertically translated images. The results are displayed in

Figure 6.3.

From these plots, we can roughly see the “what” and “where” characterize

the invariance and equivariance respectively, defined by Hinton et al. [2011]. But

unlike the transforming autoencoder [Hinton et al., 2011], we argue that SWWAE

achieves this by the nature of its architectural design and without any extra explicit

supervision.

6.3.3 Image classification using SWWAE

6.3.3.1 SVHN

We test SWWAEs on the Google Street View Housing Number (SVHN) dataset.

The dataset contains 73257 harder training samples and 531131 extra easier sam-

ples. To set up a semi-supervised experiment similar to Kingma et al. [2014], we

randomly sample 1000 samples from the canonical training set with labels uniformly

distributed to 10 classes. Results are reported as the mean accuracy from 10 runs.

We show in Figure 6.4 the validation set performance varying with different

λL2∗. The final results on test set are showed in Table 6.1. We additionally evaluate

SWWAE on SVHN under a supervised manner with all the labels available—an

SWWAE improves upon a ConvNet (same configuration) from 5.89% to 4.94%.

84

Table 6.1: SWWAE against other published results on SVHN with 1000 available
labels.

model / N error rate (in %)

KNN 77.93
TSVM (Vapnik and Vapnik [1998]) 66.55
M1+KNN (Kingma et al. [2014]) 65.63
M1+TSVM (Kingma et al. [2014]) 54.33
M1+M2 (Kingma et al. [2014]) 36.02

SWWAE without dropout (λL2∗ = 0.8) 27.83
SWWAE with dropout (λL2∗ = 0.4) 23.56

Table 6.2: SWWAE against other published results on STL-10.

model accuracy

Multi-task Bayesian Optimization (Swersky et al. [2013]) 70.1%
Zero-bias ConvNets + ADCU (Paine et al. [2014]) 70.2%
Exemplar ConvNets (Dosovitskiy et al. [2014]) 75.4%

SWWAE 74.33%
CNN of same configuration 57.45%

6.3.3.2 STL-10

In this section, we assess SWWAEs using the STL-10 dataset. STL-10 is a

semi-supervised image classification dataset that has a sheer 100:1 ratio of unlabeled

samples to the labelled samples. The result is reported in Table 6.2. Our model

achieves competitive results with the state-of-the-art.

6.3.4 Larger scale: CIFAR with 80 Million Tiny Images

As a larger scale experiment, we mix the CIFAR-10 / CIFAR-100 datasets

with the 80 million tiny images dataset [Torralba et al., 2008] to make both tasks

semi-supervised. In Table 6.3, we compare our result against the best published

supervised model. Indeed, incorporating the huge amount of unlabeled data, an

SWWAE outperforms the state-of-the-art supervised models on CIFAR-100 by a

85

Table 6.3: Accuracy of SWWAE on CIFAR-10 and CIFAR-100 in comparison with
best published single-model results. Our results are obtained with the common aug-
mentation setup applying contrast normalization, small translation and horizontal
mirroring.

model CIFAR-10 CIFAR-100

All-CNN (Springenberg et al. [2014]) 92.75% 66.29%
Highway Network (Srivastava et al. [2015]) 92.40% 67.76%
Deeply-supervised nets (Lee et al. [2014]) 92.03% 67.76%

SWWAE (λL2rec = 1, λL2M = 0.2) 92.23% 69.12%

good margin.

6.4 Discussions

The overall system, which can be seen as pairing a Convnet with a Deconvnet,

yields good accuracy on a variety of semi-supervised and supervised tasks. We

envision that such architecture may also be useful in video related tasks where

unlabeled samples abound.

86

Figure 6.3: Capsule-alike scatter plots. The x-axis represents the “what” or “where”
from one feature map for an untranslated digit image while the y-axis is the “what”
or “where” output from the counterpart of the same set of translated images.
Translation can happen in either horizontal or vertical directions. From left to right,
the figures are respectively: first (a): “what” of horizontally translated digits versus
original digits; second (b): “where” of horizontally translated digits versus original
digits; third (c): “what” of vertically translated digits versus original digits; fourth
(d): “where” of vertically translated digits versus original digits. Note that circles
are used to feature +3 translation and triangles for -3. In the “where” related plots,
x and y denote two dimensions of the “where” respectively.

87

0.0 0.5 1.0 1.5 2.0 2.5 3.0
lambdaL2*

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

V
a
lid

a
ti

o
n
 E

rr
o
r

MNIST. Error v.s. lambdaL2*

100
600
1000
3000

0.0 0.5 1.0 1.5 2.0 2.5
lambdaL2*

0.10

0.15

0.20

0.25

0.30

0.35

V
a
lid

a
ti

o
n
 E

rr
o
r

SVHN. Error v.s. lambdaL2*

1000
10000

Figure 6.4: Validation-error v.s. λL2∗ on a range of datasets for SWWAE semi-
supervised experiments. Left (a): MNIST. Right (b): SVHN. Different curves
denote different number of labels being used.

88

Chapter 7

Unsupervised Learning of

Transferable Relational Graphs

In this chapter, we propose a new framework that learns a “structural graph”

representation based on a masked autoencoder framework. While trained in a

complete unsupervised manner, these learned graphs are showed to carry useful

dependency information of the input, and further can be transferred to other

downstream tasks obtaining enhanced results.

7.1 Motivation

Modern deep transfer learning approaches have mainly focused on learning

generic feature vectors from one task that are transferable to other tasks, such

as word embeddings in language and pretrained convolutional features in vision.

However, these approaches usually transfer unary features and largely ignore more

structured graphical representations. This work explores the possibility of learning

89

generic latent relational graphs that capture dependencies between pairs of data units

(e.g., words or pixels) from large-scale unlabeled data and transferring the graphs to

downstream tasks. Our proposed transfer learning framework improves performance

on various tasks including question answering, natural language inference, sentiment

analysis, and image classification. We also show that the learned graphs are generic

enough to be transferred to different embeddings on which the graphs have not

been trained (including GloVe embeddings, ELMo embeddings, and task-specific

RNN hidden units), or embedding-free units such as image pixels.

7.2 Introduction

Recent advances in deep learning have largely relied on building blocks such

as convolutional networks (CNNs) LeCun et al. [1995] and recurrent networks

(RNNs) Hochreiter and Schmidhuber [1997] augmented with attention mechanisms

Bahdanau et al. [2014]. While possessing high representational capacity, these

architectures primarily operate on grid-like or sequential structures due to their built-

in “innate priors”. As a result, CNNs and RNNs largely rely on high expressiveness

to model complex structural phenomena, compensating the fact that they do not

explicitly leverage structural, graphical representations.

This paradigm has led to a standardized norm in transfer learning and pre-

training. It is fitting an expressive function on a large dataset with or without

supervision, and then applying the function to downstream task data for feature

extraction. Notable examples include pretrained ImageNet features He et al. [2016]

and pretrained word embeddings Mikolov et al. [2013a]; Pennington et al. [2014].

In contrast, a variety of real-world data exhibit much richer relational graph

90

structures than the simple grid-like or sequential structures. This is also empha-

sized by a parallel work Battaglia et al. [2018]. For example in the language

domain, linguists use parse trees to represent syntactic dependency between words;

information retrieval systems exploit knowledge graphs to reflect entity relations;

and coreference resolution is devised to connect different expressions of the same

entity. As such, these exemplified structures are universally present in almost any

natural language data regardless of the target tasks, which suggests the possibility

of transfer across tasks. These observations also generalize to other domains such

as vision, where modeling the relations between pixels is proven useful Parmar

et al. [2018]; Zhang et al. [2018]; Wang et al. [2017]. One obstacle remaining,

however, is that many of the universal structures are essentially human-curated

and expensive to acquire on a large scale, while automatically-induced structures

are mostly limited to one task Kipf et al. [2018]; Vaswani et al. [2017]; Wang et al.

[2017].

In this chapter, we attempt to address two challenges: 1) to break away from

the standardized norm of feature-based deep transfer learning1, and 2) to learn

versatile structures in the data with a data-driven approach. In particular, we are

interested in learning transferable latent relational graphs, where the nodes of a

latent graph are the input units, e.g., all the words in a sentence. The task of latent

relational graph learning is to learn an affinity matrix where the weights (possibly

zero) capture the dependencies between any pair of input units.

To achieve the above goals, we propose a novel framework of unsupervised

latent graph learning called GLoMo (Graphs from LOw-level unit MOdeling).

Specifically, we train a neural network from large-scale unlabeled data to output

1Throughout the paper, we use “feature” to refer to unary feature representations, and use
“graph” to refer to structural, graphical representations.

91

latent graphs, and transfer the network to extract graph structures on downstream

tasks to augment their training. This approach allows us to separate the features

that represent the semantic meaning of each unit and the graphs that reflect how

the units may interact. Ideally, the graphs capture task-independent structures

underlying the data, and thus become applicable to different sets of features. Figure

7.1 highlights the difference between traditional feature-based transfer learning and

our new framework.

Experimental results show that GLoMo improves performance on various lan-

guage tasks including question answering, natural language inference, and sentiment

analysis. We also demonstrate that the learned graphs are generic enough to work

with various sets of features on which the graphs have not been trained, including

GloVe embeddings Pennington et al. [2014], ELMo embeddings Peters et al. [2018],

and task-specific RNN states. We also identify key factors of learning successful

generic graphs: decoupling graphs and features, hierarchical graph representations,

sparsity, unit-level objectives, and sequence prediction. To demonstrate the gener-

ality of our framework, we further show improved results on image classification by

applying GLoMo to model the relational dependencies between the pixels.

7.3 Unsupervised Relational Graph Learning

We propose a framework for unsupervised latent graph learning. Given a one-

dimensional input x = (x1, · · · , xT), where each xt denotes an input unit at position

t and T is the length of the sequence, the goal of latent graph learning is to learn a

(T×T) affinity matrix G such that each entry Gij captures the dependency between

the unit xi and the unit xj. The affinity matrix is asymmetric, representing a

92

Net

Task A

Net

input input

feature

Task B

transfer

Net

Task A

Net

input input

transfer

Task B

graph

feature specific to B

feature

Traditional Ours

Figure 7.1: Traditional transfer learning versus our new transfer learning framework.
Instead of transferring features, we transfer the graphs output by a network. The graphs
are multiplied by task-specific features (e.g. embeddings or hidden states) to produce
structure-aware features.

directed weighted graph. In particular, in this work we consider the case where each

column of the affinity matrix sums to one, for computational convenience. In the

following text, with a little abuse of notation, we use G to denote a set of affinity

matrices. We use the terms “affinity matrices” and “graphs” interchangeably.

During the unsupervised learning phase, our framework trains two networks, a

graph predictor network g and a feature predictor network f . Given the input x, our

graph predictor g produces a set of graphs G = g(x). The graphs G are represented

as a 3-d tensor in RL×T×T , where L is the number of layers that produce graphs.

For each layer l , the last two dimensions Gl define a (T × T) affinity matrix that

captures the dependencies between any pair of input units. The feature predictor

network f then takes the graphs G and the original input x to perform a predictive

task.

During the transfer phase, given an input x′ from a downstream task, we use the

graph predictor g to extract graphs G = g(x′). The extracted graphs G are then

fed as the input to the downstream task network to augment training. Specifically,

we multiply G with task-specific features such as input embeddings and hidden

93

states (see Figure 7.1). The network f is discarded during the transfer phase.

Next, we will introduce the network architectures and objective functions for

unsupervised learning, followed by the transfer procedure. An overview of our

framework is illustrated in Figure 7.2.

7.3.1 Unsupervised Learning

Graph Predictor The graph predictor g is instantiated as two multi-layer

CNNs, a key CNN, and a query CNN. Given the input x, the key CNN outputs

a sequence of convolutional features (k1, · · · ,kT) and the query CNN similarly

outputs (q1, · · · ,qT). At layer l, based on these convolutional features, we compute

the graphs as

Gl
ij =

(
ReLU(kl>i qlj + b)

)2

∑
i′

(
ReLU(kl>i′ qlj + b)

)2 (7.1)

where kli = Wl
kki and qlj = Wl

qqj . The matrices Wl
k and Wl

q are model parameters

at layer l, and the bias b is a scalar parameter. This resembles computing the

attention weights Bahdanau et al. [2014] from position j to position i except that

the exponential activation in the softmax function is replaced with a squared ReLU

operation—we use ReLUs to enforce sparsity and the square operations to stabilize

training. Moreover, we employ convolutional networks to let the graphs G be aware

of the local order of the input and context, up to the size of each unit’s receptive

field.

Feature Predictor Now we introduce the feature predictor f . At each layer l,

the input to the feature predictor f is a sequence of features Fl−1 = (f l−1
1 , · · · , f l−1

t)

and an affinity matrix Gl extracted by the graph predictor g. The zero-th layer

features F0 are initialized to be the embeddings of x. The affinity matrix Gl is

94

then combined with the current features to compute the next-layer features at each

position t,

f lt = v(
∑
j

Gl
jtf

l−1
j , f l−1

t) (7.2)

where v is a compositional function such as a GRU cell Chung et al. [2014] or a

linear layer with residual connections. In other words, the feature at each position

is computed as a weighted sum of other features, where the weights are determined

by the graph Gl, followed by transformation function v.

Objective Function At the top layer, we obtain the features FL. At each

position t, we use the feature fLt to initialize the hidden states of an RNN decoder,

and employ the decoder to predict the units following xt. Specifically, the RNN

decoder maximizes the conditional log probability logP (xt+1, · · · , xt+D|xt, f lt) using

an auto-regressive factorization as in standard language modeling Yang et al. [2017a]

(also see Figure 7.2). Here D is a hyper-parameter called the context length. The

overall objective is written as the sum of the objectives at all positions t,

max
∑
t

logP (xt+1, · · · , xt+D|xt, fLt) (7.3)

Because our objective is context prediction, we mask the convolutional filters and

the graph G (see Eq. 7.1) in the network g to prevent the network from accessing

the future, following Salimans et al. [2017].

7.3.1.1 Desiderata

There are several key desiderata of the above unsupervised learning framework,

which also highlight the essential differences between our framework and previous

work on self-attention and predictive unsupervised learning:

95

A B C D
input

Key CNN Query CNN

Dot & ReLUWeighted sum

FF FF FF FF

Weighted sum Dot & ReLU

RNN RNN RNN
B C

B C D

E F G H

Weighted sum

Weighted sumgraph

graph

Embedding Ideally any embedding

RNN/CNN/Attention…Select one

objective

Feature predictor Graph predictor Downstream task model

Unsupervised learning

Transfer

… … …

mixed
graph

Figure 7.2: Overview of our approach GLoMo. During the unsupervised learning phase,
the feature predictor and the graph predictor are jointly trained to perform context
prediction. During the transfer phase, the graph predictor is frozen and used to extract
graphs for the downstream tasks. An RNN decoder is applied to all positions in the
feature predictor, but we only show the one at position “A” for simplicity. “Select one”
means the graphs can be transferred to any layer in the downstream task model. “FF”
refers to feed-forward networks. The graphs output by the graph predictor are used as
the weights in the “weighted sum” operation (see Eq. 7.2).

Decoupling graphs and features Unlike self-attention Vaswani et al. [2017]

that fuses the computation of graphs and features into one network, we employ

separate networks g and f for learning graphs and features respectively. The

features represent the semantic meaning of each unit while the graph reflects

how the units may interact. This increases the transferability of the graphs G

because (1) the graph predictor g is freed from encoding task-specific non-structural

information, and (2) the decoupled setting is closer to our transfer setting, where

the graphs and features are also separated.

Sparsity Instead of using Softmax for attention Bahdanau et al. [2014], we

employ a squared ReLU activation in Eq. (7.1) to enforce sparse connections in the

graphs. In fact, most of the linguistically meaningful structures are sparse, such as

parse trees and coreference links. We believe sparse structures reduce noise and are

96

more transferable.

Hierarchical graph representations We learn multiple layers of graphs,

which allows us to model hierarchical structures in the data.

Unit-level objectives In Eq. (7.3), we impose a context prediction objective

on each unit xt. An alternative is to employ a sequence-level objective such as

predicting the next sentence Kiros et al. [2015] or translating the input into another

language Vaswani et al. [2017]. However, since the weighted sum operation in Eq.

(7.2) is permutation invariant, the features in each layer can be randomly shuffled

without affecting the objective, which we observed in our preliminary experiments.

As a result, the induced graph bears no relation to the structures underlying the

input x when a sequence-level objective is employed.

Sequence prediction As opposed to predicting just the immediate next unit

Parmar et al. [2018]; Peters et al. [2018], we predict the context of length up to D.

This gives stronger training signals to the unsupervised learner.

Later in the experimental section, we will demonstrate that all these factors

contribute to successful training of our framework.

7.3.2 Latent Graph Transfer

In this section, we discuss how to transfer the graph predictor g to downstream

tasks.

Suppose for a downstream task the model is a deep multi-layer network. Specif-

ically, each layer is denoted as a function h that takes in features H = (h1, · · · ,hT)

and possibly additional inputs, and outputs features (h′1, · · · ,h′T). The function

h can be instantiated as any neural network component, such as CNNs, RNNs,

attention, and feed-forward networks. This setting is general and subsumes the

97

majority of modern neural architectures.

Given an input example x′ from the downstream task, we apply the graph

predictor to obtain the graphs G = g(x′). Let Λl =
∏l

i=1 Gi ∈ RT×T denote the

product of all affinity matrices from the first layers to the l-th layer. This can

be viewed as propagating the connections among multiple layers of graphs, which

allows us to model hierarchical structures. We then take a mixture of all the graphs

in {Gl}Ll=1 ∪ {Λl}Ll=1,

M =
L∑
l=1

ml
GGl +

L∑
l=1

ml
ΛΛl, s.t.

L∑
l=1

(ml
G +ml

Λ) = 1

The mixture weights ml
G and ml

Λ can be instantiated as Softmax-normalized

parameters Peters et al. [2018] or can be conditioned on the features H. To transfer

the mixed latent graph, we again adopt the weighted sum operation as in Eq. (7.2).

Specifically, we use the weighted sum HM (see Figures 7.1 and 7.2), in addition to

H, as the input to the function h. This can be viewed as performing attention with

weights given by the mixed latent graph M. This setup of latent graph transfer

is general and easy to be plugged in, as the graphs can be applied to any layer in

the network architecture, with either learned or pretrained features H, at variable

length.

7.3.3 Extensions and Implementation

So far we have introduced a general framework of unsupervised latent graph

learning. This framework can be extended and implemented in various ways.

In our implementation, at position t, in addition to predicting the forward

context (xt+1, · · · , xt+D), we also use a separate network to predict the backward

98

context (xt−D, · · · , xt−1), similar to Peters et al. [2018]. This allows the graphs G

to capture both forward and backward dependencies, as graphs learned from one

direction are masked on future context. Accordingly, during transfer, we mix the

graphs from two directions separately.

In the transfer phase, there are different ways of effectively fusing H and HM.

In practice, we feed the concatenation of H and a gated output, W1[H; HM] �

σ(W2[H; HM]), to the function h. Here W1 and W2 are parameter matrices, σ

denotes the sigmoid function, and � denotes element-wise multiplication. We also

adopt the multi-head attention Vaswani et al. [2017] to produce multiple graphs

per layer. We use a mixture of the graphs from different heads for transfer.

It is also possible to extend our framework to 2-d or 3-d data such as images

and videos. The adaptations needed are to adopt high-dimensional attention Wang

et al. [2017]; Parmar et al. [2018], and to predict a high-dimensional context (e.g.,

predicting a grid of future pixels). As an example, in our experiments, we use these

adaptations on the task of image classification.

7.4 Experiments

7.4.1 Natural Language Tasks and Setting

Question Answering The stanford question answering dataset Rajpurkar et al.

[2016](SQuAD) was recently proposed to advance machine reading comprehension.

The dataset consists of more than 100,000+ question-answer pairs from 500+

Wikipedia articles. Each question is associated with a corresponding reading

passage in which the answer to the question can be deduced.

Natural Language Inference We chose to use the latest Multi-Genre NLI

99

Table 7.1: Main results on natural language datasets. Self-attention modules are
included in all baseline models. All baseline methods are feature-based transfer
learning methods, including ELMo and GloVe. Our methods combine graph-based
transfer with feature-based transfer. Our graphs operate on various sets of features,
including GloVe embeddings, ELMo embeddings, and RNN states. “mism.” refers
to the “mismatched” setting.

Transfer method SQuAD GloVe SQuAD ELMo
EM F1 EM F1

transfer feature only (baseline) 69.33 78.73 74.75 82.95
GLoMo on embeddings 70.84 79.90 76.00 84.13
GLoMo on RNN states 71.30 80.24 76.20 83.99

Transfer method MNLI GloVe IMDB GloVe
matched mism. Accuracy

transfer feature only (baseline) 77.14 77.40 88.51
GLoMo on embeddings 78.32 78.00 89.16

corpus (MNLI) Williams et al. [2017]. This dataset has collected 433k sentence

pairs annotated with textual entailment information. It uses the same modeling

protocol as SNLI dataset Bowman et al. [2015a] but covers a 10 different genres of

both spoken and formal written text. The evaluation in this dataset can be set up

to be in-domain (Matched) or cross-domain (Mismatched). We did not include the

SNLI data into our training set.

Sentiment Analysis We use the movie review dataset collected in Maas et al.

[2011], with 25,000 training and 25,000 testing samples crawled from IMDB.

Transfer Setting We preprocessed the Wikipedia dump and obtained a corpus

of over 700 million tokens after cleaning html tags and removing short paragraphs.

We trained the networks g and f on this corpus as discussed in Section 7.3.1. We

used randomly initialized embeddings to train both g and f , while the graphs are

tested on other embeddings during transfer. We transfer the graph predictor g to a

downstream task to extract graphs, which are then used for supervised training, as

100

introduced in Section 7.3.2. We experimented with applying the transferred graphs

to various sets of features, including GloVe embeddings, ELMo embeddings, and

the first RNN layer’s output.

7.4.2 Main results

On SQuAD, we follow the open-sourced implementation Clark and Gardner

[2017] except that we dropped weight averaging to rule out ensembling effects. This

model employs a self-attention layer following the bi-attention layer, along with

multiple layers of RNNs. On MNLI, we adopt the open-sourced implementation

Chen et al. [2017a]. Additionally, we add a self-attention layer after the bi-inference

component to further model context dependency. For IMDB, our baseline utilizes a

feedforward network architecture composed of RNNs, linear layers and self-attention.

Note the state-of-the-art (SOTA) models on these datasets are Yu et al. [2018];

Liu et al. [2018b]; Miyato et al. [2016] respectively. However, these SOTA results

often rely on data augmentation Yu et al. [2018], semi-supervised learning Miyato

et al. [2016], additional training data (SNLI) Liu et al. [2018a], or specialized

architectures Liu et al. [2018a]. In this work, we focus on competitive baselines

with general architectures that the SOTA models are based on to test the graph

transfer performance and exclude independent influence factors.

The main results are reported in Table 7.1. There are three important messages.

First, we have purposely incorporated the self-attention module into all of our

baselines models—indeed having self-attention in the architecture could potentially

induce a supervisedly-trained graph, because of which one may argue that this graph

could replace its unsupervised counterpart. However, as is shown in Table 7.1,

augmenting training with unsupervisedly-learned graphs has further improved

101

Table 7.2: Ablation study.

Method SQuAD GloVe SQuAD ELMo IMDB GloVe MNLI GloVe
EM F1 EM F1 Accuracy matched mism.

GLoMo 70.84 79.90 76.00 84.13 89.16 78.32 78.00
- decouple 70.45 79.56 75.89 83.79 - - -
- sparse 70.13 79.34 75.61 83.89 88.96 78.07 77.75
- hierarchical 69.92 79.23 75.70 83.72 88.71 77.87 77.85
- unit-level 69.23 78.66 74.84 83.37 88.49 77.58 78.05
- sequence 69.92 79.29 75.50 83.70 88.96 78.11 77.76
uniform graph 69.48 78.82 75.14 83.28 88.57 77.26 77.50

performance. Second, as we adopt pretrained embeddings in all the models, the

baselines establish the performance of feature-based transfer. Our results in Table

7.1 indicate that when combined with feature-based transfer, our graph transfer

methods are able to yield further improvement. Third, the learned graphs are

generic enough to work with various sets of features, including GloVe embeddings,

ELMo embeddings, and RNN output.

7.4.3 Ablation Study

In addition to comparing graph-based transfer against feature-based transfer,

we further conducted a series of ablation studies. Here we mainly target at the

following components in our framework: decoupling feature and graph networks,

sparsity, hierarchical (i.e. multiple layers of) graphs, unit-level objectives, and

sequence prediction. Respectively, we experimented with coupling the two networks,

removing the ReLU activations, using only a single layer of graphs, using a sentence-

level Skip-thought objective Kiros et al. [2015], and reducing the context length

to one Peters et al. [2018]. As is shown in Table 7.2, all these factors contribute

to better performance of our method, which justifies our desiderata discussed in

Section 7.3.1.1. Additionally, we did a sanity check by replacing the trained graphs

102

Figure 7.3: Visualization of the graphs on the MNLI dataset. The graph predictor has
not been trained on MNLI. The words on the y-axis “attend” to the words on the a-axis;
i.e., each row sums to 1.

103

Figure 7.4: Visualization. Left: a shark image as the input. Middle: weights of
the edges connected with the central pixel, organized into 24 heads (3 layers with
8 heads each). Right: weights of the edges connected with the bottom-right pixel.
Note the use of masking.

with uniformly sampled affinity matrices (similar to Hu et al. [2017]) during the

transfer phase. This result shows that the learned graphs have played a valuable

role for transfer.

7.4.4 Visualization and Analysis

We visualize the latent graphs on the MNLI dataset in Figure 7.3. We remove

irrelevant rows in the affinity matrices to highlight the key patterns. The graph in

Figure 7.3 top-left resembles coreference resolution as “he” is attending to “Gary

Bauer”. In Figure 7.3 top-right, the words attend to the objects such as “Green

Grotto”, which allows modeling long-term dependency when a clause exists. In

Figure 7.3 bottom-left, the words following “not” attend to “not” so that they

are aware of the negation; similarly, the predicate “splashed” is attended by the

following object and adverbial. Figure 7.3 bottom-right possibly demonstrates a

way of topic modeling by attending to informative words in the sentence. Overall,

though seemingly different from human-curated structures such as parse trees, these

latent graphs display linguistic meanings to some extent. Also note that the graph

predictor has not been trained on MNLI, which suggests the transferability of the

latent graphs.

104

Method / Base-model ResNet-18 ResNet-34

baseline 90.93±0.33 91.42±0.17

GLoMo 91.55±0.23 91.70±0.09
ablation: uniform graph 91.07±0.24 -

Table 7.3: CIFAR-10 classification results. We adopt a 42,000/8,000 train/validation
split—once the best model is selected according to the validation error, we directly
forward it to the test set without doing any validation set place-back retraining.
We only used horizontal flipping for data augmentation. The results are averaged
from 5 rounds of experiments.

7.4.5 Vision Task

Image Classification We are also prompted to extend the scope of our approach

from natural language to vision domain. Drawing from natural language graph

predictor g(·) leads the unsupervised training phase in vision domain to a PixelCNN-

like setup Oord et al. [2016], but with a sequence prediction window of size 3x3

(essentially only predicting the bottom-right quarter under the mask). We leverage

the entire ImageNet Deng et al. [2009] dataset and have the images resized to

32x32 Oord et al. [2016]. In the transfer phase, we chose CIFAR-10 classification

as our target task. Similar to the language experiments, we augment H by HM,

and obtain the final input through a gating layer. This result is then fed into a

ResNet He et al. [2016] to perform regular supervised training. Two architectures,

i.e. ResNet-18 and ResNet-34, are experimented here. As shown in Table 7.3,

GLoMo improves performance over the baselines, which demonstrates that GLoMo

as a general framework also generalizes to images.

In the meantime we display the attention weights we obtain from the graph

predictor in Figure 7.4. We can see that g has established the connections from

key-point pixels while exhibiting some variation across different attention heads.

105

There has been similar visualization reported by Zhang et al. [2018] lately, in

which a vanilla transformer model is exploited for generative adversarial training.

Putting these results together we want to encourage future research to take further

exploration into the relational long-term dependency in image modeling.

7.5 Discussion

We present a novel transfer learning scheme based on latent relational graph

learning, which is orthogonal to but can be combined with the traditional feature

transfer learning framework. Through a variety of experiments in language and

vision, this framework is demonstrated to be capable of improving performance

and learning generic graphs applicable to various types of features. In the future,

we hope to extend the framework to more diverse setups such as knowledge based

inference, video modeling, and hierarchical reinforcement learning where rich graph-

like structures abound.

106

Chapter 8

Conclusions and Future Work

Chapter 3 was published as Zhao et al. [2016]. Chapter 4 was published as Zhao

et al. [2018], successfully showcasing real-world applications of text generation in

style transfer. Chapter 5 is in submission. Chapter 6 was published as Zhao et al.

[2015], demonstrating state-of-the-art performance of semi-supervised leraning on

datasets like STL-10. Chapter 7 was published as Yang et al. [2018].

Unsupervised learning and its deployment remain as one of the most important

missions for artificial intelligence. For any specific tasks, utilizing an unsupervised

loss objective to acquire some form of common sense would certainly be useful to

benefit low-resource tasks, or improve the sample efficiency in other paradigms like

reinforcement learning. The current progress of unsupervised transfer learning has

only scratched the surface on this regard. In the future, we hope to work on a clearer

and more discrete definition of what common sense is. Briefly, it needs to prove

the universality of learned features like BERT and ELMo, or models in the meta-

learning scenario, or something more comprehensive. Furthermore, uncertainty is

another important emerging concept in unsupervised learning, particularly in the

107

predive modeling. How to (i)-quantify the uncertainty, (ii)-build efficient inference

algorithm and (iii)-to use the uncertainty in a problem such as planning remain as

unsolved challenges.

The evaluation is another dimension of the challenge, in particular for generative

modeling. Albeit the inception and FID scores, generative modeling in computer

vision is still heavily evaluated based on human annotators. Unfortunately, it is

even more so in natural language generation tasks. Indeed, there are multiple

aspects to be taken care of when evaluating the outcome of a generative model—

it may include but not limited to generation quality, diversity, mode-coverage,

uncertainty reflection, etc. Depending on the actual generation task, as well as

being conditioned on different content, the generative models ought to be evaluated

differently and accordingly. In the future, we hope to explore systematic ways to

evaluate generative modeling.

108

Bibliography

Agrawal, A., Lu, J., Antol, S., Mitchell, M., Zitnick, C. L., Parikh, D., and Batra,

D. (2017). Vqa: Visual question answering. International Journal of Computer

Vision, 123(1):4–31.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan.

arXiv:1701.07875.

Artetxe, M., Labaka, G., Agirre, E., and Cho, K. (2017). Unsupervised neural

machine translation. arXiv preprint arXiv:1710.11041.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,

Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.

(2018). Relational inductive biases, deep learning, and graph networks. arXiv

preprint arXiv:1806.01261.

Boureau, Y.-l., Cun, Y. L., et al. (2008). Sparse feature learning for deep belief

networks. In Advances in neural information processing systems, pages 1185–1192.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015a). A large

109

annotated corpus for learning natural language inference. arXiv preprint

arXiv:1508.05326.

Bowman, S. R., Angeli, G., Potts, C., and Manning., C. D. (2015b). A large

annotated corpus for learning natural language inference. In Proceedings of

EMNLP.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio,

S. (2015c). Generating sentences from a continuous space. arXiv preprint

arXiv:1511.06349.

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high

fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.

Carreira-Perpinan, M. A. and Hinton, G. (2005). On contrastive divergence learning.

In AISTATS, volume 10, pages 33–40. Citeseer.

Che, T., Li, Y., Zhang, R., Hjelm, R. D., Li, W., Song, Y., and Bengio, Y.

(2017). Maximum-Likelihood Augment Discrete Generative Adversarial Networks.

arXiv:1702.07983.

Chen, Q., Zhu, X., Ling, Z.-H., Wei, S., Jiang, H., and Inkpen, D. (2017a). Enhanced

lstm for natural language inference. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers),

volume 1, pages 1657–1668.

Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., and Zitnick,

C. L. (2015). Microsoft coco captions: Data collection and evaluation server.

arXiv preprint arXiv:1504.00325.

110

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J.,

Sutskever, I., and Abbeel, P. (2017b). Variational Lossy Autoencoder. In

Proceedings of ICLR.

Chen, Y., Li, V. O., Cho, K., and Bowman, S. R. (2018). A stable and effective

learning strategy for trainable greedy decoding. arXiv preprint arXiv:1804.07915.

Cho, K. (2016). Noisy parallel approximate decoding for conditional recurrent

language model. arXiv preprint arXiv:1605.03835.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder-

decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evalua-

tion of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555.

Clark, C. and Gardner, M. (2017). Simple and effective multi-paragraph reading

comprehension. arXiv preprint arXiv:1710.10723.

Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. In Proceedings

of NIPS.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee.

Denton, E. and Birodkar, V. (2017). Unsupervised learning of disentangled repre-

sentations from video. arXiv preprint arXiv:1705.10915.

111

Denton, E. L., Chintala, S., Fergus, R., et al. (2015). Deep generative image

models using a laplacian pyramid of adversarial networks. In Advances in neural

information processing systems, pages 1486–1494.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., and Brox, T. (2014). Dis-

criminative unsupervised feature learning with convolutional neural networks. In

Advances in Neural Information Processing Systems, pages 766–774.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S.

(2010). Why does unsupervised pre-training help deep learning? The Journal of

Machine Learning Research, 11:625–660.

Fevry, T. and Phang, J. (2018). Unsupervised sentence compression using denoising

auto-encoders. arXiv preprint arXiv:1809.02669.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,

Marchand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural

networks. The Journal of Machine Learning Research, 17(1):2096–2030.

Glynn, P. (1987). Likelihood Ratio Gradient Estimation: An Overview. In

Proceedings of Winter Simulation Conference.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680.

112

Goroshin, R., Mathieu, M., and LeCun, Y. (2015). Learning to linearize under

uncertainty. arXiv preprint arXiv:1506.03011.

Graff, D., Kong, J., Chen, K., and Maeda, K. (2003). English gigaword. Linguistic

Data Consortium, Philadelphia, 4(1):34.

Gregor, K. and LeCun, Y. (2010). Learning fast approximations of sparse coding.

In Proc. International Conference on Machine learning (ICML’10).

Gu, J., Cho, K., and Li, V. O. (2017). Trainable greedy decoding for neural machine

translation. arXiv preprint arXiv:1702.02429.

Gulrajani, I., Ahmed, F., Arjovsky, M., and Vincent Dumoulin, A. C. (2017).

Improved Training of Wasserstein GANs. arXiv:1704.00028.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778.

Henaff, M., Jarrett, K., Kavukcuoglu, K., and LeCun, Y. (2011). Unsupervised

learning of sparse features for scalable audio classification. In Proceedings of

International Symposium on Music Information Retrieval (ISMIR’11).

Hill, F., Cho, K., and Korhonen, A. (2016). Learning distributed representations of

sentences from unlabelled data. In Proceedings of NAACL.

Hinton, G., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for

deep belief nets. Neural computation, 18(7):1527–1554.

Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). Transforming auto-encoders.

113

In Artificial Neural Networks and Machine Learning–ICANN 2011, pages 44–51.

Springer.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of

data with neural networks. science, 313(5786):504–507.

Hjelm, R. D., Jacob, A. P., Che, T., Cho, K., and Bengio, Y. (2017). Boundary-

Seeking Generative Adversarial Networks. arXiv:1702.08431.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8):1735–1780.

Hu, J., Shen, L., and Sun, G. (2017). Squeeze-and-excitation networks. arXiv

preprint arXiv:1709.01507.

Im, D. J., Kim, C. D., Jiang, H., and Memisevic, R. (2016). Generating images

with recurrent adversarial networks. arXiv preprint arXiv:1602.05110.

Jang, E., Gu, S., and Poole, B. (2017). Categorical Reparameterization with

Gumbel-Softmax. In Proceedings of ICLR.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of tricks for

efficient text classification. arXiv preprint arXiv:1607.01759.

Kaiser, L., Roy, A., Vaswani, A., Pamar, N., Bengio, S., Uszkoreit, J., and Shazeer,

N. (2018). Fast decoding in sequence models using discrete latent variables. arXiv

preprint arXiv:1803.03382.

Kavukcuoglu, K., Ranzato, M., Fergus, R., and LeCun, Y. (2009). Learning invariant

features through topographic filter maps. In Proc. International Conference on

Computer Vision and Pattern Recognition (CVPR’09). IEEE.

114

Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2008). Fast inference in sparse

coding algorithms with applications to object recognition. Technical report,

Computational and Biological Learning Lab, Courant Institute, NYU. Tech

Report CBLL-TR-2008-12-01.

Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2010a). Fast inference in sparse

coding algorithms with applications to object recognition. arXiv preprint

arXiv:1010.3467.

Kavukcuoglu, K., Sermanet, P., Boureau, Y., Gregor, K., Mathieu, M., and LeCun,

Y. (2010b). Learning convolutional feature hierachies for visual recognition. In

Advances in Neural Information Processing Systems (NIPS 2010), volume 23.

Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., and Cun,

Y. L. (2010c). Learning convolutional feature hierarchies for visual recognition.

In Advances in neural information processing systems, pages 1090–1098.

Kim, T. and Bengio, Y. (2016). Deep directed generative models with energy-based

probability estimation. arXiv preprint arXiv:1606.03439.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-

supervised learning with deep generative models. In Advances in neural informa-

tion processing systems, pages 3581–3589.

Kingma, D. P., Salimans, T., and Welling, M. (2016). Improving Variational

Inference with Autoregressive Flow. arXiv:1606.04934.

115

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In

Proceedings of ICLR.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). Neural

relational inference for interacting systems. arXiv preprint arXiv:1802.04687.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A.,

and Fidler, S. (2015). Skip-thought vectors. In Advances in neural information

processing systems, pages 3294–3302.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105.

Kusner, M. and Hernandez-Lobato, J. M. (2016). GANs for Sequences of Discrete

Elements with the Gumbel-Softmax Distribution. arXiv:1611.04051.

Lamb, A. M., Goyal, A., Zhang, Y., Zhang, S., Courville, A. C., and Bengio, Y.

(2016). Professor forcing: A new algorithm for training recurrent networks. In

Advances In Neural Information Processing Systems, pages 4601–4609.

Lample, G., Ott, M., Conneau, A., Denoyer, L., and Ranzato, M. (2018).

Phrase-based & neural unsupervised machine translation. arXiv preprint

arXiv:1804.07755.

Lample, G., Zeghidour, N., Usuniera, N., Bordes, A., Denoyer, L., and Ranzato, M.

116

(2017). Fader networks: Manipulating images by sliding attributes. In Proceedings

of NIPS.

Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted

boltzmann machines. In Proceedings of the 25th international conference on

Machine learning, pages 536–543. ACM.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech,

and time series. The handbook of brain theory and neural networks, 3361(10):1995.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Chopra, S., and Hadsell, R. (2006). A tutorial on energy-based learning.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. (2014). Deeply-supervised

nets. arXiv preprint arXiv:1409.5185.

Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky, D. (2017). Adversarial

Learning for Neural Dialogue Generation. arXiv:1701.06547.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. Text

Summarization Branches Out.

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., and Shazeer, N.

(2018a). Generating wikipedia by summarizing long sequences. arXiv preprint

arXiv:1801.10198.

Liu, X., Duh, K., and Gao, J. (2018b). Stochastic answer networks for natural

language inference. arXiv preprint arXiv:1804.07888.

117

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes

in the wild. In Proceedings of the IEEE International Conference on Computer

Vision, pages 3730–3738.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C.

(2011). Learning word vectors for sentiment analysis. In Proceedings of the

49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies, pages 142–150, Portland, Oregon, USA. Association for

Computational Linguistics.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2017). The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables. In Proceedings of ICLR.

Makhzani, A. and Frey, B. (2013). K-sparse autoencoders. arXiv preprint

arXiv:1312.5663.

Makhzani, A. and Frey, B. (2017). PixelGAN Autoencoders. arXiv:1706.00531.

Makhzani, A. and Frey, B. J. (2015). Winner-take-all autoencoders. In Advances

in neural information processing systems, pages 2791–2799.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. (2015). Adversarial

Autoencoders. arXiv:1511.05644.

Marc’Aurelio Ranzato, C. P. and Chopra, S. (2007). Efficient learning of sparse

representations with an energy-based model.

Mathieu, M., Couprie, C., and LeCun, Y. (2015). Deep multi-scale video prediction

beyond mean square error. arXiv preprint arXiv:1511.05440.

118

Mescheder, L., Nowozin, S., and Geiger, A. (2017). Adversarial Variational

Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks.

arXiv:1701.04722.

Miao, Y. and Blunsom, P. (2016). Language as a latent variable: Discrete generative

models for sentence compression. arXiv preprint arXiv:1609.07317.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S. (2010).

Recurrent neural network based language model. In Eleventh annual conference

of the international speech communication association.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013a). Dis-

tributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems, pages 3111–3119.

Mikolov, T., tau Yih, S. W., and Zweig, G. (2013b). Linguistic Regularities in

Continuous Space Word Representations. In Proceedings of NAACL.

Miyato, T., Dai, A. M., and Goodfellow, I. (2016). Adversarial training methods

for semi-supervised text classification. arXiv preprint arXiv:1605.07725.

Ng, A. et al. (2013). Sparse autoencoder.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent

neural networks. arXiv preprint arXiv:1601.06759.

Paine, T. L., Khorrami, P., Han, W., and Huang, T. S. (2014). An analysis of unsu-

pervised pre-training in light of recent advances. arXiv preprint arXiv:1412.6597.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., and Ku, A. (2018).

Image transformer. arXiv preprint arXiv:1802.05751.

119

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), pages 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and

Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint

arXiv:1802.05365.

Pezeshki, M., Fan, L., Brakel, P., Courville, A., and Bengio, Y. (2015). Decon-

structing the ladder network architecture. arXiv preprint arXiv:1511.06430.

Press, O., Bar, A., Bogin, B., Berant, J., and Wolf, L. (2017). Language Gen-

eration with Recurrent Generative Adversarial Networks without Pre-training.

arXiv:1706.01399.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised Representation Learn-

ing with Deep Convolutional Generative Adversarial Networks. In Proceedings

of ICLR.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).

Language models are unsupervised multitask learners.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+

questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.

120

Ranzato, M., Boureau, Y., Chopra, S., and LeCun, Y. (2007a). A unified energy-

based framework for unsupervised learning. In Proc. Conference on AI and

Statistics (AI-Stats).

Ranzato, M., Huang, F. J., Boureau, Y.-L., and LeCun, Y. (2007b). Unsupervised

learning of invariant feature hierarchies with applications to object recognition.

In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference

on, pages 1–8. IEEE.

Ranzato, M. and LeCun, Y. (2007). A sparse and locally shift invariant feature

extractor applied to document images. In Document Analysis and Recognition,

2007. ICDAR 2007. Ninth International Conference on, volume 2, pages 1213–

1217. IEEE.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and Raiko, T. (2015). Semi-

supervised learning with ladder networks. In Advances in neural information

processing systems, pages 3546–3554.

Rennie, S. J., Marcheret, E., Mroueh, Y., Ross, J., and Goel, V. (2017). Self-critical

sequence training for image captioning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 7008–7024.

Rezende, D. J. and Mohamed, S. (2015). Variational Inference with Normalizing

Flows. In Proceedings of ICML.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropagation

and Approximate Inference in Deep Generative Models. In Proceedings of ICML.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011a). Contractive

auto-encoders: Explicit invariance during feature extraction. In Proceedings

121

of the 28th International Conference on Machine Learning (ICML-11), pages

833–840.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011b). Contractive

Auto-Encoders: Explicit Invariance During Feature Extraction. In Proceedings

of ICML.

Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for

abstractive sentence summarization. arXiv preprint arXiv:1509.00685.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).

ImageNet Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV), 115(3):211–252.

Sai Rajeswar, Sandeep Subramanian, F. D. C. P. A. C. (2017). Adversarial

Generation of Natural Language. arXiv:1705.10929.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.

(2016). Improved techniques for training gans. arXiv preprint arXiv:1606.03498.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. (2017). Pixelcnn++:

Improving the pixelcnn with discretized logistic mixture likelihood and other

modifications. arXiv preprint arXiv:1701.05517.

Semeniuta, S., Severyn, A., and Barth, E. (2017). A Hybrid Convolutional Varia-

tional Autoencoder for Text Generation. arXiv:1702.02390.

Shen, T., Lei, T., Barzilay, R., and Jaakkola, T. (2017). Style Transfer from

Non-Parallel Text by Cross-Alignment. arXiv:1705.09655.

122

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of

go without human knowledge. Nature, 550(7676):354.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving

for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Training very deep

networks. arXiv preprint arXiv:1507.06228.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning

with neural networks. In Advances in neural information processing systems,

pages 3104–3112.

Swersky, K., Snoek, J., and Adams, R. P. (2013). Multi-task bayesian optimization.

In Advances in Neural Information Processing Systems, pages 2004–2012.

Theis, L., van den Oord, A., and Bethge, M. (2016). A note on the evaluation of

generative models. In Proceedings of ICLR.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2017). Wasserstein

auto-encoders. arXiv preprint arXiv:1711.01558.

Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million tiny images: A

large data set for nonparametric object and scene recognition. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 30(11):1958–1970.

Tran, D., Ranganath, R., and Blei, D. M. (2017). Deep and Hierarchical Implicit

Models. arXiv:1702.08896.

123

Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.

(2016). Conditional image generation with pixelcnn decoders. In Advances in

neural information processing systems, pages 4790–4798.

Vapnik, V. N. and Vapnik, V. (1998). Statistical learning theory, volume 1. Wiley

New York.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in

neural information processing systems, pages 5998–6008.

Villani, C. (2008). Optimal transport: old and new, volume 338. Springer Science

& Business Media.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting

and Composing Robust Features with Denoising Autoencoders. In Proceedings

of ICML.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010).

Stacked denoising autoencoders: Learning useful representations in a deep net-

work with a local denoising criterion. Journal of machine learning research,

11(Dec):3371–3408.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016).

Matching networks for one shot learning. arXiv preprint arXiv:1606.04080.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Advances

in Neural Information Processing Systems, pages 2692–2700.

124

Wang, X., Girshick, R., Gupta, A., and He, K. (2017). Non-local neural networks.

arXiv preprint arXiv:1711.07971.

Wang, Y.-S. and Lee, H.-Y. (2018). Learning to encode text as human-readable sum-

maries using generative adversarial networks. arXiv preprint arXiv:1810.02851.

Williams, A., Nangia, N., and Bowman, S. R. (2017). A broad-coverage chal-

lenge corpus for sentence understanding through inference. arXiv preprint

arXiv:1704.05426.

Williams, R. J. (1992a). Simple Statistical Gradient-following Algorithms for

Connectionist Reinforcement Learning. Machine Learning, 8.

Williams, R. J. (1992b). Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8(3-4):229–256.

Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W. (2017a). Breaking

the softmax bottleneck: a high-rank rnn language model. arXiv preprint

arXiv:1711.03953.

Yang, Z., Dhingra, B., He, K., Cohen, W. W., Salakhutdinov, R., LeCun, Y.,

et al. (2018). Glomo: Unsupervisedly learned relational graphs as transferable

representations. arXiv preprint arXiv:1806.05662.

Yang, Z., Hu, Z., Salakhutdinov, R., and Berg-Kirkpatrick, T. (2017b). Improved

Variational Autoencoders for Text Modeling using Dilated Convolutions. In

Proceedings of ICML.

Yu, A. W., Dohan, D., Luong, M.-T., Zhao, R., Chen, K., Norouzi, M., and Le,

125

Q. V. (2018). Qanet: Combining local convolution with global self-attention for

reading comprehension. arXiv preprint arXiv:1804.09541.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. (2015). Lsun:

Construction of a large-scale image dataset using deep learning with humans in

the loop. arXiv preprint arXiv:1506.03365.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). SeqGAN: Sequence Generative

Adversarial Nets with Policy Gradient. In Proceedings of AAAI.

Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010). Deconvolutional

networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, pages 2528–2535. IEEE.

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2018). Self-attention

generative adversarial networks. arXiv preprint arXiv:1805.08318.

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks

for text classification. In Advances in neural information processing systems,

pages 649–657.

Zhao, J., Kim, Y., Zhang, K., Rush, A., and LeCun, Y. (2018). Adversarially

regularized autoencoders. In International Conference on Machine Learning,

pages 5897–5906.

Zhao, J., Mathieu, M., Goroshin, R., and Lecun, Y. (2015). Stacked what-where

auto-encoders. arXiv preprint arXiv:1506.02351.

Zhao, J. J., Mathieu, M., and LeCun, Y. (2016). Energy-based generative adversarial

network. CoRR, abs/1609.03126.

126

	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Energy-based learning
	Strategies to build a meaningful energy function
	Autoencoders as energy-based models
	Generative models
	Transfer learning
	Thesis Outline

	Related Work
	Regularized autoencoders
	Semi-supervised learning
	Transfer learning

	Energy-based Generative Adversarial Networks
	Motivation
	Introduction
	The EBGAN Model
	Related work
	Experiments
	Outlook
	Technical points of section 3.3.2
	Setting a good margin value

	Adversarially Regularized Autoencoder
	Introduction
	Related Work
	Background
	Model: Adversarially Regularized Autoencoder
	Methods and Architectures
	Experiments
	 Sample Generations
	Vector Arithmetic
	Optimality Property

	Unsupervised Text Summarization by Using Language Models as Regularizers
	Introduction
	Discrete sequence autoencoders
	Unsupervised text summarization
	Language model regularization
	Results
	Conclusion
	Technicality points

	Stacked What-Where Autoencoders
	Motivation: the ``what'' and ``where''
	SWWAE model architecture
	Experiments
	Discussions

	Unsupervised Learning of Transferable Relational Graphs
	Motivation
	Introduction
	Unsupervised Relational Graph Learning
	Experiments
	Discussion

	Conclusions and Future Work
	Bibliography

