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Abstract

General equilibrium theory, initiated by Walras over a century ago [Wal74], explains the

interaction between supply and demand in an economy. In this dissertation, we look at

Fisher Markets, which are a particular case of the general equilibrium theory. We consider

two issues in Fisher Markets: strategic behavior and dynamics.

Strategic behavior is usually considered in a game, such as auction, in which case, par-

ticipants in the game may choose not to report their real preferences in order to improve

their payoff. In general equilibrium theory, buyers are usually considered to be non-strategic:

given the prices, buyers will maximize their true utility by properly distributing their money

on different goods. In this case, the Market equilibrium should be efficient. However, the

prices in the market equilibrium are influenced by the demands of the buyers. In principle,

buyers can affect prices by changing their demands, which may improve buyers’ final utili-

ties. This may result in inefficient outcomes. In this thesis, we investigate this possibility in

large Fisher markets. We show that the market will approach full efficiency as the market

becomes larger and larger. We also show a similar result for the Walrasian mechanism in

large settings.

We also study two dynamics in Fisher Markets in this dissertation:

• Proportional response is a buyer-oriented dynamics. Each round, buyers update their

spending in proportion to the utilities they received in the last round, where prices

are the sum of the spendings. This dissertation establishes new convergence results

for two generalizations of proportional response in Fisher markets with buyers having

the constant elasticity of substitution (CES) utility functions. The starting points

are respectively a new convex and a new convex-concave formulation of such markets.

The two generalizations of proportional response correspond to suitable mirror descent

algorithms applied to these formulations. Among other results, we analyze a damped

generalized proportional response and show a linear rate of convergence in a Fisher
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market with buyers whose utility functions cover the full spectrum of CES utilities aside

from the extremes of linear and Leontief utilities; when these utilities are included, we

obtain an empirical O(1/T ) rate of convergence.

• Tatonnement is considered the most natural dynamics in Fisher Markets: the price

of a good is raised if the demand exceeds the supply of the good, and decreased if it

is too small. Implicitly, buyers’ demands are assumed to be a best-response to the

current prices. This dissertation addresses a lack of robustness in existing convergence

results for discrete forms of tatonnement, including the fact that it need not converge

when buyers have linear utility functions. This dissertation shows that for Fisher

markets with buyers having CES utility functions, including linear utility functions,

tatonnement will converge quickly to an approximate equilibrium (i.e., at a linear

rate), modulo a suitable large market assumption. The quality of the approximation

is a function of the parameters of the large market assumption.
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Introduction

In economics, General equilibrium theory, initiated by Walras over a century ago [Wal74],

is intended to model how prices ensure supply and demand are in balance in an economy.

Such balancing prices are called equilibrium prices. A complete theory would account for

strategic behavior on the part of participants, and allow for dynamics: price adjustments

when the economy is out of equilibrium, perhaps due to changing conditions.

In this dissertation, I investigate both these issues in the Fisher market setting, one special

case of the general equilibrium theory.

Strategic Issues

General equilibrium theory shows that markets have efficient equilibria, but this depends

on agents being non-strategic, i.e. that they declare their true demands when offered goods

at particular prices, or in other words, that they are price-takers. An important question is

how much the equilibria degrade in the face of strategic behavior, i.e. what is the Price of

Anarchy (PoA) of the market viewed as a mechanism?

It is generally understood that as markets become larger, the incentive to report strate-

gically and the effects of strategic behavior become increasingly negligible, when largeness

is defined appropriately. For the most part, the existing work provides in the limit results,

and hence there is no quantification in terms of the size of the market. In contrast, in this

dissertation, we showed that in large Fisher markets, the Nash Equilibrium (NE), which in-

cludes pure NE, mixed NE, and Bayes NE can be almost efficient in the following sense:, the

Price of Anarchy is exactly bounded by e raised to the maximum proportion of the money

held by single person.

In this dissertation, we have also analyzed the Price of Anarchy of a Walrasian auction.

In a Walrasian auction, in contrast to a Fisher market, indivisible items are sold to buyers.
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We have shown that the PoA tends to 1 at a rate that is a function of the market size.

In contrast, in earlier work, Babaioff et al. [BLNPL14] showed that in general (non-large)

markets the PoA is at least 2.

Market Dyanmics

A major goal in Algorithmic Game Theory is to justify equilibrium concepts from an

algorithmic and complexity perspective. One appealing approach is to identify natural dis-

tributed algorithms that converge quickly to an equilibrium. Two natural dynamics have

been studied in the context of Fisher markets.

Tatonnement The first, which is perhaps the most intuitive candidate for a natural al-

gorithm, is tatonnement, in which the price of a good is raised if the demand exceeds the

supply of the good, and decreased if it is too small. Implicitly, buyers’ demands are assumed

to be a best-response to the current prices. This highly intuitive algorithm was proposed by

Walras well over a century ago [Wal74]. Past work [CF08, CCR12, CCD19] show that for

almost all utility functions in the CES domain, tatonnement converges quickly to a market

equilibrium. However, it is well known that tatonnement need not converge when buyer util-

ities are linear. In addition, and unsurprisingly, as one approaches linear settings, the step

size employed by the tatonnement algorithm needs to be increasingly small, which leads to a

slower rate of convergence, and indicates a lack of robustness in the tatonnement procedure.

In this dissertation, we show that in suitable large Fisher markets, this lack of robustness

disappears, so long as approximate rather than exact convergence suffices. Furthermore, we

obtain fast, i.e. linear, convergence to an approximate equilibrium.

Proportional Response Another natural dynamics in Fisher markets is Proportional

Response. In contrast to tatonnement, it is a buyer-oriented update, originally analyzed in

an effort to explain the behavior of peer-to-peer networks [LLSB08, WZ07]. Some years ago,

2



Birnbaum et al. [BDX11] showed that the proportional response with linear utility buyers

is equivalent to mirror descent on Shmyrev’s convex program [Shm09]. In this dissertation,

we first generalize Shmyrev’s convex program to a new convex and a new convex-concave

formulation to allow buyers with any CES utility function. We show that in the substitutes

CES domain, Proportional Response is equivalent to mirror descent on the new convex

potential function, and we also extend proportional response to the complementary domain.

Several of our new results are a consequence of the notion of strong Bregman convexity and

a new notion of strong Bregman convex-concave functions, and associated linear rates of

convergence.
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Chapter 1

Fisher Market Model

In this dissertation, we mainly focus on the Fisher Market, one special case of the general

equilibrium theory. In a Fisher market there are buyers who start with money which they

have no desire to keep, and sellers who have goods to sell, which they wish to sell in their

entirety for money. This is a modest generalization of the notion of Competitive Equilibrium

from Equal Incomes (CEEI) [HZ79, Var74]. In prior work on computing equilibria for these

markets, there has been a particular focus on Eisenberg-Gale markets, a term coined by Jain

and Vazirani, and their generalizations [JV07]; Eisenberg-Gale markets are Fisher markets

in which demands are determined by homothetic utility functions. The latter markets have

been seen to capture the notion of proportional fairness, as defined in the networking com-

munity [Kel97], which is also equivalent to the optimum Nash Social Welfare [NJ50, KN79].

Note that in the rest of this disseration we use bold symbols, e.g., p,x, e, to denote

vectors.

Fisher Market In a Fisher market, there are n perfectly divisible goods and m buyers.

Without loss of generality, the supply of each good j is normalized to be one unit. Each

buyer i has a utility function ui : Rn
+ → R, and a budget of size ei. At any given price vector

p ∈ Rn
+, each buyer purchases a maximum utility affordable collection of goods. More
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precisely, xi ∈ Rn
+ is said to be a demand of buyer i if xi ∈ arg maxx′: x′·p6ei ui(x

′).

A price vector p∗ ∈ Rn
+ is called a market equilibrium if at p∗, there exists a demand xi

of each buyer i such that

p∗j > 0 ⇒
m∑
i=1

xij = 1 and p∗j = 0 ⇒
m∑
i=1

xij 6 1.

The collection of xi is said to be an equilibrium allocation to the buyers.

CES utilities In this thesis, each buyer i’s utility function is of the form

ui(xi) =

(
n∑
j=1

aij · (xij)ρi
)1/ρi

,

for some −∞ 6 ρi 6 1. ui(xi) is called a Constant Elasticity of Substitution (CES) utility

function. They are a class of utility functions often used in economic analysis.

• The limit as ρi → −∞ is called a Leontief utility1:

ui(xi) = min
j

xij
cij

;

• the limit as ρi → 0 is called a Cobb-Douglas utility:

ui(xi) =
∏
j

xij
aij , with

∑
j aij = 1;

• and the case ρi = is called a linear utility:

ui(xi) =
∑
j

aijxij.

1Here, the utility function ui(x) = minj
xij
cij

can be seen as the limit of ui(x) =
(∑

j

(
xij
cij

)ρi ) 1
ρi

as ρi

tends to −∞.
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The utilities with ρi > 0 capture goods that are substitutes, and those with ρi 6 0 goods

that are complements. It is sometimes convenient to write

ci =
ρi

ρi − 1
. (1.1)

Notation Buyer i’s spending on good j, denoted by bij, is given by bij = xij · pj. Also,

zj =
∑

i xij−1 denotes the excess demand for good j. We sometimes index prices, spending,

and demands by t to indicate the relevant value at time t. Finally, we use a superscript of ∗

to indicate an equilibrium value.

As mentioned before, Fisher markets are actually a special case of Exchange economies.

(To see this, view the money as another good, and the supply of the goods as being initially

owned by another agent, who desires only money.)

In general computing equilibria is computationally hard even for Fisher markets [CT09,

VY11]. One feasible class is the class of Eisenberg-Gale markets, markets for which the

equilibrium computation becomes the solution to a convex program. This class was named

in [JV07]; the program was previously identified in [EG59].

Definition 1.0.1. Eisenberg-Gale markets are those economies for which the equilibria are

exactly the solutions to the following convex program, called the Eisenberg-Gale convex pro-

gram:

max
x

n∑
i=1

ei · log(ui(xi1, xi2, · · ·xim)) (1.2)

s.t. ∀j :
∑
i

xij ≤ 1 and ∀i, j : xij ≥ 0.

Note that Fisher markets with CES utilities are special cases of Eisenberg-Gale markets.
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Chapter 2

Strategic Issues

2.1 Preliminary

When is there no gain to participants in a game from strategizing? One answer applies

when players in a game have no prior knowledge; then a game that is strategy proof ensures

that truthful actions are a best choice for each player. However, in many settings there is no

strategy proof mechanism. Also, even if there is a strategy proof mechanism, with knowledge

in hand, other equilibria are possible, for example, the “bullying” Nash Equilibrium as

illustrated by the following example: there is one item for sale using a second price auction,

the low-value bidder bids an amount at least equal to the value of the high-value bidder,

who bids zero; the resulting equilibrium achieves arbitrarily small social welfare compared

to the optimal outcome.

To make the notion of gain meaningful one needs to specify what the game or mechanism

is seeking to optimize. Social welfare and revenue are common targets. For the above

example, the social welfare achieved in the bullying equilibria can be arbitrarily far from the

optimum. However, for many classes of games, over the past fifteen years, bounds on the

gains from strategizing, a.k.a. the Price of Anarchy (PoA), have been obtained, with much

progress coming thanks to the invention of the smoothness methodology [Rou15, Rou12,
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ST13, FIL+16]; many of the resulting bounds have been shown to be tight. Often these

bounds are modest constants, such as 4
3

[RT02] or 2 [Syr12], etc., but rarely are there

provably no losses from strategizing, i.e. a PoA of 1.

This dissertation investigates when bounds close to 1 might be possible. In particular, we

study both large Fisher markets and large Walrasian auctions viewed as mechanisms.

Fisher Markets As mentioned before, a Fisher market is a special case of an exchange

economy in which the agents are either buyers or sellers. Each buyer is endowed with money

but has utility only for non-money goods; each seller is endowed with non-money goods,

WLOG with a single distinct good, and has utility only for money. Fisher markets capture

settings in which buyers want to spend all their money. In particular, they generalize the

competitive equilibrium from equal incomes (CEEI) [HZ79, Var74], in that they allow buyers

to have non-equal incomes. While at first sight this might appear rather limiting, we note

that much real-world budgeting in large organizations treats budgets as money to be spent

in full, with the consequence that unspent money often has no utility to those making the

spending decisions. The budgets in GoogleAds and other online platforms can also be viewed

as money that is intended to be spent in full.

We consider the outcomes when buyers bid strategically in terms of how they declare

their utility functions. We show that the PoA tends to 1 as the setting size increases. The

only assumptions are some limitations on the buyers’ utility functions: they need to satisfy

the gross substitutes property and to be monotone and homogeneous of degree 1.

This result is also obtained via a smoothness-type bound and hence extends to bidders

playing no-regret strategies, assuming that the ensuing prices are always bounded away from

zero. We ensure this by imposing reserve prices.

Walrasian Auctions Walrasian Auctions are used in settings where there are indivisible

goods for sale and agents, called bidders, who want to buy these goods. Each agent has
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varying preferences for different subsets of the goods, preferences that are represented by

valuation functions. The goal of the auction is to identify equilibrium prices; these are prices

at which all the goods sell, and each bidder receives a favorite (utility maximizing) collection

of goods, where each bidder’s utility is quasi-linear: the difference of its valuation for the

goods and their cost at the given prices. Such prices, along with an associated allocation of

goods, are said to form a Walrasian equilibrium.

Walrasian equilibria for indivisible goods are known to exist when each bidder’s demand

satisfies the gross substitutes property [GS99], but this is the only substantial class of settings

in which they are known to exist.

[BLNPL14] analyzed the PoA of the games induced by Walrasian mechanisms, i.e. the

prices were computed by a method, such as an English or Dutch auction, that yields equilib-

rium prices when these exist. Note that the mechanism can be applied even when Walrasian

equilibria do not exist, though the resulting outcome will not be a Walrasian equilibrium.

But even when Walrasian equilibria exist, because bidders may strategize, in general the out-

come will be a Nash equilibrium rather than a Walrasian one. Among other results, Babaioff

et al. showed an upper bound of 4 on the PoA for any Walrasian mechanism when the bids

and valuations satisfied the gross substitutes property and overbidding was not allowed.1

In addition, they obtained lower bounds on the PoA that were greater than 1, even when

overbidding was not allowed, which excludes bullying equilibria; e.g. the English auction has

a PoA of at least 2.

Babaioff et al. also noted that the prices computed by double auctions, widely used in

financial settings, are essentially computing a price that clears the market and maximizes

trade; one example they mention is the computation of the opening prices on the New York

Stock Exchange, and another is the adjustment of prices of copper and gold in the London

market.

By a large auction, we intend an auction in which there are many copies of each good,

1They also proved a version of this bound which was parameterized w.r.t. the amount of overbidding.
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and in addition the demand set of each bidder is small. The intuition is that then each

bidder will have a small influence and hence strategic behavior will have only a small effect

on outcomes. In fact, this need not be so. For example, the bullying equilibrium persists: it

suffices to increase the numbers of items and bidders for each type to n, and have the buyers

of each type follow the same strategy as before.

What allows this bullying behavior to be effective is the precise match between the number

of items and the number of low-value bidders. The need for this exact match also arises in the

lower-bound examples in [BLNPL14] (as with the bullying equilibrium, it suffices to pump

up the examples by a factor of n). To remove these equilibria that demonstrate PoA values

larger than 1, it suffices to introduce some uncertainty regarding the numbers of items and/or

bidders. Indeed, in a large setting it would seem unlikely that such numbers would be known

precisely. We will create this uncertainty by using distributions to determine the number

of copies of each good. This technique originates with [Swi01]. In contrast, prior work on

non-large markets eliminated the potentially unbounded PoA of the bullying equilibrium by

assuming bounds on the possible overbidding [BR11, CKS16, FKL12, ST13].

Our main result on large Walrasian auctions is that the PoA of the Walrasian mechanism

tends to 1 as the market size grows. This result assumes that expected valuations are

bounded regardless of the size of the market. We specify this more precisely when we state

our results in Section 2.5.2. This bound applies to both Nash and Bayes-Nash equilibria;

as it is proved by means of a smoothness argument, it extends to mixed Nash and coarse

correlated equilibria, and outcomes of no-regret learning.

2.1.1 Related Work

The results on Walrasian auctions generalize earlier work of [Swi01] who showed analogous

results for auctions of multiple copies of a single good. In contrast, we consider auctions in

which there are multiple goods. Swinkels analyzed discriminatory and non-discriminatory
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mechanisms. For the latter, he showed that any mechanism that used a combination of the

k-th and (k + 1)-st prices when there were k copies of the good on sale achieves a PoA

that tends to 1 with the auction size2. Our result also weakens some of the assumptions in

Swinkels work.

The second closely related work on Walrasian auctions is due to [FIL+16]. They also

analyze several large settings. Among other results, they analyze auctions in which the PoA

tends to 1 as their size grows to∞. Their results are derived from a new type of smoothness

argument. Depending on the result, they require either uncertainty in the number of goods

or the number of bidders. In contrast, our main result uses a previously known smoothness

technique plus uncertainty in the number of goods. We contrast the techniques in more

detail after we present our result in Section 2.5.3. They also show that for traffic routing

problems, the PoA of the atomic case tends to that of the non-atomic case as the number of

units of traffic grows to ∞.

The idea of uncertainty in the number of agents or items first arose in the Economics

literature. [Mye00] used it in the context of voting games, and [Swi01] in the context of

auctions. Later, uncertainty in the number of agents was used with the Strategy Proof in

the Large concept [AB12].

[HMR+16] considered the effects of non-unique demands on the social welfare, assuming

allocations were based on demands. Given a genericity assumption, they showed that in

markets with buyers having matroid based valuations the inefficiency was proportional to

the number of distinct goods, and so if this was a constant, the efficiency would tend to 1

as the market size grows.

The study of the behavior of large exchange economies was first considered by [RP76],

which they modeled as a replica economy, the n-fold duplication of a base economy, showing

that individual utility gains from strategizing tend to zero as the economy grows. Subse-

quently, [JM97] showed that with some regularity assumptions, the equilibrium allocations

2Swinkels did not use the then recently formulated PoA terminology to state his result.
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converge to the competitive equilibrium. In contrast, our result proves bounds in terms of

a parameter characterizing the size of the economy. More recently, [ANS07] studied the

efficiency of exchange economies in the presence of strategic agents; however, their notion

of efficiency was weaker than the PoA. They termed an outcome µ-efficient if there was no

way of improving everyone’s outcome in terms of utility by an additive factor of µ, and

showed that with high probability (i.e. 1 − µ) a µ-efficient outcome would occur when the

size of the economy was large enough, so long as each agent was small, agents were truthful

with non-zero probability, and some additional more technical conditions. In contrast, the

PoA considers the ratio between the social welfare at the competitive equilibrium and the

achieved social welfare, namely a ratio of the sum of everyone’s outcomes. [AB12] showed

that the Strategy Proof in the Large methodology could be applied to exchange economies for

agents that are limited to having a finite type space, independent of the size of the economy;

in contrast, our results do not require a restriction of this sort. Finally, we note that our

bounds apply to classes of Fisher markets, whereas the earlier literature applies to classes

of exchange economies, which is a significantly more general setting; nonetheless, there are

settings our work handles which are not covered by these prior works.3

[BCD+14] analyzed the PoA of strategizing in Fisher markets. The PoA compared the

social welfare of the worst resulting Nash Equilibrium to the optimal, i.e. welfare maximizing

assignment, under a suitable normalization of utilities. Among other results, they showed

lower bounds of Ω(
√
n) on the PoA when there are n buyers with linear utilities. However, we

view the comparison point of an optimal assignment to be too demanding in this setting, as

it may not be an assignment that could arise based on a pricing of the goods. In our results

we will be comparing the strategic outcomes to those that occur under truthful bidding.

Another approach is to bound the gains to individual agents, called the incentive ratio;

[CDZ11, CDZZ12] showed these values were bounded by small constants in Fisher market

settings.

3For example, buyers with linear utility functions but an infinite bidding space.
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There has been much other work on large settings and their behavior. We mention only

a sampling. [Kal04] studied the notion of extensive robustness for large games, and [KS13]

investigated large repeated games using the notion of compressed equilibria. [PRU14] studied

repeated games and the use of differential privacy as a measure of largeness. In a different

direction, [GR08] investigated fault tolerance in large games for λ-continuous and anonymous

games.

2.2 Large Fisher Markets and Regret Minimization

2.2.1 Definitions for Large Fisher Markets

In a Fisher market game, each buyer declares a bid function si; however, her endowment

is public knowledge. The mechanism computes prices and allocations as if the bids were the

valuations. The same restrictions will apply to the bid functions and the utilities. The goal

of each buyer is to maximize her utility.

Notational remark The demands are induced by the bids, thus we could write ui(xi(si, s−i)),

but for brevity we will write this as ui(si, s−i) instead. Also, it will be convenient to write

vi for the truthful bid of ui, yielding the notation ui(vi, v−i).

Definition 2.2.1. The largeness L of a Fisher market is defined to be the ratio L =
∑
i ei

maxi ei
.

It is natural to measure the efficiency of outcomes in the Fisher market game using the

objective function (1.2), or rather its exponentiated form. More specifically, we compare

the geometric means of the buyer’s utilities weighted by their budgets at the worst Nash

Equilibrium (with bids s) and at the market equilibrium (with bids v), and we call it the

Geometric Price of Anarchy (GPoA):

GPoA(M) = max
NE with bids s

(∏
i

(ui(vi, v−i)
ui(si, s−i)

)ei) 1∑
i ei

.

13



Note that in the settings we consider the prices at a market equilibrium are unique. We

will also use this product to upper bound a Price of Anarchy notion for a market M , which

compares the sum of the utilities at the worst Nash Equilibrium to the sum at the market

equilibrium.

PoA(M) = max
NE with bids s

∑
i ui(vi, v−i)∑
i ui(si, s−i)

.

For the latter measure to be meaningful, we need to use a common scale for the different

buyers’ utilities. To this end, we define consistent scaling.

Definition 2.2.2. The bidders’ utilities are consistently scaled if there is a parameter t > 0

such that for every bidder i, ui(vi, v−i) = tei.
4 That is, bidder i’s utility function is scaled

to give it utility tei at the market equilibrium, where ei is its budget.

Finally, we will be considering utility functions that are monotone, homogeneous of degree

one (defined below), continuous, concave, and that induce demands that satisfy the gross

substitutes condition (see Definition 2.2.4).

Definition 2.2.3. Utility function u(x) is homogeneous of degree 1 if for every α > 0,

u(αx) = α · u(x).

Fact 2.2.1. The utility functions in Eisenberg Gale programs are homogeneous of degree 1,

continuous and concave.

Definition 2.2.4. A valuation or bid function satisfies the gross substitutes property if in-

creasing the price for one good only increases the demand for other goods. Formally, for each

utility maximizing allocation x at prices p = (pj, p−j), at prices (qj, p−j) such that qj > pj,

there is a utility maximizing allocation y with y−j � x−j (i.e. yk > xk for k 6= j). This

definition applies to the Walrasian Equilibrium setting also.

4WLOG, we may assume that t = 1.
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2.2.2 Regret Minimization

In a regret minimization setting, a single player is playing a repeated game. At each

round, the player can choose to play one of K strategies, which are the same from round to

round. The outcome of the round is a payoff in the range [−χ, χ].

Definition 2.2.5. An algorithm that chooses the strategy to play is regret minimizing if

the outcome of the algorithm, in expectation, is almost as good as the outcome from always

playing a single strategy regardless of any one else’s actions. Formally, there is a function

Φ(|K|, T ) = o(T ) such that, for any st−i, for any fixed strategy si ∈ K,

T∑
t=1

ui(s
t
i, s

t
−i)−

T∑
t=1

ui(si, s
t
−i) ≥ −Φ(|K|, T ) · χ,

where sti is the strategy bidder i uses at time t.

Theorem 2.2.2. Regret minimizing algorithms exist. If, at the end of each round, the player

learns the payoff for all K strategies, Φ(|K|, T ) = O(
√
T ) can be achieved, and if she learns

just the payoff for her strategy, Φ(|K|, T ) = O(T
2
3 ) can be achieved.

Note that in large auctions and markets, it is the latter result that seems more applicable.

As shown in [Rou15], if all players play regret minimizing strategies, the resulting outcome

observes the PoA bound obtained via a smoothness argument up to the regret minimization

error.

2.3 Results

One issue that deserves some consideration when specifying a large setting, and placing

some inevitable restrictions on the possible settings, is to determine which parameters should

remain bounded as the setting size grows. So as to be able to state asymptotic results, we

give results in terms of a parameter L which is allowed to grow arbitrarily large. But in
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fact all settings are finite, so really when stating that some parameters are bounded, we are

making statements about the relative sizes of different parameters.

One common assumption is that the type space is finite. However, it is not clear such an

assumption is desirable in the settings we consider, for it would be asserting that the number

of possible valuations and bidding strategies is much smaller than the number of bidders.

Another standard assumption is that the ratio of the largest to smallest non-zero valuations

are bounded. This, for example, would preclude valuations being distributed according to

a power law distribution (or any other unbounded distribution), which again seems unduly

restrictive if it can be avoided.

Theorem 2.3.1. Let M be a large Fisher market with largeness L in which the utility and

bid functions are homogeneous of degree 1, concave, continuous, monotone and satisfy the

gross substitutes property. If its demands as a function of the prices are unique at any p > 0,

or if its utility functions are linear, then its Price of Anarchy and its Geometric Price of

Anarchy are bounded by

PoA(M) 6 em/L,GPoA(M) 6 em/L,

where m is the number of distinct goods in the market.

Perhaps surprisingly, there is no need for uncertainty in this setting. Note that these

assumptions on the utility functions are satisfied by Cobb-Douglas utilities, and by those

CES and Nested CES utilities that meet the weak gross substitutes condition. We note

that our results do not extend to Fisher markets with Leontief utilities. For Theorem 4

in [BCD+14] can be readily adapted to show that for some Fisher markets with Leontief

utility functions, when L is large, the PoA is at least m, the number of goods.

Theorem 2.3.2. Suppose all players use regret minimization algorithms, their utility func-

tions and bid functions are homogeneous of degree 1, concave, continuous, monotone, and
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satisfy the gross substitutes property. Let λ > 4 be a parameter. If its demands as a function

of the prices are unique at any p > 0, or if its utility functions are linear, then in a large

Fisher Market with largeness L and with reserve prices r such that for any j, 1
λ
≤ rj

pj(v)
≤ 1

4
,

1

T

T∑
t=1

∑
i

ui(s
t
i, s

t
−i) ≥ (e−

2m
L − maxiΦ(|Ki|, T )

T
λ)
∑
i

ui(vi, v−i),

where Ki is the set of strategies used by player i and vi ∈ Ki.

2.4 PoA for Large Fisher Markets

Theorem 2.3.1, which states that the PoA of an m-good market of largeness L is at most

em/L, will follow from the next lemma.

Lemma 2.4.1. For any bidding profile s and any value profile v which are homogeneous of

degree 1, concave, continuous, monotone and which satisfy the gross substitutes property,

n∑
i=1

ei · log(ui(vi, s−i)) ≥
n∑
i=1

ei · log(ui(vi, v−i))−m ·max
i
ei.

Proof of Theorem 2.3.1: We prove our results for GPoA and PoA separately. Let s be

a Nash Equilibrium.

• PoA bound On exponentiating the expressions on both sides in the statement of

Lemma 2.4.1, we obtain

∏
i

ui(vi, s−i)
ei ≥ 1

em·maxi ei

∏
i

ui(vi, v−i)
ei .

Therefore,
∏

i

(
ui(vi,s−i)
ui(vi,v−i)

)ei
≥ 1

em·maxi ei
. Using the weighted GM-AM inequality, we
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obtain

∑
i ei

ui(vi,s−i)
ui(vi,v−i)∑
i ei

≥

(∏
i

(ui(vi, s−i)
ui(vi, v−i)

)ei) 1∑
i ei

≥

(
1

emmaxi ei

) 1∑
i ei

= e
−mmaxi ei∑

i ei .

Since for all i, ui(vi, v−i) = tei,
∑

i ui(vi, s−i) ≥ e
−mmaxi ei∑

i ei

∑
i ui(vi, v−i). As Roughgar-

den encapsulated in the smooth technique, bounds of this sort yield PoA bounds for

Nash Equilibria and more generally [Rou15, Rou12, ST13, FIL+16]. We obtain:

Es

[∑
i

ui(si, s−i)

]
≥ Es

[∑
i

ui(vi, s−i)

]
≥ e

−mmaxi ei∑
i ei E

[∑
i

ui(vi, v−i)

]
;

the first inequality follows because (si, s−i) is a Nash Equilibrium.

• GPoA bound According to Lemma 2.4.1,

∏
i

ui(vi, s−i)
ei ≥ 1

em·maxi ei

∏
i

ui(vi, v−i)
ei .

Therefore,

∏
i

Es[ui(vi, s−i)]
ei ≥

∏
i

eEs[log ui(vi,s−i)]ei = e
∑
i Es[log ui(vi,s−i)]ei

= eEs[
∑
i log(ui(vi,s−i)ei )] = eEs[log(

∏
i ui(vi,s−i)

ei )]

≥ eEs[log 1
em·maxi ei

∏
i ui(vi,v−i)

ei ] =
1

em·maxi ei

∏
i

ui(vi, v−i)
ei .

By applying the Nash equilibrium condition, Es[ui(si, s−i)] ≥ Es[ui(vi, s−i)], the GPoA

bound follows.

To prove Lemma 2.4.1, we need the following claim; intuitively, it states that a single

bidder can cause the prices to increase by only a small amount.
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Lemma 2.4.2. p(vi, s−i) ≤ p(si, s−i) + maxi ei · 1.

Proof of Lemma 2.4.1: Consider the dual of the Eisenberg-Gale convex program:

min
p

max
x

n∑
i=1

ei · log(ui(xi1, xi2, · · · , xim))−
∑
i,j

pjxij +
∑
j

pj

s.t. ∀j : pj > 0 and ∀i, j : xij ≥ 0.

Let p denote an arbitrary collection of prices, and p∗ denote the prices with truthful bids.

Since p∗ minimizes the dual program,

max
x≥0

n∑
i=1

ei · log(ui(xi1, xi2, · · · , xim))−
∑
i,j

pjxij +
∑
j

pj (2.1)

≥ max
x≥0

n∑
i=1

ei · log(ui(xi1, xi2, · · · , xim))−
∑
i,j

p∗jxij +
∑
j

p∗j .

Let x̃ij be an allocation over all goods j and bidders i at prices p that maximize (2.1). As

ui is homogeneous of degree 1, ui is differentiable in the direction xi. It follows that

lim
ε→0

[ei · log ui((1 + ε)x̃i)−
∑

j pj(1 + ε)x̃ij]− [ei · log ui(x̃i)−
∑

j pjx̃ij]

ε
= 0. (2.2)

The LHS of (2.2) equals ei −
∑

j pjx̃ij, implying that ei =
∑

j pjx̃ij. Therefore,

maxx:∀i
∑
xijpj=ei

∑n
i=1 ei · log(ui(xi1, xi2, · · ·xim)) +

∑
j pj

≥ maxx:∀i
∑
xijp∗j=ei

∑n
i=1 ei · log(ui(xi1, xi2, · · · xim)) +

∑
j p
∗
j . (2.3)

If all the prices stay the same or increase, a buyer’s optimal utility stays the same or
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decreases. Using the price upper bound from Lemma 2.4.2, it follows that

n∑
i=1

ei · log(ui(vi, s−i)) ≥
n∑
i=1

max
x:∀i

∑
xij(pj(si,s−i)+maxi′ ei′ )=ei

ei · log(ui(xi1, xi2, · · · , xim))

=
n∑
i=1

max
x:∀i

∑
xij(pj(si,s−i)+maxi′ ei′ )=ei

ei · log(ui(xi1, xi2, · · · , xim))

+
∑
j

(pj(si, s−i) + max
i′

ei′)−
∑
j

(pj(si, s−i) + max
i′

ei′)

≥
n∑
i=1

max
x:∀i

∑
xijp∗j=ei

ei · log(ui(xi1, xi2, · · · , xim))

+
∑
j

p∗j −
∑
j

(pj(si, s−i) + max
i′

ei′) by (2.3)

>
n∑
i=1

max
x:∀i

∑
j xijp

∗
j=ei

ei · log(ui(xi1, xi2, · · · , xim))−mmax
i
ei

as
∑
j

p∗j =
∑
i

ei =
∑
j

pj(si, s−i)

=
n∑
i=1

ei log(ui(vi, v−i))−mmax
i
ei.

The proof of Lemma 2.4.2 uses the following notation and follows from Lemmas 2.4.3

and 2.4.4 below. p denotes the prices when the ith bidder is not participating and the

bidding profile is s−i; x denotes the resulting allocation. Similarly, p̂ denotes the prices

when the bidding profile is (si, s−i); x̂ denotes the resulting allocation.

As later on we need a generalized version of Lemma 2.4.3 which allows reserve prices

r ≥ 0, we state and prove the more general version here.

Lemma 2.4.3. Let r ≥ 0 be reserve prices. Then r � p � p̂ = p(si, s−i).

Lemma 2.4.4. p̂ � p + ei · 1.

Proof of Lemma 2.4.2: Lemmas 2.4.3 and 2.4.4 also apply to prices p(vi, s−i) as well as

to p̂. So p(vi, s−i) 6 p + ei · 1 6 p(si, s−i) + ei · 1 ≤ p(si, s−i) + maxi ei · 1.
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Lemma 2.4.4 follows readily from Lemma 2.4.3.

Proof of Lemma 2.4.4: Since 1 · p + ei = 1 · p̂ and p � p̂, the lemma follows.

We finish by proving that Lemma 2.4.3 holds in two scenarios: single-demand WGS utility

functions and linear utility functions.

2.4.1 Unique Demand WGS Utility Functions

Proof of Lemma 2.4.3: For a contradiction, we suppose there is an item j such that

pj > p̂j.

Let ε > 0 be a very small constant such that ε < pk for all pk 6= 0 and ε < p̂k for all

p̂k 6= 0.

Let p′ denote the following collection of prices: p′k = pk if pk 6= 0, and p′k = ε otherwise.

We consider the resulting demands for a bidder h 6= i. Recall that xh denotes bidder h’s

demand at prices p. x′h will denote her demand at prices p′. By the WGS property, x′hk = xhk

if pk 6= 0, and x′hk = 0 if pk = 0, i.e. if p′k = ε.5

Analogously, let p̂′k = p̂k if p̂k 6= 0, and p̂′k = ε otherwise. Let x̂h denote bidder h’s demand

at prices p̂, and x̂′h her demand at prices p̂′. Again, x̂′hk = x̂hk if p̂k 6= 0, and x̂′hk = 0 if

p̂′k = ε.

Now, we look at those items l which have the smallest ratio between p′l and p̂′l.

S =

{
l

∣∣∣∣∣ p̂′lp′l = min
k

p̂′k
p′k

}
.

By assumption, pj > p̂j; therefore p′j > p̂′j. Thus, for l ∈ S,
p̂′l
p′l
< 1. For simplicity, let η

5Changing the prices from p to p′, one by one, by setting p′k to ε, which happens when pk = 0, only
increases the demand for other goods, but as no spending is released by this price increase, these demands
are in fact unchanged.
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denote this ratio. Note that this inequality implies p′l > ε, and thus pl = p′l > 0. Also,

pl = p′l > p̂′l ≥ rl. (2.4)

We now consider the following procedure:

First multiply p′ by η. By the homogeneity of the utility function, bidder h’s demand at

prices η · p′ will be 1
η
x′h. Note that η · p′l = p̂′l for any l ∈ S and η · p′k < p̂′k for any k /∈ S.

Second, increase the prices of η · p′ to p̂′. Since for l ∈ S the two prices are the same, by

the Gross Substitutes property, x̂′hl ≥ 1
η
x′hl for any l ∈ S.

Summing over all the bidders except i,

∑
h6=i

x̂′hl ≥
1

η

∑
h6=i

x′hl for l ∈ S.

By (2.4), pl > rl for any l ∈ S; hence
∑

h6=i x
′
hl =

∑
h6=i xhl = 1. So, since η < 1,

∑
h6=i

x̂′hl >
∑
h6=i

x′hl =
∑
h6=i

xhl = 1 for l ∈ S. (2.5)

For all h and l, x̂hl ≥ x̂′hl. Therefore,

∑
h

x̂hl ≥
∑
h6=i

x̂′hl >
∑
h6=i

xhl = 1 for l ∈ S.

As
∑

h x̂hl ≤ 1, this is impossible and yields a contradiction.
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2.4.2 Linear Utility Functions

Proof of Lemma 2.4.3: For a contradiction, we suppose there is an item j such that

pj > p̂j. Now, we look at those items j which have the smallest ratio between pl and p̂l.

S =

{
l

∣∣∣∣∣ p̂lpl = min
k

p̂k
pk

}
.

Note l < 1 and pl > rl. For simplicity, we set 0
x

= 0 for x > 0, 0
0

= 1 and x
0

= +∞ for

x > 0.

For linear utility functions, we use the following observation: if at prices p a bidder’s

favorite items include some items in S, then at prices p̂ her favorite items will all be in S.

Therefore, as pl > rl implying
∑

i′ 6=i xil(s−i) = 1,

∑
l∈S

pl =
∑
l∈S

∑
i′ 6=i

xil(s−i)pl ≤
∑
l∈S

∑
i′ 6=i

xil(si, s−i)p̂l ≤
∑
l∈S

p̂l.

This implies that mink
p̂k
pk

= 1, and the lemma follows.

2.5 Result for Walrasian Equilibrium

In this section, we will describe our results for the Walrasian Equilibrium.

2.5.1 Definitions for Large Walrasian Auctions

Definition 2.5.1. An auction A comprises a set of N bidders B1, B2, . . . , BN , and a set of

m goods G, with nj copies of good j, for 1 6 j 6 m. We write n = (n1, n2, ..., nm), where nj

denotes the number of copies of good j, and we call it the multiplicity vector. We also write

n = (nj, n−j), where n−j is the vector denoting the number of copies of goods other than good

j. We refer to an instance of a good as an item. For an allocation xi to bidder i, which is a
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subset of the available goods, we write xi = (xi1, xi2, . . . , xim) where xij denotes the number

of copies of good j in allocation xi. There is a set of prices p = (p1, p2, . . . , pm), one per good;

we also write p = (pj, p−j). Each bidder i has a valuation function vi : X → R+, where X

is the set of possible assignments, and a quasi-linear utility function ui(xi) = vi(xi)− xi · p.

A Walrasian equilibrium is a collection of prices p and an allocation xi to each bidder i

such that (i) the goods are fully allocated but not over-allocated, i.e. for all j,
∑

i xij ≤ nj,

and
∑

i xij = nj if pj > 0, and (ii) each bidder receives a utility maximizing allocation at

prices p, i.e. ui(xi) = vi(xi)− xi · p = maxxi [vi(xi)− xi · p].

In a Walrasian mechanism for auction A each bidder declares a bid function si : X →

R+. We write s = (s1, s2, . . . , sN) and s = (si, s−i). The mechanism computes prices and

allocations as if the bids were the valuations.

Given the bidders and their bids, p(n; s) denotes the prices produced by the Walrasian

mechanism at hand when there are n copies of the goods and s is the bidding profile. Also,

pj(n; s) denotes the price of good j and p(n; s) = (pj(n; s), p−j(n; s)). Finally, we let both

xi(n; s) and xi(n; si, s−i) denote the allocation to bidder i provided by the mechanism.

In the auctions we consider, the number n of copies of each good is determined by a

distribution F (n). In order for the auction to be large, we need that the probability that

there are exactly rj copies of the j-th item be small, for every rj and for every j.

Definition 2.5.2. A large Walrasian auction is characterized by a distribution F (n), a

demand bound k, and a largeness measure L. It satisfies the following two properties.

i. The demand of every bidder is for at most k items. Formally, if allocated a set of more

than k items, the bidder will obtain equal utility with a subset of size k.

ii. The probability that there are exactly c copies of good j, for any c and any j is bounded

by 1/L. Formally, Let F (nj, j|n−j) denote the probability that there are exactly nj copies

of good j when given n−j copies of other goods; then maxj maxnj ,n−j F (nj, j|n−j) 6 1/L.
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Note this definition implies that the expected number of copies of each good is at least L
2

and it is in this sense that the market is large.

A Bayes-Nash equilibrium is an outcome with no expected gain from an individual devi-

ation:

∀b′i : En,v−i,s−i [ui(xi(n; si, s−i), p((si, s−i))] > En,v−i,s−i [ui(xi(n; b′i, s−i), p((b
′
i, s−i))] .

The social welfare SW(x) of an allocation x is the sum of the individual valuations:

SW(x) =
∑

i vi(xi). We also write SW(OPT) for the (expected) optimal social welfare,

the maximum (expected) achievable social welfare, and SW(NE) for the smallest (expected)

social welfare achievable at a Bayes-Nash equilibrium.

Finally, the Price of Anarchy is the worst case ratio of SW(OPT) to SW(NE) over all

instances in the class of games at hand, namely auctions AN of N buyers:

PoA = max
AN

SW(OPT)

SW(NE)
.

2.5.2 Result for Walrasian Auctions

Our analysis makes two assumptions; stronger assumptions were made for the large auc-

tion results in [Swi01, FIL+16]. [Swi01] also ruled out overbidding by arguing it is a dom-

inated strategy. Our analysis can avoid even this assumption of other players’ rationality;

however, bounded overbidding is needed for the extension to regret minimizing strategies.

Assumption 2.5.1. [Bounded Expected Valuation] There is a constant ζ such that for

each bidder and each item, her expected value for this single item is at most ζ:

max
s

Evi [vi(s)] ≤ ζ.

Note that without this assumption the social welfare would not be bounded, and then it
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is not clear how to measure the Price of Anarchy. Prior work had assumed vi(s) 6 ζ for all

s and i (i.e. absolutely rather than in expectation).

Observation 2.5.1.

Evi
[
max
s
{vi(s)}

]
≤ ζm.

Theorem 2.5.1. In a large Walrasian auction which satisfies Assumption 2.5.1 and with

buyers whose valuation and bid functions are monotone and satisfy the gross substitutes

property,

SW(NE) ≥

(
1− 3 · k · (k + 1) · ζ ·m

ρ
· Y · dlog2

1

Y
e

)
SW(OPT),

where Y = m
L

[
2m
(
k+1+m
m

)]
and ρ = SW(OPT)

N
.

Also, if there is only one good, i.e., if m = 1, then

SW(NE) ≥

(
1− 3 · k · (k + 1) · ζ

ρ
· Y · dlog2

1

Y
e

)
SW(OPT),

where Y = 2(k+2)
L

and ρ = SW(OPT)
N

.

Remark The gross substitutes assumption is present so as to ensure the auction outcome

is a Walrasian equilibrium w.r.t. to the bids, for if it is not then some bidders will be allocated

a non-favorite bundle, which seems unattractive as a solution concept.

To achieve SW(NE) ≥ (1− ε)SW(OPT) where ε is small, we need L
ρ·logL

to be large. We

can achieve this by considering a sequence of auctions indexed by N , the number of bidders,

and requiring ρ to be a constant and L to be sufficiently large. One way to obtain a constant

ρ is to make the following two assumptions.

Assumption 2.5.2. [Auction Size] Let µ(nj) be the expected number of copies of good j,

for 1 6 j 6 m, and let Γ(nj) be its standard deviation. The assumption is that for each j,

µ(nj) = Θ(N) and Γ(nj) 6 (1 − λ)µ(nj) for some constant 0 < λ ≤ 1. Let 0 < α ≤ 1 be

such that µ(nj) > αN for all j and sufficiently large N .
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Assumption 2.5.3. [Value Lower Bound] There is a parameter ρ′ > 0 such that for any

bidder, its largest expected value for one item is at least ρ′:

max
s

Evi [vi(s)] ≥ ρ′.

Lemma 2.5.1. Let ρ = λ2α 2λ+λ2

(1+λ)2
ρ′. If Assumptions 2.5.2 and 2.5.3 hold, then SW(OPT) >

ρN .

In previous work, [FIL+16] also made the assumption that ρ is a constant. [Swi01] made

assumptions on the value distribution which again imply ρ is a constant although this con-

sequence is not stated in his work.

Corollary 2.5.1. In a large Walrasian auction which satisfies Assumption 2.5.1 and with

buyers whose valuation and bid functions are monotone and satisfy the gross substitutes

property, if the number of copies of each good is independently and identically distributed

according to the Binomial distribution B(N, 1
2
), and ρ, k,m = O(1), then

SW(NE) >

(
1−O

(
logN√
N

))
SW(OPT).

In order to obtain good bounds when using regret minimization algorithms, we need to be

able to bound the possible losses a player makes, which we achieve by bounding the possible

overbidding. This is similar to the notion of overbidding previously given in [BLNPL14].

Definition 2.5.3. Let K be the set of strategies a player uses. She is a (γ, δ)-player if v ∈ K

and, for any s ∈ K and for any set x,

s(x) ≤ v(x) · γ + δ.

Theorem 2.5.2. Suppose all players use regret minimization algorithms, they are all (γ, δ)-

players and their valuation and bid functions are monotone and satisfy the gross substitutes
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property. Then, in a large Walrasian auction which satisfies Assumption 2.5.1,

1

T
En,v,s

[
T∑
t=1

vi(xi(s
t
i, s

t
−i))

]
≥

(
1− 3 · k · (k + 1) · ζ ·m

ρ
· Y · dlog2

1

Y
e

− maxi Φ(|Ki|, T ) · (kmζγ + δ)

ρ · T

)
SW(OPT).

where Y = m
L

[
2m
(
k+1+m
m

)]
, ρ = SW(OPT)

N
, Ki is the set of strategies used by i, and vi ∈ Ki.

2.5.3 Proof

Here we prove a slightly weaker version of Theorem 2.5.1 which demonstrates the main

ideas (Theorem 2.5.3 below). Our goal is to show that in expectation

∑
i

E
[
ui(xi(vi, s−i))

]
≥ SW(OPT)− R−O(Nε), (2.6)

where R denotes the expected auction revenue under bidding profile (si, s−i). For, as encap-

sulated in the smooth technique for Bayesian settings [ST13], this type of bound yields PoA

bounds, and our result in particular:

SW(si, s−i) = R +
∑
i

E
[
ui(xi(si, s−i))

]
≥ R +

∑
i

E
[
ui(xi(vi, s−i))

]
≥ SW(OPT)−O(Nε).

Inequality (2.6) follows from two observations. First, with high probability, a buyer has at

most a small influence on prices (Lemma 2.5.2), and hence can improve her own utility by at

most a small amount via a non-truthful bid (Lemma 2.5.3). Otherwise, by Assumption 2.5.1

and the Gross Substitutes property, her expected utility is bounded by kmζ. The probability

bound stems from the distribution F over the number of goods. To obtain the bound, we

define (k, ε)-good and bad multiplicity vectors n, wr.t. bids b. By counting their number, we

will show that the fraction of (k+ 1, ε)-bad vectors is O( 1
Lε

). Also, if the vector is (k+ 1, ε)-

good, we will show that a bidder can cause the prices, when they are all bounded by 1, to
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vary by at most (k + 1)ε. Essentially, a vector n is (k, ε)-good if changing the supplies by

at most k items causes prices pj 6 1 to change in total by at most kε. Then, using the fact

that the equilibrium is Walrasian, we can show that for (k + 1, ε)-good vectors n,

ui(xi(vi, s−i)) ≥ vi(xi(vi, v−i))−
∑

g∈xi(vi,v−i)

pg(n; (si, s−i))− k(k + 1)ε.

On summing over i and taking expectations, we can then deduce that

∑
i

E
[
ui(xi(vi, s−i))

]
≥ SW(OPT)− R−N · k · (k + 1) · ε−O(

N · k
Lε

).

Recall that the English Walrasian mechanism can be implemented as an ascending auction.

The prices it yields can be computed as follows: pj is the maximum possible increase in the

social welfare when the supply of good j is increased by one unit. Similarly, the Dutch

Walrasian mechanism can be implemented as a descending auction, and the resulting price

pj is the loss in social welfare when the supply of good j is decreased by one unit.

We will be considering an arbitrary Walrasian mechanism. Necessarily, its prices must

lie between those of the Dutch Walrasian and English Walrasian mechanisms. We let

pEng(n; (si, s−i)) denote the price output by the English Walrasian mechanism and pDut(n; (si, s−i))

the price output by the Dutch Walrasian mechanism.

We define the distance between two price vectors p and p′ with respect to U as follows:

distU(p,p′) =
m∑
j=1

∣∣min{pj, U} −min{p′j, U}
∣∣ ,

where U is a parameter we set later.

Definition 2.5.4. Given bidding profile (si, s−i), n = (nj, n−j) is (ε, U)-bad for good j if,

in the English Walrasian mechanism, the distance between the prices is more than ε when
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an additional copy of good j is added to the market:

distU(pEng((nj, n−j); (si, s−i)),p
Eng((nj + 1, n−j); (si, s−i))) > ε.

Let k = (k, k, . . . , k) and 0 = (0, 0, . . . , 0) be m-vectors.

Definition 2.5.5. Given bidding profile s, n is (k, ε, U)-bad for good j if there is a vector

n′ which is (ε, U)-bad for good j, such that n′h 6 nh for all h, and
∑

h nh 6 k +
∑

h n
′
h. n is

(k, ε, U)-good if it is not (k, ε, U)-bad.

Observation 2.5.2. Given bidding profile s, if n is (k, ε, U)-good then

distU(pEng(n; s),pEng(n′; s)) ≤ kε

if n′h 6 nh for all h, and
∑

h nh 6 k +
∑

h n
′
h.

For brevity, we sometimes write ui(vi, s−i) instead of ui(xi(vi, s−i)). For simplicity, let

Λ(m, k) denote m ·
(
k+m
m

)
.

Lemma 2.5.2. In the English Walrasian mechanism with bidding profile s, the probability

that n is (k, ε, U)-bad for some good, or minj nj 6 k is at most

m

L

[
U

ε
Λ(m, k) + k + 1

]
.

Let |xi(·)| denotes the total number of items in allocation xi. Let di � xi(vi, v−i) be a

minimal set with vi(di) = vi(xi(vi, v−i)). By Definition 2.5.2(i), |di| ≤ k.

Lemma 2.5.3. If n is (k+ 1, ε, U)-good, where U ≥ vi(s) for every single item s, nj > k+ 1

for all j, and vi and si satisfy the gross substitutes property for all i, then

ui(vi, s−i) ≥ vi(xi(vi, v−i))−
∑

g∈xi(vi,v−i)

pg(n; (si, s−i))− |xi(vi, v−i) ∩ di| · (k + 1)ε,
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where the sum is over all the items in allocation xi.

Theorem 2.5.3. In a large Walrasian auction which satisfies Assumption 2.5.1 and with

buyers whose valuation and bid functions are monotone and satisfy the gross substitutes

property,

SW(NE) ≥
(

1− 3k · ζ ·m
ρ

√
(k + 2)

m

L
Λ(m, k + 1)

)
SW(OPT),

where ρ = SW(OPT)
N

.

Proof. By Lemma 2.5.3, if n is (k+ 1, ε ·maxg{vi(g)},maxg{vi(g)})-good and nj > k+ 1 for

all j, then

ui(vi, s−i) ≥ vi(xi(vi, v−i))−
∑

g∈xi(vi,v−i)

pg(n; (si, s−i))

− |xi(vi, v−i) ∩ di| · (k + 1)ε ·max
g
{vi(g)}.

By Lemma 2.5.2, the probability that n is (k + 1, ε · maxg{vi(g)},maxg{vi(g)})-bad or

nj ≤ k + 1 for some j is less than

m

L

[
1

ε
Λ(m, k + 1) + k + 2

]
,

and En[ui(vi, s−i)] ≥ En

[
vi(xi(vi, v−i))−

∑
g∈xi(vi,v−i)

pg(n; (si, s−i))

− |xi(vi, v−i) ∩ di| · (k + 1)ε ·max
g
{vi(g)}

]

− m

L

[
1

ε
Λ(m, k + 1) + k + 2

]
· k ·max

g
{vi(g)}.

Here, the expectation is taken over the randomness on the multiplicities of the goods; the

inequality holds since ui(vi, s−i) ≥ 0 and vi(xi(vi, v−i)) ≤ k ·maxg{vi(g)}.
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Taking the expectation over the valuation of agent i yields

Evi [En[ui(vi, s−i)]] ≥ Evi

[
En

[
vi(xi(vi, v−i))−

∑
g∈xi(vi,v−i)

pg(n; (si, s−i))

− |xi(vi, v−i) ∩ di| · (k + 1)ε ·max
g
{vi(g)}

]
− m

L

[
1

ε
Λ(m, k + 1) + k + 2

]
· k ·max

g
{vi(g)}

]

≥ Evi

[
En

[
vi(xi(vi, v−i))−

∑
g∈xi(vi,v−i)

pg(n; (si, s−i))
]]

− Evi [max
g
{vi(g)}] · k · (k + 1)ε

− Evi [max
g
{vi(g)}]m

L

[
Λ(m, k + 1)

k

ε
+ (k + 2)k

]
.

Since Evi [maxg{vi(g)}] ≤ Evi [
∑

g vi(g)] ≤
∑

g Evi [vi(g)] ≤ m · ζ,

Evi [En[ui(vi, s−i)]] ≥ Evi

[
En

[
vi(xi(vi, v−i))−

∑
g∈xi(vi,v−i)

pg(n; (si, s−i))
]]

− ζ ·m · k(k + 1)ε

− ζ ·m ·m · 1

L

[
Λ(m, k + 1)

k

ε
+ (k + 2)k

]
.

Let R(b) denote the expected revenue when the bidding profile is b. Also, recall that

SW(OPT) = ρN . Now, summing over all the bidders yields
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∑
i

Ev,s,n[ui(vi, s−i)] ≥
∑
i

Ev,s,n

[
En

[
vi(xi(vi, v−i))−

∑
g∈xi(vi,v−i)

pg(n; (si, s−i))
]]

− ζ ·m ·m · 1

L

[
Λ(m, k + 1)

k

ε
+ (k + 2)k

]
·N

− ζ ·m · k(k + 1)ε ·N

≥

(
1−

ζ ·m ·m · 1
L

[
Λ(m, k + 1)k

ε
+ (k + 2)k

]
ρ

− ζ ·m · k(k + 1)ε

ρ

)
SW(OPT)− Es,n[R(si, s−i)].

Now, SW(NE) = Es,n[R(si, s−i)]+
∑

i Ev,s,n[ui(si, s−i)] ≥ Es,n[R(si, s−i)]+
∑

i Ev,s,n[ui(vi, s−i)];

Therefore,

SW(NE) ≥

(
1−

ζ ·m ·m · 1
L

[
Λ(m, k + 1)k

ε
+ (k + 2)k

]
ρ

− ζ ·m · k(k + 1)ε

ρ

)
SW(OPT).

The analysis is using the methodology of the smooth technique for Bayesian settings [ST13].

Now set ε =
√

m
L

Λ(m,k+1)

k+1
. The claimed bound follows.

Comparison of our methodology with that of [FIL+16] We will be considering the

combinatorial auction in [FIL+16] which uses separate auctions for each type of good, more

specifically a (c + 1)-st price auction when there are c copies of the good. To facilitate a

comparison, we adjust their notation to match the notation we have been using and reduce

its generality6. They begin by defining a notion of smooth in the large which in the current

6In fact, the comparison applies in full generality.
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context amounts to showing

∑
i

U(vi, s−i) > (1− ε)SW(OPT)−R(b). (2.7)

To obtain such bounds, they propose the following methodology: It entails identifying an

approximate utility function U(vi, s−i) and then showing the following two bounds:

• The approximate and actual utilities are close: For all b, |ui(b)− Ui(b)| 6 ε.

• The standard smoothness formulation applies to the approximate utility: For all i,v,b,∑
i U(vi, s−i) > SW(OPT)−R(b).

One can then deduce that
∑

i U(vi, s−i) > SW(OPT) − R(b) − Nε, which, on taking ex-

pectations, is exactly the bound we obtain for our auction. With the assumption that

SW(OPT) = ρN one obtains (2.7). However, it not clear that we can specify an approxi-

mate utility U as specified in the framework of [FIL+16]. In particular, handling the expected

bound on valuations in this framework, rather than the fixed bound used by Feldman et al.,

appears challenging.

2.6 Missing Proofs

2.6.1 Proofs from Section 2.5.2

Proof of Lemma 2.5.1: Let #itemsj denote the number of copies of good j that are

present, and let Nj denote the number of buyers for which good j has the largest expected

value (breaking ties arbitrarily). By Chebyshev’s Theorem, Pr
[
#itemsj > E[#itemsj] −

t · Γ(#itemsj)
]
≥ 1 − 1

t2
. We set t equal 1 + λ, where λ is the parameter in Assump-

tion 2.5.2. Then by Assumption 2.5.2, Pr
[
#itemsj > λ2 · E[#itemsj]

]
≥ 2λ+λ2

(1+λ)2
, which

implies Pr[#itemsj > λ2αN ] ≥ 2λ+λ2

(1+λ)2
. If at least λ2αN copies of good j are available, then
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by Assumption 2.5.3, there is an assignment with valuation at least ρ′ · min{Nj, λ
2αN}.

Therefore, the social welfare is at least
∑

j min{Nj, λ
2αN} 2λ+λ2

(1+λ)2
· ρ′ > λ2α 2λ+λ2

(1+λ)2
N · ρ′.

2.6.2 Proofs from Section 2.5.3

In Lemmas 2.6.1 and 2.6.4, we bound the number of (ε, U)-bad multiplicity vectors, and

then in Lemma 2.5.2 we bound the probability of a (k, ε, U)-bad vector. Following this,

in Lemma 2.6.5 and 2.6.6, assuming the multiplicity vector is (k + 1, ε, U)-good, we bound

the difference between the English Walrasian mechanism prices and those of the Walrasian

mechanism at hand. Next, in Lemma 2.5.3, again for (k+ 1, ε, U)-good multiplicity vectors,

we relate ui(xi(vi, s−i)) to vi(xi(vi, v−i)) and the prices paid; we then use this to carry out a

PoA analysis.

First, we have following two observations.

Observation 2.6.1. In the Dutch Walrasian mechanism, if there are zero copies of a good,

letting its price be +∞ will not affect the mechanism outcome.

Observation 2.6.2. Suppose bidders’ demands satisfy the Gross Substitutes property. In

both the English and Dutch Walrasian mechanisms, if ni ≥ n′i, then p(ni, n−i) � p(n′i, n−i),

where p � p′ means that, for all j, pj ≤ p′j.

Lemma 2.6.1. In the English Walrasian mechanism, given n−j and bidding profile s, the

number of values nj for which (nj, n−j) is (ε, U)-bad for good j is at most m
ε
U .

Proof of Lemma 2.6.1: We prove the result by contradiction. Accordingly, let

S =

{
nj

∣∣∣∣∣distU(pEng((nj, n−j); s),pEng((nj + 1, n−j); s)) > ε

}
and suppose that |S| > m

ε
U .

The proof uses a new function pf (·) : pf (nj) =
m∑
q=1

min{pEngq ((nj, n−j); s), U}.
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Then, lim inf
n→∞

(pf (0)− pf (n)) = lim inf
n→∞

n−1∑
h=0

(pf (h)− pf (h+ 1))

≥
∑
nj∈S

(pf (nj)− pf (nj + 1)) >
m

ε
U · ε = m · U. (2.8)

The first inequality follows as by Observation 2.6.2, pf (·) is a non-increasing function. Fur-

ther, by construction, 0 ≤ pf (h) ≤ m · U for all h, thus lim infn→∞(pf (0)− pf (n)) ≤ m · U ,

contradicting (2.8).

Lemma 2.6.2. (
m+ n− 1

n

)
=

n∑
i=0

(
m+ i− 2

i

)
Lemma 2.6.3.

k∑
n=0

(
m+ n− 1

n

)
=

k∑
n=0

(k − n+ 1)

(
m+ n− 2

n

)
.

Proof.

k∑
n=0

(
m+ n− 1

n

)
=

k∑
n=0

n∑
i=0

(
m+ i− 2

i

)
=

k∑
i=0

k∑
n=i

(
m+ i− 2

i

)

=
k∑
i=0

(k − i+ 1)

(
m+ i− 2

i

)
.

Lemma 2.6.4. In the English Walrasian mechanism with bidding profile s, for a fixed n−j,

the number of values nj for which (nj, n−j) is (k, ε, U)-bad for good j is at most m
ε
U ·
(
k+m
m

)
.

Proof of Lemma 2.6.4: Consider the case that m ≥ 2. For (nj, n−j) to be (k, ε, U)-bad

for good j we need an (ε, U)-bad vector n′ � n for good j, with
∑

h6=j nh − n′h = c for some

0 6 c 6 k and nj − n′j 6 k − c. There are
(
m−2+c

c

)
ways of choosing the n′−j. For each

n′−j, by Lemma 2.6.1, there are at most m
ε
U points that are (ε, U)-bad for good j. For each
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(ε, U)-bad point, there are k − c+ 1 choices for nj. This gives a bound of

k∑
c=0

m

ε
U(k − c+ 1)

(
m− 2 + c

c

)
=
m

ε
U

k∑
c=0

(
m− 1 + c

c

)
=
m

ε
U

(
m+ k

k

)

(k, ε, U)-bad vectors. Note that the first equality follows by Lemma 2.6.3 and the second

equality follows by Lemma 2.6.2.

For the case m = 1, for this good, each (ε, U)-bad point will cause at most k + 1 points

to be (k, ε, U)-bad. This gives a bound of

m

ε
U(k + 1) =

m

ε
U

(
m+ k

k

)
.

(k, ε, U)-bad vectors.

Proof of Lemma 2.5.2: Conditioned on the bidding profile being b,

∑
1≤j≤m

Pr[( n is (k, ε, U)-bad for good j) ∪ (nj ≤ k)])

≤
∑

1≤j≤m

Pr[(n is (k, ε, U)-bad for good j)] + Pr[(nj ≤ k)]

≤
∑

1≤j≤m

∑
n−j

(
Pr[( n is (k, ε, U)-bad for good j)|n−j = n−j]

+ Pr[(nj ≤ k)|n−j = n−j]
)
· Pr[n−j = n−j]

≤ m

L

[
m

ε
U

(
k +m

m

)
+ k + 1

]
(by Lemma 2.6.4).

Let nij(si, s−i) denote the number of copies of good j that bidder i receives with bidding

profile (si, s−i) and ni(si, s−i) denote the corresponding vector. Also, let pEng(n; s−i) denote

the market equilibrium prices when bidder i is not present.

Lemma 2.6.5. pEngj (n; s−i) ≤ pj(n; (si, s−i)).

37



Proof of Lemma 2.6.5: Consider the situation with n′ = n−ni(si, s−i) and suppose that

agent i is not present. Then pj(n; (si, s−i)) is a market equilibrium.

So ∀j pEngj (n′; s−i) ≤ pj(n; (si, s−i)).

Since n ≥ n′, ∀j pEngj (n; s−i) ≤ pEngj (n′; s−i).

The lemma follows on combining these two inequalities.

Lemma 2.6.6. If n is (k + 1, ε, U)-good for all goods, and nj > k + 1 for all j, then

∀j min{pj(n; (vi, s−i)), U} ≤ min{pj(n; (si, s−i)), U}+ (k + 1)ε.

Proof of Lemma 2.6.6: Let di � ni(vi, s−i) be a minimal set with vi(d
i) = vi(n

i(vi, s−i)).

By Definition 2.5.2(i),
∑

j d
i
j ≤ k. First, if nij(vi, s−i) > dij then pj(n; (vi, s−i)) = 0, as the

pricing is given by a Walrasian Mechanism.

Consider the scenario with n′ copies of goods on offer, where for all j, n′j = nj − dij and

suppose that bidder i is not present; then p(n; (vi, s−i)) is a market equilibrium.

So, pj(n; (vi, s−i)) ≤ pDutj (n′; s−i).

For all j′ 6= j, let n′′j′ = n′j′ and let n′′j = n′j − 1; then pDutj (n′; s−i) ≤ pEngj (n′′; s−i),

and by Lemma 2.6.5, pEngj (n′′; s−i) ≤ pEngj (n′′; si, s−i).

As n is (k + 1, ε, U)-good for all goods, and as
∑

h nh − n′′h ≤ k + 1, using Observation 2.5.2

for the second inequality below, we conclude that

min{pj(n; (vi, s−i)), U} ≤ min{pEngj (n′′; (si, s−i)), U}

≤ min{pEngj (n; (si, s−i)), U}+ (k + 1)ε ≤ min{pj(n; (si, s−i)), U}+ (k + 1)ε. (2.9)
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The second inequality holds by Definition 2.5.4 and 2.5.5.

Proof of Lemma 2.5.3: As we are using a Walrasian mechanism, for any allocation x′i,

vi(xi(vi, s−i))−
∑

g∈xi(vi,s−i)

pg(n; (vi, s−i)) ≥ vi(x
′
i)−

∑
g∈x′i

pg(n; (vi, s−i)). (2.10)

We let G denote the set of goods whose prices pg(n; (vi, s−i)) are larger than U . Then,

ui(vi, s−i) = vi(xi(vi, s−i))−
∑

g∈xi(vi,s−i)

pg(n; (vi, s−i))

≥ vi((xi(vi, v−i) ∩ di) \G)−
∑

g∈(xi(vi,v−i)∩di)\G

pg(n; (vi, s−i))

(by (2.10)) (2.11)

Since n is (k + 1, ε, U)-good, by Lemma 2.6.6,

min{pg(n; (vi, s−i)), U} ≤ min{pg(n; (si, s−i)), U}+ (k + 1)ε.

Therefore, for any g /∈ G, pg(n; (vi, s−i)) ≤ min{pg(n; (si, s−i)), U}+ (k + 1)ε

≤ pg(n; (si, s−i)) + (k + 1)ε.

So, vi((xi(vi, v−i) ∩ di) \G)−
∑

g∈(xi(vi,v−i)∩di)\G

pg(n; (vi, s−i))

≥ vi((xi(vi, v−i) ∩ di) \G)−
∑

g∈(xi(vi,v−i)∩di)\G

pg(n; (si, s−i))

− |(xi(vi, v−i) ∩ di) \G| · (k + 1)ε. (2.12)

For any g ∈ G, on applying Lemma 2.6.6, we obtain U = min{pg(n; (vi, s−i)), U} ≤
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min{pg(n; (si, s−i)), U}+ (k + 1)ε, which implies pg(n; (si, s−i)) + (k + 1)ε ≥ U . Also,

vi(xi(vi, v−i)∩di)−vi((xi(vi, v−i)∩di)\G) ≤ vi((xi(vi, v−i)∩di)∩G) ≤ |(xi(vi, v−i)∩di)∩G|·U,

where the first inequality follows by the Gross Substitutes assumption, and the second by

Gross Substitutes and because by assumption vi(g) ≤ U for all single items g. Thus,

vi((xi(vi, v−i) ∩ di) \G)−
∑

g∈(xi(vi,v−i)∩di)\G

pg(n; (si, s−i))− |(xi(vi, v−i) ∩ di) \G| · (k + 1)ε

≥ vi(xi(vi, v−i) ∩ di)− |(xi(vi, v−i) ∩ di) ∩G| · U

−
∑

g∈(xi(vi,v−i)∩di)\G

pg(n; (si, s−i))− |(xi(vi, v−i) ∩ di) \G| · (k + 1)ε

≥ vi(xi(vi, v−i) ∩ di)−
∑

g∈xi(vi,v−i)∩di

pg(n; (si, s−i))− |xi(vi, v−i) ∩ di| · (k + 1)ε

≥ vi(xi(vi, v−i))−
∑

g∈xi(vi,v−i)

pg(n; (si, s−i))− |xi(vi, v−i) ∩ di| · (k + 1)ε.

(2.13)

By (2.11), (2.12) and (2.13),

ui(vi, s−i) ≥ vi(xi(vi, v−i))−
∑

g∈xi(vi,v−i)

pg(n; (si, s−i))− |xi(vi, v−i) ∩ di| · (k + 1)ε.

Proof of Theorem 2.5.1: By Lemma 2.5.2, the probability that n is (k+1, maxg{vi(g)}
2c

,maxg{vi(g)})-

bad or nj ≤ k + 1 for some j is less than

m

L

[
1

maxg{vi(g)}
2c

max
g
{vi(g)}Λ(m, k + 1) + k + 2

]
=
m

L
[2cΛ(m, k + 1) + k + 2] .
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So, for any integer c′, by Lemma 2.5.3,

En[ui(vi, s−i)] ≥ En

[
vi(xi(vi, v−i))−

∑
g∈xi(vi,v−i)

pg(n; (si, s−i))

−
c′∑
c=1

1
[
n is (k + 1,

maxg{vi(g)}
2c

,max
g
{vi(g)})-bad and

(k + 1,
maxg{vi(g)}

2c−1
,max

g
{vi(g)})-good

]
·
∣∣∣xi(vi, v−i) ∩ di

∣∣∣ · (k + 1)
maxg{vi(g)}

2c−1

− 1
[
n is (k + 1,

maxg{vi(g)}
2c′−1

,max
g
{vi(g)})-good

]
·
∣∣∣xi(vi, v−i) ∩ di

∣∣∣ · (k + 1)
maxg{vi(g)}

2c′

]

≥ En

[
vi(xi(vi, v−i))−

∑
g∈xi(vi,v−i)

pg(n; (si, s−i))

]

−
c′∑
c=1

m

L
[2cΛ(m, k + 1) + k + 2] · k · (k + 1)

maxg{vi(g)}
2c−1

− k · (k + 1)
maxg{vi(g)}

2c′

≥ En

[
vi(xi(vi, v−i))−

∑
g∈xi(vi,v−i)

pg(n; (si, s−i))

− c′ · m
L

[2Λ(m, k + 1) + k + 2] · k · (k + 1) ·max
g
{vi(g)}

− k · (k + 1)
maxg{vi(g)}

2c′

]
.
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Summing over all the bidders and averaging over v and s gives

∑
i

Ev,s,n[ui(vi, s−i)] ≥ SW(OPT)− Es[R(si, s−i)]

−N · c′ · m
L

[2Λ(m, k + 1) + k + 2] · k · (k + 1) · ζ ·m

−N · k · (k + 1)
1

2c′
· ζ ·m.

Using the smooth technique for Bayesian settings [ST13] yields

SW(NE) ≥

(
1−

ζ ·m · k · (k + 1) 1
2c′

ρ

−
ζ ·m · c′ · m

L
[2Λ(m, k + 1) + k + 2] · k · (k + 1)

ρ

)
SW(OPT).

Let Y = m
L

[2Λ(m, k + 1)]. Set c′ = dlog2
1
Y
− log2 log2

1
Y
e; then 1

2c′
≤ Y log2

1
Y

. So,

SW(NE) ≥

(
1− 3 · k · (k + 1) · ζ ·m

ρ
· Y · dlog2

1

Y
e

)
SW(OPT).

2.6.3 Regret Minimization

2.6.3.1 Walrasian Market

We note the following corollary to Theorem 2.5.1.

Corollary 2.6.1. In a large Walrasian auction which satisfies Assumptions 2.5.1, if vi and

si are monotone and satisfy the gross substitutes property for all i, then

∑
i

En,v,s[ui(vi, s−i)] ≥

(
1− 3 · k · (k + 1) · ζ ·m

ρ
· Y · dlog2

1

Y
e

)
SW(OPT)−Es,n[R(si, s−i)]
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where Y = m
L

[
2m
(
k+1+m
m

)]
and ρ = SW(OPT)

N
.

Proof of Theorem 2.5.2: Since player i uses a regret minimizing algorithm and she is a

(γ, δ)-player,

En

[
T∑
t=1

vi(s
t
i, s

t
−i)

]
≥ En

[
T∑
t=1

ui(vi, s
t
−i)− Φ(|Ki|, T ) · (max

xi
vi(xi) · γ + δ)

]
.

Summing over all bidders and integrating w.r.t. v and s gives

En,v,s

[∑
i

T∑
t=1

ui(v
t
i , s

t
−i)

]
≥ En,v,s

[∑
i

T∑
t=1

ui(vi, s
t
−i)− Φ(|Ki|, T ) · (max

xi
vi(xi) · γ + δ)

]

≥ En,v,s

[∑
i

T∑
t=1

ui(vi, s
t
−i)− Φ(|Ki|, T ) · (kmζγ + δ)

]
.

By Corollary 2.6.1,

∑
i

En,v,s[ui(vi, s−i)] ≥

(
1− 3 · k · (k + 1) · ζ ·m

ρ
· Y · dlog2

1

Y
e

)
SW(OPT)

− Es,n[R(si, s−i)]. (2.14)
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Therefore, since valuation equals utility plus payment,

En,v,s

[
1

T

∑
i

T∑
t=1

vi(xi(s
t
i, s

t
−i))

]

= En,v,s

[
1

T

∑
i

T∑
t=1

(ui(s
t
i, s

t
−i) + R(sti, s

t
−i))

]

≥ 1

T
En,v,s

[∑
i

(
T∑
t=1

(ui(vi, s
t
−i) + R(sti, s

t
−i))− Φ(|Ki|, T ) · (kmζγ + δ)

)]

≥

(
1− 3 · k · (k + 1) · ζ ·m

ρ
· Y · dlog2

1

Y
e

)
SW(OPT)

− 1

T

∑
i

Φ(|Ki|, T ) · (kmζγ + δ) by (2.14)

≥

(
1− 3 · k · (k + 1) · ζ ·m

ρ
· Y · dlog2

1

Y
e

)
SW(OPT)

−max
i

Φ(|Ki|, T ) · (kmζγ + δ)
1

ρ · T
SW(OPT)

=

(
1− 3 · k · (k + 1) · ζ ·m

ρ
· Y · dlog2

1

Y
e

− maxi Φ(|Ki|, T ) · (kmζγ + δ)

ρ · T

)
SW(OPT).

2.6.3.2 Fisher Market with Reserve Prices

Theorem 2.3.2 will follow from the following lemma; its proof is given in Section 2.6.4.

Lemma 2.6.7. For any bidding profile s and any value profile v which are homogeneous of

degree 1, concave, continuous, monotone and gross substitutes, if the reserve prices rj ≤ 1
4
p∗j

for any j, then ∑
i

ui(vi, s−i)) ≥ e−
2m
L

∑
i

ui(xi(p
∗)).

Proof of Theorem 2.3.2: Since player i uses a regret minimizing algorithm and the max-
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imum payoff is λui(vi, v−i) as λrj > p∗j for all j,

T∑
t=1

ui(s
t
i, s

t
−i) ≥

T∑
t=1

ui(vi, s
t
−i)− Φ(|Ki|, T ) · λui(vi, v−i).

Summing over all the bidders gives

∑
i

T∑
t=1

ui(s
t
i, s

t
−i) ≥

∑
i

T∑
t=1

ui(vi, s
t
−i)−

∑
i

Φ(|Ki|, T ) · λui(vi, v−i)

≥
∑
i

T∑
t=1

ui(vi, s
t
−i)−

∑
i

max
i′

Φ(|Ki′ |, T ) · λui(vi, v−i).

By Theorem 2.6.7, ∑
i

ui(vi, s−i)) ≥ e−
2m
L

∑
i

ui(xi(p
∗)).

Therefore,

∑
i

T∑
t=1

ui(s
t
i, s

t
−i) ≥

∑
i

T∑
t=1

ui(vi, s
t
−i)−

∑
i

max
i′

Φ(|Ki′|, T ) · λui(vi, v−i)

≥ T · e−
2m
L

∑
i

ui(xi(p
∗))−max

i′
Φ(|Ki′ |, T )λ

∑
i

ui(vi, v−i).

The theorem follows on dividing both sides by T .
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2.6.4 Reserve Prices

Definition 2.6.1. Eisenberg Gale markets with reserve prices are exactly the solutions to

the following convex program:

max
x

n∑
i=1

ei · log(ui(xi1, xi2, · · ·xim)) +
m∑
j=1

yjrj

s.t. ∀j :
∑
i

xij + yj ≤ 1

∀i, j : xij ≥ 0,

where rj is the reserve price of item j.

The proof of Theorem 2.6.7 uses the following lemma.

Lemma 2.6.8. For any bidding profile s and any value profile v which are homogeneous

of degree 1, concave, continuous, monotone and satisfy the gross substitutes property, if the

reserve prices rj ≤ 1
4
p∗j for every j, then

∑
i

ei log ui(vi, s−i))−
∑
i

ei log ui(xi(p
∗)) > −2m ·max

i′
ei′ .

Proof of Lemma 2.6.7: On exponentiating the expressions on both sides in the state-

ment of Lemma 2.6.8 we obtain

∏
i

ui(vi, s−i)
ei ≥ 1

e2m·maxi ei

∏
i

ui(vi, v−i)
ei ,

as ui(vi, v−i) = ui(xi(p
∗)). Therefore,

∏
i

(ui(vi, s−i)
ui(vi, v−i)

)ei
≥ 1

e2m·maxi ei
.

46



Using the weighted GM-AM inequality, we obtain

∑
i ei

ui(vi,s−i)
ui(vi,v−i)∑
i ei

≥

(∏
i

(ui(vi, s−i)
ui(vi, v−i)

)ei) 1∑
i ei

≥

(
1

e2mmaxi ei

) 1∑
i ei

= e
− 2mmaxi ei∑

i ei .

Since ui(vi, v−i) = tei, for all i,

∑
i

ui(vi, s−i) ≥ e
− 2mmaxi ei∑

i ei

∑
i

ui(vi, v−i).

The goal in Lemma 2.6.8 is to bound
∑

i ei log ui(vi, v−i) −
∑

i ei log ui(vi, s−i). We will

be working with the following function, the demand at prices p:

x(p) = (x1(p), x2(p), · · · ) = arg max
x

∑
i

ei log ui(xi) + 1 · p−
∑
i

xi · p. (2.15)

Recall that, by Lemma 2.4.2, pj(vi, s−i) 6 pj(si, s−i)+1·ei. Consequently, ui(xi(p(vi, s−i))) >

ui(xi(p(s)+1·maxi′ ei′)), and so it will suffice to bound
∑

i ei log ui(vi, v−i))−
∑

i ei log ui(xi(p(s)+

1 ·maxi′ ei′)).

We want to apply the bound in (2.3), but then we need prices q such that
∑

j qj =
∑

i ei.

Accordingly, we will be considering the scaled prices q(s) = (p(s)+1·maxi′ ei′)·
∑
i ei∑

j pj(s)+maxi′ ei′

and the compressed prices, defined below.

For convenience, in the following definition, we set 0
x

= 0 for x > 0, 0
0

= 1 and x
0

= +∞

for x > 0.

Definition 2.6.2. Let q be a price vector such that 1 ·q =
∑

i ei. For l < 1, the l-compressed
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version of q is defined as p′(l,q) where

p′j(l,q)

p∗j
= l if

qj
p∗j
≤ l,

p′j(l,q)

p∗j
= t if

qj
p∗j
≥ t,

and
p′j(l,q)

p∗j
=
qj
p∗j

if l <
qj
p∗j
< t,

where t is a number bigger than 1 such that
∑

j p
′
j(l,q) =

∑
i ei, and p∗ is the optimal

solution (1 · p∗ =
∑

i ei).

Henceforth, unless noted otherwise, we let p denote p(s) and q denote q(s).

Lemma 2.6.9. Let q be the scaled prices q = (p + 1 ·maxi′ ei′) ·
∑
i ei∑

j(pj(s)+maxi′ ei′ )
. Then

∑
i

ei log ui(xi(p + 1 ·max
i′

ei′)) =
∑
i

ei log ui

(
xi(p + 1 ·max

i′
ei′) ·

∑
i ei∑

j(pj + maxi′ ei′)

)

−
∑
i

ei log

∑
j(pj + maxi′ ei′)∑

i ei

=
∑
i

ei log ui(q)−
∑
i

ei log

∑
j(pj + maxi′ ei′)∑

i ei
.

Proof.

∑
i

ei log ui(xi(p + 1 ·max
i′

ei′)) =
∑
i

ei log
[
ui(xi(p + 1 ·max

i′
ei′)

·
∑

j(pj + maxi′ ei′)∑
i ei

·
∑

i ei∑
j(pj + maxi′ ei′)

)
]

=
∑
i

ei log
[
ui(xi((p + 1 ·max

i′
ei′)

·
∑

i ei∑
j pj + maxi′ ei′

)) ·
∑

j ei∑
j pj + maxi′ ei′

]
.
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Now

∑
i

ei log
[
ui(xi((p + 1 ·max

i′
ei′) ·

∑
i ei∑

j pj + maxi′ ei′
)) ·

∑
j ei∑

j pj + maxi′ ei′

]
=
∑
i

ei log ui(xi((p + 1 ·max
i′

ei′) ·
∑

i ei∑
j pj + maxi′ ei′

))−
∑
i

ei log

∑
j(pj + maxi′ ei′)∑

i ei
.

Lemma 2.6.10. Suppose that
∑

j qj =
∑

j p
′
j =

∑
i ei. Then

∑
i

ei log ui(xi(q))−
∑
i

ei log ui(xi(p
′)) >

∑
ij

(p′j − qj)xij(p′).

Proof. As x(q) = arg maxx

∑
i ei log ui(xi)−

∑
i xi · q + 1 · q,

∑
i

ei log ui(xi(q))−
∑
i

ei log ui(xi(p
′))

≥
∑
i

q · xi(q)−
∑
i

q · xi(p′).

As in the “PoA” analysis, xi(q) = arg maxxi·q=ei ui(xi). So, xi(q) ·q = ei and xi(p
′) ·p′ =

ei. Therefore,

∑
i

q · xi(q)−
∑
i

q · xi(p′)

=
∑
i

q · xi(q)−
∑
i

q · xi(p′) +
∑
i

p′ · xi(p′)−
∑
i

p′ · xi(p′)

=
∑
ij

(p′j − qj)xij(p′).

Lemma 2.6.11. Let l ≤ 1 and p′ = p′(l, q). There exists an x(p′) such that: if
p′j(l,q)

p∗j
= l,

then
∑

i xij(p
′) ≥ 1

l
, and if

p′j(l,q)

p∗j
= t, then

∑
i xij(p

′) ≤ 1
t
.
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Proof. It is straightforward to check this for linear utility functions.

Now we consider the unique-demand WGS utility functions. Let p̂ denote the prices such

that p̂j = pj when pj > 0 and p̂j = ε when pj = 0. Note that here ε is an arbitrarily small

positive value.

By the homogeneity of the utility function, there exists an x(lp∗), such that
∑

i xij(lp
∗) =

1
l

for all j such that p∗j > 0. Now, we consider
∑

i xij(l̂p
∗). For those j such that p∗j > 0, by

the Gross Substitutes property,
∑

i xij(l̂p
∗) ≥ 1

l
.

Then, we let the price increase from l̂p∗ to p̂′j(l,q). Also, by Gross Substitutes property,∑
i xij(p̂

′
j(l,q)) ≥ 1

l
for those j such that p∗j > 0 and

p′j(l,q)

p∗j
= l. By the same reasoning,∑

i xij(p̂
′
j(l,q)) ≤ 1

t
for those j such that p∗j > 0 and

p′j(l,q)

p∗j
= t.

Furthermore, by the Gross Substitutes property and homogeneity of the utility function,∑
i xij(p̂

′(l,q)) = 0 for those j such that p∗j = 0. 7

So, there exists an x(p̂′), where p′ = p′(l,q), such that for p∗j > 0, if
p′j(l,q)

p∗j
= l,∑

i xij(p̂
′) ≥ 1

l
and if

p′j(l,q)

p∗j
= t,

∑
i xij(p̂

′) ≤ 1
t
, and for p∗j = 0,

∑
i xij(p̂

′) = 0.

Since l < 1,
p′j(l,q)

p∗j
6= l when p∗j = 0. Therefore, we have an x(p̂′), where p′ = p′(l,q),

such that if
p′j(l,q)

p∗j
= l,

∑
i xij(p̂

′) ≥ 1
l

and if
p′j(l,q)

p∗j
= t,

∑
i xij(p̂

′) ≤ 1
t
.

Next, we will show there exists an x(p′) which equals x(p̂′), where p′ = p′(l,q).

By the Gross Substitutes property, the demand xi(p̂′) for a given ε is also an optimal

demand for any 0 < ε′ < ε. This is because for any small positive ε, including ε′, the demand

for the goods with price ε is 0. And reducing prices on the price ε goods only reduces the

7Note that p̂′j(l,q) > 0 for all j. We define prices p∗
′

as follows: p∗
′

j = 0 if p∗j = 0, and p∗
′

j = p̂′j(l,q) if

p∗j > 0. Now we consider a procedure that changes p∗
′

to p̂′(l,q) by increasing those prices p∗
′

j such that

p∗
′

j = 0. Let S0 be the set of items such that p∗
′

j = 0: {j|p∗′j = 0}. Next, we argue that all players will spent

all their money given prices p∗
′
. For this could be false only if one or more players’ demands are only for

items in S0. Because of the zero prices for items in S0, these items receive infinite demand. However, for
those items j in S0, p∗j , the equilibrium price, also equals 0, which implies these items would also receive
infinite demand at the market equilibrium, contradicting the market equilibrium conditions. Since we know
all players will spent all their money given prices p∗

′
, when we increase prices pj from 0 to positive for

j ∈ S0, for each player, by the Gross Substitutes property, the spending on items j /∈ S will not decrease.
Consequently, no spending will be released to the items in S0. Therefore, the spending on the items in S0

will stay at 0, and hence the allocation will equal 0.
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demand for other goods, but as there can be no reduction in spending on the latter goods,

in fact the demands are unchanged.

Let p′ = p′(l,q). By the continuity and homogeneity of the utility function, there exists

an optimal allocation x(p′), which equals x(p̂′) and which thereby proves the theorem.

For if not, suppose there were a higher utility allocation when ε = 0, whose value is u0,

where u0 > ui(xi(p̂′)). Then at any ε > 0, we could achieve utility (1 − κ(ε))u0, where

limε→0 κ(ε) = 0; and as xi(p̂′) is an optimal allocation, ui(xi(p̂′)) ≥ (1 − κ(ε))u0. But this

holds for every ε > 0, so letting ε → 0 yields ui(xi(p̂′)) ≥ u0 and hence x(p̂′) is an optimal

allocation when ε = 0.

Lemma 2.6.12. Suppose that
∑

j qj =
∑

i ei. Then

∑
i

ei log ui(xi(q))−
∑
i

ei log ui(xi(p
′(l,q))) >

∑
j

(
1

l
− 1

)
(lp∗j − qj) · 1qj6lp∗j .

Proof. By Lemma 2.6.11, there exists an x(p′), where p′ = p′(l,q), such that if
p′j(l,q)

p∗j
= l,∑

i xij(p
′) ≥ 1

l
and if

p′j(l,q)

p∗j
= t,

∑
i xij(p

′) ≤ 1
t
. Therefore, by lemma 2.6.10,

∑
i

ei log ui(xi(q))−
∑
i

ei log ui(xi(p
′(l,q)))

≥
∑
ij

(p′j(l,q)− qj)xij(p′(l,q))

≥
∑
j

(p′j(l,q)− qj) · 1 qj
p∗
j
≤l ·

1

l
+
∑
j

(p′j(l,q)− qj) · 1 qj
p∗
j
≥t ·

1

t
.

Since
∑

j p
′
j(l,q) =

∑
i ei =

∑
j qj, and as qj = p′j(l,q) when l <

qj
p∗j
< t,

∑
j

(p′j(l,q)− qj) · 1 qj
p∗
j
≤l = −

∑
j

(p′j(l,q)− qj) · 1 qj
p∗
j
≥t.

51



Thus

∑
i

ei log ui(xi(q))−
∑
i

ei log ui(xi(p
′(l,q))) >

∑
j

(
1

l
− 1

t
)(p′j(l,q)− qj) · 1 qj

p∗
j
≤l

>
∑
j

(
1

l
− 1)(lp∗j − qj) · 1qj≤lp∗j .

Lemma 2.6.13.
∑

i ei log ui(xi(p
′(l,q))) >

∑
i ei log ui(xi(p

∗).

Proof. The result follows from (2.3), as
∑

j p
∗
j =

∑
i ei =

∑
j p
′
j.

Lemma 2.6.14. For any (si, s−i) and for any j

pj(si, s−i) ≤ pj(s−i) + ei.

Proof. Let S(si, s−i) denote the set of items with pj(si, s−i) > rj. Then for j ∈ S(si, s−i),∑
i′ xi′j(si, s−i) = 1 and for j /∈ S(si, s−i),

∑
i′ xi′j(si, s−i) ≤ 1. Similarly, we let S(s−i)

denote the set of items with pj(s−i) > rj. Then, for j ∈ S(s−i),
∑

i′ 6=i xi′j(s−i) = 1, and

for j /∈ S(s−i),
∑

i′ 6=i xi′j(s−i) ≤ 1. By Lemma 2.4.3, if j /∈ S(si, s−i), rj ≤ pj(s−i) ≤

pj(si, s−i) = rj. Consequently, if j /∈ S(si, s−i),

pj(s−i) = pj(si, s−i) = rj. (2.16)

We know

∑
j,i′

xi′j(si, s−i)pj(si, s−i) =
∑
i′

ei′ =
∑
j,i′ 6=i

xi′j(s−i)pj(s−i) + ei. (2.17)

We want to show that for each j ∈ S(si, s−i),
∑

i′ xi′j(si, s−i)pj(si, s−i) ≥
∑

i′ 6=i xi′j(s−i)pj(s−i)

and
∑

j /∈S(si,s−i),i′
xi′j(si, s−i)pj(si, s−i) ≥

∑
j /∈S(si,s−i),i′ 6=i xi′j(s−i)pj(s−i). If this is true, from

(2.17), for each j ∈ S(si, s−i),
∑

i′ xi′j(si, s−i)pj(si, s−i) ≤
∑

i′ 6=i xi′j(s−i)pj(s−i) + ei. Then
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for j ∈ S(si, s−i), pj(si, s−i) =
∑

i′ xi′j(si, s−i)pj(si, s−i) ≤
∑

i′ 6=i xi′j(s−i)pj(s−i) + ei ≤

pj(s−i) + ei; and for j /∈ S(si, s−i), by (2.16), rj = pj(s−i) = pj(si, s−i). The result follows.

Next, we will prove for each j ∈ S(si, s−i),
∑

i′ xi′j(si, s−i)pj(si, s−i) ≥
∑

i′ 6=i xi′j(s−i)pj(s−i)

and
∑

j /∈S(si,s−i),i′
xi′j(si, s−i)pj(si, s−i) ≥

∑
j /∈S(si,s−i),i′ 6=i xi′j(s−i)pj(s−i). It is easy to show

that for each j ∈ S(si, s−i),
∑

i′ xi′j(si, s−i)pj(si, s−i) ≥
∑

i′ 6=i xi′j(s−i)pj(s−i) as
∑

i′(xi′j(si, s−i)

pj(si, s−i)) = pj(si, s−i)≥ pj(s−i)≥
∑

i′ 6=i xi′j(s−i)pj(s−i). To prove
∑

j /∈S(si,s−i),i′
(xi′j(si, s−i)

pj(si, s−i)) ≥
∑

j /∈S(si,s−i),i′ 6=i xi′j(s−i)pj(s−i), we consider linear utilities and unique-demand

utilities separately.

• Linear Utilities: if all buyers have linear utilities, then

∑
j:pj(si,s−i)=pj(s−i),i′ 6=i

xi′j(si, s−i)pj(si, s−i) ≥
∑

j:pj(si,s−i)=pj(s−i),i′ 6=i

xi′j(s−i)pj(s−i). (2.18)

This is because in going from p(s−i) to p(si, s−i), prices can only increase and all

buyers will move money to those items whose prices are not increased. Then for those

items in S(si, s−i) for which pj(si, s−i) = pj(s−i),

∑
j∈S(si,s−i):pj(si,s−i)=pj(s−i),i′ 6=i

xi′j(si, s−i)pj(si, s−i)

≤
∑

j∈S(si,s−i):pj(si,s−i)=pj(s−i),i′

xi′j(si, s−i)pj(si, s−i)

=
∑

j∈S(si,s−i):pj(si,s−i)=pj(s−i)

pj(si, s−i)

=
∑

j∈S(si,s−i):pj(si,s−i)=pj(s−i)

pj(s−i)

=
∑

j∈S(si,s−i):pj(si,s−i)=pj(s−i),i′ 6=i

xi′j(s−i)pj(s−i). (2.19)
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Comparing (2.18) and (2.19) yields

∑
j /∈S(si,s−i),i′ 6=i

xi′j(si, s−i)pj(si, s−i) ≥
∑

j /∈S(si,s−i),i′ 6=i

xi′j(s−i)pj(s−i),

which directly implies the result.

• Unique Demand Utilities: In this case, we will show that
∑

i′ xi′j(si, s−i)pj(si, s−i) ≥∑
i′ 6=i xi′j(s−i)pj(s−i) for each j /∈ S(si, s−i). Recall that by (2.16), for these j,

pj(s−i) = pj(si, s−i) = rj. It is easy to see the claimed result if pj(si, s−i) = pj(s−i) =

rj = 0. For the case that pj(si, s−i) = pj(s−i) = rj > 0, we first note that given price

p(si, s−i), the demand xi′j(si, s−i) is unique. 8 By the gross substitutes property, there

exists a demand at price p(si, s−i) such that xi′j(si, s−i)pj(si, s−i) ≥ xi′j(s−i)pj(s−i).

By the uniqueness of xi′j(si, s−i), this is true for the demand at price p(si, s−i).

Corollary 2.6.2.

∑
i

ei log ui(vi, s−i)−
∑
i

ei log ui(xi(p
∗))

>
∑
j

(
(1− l)p∗j −

(
1

l
− 1

)
(pj + max

i′
ei′)

∑
i ei∑

j(pj + maxi′ ei′)

)
· 1

(pj+maxi′ ei′ )
∑
i ei∑

j(pj+maxi′ ei′ )
6lp∗j

−
∑
i

ei

∑
j(pj + maxi′ ei′)∑

i ei
.

Proof. Recall that q = (p + 1 ·maxi′ ei′) ·
∑
i ei∑

j pj(s)+maxi′ ei′
, defined in Lemma 2.6.9, denotes

8If there exist two distinct demands x1i′j(si, s−i) 6= x2i′j(si, s−i), then we consider the procedure increasing
the price vector p(si, s−i) to p̂(si, s−i) in which p̂j′(si, s−i) = pj′(si, s−i) if pj′(si, s−i) > 0 and p̂j′(si, s−i) = ε
(for a small enough ε) if pj′(si, s−i) = 0. Then by the gross substitutes property, on increasing the prices
from p(si, s−i) to p̂(si, s−i), the spending on, and the allocation for those items with pj′(si, s−i) > 0
will not decrease. At the same time, the budget constraint ensures the spending on these items doesn’t
increase. Therefore, x1i′j(si, s−i) and x2i′j(si, s−i) will induce two different demands at price p̂(si, s−i), which
contradicts the unique demand assumption.
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the scaled prices, and p = p(si, s−i). Now,

∑
i

ei log ui(vi, s−i)−
∑
i

ei log ui(xi(p
∗))

>
∑
i

ei log ui(xi(p + 1 ·max
i′

ei′))−
∑
i

ei log ui(xi(p
∗)) (by Lemma 2.6.14)

>
∑
i

ei log ui(xi(q))−
∑
i

ei log

∑
j(pj + maxi′ ei′)∑

i ei

−
∑
i

ei log ui(xi(p
∗)) (by Lemma 2.6.9)

>
∑
i

ei log ui(xi(p
′(l,q))) +

∑
j

(
1

l
− 1

)
(lp∗j − qj) · 1qj6lp∗j

−
∑
i

ei log

∑
j(pj + maxi′ ei′)∑

i ei
−
∑
i

ei log ui(xi(p
∗)) (by Lemma 2.6.12)

>
∑
j

(
1

l
− 1

)
(lp∗j − qj) · 1qj6lp∗j −

∑
i

ei log

∑
j(pj + maxi′ ei′)∑

i ei
(by Lemma 2.6.13).

Let δ =
∑

j(pj + maxi′ ei′)−
∑

i ei. Suppose that the good j reserve price rj 6 1
4
p∗j for all

j. Note that
∑

i ei+
∑

j rj ·1pj=rj >
∑

j pj >
∑

i ei. Clearly,
∑

j rj ·1pj=rj > δ−m ·maxi′ ei′ .

Lemma 2.6.15. ∑
i

ei log

∑
j(pj + maxi′ ei′)∑

i ei
6 δ.

Proof.

∑
i

ei log

∑
j(pj + maxi′ ei′)∑

i ei
=
∑
i

ei log(1 +
δ∑
i ei

) ≤
∑
i

ei
δ∑
i ei

= δ.

Proof of Lemma 2.6.8: We set l = 1
2
. Recall that p∗ is the optimal pricing without
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reserve prices and p is the price of bidding profile (si, s−i) with reserve price. Then,

∑
i

ei log ui(vi, s−i))−
∑
i

ei log ui(xi(p
∗))

≥
∑
j

(2− 1)(
1

2
p∗j − (pj + max

i′
ei′) ·

∑
i ei∑

j(pj + maxi′ ei′)
)

· 1
(pj+maxi′ ei′ )·

∑
i ei∑

j(pj+maxi′ ei′ )
≤ 1

2
p∗j
− δ (by Corollary 2.6.2 and Lemma 2.6.15)

≥
∑
j

(2− 1)(
1

2
p∗j − (rj + max

i′
ei′) ·

∑
i ei∑

j(pj + maxi′ ei′)
)

· 1
pj=rj∧(rj+maxi′ ei′ )·

∑
i ei∑

j(pj+maxi′ ei′ )
≤ 1

2
p∗j
− δ

≥
∑
j

(
1

2
p∗j − (rj + max

i′
ei′) ·

∑
i ei∑

j(pj + maxi′ ei′)
) · 1pj=rj∧(rj+maxi′ ei′ )≤

1
2
p∗j
− δ

(as
∑
i ei∑

j(pj+maxi′ ei′ )
≤ 1 by

∑
i ei ≤

∑
j pj)

≥
∑
j

(
1

2
p∗j − (rj + max

i′
ei′)) · 1pj=rj∧(rj+maxi′ ei′ )≤

1
2
p∗j
− δ (as

∑
i ei∑

j(pj+maxi′ ei′ )
≤ 1)

≥
∑
j

(
1

2
p∗j − (rj + max

i′
ei′)) · 1pj=rj∧rj≤ 1

2
p∗j
− δ

≥
∑
j

rj · 1pj=rj −m ·max
i′

ei′ − δ (as
1

2
p∗j ≥ 2rj)

> δ −m ·max
i′

ei′ −m ·max
i′

ei′ − δ = −2m ·max
i′

ei′ (as
∑
j

rj · 1pj=rj > δ −m ·max
i′

ei′).
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Chapter 3

Dynamics

3.1 Preliminary

One of the most important results in Algorithmic Game Theory is the PPAD-hardness

of finding a Nash Equilibrium in finite games [DGP09, CDT09], which serves as a strong

evidence that there is no efficient algorithm to compute Nash Equilibria. Similar hardness

results have been established for markets [CSVY06, CDDT09, CT09, VY11, CPY17]. By

viewing the players and the environment collectively as implicitly performing a computation,

these hardness results indicate that, in general, a market cannot reach an equilibrium quickly.

In Kamal Jain’s words: “If your laptop cannot find it, neither can the market” [NRTV07,

Chapter 2.1].

As a result, a lot of attention has been given to the design of polynomial-time algo-

rithms to find equilibria, either exactly or approximately, for specific families of games and

markets. Most of these algorithms can be categorized as either simplex-like (e.g., Lemke-

Howson), numerical methods (e.g., the interior-point method or the ellipsoid method), or

some carefully-crafted combinatorial algorithm (e.g., flow-based algorithms for computing a

market equilibrium for linear utility functions).
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However, it seems implausible that these algorithms describe the implicit computations

in games or markets. For many markets would appear to have a highly distributed environ-

ment, or need to make rapid decisions on an ongoing basis. These features would appear

to preclude computations which require centralized coordination, which is essential for the

three categories of algorithms above. Consequently, in order to justify equilibrium concepts,

we want natural algorithms which could plausibly be running (in an implicit form) in the

associated distributed environments.

This dissertation focus on two natural dynamics in Fisher markets: Proportional Response

and Tatonnement.

Dynamics, implicitly, are being considered in an ongoing Fisher Market. In an ongoing

Fisher Market, each round, buyers will receive a new budget and they will distribute their

budget on different goods; sellers will refresh their supply and update their prices. Based

on the spending and prices, buyers will receive an allocation, and they will update their

spending in the next round.

3.1.1 Related Work

Computer scientists, beginning with the work by Deng et al. [DPS03], showed that com-

puting equilibria was a hard problem in general; see also [DD08, PY10]. This led to much

work on polynomial time algorithms for restricted classes of markets, e.g. [DPSV08, Dev04,

CMV05, GK06].

The Eisenberg-Gale program for the case of linear utilities was formulated in [EG59]

and then generalized to homothetic functions in [Eis61]; further generalizations were given

in [JV07]. The maxima of these convex programs correspond to the equilibria of the corre-

sponding markets. In particular, when buyer or agent utilities are homothetic, the optimum

of the Eisenberg-Gale program corresponds to the optimum Nash Social Welfare; interest-

ingly, this optimum also appears to provide good outcomes when apportioning indivisible
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goods [Bud11, CKM+16]. Recently, Cole et al. [CDG+17] identified another variant of the

Eisenberg-Gale program that captured the then best currently-known polynomial-time ap-

proximate solution for the indivisible setting.

Two natural dynamics have been studied in the context of Fisher markets, tatonnement

and proportional response.

The stability of the tatonnement process has been considered to be one of the most

fundamental issues in general equilibrium theory. Hahn [Hah82] provides a thorough survey

on the topic, and the textbook of Mas-Colell, Whinston and Green [MCWG95] contains a

good summary of the classic results.

The longstanding interpretation of tatonnement is that it is a method used by an auc-

tioneer for iteratively updating prices, followed by trading at the equilibrium prices once

they are reached. If trading is allowed as the price updating occurs, this is called a non-

tatonnement process. In recent years, discrete versions of the (non)-tatonnement process

have received increased attention. Codenotti et al. [CMV05] considered a tatonnement-like

process that required some coordination among different goods and showed polynomial time

convergence for a class Fisher markets with weak gross substitutes (WGS) utilities. Cole

and Fleischer [CF08] were the first to establish fast convergence for a truly distributed,

asynchronous and discrete version of tatonnement, once again for a class of WGS Fisher

markets. The continued interest in the plausibility of tatonnement is also reflected in some

experiments by Hirota [HHPR05], which showed the predictive accuracy of tatonnement in

a non-equilibrium trade setting.

Proportional Response, in contrast, is a buyer-oriented update, originally analyzed in

an effort to explain the behavior of peer-to-peer networks [WZ07, Zha11]. Here, buyers

update their spending in proportion to the contribution each good makes to its current

utility. An O(1/T ) rate of convergence was shown in [BDX11] for Fisher markets with

buyers having linear utilities, and a faster linear rate of convergence for the substitutes

domain excluding linear utilities was shown in [Zha11]. The analysis most similar to ours
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is the one in [BDX11] which considers convex functions that obey a constraint, which we

name L-Bregman convexity w.r.t. a Bregman divergence (see Definition 3.2.1). Our work

generalizes this notion substantially.

Other dynamics have been considered. In particular, Dvijotham et al. [DRS17] study

sellers best responding in a setting in which they form beliefs about other sellers’ strategies.

They obtain linear convergence in Fisher markets for most of the CES domain, but not for

linear utilities. In the context of network flow control, Low and Lapsley [LL99] adopted an

optimization approach to derive a dynamic protocol where both prices (of links) and flow

demands of agents are updated, and showed that the protocol converges to a social-welfare

maximizing state. The update rules (3.2), (3.3) look quite similar to a game-learning dy-

namic called log-linear learning [Blu93, MS12] (by suitably viewing spendings as probability

densities), but due to different contexts (games vs. markets), the actual behaviors and the

analyses have significant qualitative differences.

Convex-concave saddle-point problems can be reduced to non-smooth convex minimiza-

tion problems, for which algorithms yielding O(1/
√
T ) convergence rate exist. Its wide

applications (e.g., to two-person zero-sum game equilibria) have motivated exploration of

properties of the underlying function which support faster converging algorithms [Nem04,

Nes05b, Nes05a, Nes07, RS13].

3.2 Proportional Response

Proportional Response is a buyer-oriented update, originally analyzed in an effort to

explain the behavior of peer-to-peer networks [WZ07, LLSB08]. Here, buyers update their

spending in proportion to the contribution each good makes to its current utility. While

its meaning is clear for linear and other separable utilities, for other classes of utilities this

needs more interpretation, which we provide in following sections. Here prices are assumed to

equal the current spending. An O(1/T ) rate of convergence was shown in [BDX11] for Fisher

60



markets with buyers having linear utilities, and for the substitutes domain excluding linear

utilities, a faster linear rate (i.e., an E(−Ω(T )) rate) of convergence was shown in [Zha11].

This dissertation continues the exploration of the connection between distributed dynamic

processes and convex optimization, and more specifically the relation of proportional response

to mirror descent.

Our first set of results starts by rederiving Zhang’s bounds for CES substitutes utilities, by

showing that for this setting proportional response amounts to mirror descent on a suitable

convex function. To achieve the linear rate of convergence he obtained, we need to go beyond

the standard O(1/T ) rate of convergence for mirror descent with a Bregman divergence. We

proceed by analogy with gradient descent. Gradient descent with a Lipschitz constraint

on the gradients guarantees only an O(1/T ) rate of convergence, but a faster linear rate

of convergence is obtained when the objective function f is strongly convex. For mirror

descent with Bregman Divergences we introduce the notion of strong Bregman convexity and

show that it also leads to a linear convergence rate. It turns out that the convex function

associated with the CES substitutes utilities satisfies strong Bregman convexity, thereby

obtaining Zhang’s bound anew. In addition, for complementary CES utilities, the same now

concave function satisfies an analogous strong Bregman concavity property, which also yields

a linear rate of convergence for these utilities. In addition, if we include linear utilities in the

substitutes utilities, we obtain an O(1/T ) rate of convergence; likewise, including Leontief

utilities in the complementary utilities also yields an O(1/T ) rate.

Next, we seek to handle substitute and complementary CES utilities simultaneously. The

challenge we face is that the objective function used for the first set of results becomes a

mixed concave-convex function in this setting, and the equilibrium corresponds to a saddle

point of this function. We introduce the further notion of strongly-Bregman convex-concave

functions, and for these functions we obtain a linear rate of convergence to the saddle point.

Again, our objective function for the mixed CES utilities satisfies this property, thereby

yielding linear convergence, albeit now for a damped proportional response, rather than the
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undamped proportional response analyzed in the first set of results. Here, including linear

utilities and Leontief utilities yields an empirical O(1/T ) rate of convergence.

We note that our results are not a straightforward application of the existing mirror de-

scent toolbox. The Bregman notions and the related convergence results in this dissertation

are new. While the results for strong Bregman convex (resp. concave) functions are natural

generalizations of gradient descent (resp. ascent) on standard strong convex (resp. concave)

functions, the technique for demonstrating convergence for strong Bregman convex-concave

functions appears to be new. It is not evident that suitable damping (i.e., reducing the step-

size) permits a clean convergence analysis. Indeed, results showing linear point-wise conver-

gence on convex-concave functions are rare; the only such work we are aware of is [GJLJ17].

We believe the new notions and convergence results for optimization problems may be of

wider interest.

3.2.1 Bregman Divergence and Proportional Response

Bregman Divergence and Mirror Descent Let C be a compact and convex set. Given

a differentiable convex function h(x) with domain C, the Bregman divergence generated by

kernel h is denoted by dh, and is defined as:

dh(x,y) = h(x) − [ h(y) + 〈 ∇h(y) , x− y 〉 ] , ∀x ∈ C and y ∈ rint(C),

where rint(C) is the relative interior of C. We note that, in general, dh is asymmetric,

i.e., possibly dh(x,y) 6= dh(y,x). In this dissertation, we use the Kullback-Leibler or KL

divergence extensively; it is the Bregman divergence generated by h(x) =
∑

j(xj · lnxj−xj).

When
∑

j xj =
∑

j yj, the explicit formula is:

KL(x||y) :=
∑
j

xj · ln
xj
yj
.
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For the problem of minimizing a convex function f(x) subject to x ∈ C, the mirror

descent method w.r.t. Bregman divergence dh is given by the following update rule:

xt+1 = arg min
x∈C

{
f(xt) +

〈
∇f(xt) , x− xt

〉
+

1

Γt
· dh(x,xt)

}
, (3.1)

where Γt > 0, and may be dependent on t.

Proportional Response For linear utility functions, Proportional Response is the dy-

namic given by the spending update rule:

bt+1
ij = ei ·

aijx
t
ij∑

k aikx
t
ik

= ei ·
aij

btij
ptj∑

k aik
btik
ptk

with ptk =
∑
i

btik.

For substitutes CES utilities, [Zha11] generalized this rule to:

bt+1
ij = ei ·

aij(x
t
ij)

ρi∑
k aik(x

t
ik)

ρi
= ei ·

aij

(
btij
ptj

)ρi
∑

k aik

(
btik
ptk

)ρi (3.2)

obtaining a linear convergence rate for the resulting dynamic, assuming 0 < ρi < 1. The

above rule has a natural distributed interpretation in the Fisher market setting: in each

round, each buyer splits her spending on different goods in proportion to the values of

aik(x
t
ik)

ρi . The seller of good j then allocates the good to buyers in proportion to the

spending received from each buyer.

3.2.2 Results

3.2.2.1 Proportional Response

It is natural to seek to extend the Proportional Response rule (3.2) to the complementary

domain, but this rule does not lead to convergent behavior in general. To see this, set ρ = −1.
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Suppose there are two buyers and two items. Both buyers have the same preference for each

item and the same budgets; i.e. a11 = a12 = a21 = a22 = 1
2
, and e1 = e2 = 1. Initially, at

time t = 0, suppose that b
(0)
11 = 1

4
, b

(0)
12 = 3

4
, b

(0)
21 = 3

4
, and b

(0)
22 = 1

4
. A simple calculation

shows that applying update rule (3.2) gives b
(1)
11 = 3

4
, b

(1)
12 = 1

4
, b

(1)
21 = 1

4
, and b

(1)
22 = 3

4
. So

this simple example shows that in this setting, the spending will not converge to the market

equilibrium; rather, it will cycle among two states.

Instead, we observe that in the substitutes domain, excluding Cobb-Douglas utilities,

this rule is the mirror descent updating rule using the KL divergence for the following

optimization problem.

min
b

Φ(b) = −
∑
ij

bij
ρi

log
aij(bij)

ρi−1

(
∑

h bhj)
ρi

subject to
∑

jbij = ei for all i, and bij ≥ 0 for all i, j.

We exclude Cobb-Douglas utilities, because as ρi → 0 the corresponding term in Φ tends to

∞. When restricted to linear utilities, i.e. ρi = 1 for all i, this is simply Shmyrev’s convex

program [Shm09] for these markets.

In the complementary domain, we adapt the potential function to

Φ(b) = −
∑

i:ρi 6={0,−∞}

1

ρi

∑
j

bij log
aijb

ρi−1
ij

[pj(b)]ρi
−

∑
i:ρi=−∞

∑
j

bij log
bij

cijpj(b)
.

where cij is defined in the Leontief utility ui(xi) = minj{xijcij }. The mirror descent updating

rule for this function is:

bt+1
ij = ei ·

(
aij

(ptj)
ρi

) 1
1−ρi

∑
k

(
aik

(ptk)ρi

) 1
1−ρi

for −∞ < ρi < 0, and bt+1
ij = ei ·

cijp
t
j∑

k cikp
t
k

for ρi = −∞,

where ptk =
∑

ib
t
ik. (3.3)
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Accordingly, we adopt this as the generalization of Proportional Response to the comple-

mentary domain. This rule can be easily implemented in the distributed environment of

Fisher markets. In each round, each buyer only needs the prices computed in the previous

round to compute its update. Thus, to implement the update rule, it suffices to have the

sellers broadcast their prices by the end of each round.

Interestingly, this update rule is also the best response action to the current prices for

each buyer. We note that this rule can be viewed as a tatonnement update if we define

xt+1
ij = bt+1

ij /ptj, for then pt+1
j =

∑
i b
t+1
ij =

∑
i x

t+1
ij ptj = ptj(1 + zt+1

j ). However, this is not

the same rule as was used for the tatonnement analyzed in recent works regarding Fisher

markets [CF08, CCD19].

For linear utilities, update rule (3.2) was analyzed in [BDX11]. For the substitutes domain

excluding linear utilities, a faster linear rate of convergence was shown in [Zha11], but not

based on considering the above optimization problem. To obtain a linear rate of convergence

for an analysis based on optimizing Φ via a mirror descent with a KL Divergence, we intro-

duce the notion of strong Bregman convexity. We also coin the term Bregman convexity for

an analogous notion introduced in [BDX11]).

Definition 3.2.1. The function f is L-Bregman convex w.r.t. Bregman divergence dh if, for

any y ∈ rint(C) and x ∈ C,

f(y) + 〈 ∇f(y) , x− y 〉 6 f(x) 6 f(y) + 〈 ∇f(y) , x− y 〉 + L · dh(x,y).

The function f is (σ, L)-strongly Bregman convex w.r.t. Bregman divergence dh if, 0 < σ 6 L,

and, for any y ∈ rint(C), x ∈ C,

f(y)+〈 ∇f(y) , x− y 〉 + σ·dh(x,y) 6 f(x) 6 f(y)+〈 ∇f(y) , x− y 〉 + L·dh(x,y).

If the direction of the inequalities and the signs on the dh(x,y) terms are reversed, the
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function is said to be Bregman concave (or strongly Bregman concave respectively). (rint(C)

denotes the relative interior of C.)

Consider the update rule:

xt+1 ← arg min
y

{〈
∇f(xt) , y − xt

〉
+ L · dh(y,xt)

}
. (3.4)

Theorem 3.2.1. Suppose that f is (σ, L)-strongly Bregman convex w.r.t. dh. If update rule

(3.4) is applied, then, for all t > 1,

f(xt)− f(x∗) 6
σ(

L
L−σ

)t − 1
· dh(x∗,x0).

An analogous Theorem for L-Bregman convex functions was given in [BDX11]:

Theorem 3.2.2. [BDX11] Suppose f is an L-Bregman convex function w.r.t. d, and xT is

the point reached after T applications of the mirror descent update rule (3.4). Then,

f(xT )− f(x∗) ≤ L · d(x∗,x0)

T
.

We show that in the CES substitutes domain, excluding linear utilities, Φ is a strongly

Bregman convex function w.r.t. the KL-divergence on spending, thereby providing an alter-

native derivation of Zhang’s result. In addition, in the CES complements domain, excluding

Leontief utilities, Φ is a strongly Bregman concave function w.r.t. the KL divergence on

spending, which yields a proof of linear convergence in this domain. These analyses are

readily modified to give a 1/T rate of convergence if we include respectively the linear and

Leontief utilities. These results are made precise in the following theorem.

Theorem 3.2.3. Suppose buyers with substitutes utilities repeatedly update their spending

using Proportional Response rule (3.2), and those with complementary utilities use rule (3.3).

Then the potential function Φ converges to the market equilibrium as follows.
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• If all buyers have substitutes CES utilities, then

Φ(bT )− Φ(b∗) ≤ 1

T

∑
i

1

ρi
KL(b∗i ||b0

i ).

• Suppose that in addition no buyer has a linear utility. Let σ = mini{1− ρi}. Then,

Φ(bT )− Φ(b∗) ≤ σ(1− σ)T

1− (1− σ)T

∑
i

1

ρi
KL(b∗i ||b0

i ).

• If all buyers have complementary CES utilities, then1

Φ(b∗)− Φ(bT ) ≤ 1

T

∑
i

ρi − 1

ρi
KL(b∗i ||b0

i ).

• Suppose that in addition no buyer has a Leontief utility. Let σ = mini

{
1

1−ρi

}
. Then,

Φ(b∗)− Φ(bT ) ≤ σ(1− σ)T

1− (1− σ)T

∑
i

ρi − 1

ρi
KL(b∗i ||b0

i ).

The results are shown in Corollaries 3.2.1, 3.2.2, 3.2.3, and 3.2.4, respectively. We also

note that as shown in Lemma 13 in [BDX11], if b0
ij = ei/m for all i and j, then KL(b∗||b0) 6

logmn, which provides a possibly more intuitive version of the above bounds.

Theorem 3.2.3 does not cover buyers with Cobb-Douglas utilities, because, as already

noted, the terms in Φ for such buyers are equal to∞. Note that these buyers always wish to

allocate their spending in fixed proportions regardless of the prices. Thus, arguably, it would

be natural for these buyers to always have the equilibrium spending. But even if this were not

true initially, after one update this property would hold, and remain true henceforth. Thus

the presence of these buyers would seem to have little effect on the convergence. Indeed,

the above bounds hold with KL(b∗i ||b0
i ) replaced by KL(b∗i ||b1

i ) and T replaced by T − 1

1For ρi = −∞, we define ρi−1
ρi

to equal 1.
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on the RHS. But to obtain bounds in terms of KL(b∗i ||b0
i ) appears to require substantially

more effort; this analysis is given in Section 3.2.8.1(see Theorems 3.2.7-3.2.10). The rates of

convergence are similar to those given in Theorem 3.2.3.

3.2.2.2 Damped Proportional Response

But what if we want to allow a mix of substitutes and complementary utilities? The

difficulty we face is that the objective function Φ is no longer either convex or concave.

Rather, if we fix the spending of the buyers with complementary utilities, the resulting

restricted Φ is convex, while if we fix the spending of the buyers with substitutes utilities,

the resulting restricted Φ is concave. As it happens, the equilibrium corresponds to a saddle

point of the function Φ. Also, a suitable dynamic will converge to this saddle point. To show

this, we introduce a saddle-point convergence analysis. To this end, we define the following

notion.

Definition 3.2.2. Function f is (LX , LY )-convex-concave w.r.t. the pair of Bregman diver-

gences (dg, dh), if it satisfies the following constraints.

1. For fixed y, f(·,y) is a convex function;

2. For fixed x, f(x, ·) is a concave function;

3. There exist parameters LX , LY > 0 such that for any x ∈ X, x′ ∈ X, y ∈ Y and

y′ ∈ Y ,

−LY · dh(y,y′)
(a)

≤ f(x,y)− f(x′,y′)− 〈∇f(x′,y′), (x,y)− (x′,y′)〉
(b)

≤ LX · dg(x,x′).

(3.5)

The saddle point is the “optimal” point of the convex-concave function, which is the

minimum point in the x-direction and the maximum point in the y-direction, defined formally

as follows.
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Definition 3.2.3. (x∗, y∗) is a saddle point of f if and only if

f(x, y∗) ≥ f(x∗, y∗) ≥ f(x∗, y) for any x ∈ X and y ∈ Y .

Now consider the following update rule:

xt+1 = arg min
x
{〈∇xf(xt,yt),x− xt〉+ 2LX · dg(x,xt)};

yt+1 = arg min
y
{〈−∇yf(xt,yt),y − yt〉+ 2LY · dh(y,yt)}. (3.6)

We can then show an O(1/T ) empirical rate of convergence, as stated in the next theorem.

Theorem 3.2.4. Suppose that f is (LX , LY )-convex-concave, and there exists a saddle point

(x∗,y∗). In addition, suppose that (x,y) is updated according to (3.6). Then:

(i)
T∑
t=1

(
f(xt,y∗)− f(x∗,yt)

)
≤ 2LX · dg(x∗,x0) + 2LY · dh(y∗,y0).

Note that f(xt,y∗)− f(x∗,yt) ≥ 0 since f(xt,y∗) ≥ f(x∗,y∗) ≥ f(x∗,yt).

(ii) Also, if x̄ = 1
T

∑T
t=1 xt and ȳ = 1

T

∑T
t=1 yt, then:

f(x̄,y∗)− f(x∗, ȳ) ≤ 1

T
[2LX · dg(x∗,x0) + 2LY · dh(y∗,y0)].

Note that the second part of the theorem follows immediately from the first part because

f(·,y∗) is a convex function and f(x∗, ·) is a concave function.

The objective function Φ is (1, 1)-convex-concave w.r.t. dg =
∑

i:ρi>0
1
ρi

KL(bi||b′i) and

dh =
∑

i:∞<ρi<0
ρi−1
ρi

KL(bi||b′i) +
∑

i:ρi=−∞KL(bi||b′i). Consequently, we obtain an empirical
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O(1/T ) rate of convergence for the following Damped Proportional Response update.

bt+1
ij = ei ·

[
btij · aij

(
btij
ptj

)ρi] 1
2

∑
k

[
btik · aik

(
btik
ptk

)ρi] 1
2

, for ρi > 0;

bt+1
ij = ei ·

[
btij ·

(
aij

(ptj)
ρi

) 1
1−ρi
] 1

2

∑
k

[
btik ·

(
aik

(ptk)ρi

) 1
1−ρi
] 1

2

, for −∞ < ρi < 0;

bt+1
ij = ei ·

[
btij ·

(
cij
ptj

)−1] 1
2

∑
k

[
btik ·

(
cik
ptk

)−1] 1
2

, for ρi = −∞; (3.7)

We say it is damped because the update rule uses the geometric mean of the current value

and the standard Proportional Response update.

A natural question is whether a linear convergence rate is possible if the linear and Leontief

utilities are excluded. The answer is yes, and to obtain this we need a stronger condition on

the convex-concave objective function, as given in the following definition.

Definition 3.2.4. f is a (σX , σY , LX , LY )-strongly Bregman convex-concave function, w.r.t.

Bregman divergences dg, dh, if, for all x ∈ X, x′ ∈ X, y ∈ Y , and y′ ∈ Y , function f

satisfies:

− LY · dh(y,y′) + σX · dg(x,x′) ≤ f(x,y)− f(x′,y′)− 〈∇f(x′,y′), (x,y)− (x′,y′)〉

≤ LX · dg(x,x′)− σY · dh(y,y′).

(3.8)

Theorem 3.2.5. If f is a (σX , σY , LX , LY )-strongly Bregman convex-concave function w.r.t

dg and dh, and there exists a saddle point, then update rule (3.6) converges to the saddle
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point with a linear convergence rate:

(
f(xT ,y∗)− f(x∗,yT )

)
≤

(
1−

min
{
σX
LX
, σY
LY

}
2

)T−1(
(2LX − σX)dg(x

∗,x0) + (2LY − σY )dh(y
∗,y0)

)
.

Φ is (mini:ρi>0{1−ρi},mini:ρi<0

{
1

1−ρi

}
, 1, 1)-strongly Bregman convex-concave, and thus

we can deduce that the damped Proportional Response achieves a linear convergence rate if

linear and Leontief utilities are excluded.

As before, the above results exclude Cobb-Douglas utilities.

Arguably, the buyers with Cobb-Douglas utilities should always have the equilibrium

spending, or failing that, should immediately update to this spending. But for mathematical

consistency, we suppose they are performing the same type of damped update as the other

buyers. In this case, our previous potential function can’t be used when we include Cobb-

Douglas utility functions. We now need to include a term in the potential function for each

buyer with a Cobb-Douglas utility as their spending keeps changing.

We will need the following notation. Let b>0, b=0, and b<0 denote the spending of

those buyers with ρi > 0, ρi = 0, and ρi < 0, respectively. Accordingly, we will write

Φ(b) = Φ(b>0,b=0,b<0). The resulting function is still convex in b>0 and concave in b<0.

The construction is given in Section 3.2.8.1. We note that the update rule for the buyers

with ρi = 0 is given by:

bt+1
ij = ei ·

[
btij · atij

] 1
2

∑
k

[
btik · atik

] 1
2

, for ρi = 0.

Theorem 3.2.6. Suppose buyers repeatedly update their spending using the Damped Pro-
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portional Response rule (3.7). Then

KL(bT=0||b∗=0) ≤ 1

2T
KL(b0

=0||b∗=0),

and the potential function Φ converges to the market equilibrium as follows:

i.
T∑
t=1

[
Φ(bt>0,b

∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

t
<0)

]

≤ 4
∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||b0

i )

+
∑
i:ρi>0

2

ρi
KL(b∗i ||b0

i ) +
∑

i:ρi=−∞

KL(b∗i ||b0
i ).

ii. If in addition no buyer has a linear or Leontief utility,

Let σ = min

{
min
i:ρi>0

{
2

1 + ρi

}
, min
i:ρi<0

{
2(ρi − 1)

2ρi − 1

} }
(so 1 < σ < 2). Then,

Φ(bT>0,b
∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

T
<0)

≤ 1

σT−1

[
4

2− σ
∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:ρi<0

2ρi − 1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi>0

1 + ρi
ρi

KL(b∗i ||b0
i )

]
.

Weaker bounds are shown in Corollaries 3.2.5 and 3.2.6, respectively. The complete proof

is given in Section 3.2.8.1 (see Theorems 3.2.11 and 3.2.12).

3.2.3 Linear Convergence with Strong Bregman Convexity

Our proof will use the following lemmas.

Lemma 3.2.1. [CT93] If x+ is the optimal point for the optimization problem:

minimize g(x) + d(x,y)

subject to x ∈ C,
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where C is a compact convex set, then, for any x ∈ C,

g(x+) + d(x+,y) + d(x,x+) ≤ g(x) + d(x,y).

Lemma 3.2.2. [BDX11] Suppose that f is an L-Bregman convex function w.r.t. d(x,x′),

and xt and xt+1 are the points reached after t and t + 1 applications of the mirror descent

update rule (3.4). Then

f(xt+1) ≤ f(xt).

Proof of Theorem 3.2.1. By Lemma 3.2.1 with y = xt, x+ = xt+1, and x = x∗,

〈
∇f(xt) , xt+1 − xt

〉
+ L · dh(xt+1,xt)

6
〈
∇f(xt) , x∗ − xt

〉
+ L ·

[
dh(x

∗,xt)− dh(x∗,xt+1)
]
. (3.9)

By strong Bregman-convexity, with y = xt, and x = xt+1,

〈
∇f(xt) , xt+1 − xt

〉
+ L · dh(xt+1,xt) > f(xt+1)− f(xt); (3.10)

and with y = xt and x = x∗,

∇f(xt) · (x∗ − xt) 6 f(x∗)− f(xt)− σ · dh(x∗,xt). (3.11)

Combining (3.9), (3.10), and (3.11), gives, for t > 0,

f(xt+1)− f(x∗) 6 (L− σ) · dh(x∗,xt) − L · dh(x∗,xt+1). (3.12)

On multiplying both sides of the above inequality by
(

L
L−σ

)t
, and then summing over
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0 6 t < T , the RHS becomes a telescoping sum, and hence

T−1∑
t=0

(
L

L− σ

)t
·
[
f(xt+1)− f(x∗)

]
6 (L− σ) · dh(x∗,x0).

By Lemma 3.2.2, f(xt+1) 6 f(xt); thus:

L− σ
σ
·

[(
L

L− σ

)T
− 1

]
·
[
f(xT )− f(x∗)

]
=

(
T−1∑
t=0

(
L

L− σ

)t)
·
[
f(xT )− f(x∗)

]
6 (L− σ) · dh(x∗,x0),

and the result follows.

3.2.4 Convergence of Proportional Response

We consider the following potential function:

pj(b) =
∑

ibij,

Φ(b) = −
∑

i:ρi 6={0,−∞}

1

ρi

∑
j

bij log
aijb

ρi−1
ij

[pj(b)]ρi
−

∑
i:ρi=−∞

∑
j

bij log
bij

cijpj(b)
.

For those i for which ρi 6= −∞,

∇bijΦ(b) = − 1

ρi
log aij −

ρi − 1

ρi
(log bij + 1) + log pj(b) +

∑
h

bhj
1

pj(b)

=
1

ρi

(
1− log

aijb
ρi−1
ij

pρij (b)

)
;

and for those i for which ρi = −∞, ∇bijΦ(b) = − log
bij
cijpj

.

We deduce:
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Lemma 3.2.3.

∑
i:ρi 6=−∞

1− ρi
ρi

KL(bi||b′i)−
∑

i:ρi=−∞

KL(bi||b′i)

≤ Φ(b)− Φ(b′)− 〈∇Φ(b′),b− b′〉

≤
∑

i:ρi 6=−∞

1

ρi
KL(bi||b′i).

Proof.

Φ(b)− Φ(b′)− 〈∇Φ(b′),b− b′〉

= −
∑

i:ρi 6={0,−∞}

ρi − 1

ρi
KL(bi||b′i)−

∑
i:ρi=−∞

KL(bi||b′i) + KL(p||p′)

=
∑

i:ρi 6=−∞

1

ρi
KL(bi||b′i)−

(∑
i

KL(bi||b′i)−KL(p||p′)
)
.

Since
∑

i KL(bi||b′i) ≥ KL(p||p′), the result follows.

The Substitutes Domain The following lemma states the equivalence between mirror

descent and proportional response in the substitutes domain; it follow readily from the

definition of bt+1 for Proportional Response (given by (3.2)).

Lemma 3.2.4. For buyers with CES substitutes utilities, the Proportional Response update

is the same as the mirror descent update, given by:

bt+1
i = arg minbi:

∑
j bij=ei

{
〈∇biΦ(bt),bi − bti〉+

1

ρi
KL(bi||bti)

}
.

The next lemma states several properties of the potential function in the substitutes

domain.

Lemma 3.2.5. i. If ρi > 0 for all i, then Φ is a 1-Bregman convex function w.r.t.∑
i

1
ρi

KL(bi||b′i);
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ii. if 0 < ρi < 1 for all i, then Φ is a (mini{1 − ρi}, 1)-strong Bregman convex function

w.r.t.
∑

i
1
ρi

KL(bi||b′i);

iii. b is the spending at the market equilibrium if and only if b is the minimum point of Φ.

Proof. The first two claims follow from Lemma 3.2.3 with a little calculation. The proof of

the third claim is given in Section 3.2.8.3.

Let b∗ be the spending at some market equilibrium. Applying Theorem 3.2.2 yields:

Corollary 3.2.1.

Φ(bT )− Φ(b∗) ≤ 1

T

∑
i

1

ρi
KL(b∗i ||b0

i ).

Furthermore, if there is no buyer with a linear utility function, then, applying Theo-

rem 3.2.1 yields:

Corollary 3.2.2. Let σ = mini{1− ρi} > 0. Then

Φ(bT )− Φ(b∗) ≤ σ(1− σ)T

1− (1− σ)T

∑
i

1

ρi
KL(b∗i ||b0

i ).

We now explain how to recover Zhang’s bound [Zha11]. From (3.12),

∑
i

1

ρi
KL(b∗i ||bti) 6

L− σ
L

∑
i

1

ρi
KL(b∗i ||bt−1

i )

6

(
L− σ
L

)t∑
i

1

ρi
KL(b∗i ||b0

i ) =
(

max
i
ρi

)t∑
i

1

ρi
KL(b∗i ||b0

i )

(as L = 1 here).

In [Zha11], φ(t) is used to denote
∑

i
1
ρi

KL(b∗i ||bti). We have obtained the exact same bound

on
∑

i
1
ρi

KL(b∗i ||bti) as in [Zha11], and thus can deduce the identical convergence rate.
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The Complementary Domain We proceed as in the substitutes domain. First, the

following lemma shows the equivalence between the mirror descent and the proportional

response (given by (3.3)) in the complementary domain.

Lemma 3.2.6. For those complementary buyers such that −∞ < ρi < 0, the Proportional

Response update, which is the best response in this domain, is equal to the mirror descent

update, given by:

bt+1
i = arg minbi:

∑
j bij=ei

{
−〈∇biΦ(bt),bi − bti〉+

ρi − 1

ρi
KL(bi||bti)

}
;

and this also holds for buyers with Leontief utility functions, where now the mirror descent

update is given by:

bt+1
i = arg minbi:

∑
j bij=ei

{−〈∇biΦ(bt),bi − bti〉+ KL(bi||bti)};

Next, we show the following properties of the potential function in the complementary

domain. The main difference between the complementary case and the substitutes case is

that the potential function is a concave function in the complementary domain, while it is a

convex function in the substitutes domain.

Lemma 3.2.7. i. If ρi < 0 for all i, then Φ is a 1-Bregman concave function w.r.t.∑
i
ρi−1
ρi

KL(bi||b′i);

ii. if −∞ < ρi < 0 for all i, then Φ is a (mini{ 1
1−ρi}, 1)-strong Bregman concave function

w.r.t.
∑

i
ρi−1
ρi

KL(bi||b′i);

iii. b is the spending at the market equilibrium if and only if b is the maximum point of Φ.

Proof. The first two claims follow from Lemma 3.2.3 with a little calculation. The proof of

the third claim is given in Section 3.2.8.3.
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Also, let b∗ be the spending at some market equilibrium. Applying Theorem 3.2.2 yields:2

Corollary 3.2.3.

Φ(b∗)− Φ(bT ) ≤ 1

T

∑
i

ρi − 1

ρi
KL(b∗i ||b0

i ).

In addition, if there is no buyer with a Leontief utility, applying Theorem 3.2.1 yields:

Corollary 3.2.4. Let σ = mini{ 1
1−ρi}. Then,

Φ(b∗)− Φ(bT ) ≤ σ(1− σ)T

1− (1− σ)T

∑
i

ρi − 1

ρi
KL(b∗i ||b0

i ).

3.2.5 Saddle Point Analysis

Proof of Theorem 3.2.4. Recall that xt+1 = arg minx∈X{〈∇xf(xt,yt),x−xt〉+2LXdg(x,x
t)}.

Applying Lemma 3.2.1 with x = x∗, d(·, ·) = 2LXdg(·, ·), y = xt, x+ = xt+1, and g(x) =

〈∇xf(xt,yt)〉,x− xt〉 gives

〈∇xf(xt,yt),xt+1 − xt〉+ 2LXdg(x
t+1,xt)

≤ 〈∇xf(xt,yt),x∗ − xt〉+ 2LXdg(x
∗,xt)− 2LXdg(x

∗,xt+1).

This is equivalent to

f(xt,yt) + 〈∇f(xt,yt), (xt+1,yt+1)− (xt,yt)〉+ 2LXdg(x
t+1,xt)︸ ︷︷ ︸

LHS

≤ f(xt,yt) + 〈∇f(xt,yt), (x∗,yt+1)− (xt,yt)〉+ 2LXdg(x
∗,xt)− 2LXdg(x

∗,xt+1).︸ ︷︷ ︸
RHS

(3.13)

2Recall that for ρi = −∞, we defined (ρi − 1)/ρi = 1.
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Since f is (LX , Ly)-convex-concave, the third property — see (3.5) — gives:

f(xt+1,yt+1) + LXdg(x
t+1,xt)

(1)

≤ LHS ≤ RHS

(2)

≤ f(x∗,yt+1) + LY dh(y
t+1,yt) + 2LXdg(x

∗,xt)− 2LXdg(x
∗,xt+1), (3.14)

where (1) is deduced from (b) in Definition 3.2.2 with (x′, y′) = (xt,yt) and (2) is deduced

from (a) in Definition 3.2.2 with (x′, y′) = (xt,yt) and (x, y) = (x∗,yt+1).

Now, let’s consider−f(x, y) and yt+1 = arg miny∈Y {〈−∇yf(xt,yt),y−yt〉+2LY dh(y,y
t)}.

Using a similar argument, we obtain:

− f(xt+1,yt+1) + LY dh(y
t+1,yt)

≤ −f(xt+1,y∗) + LXdg(x
t+1,xt) + 2LY dh(y

∗,yt)− 2LY dh(y
∗,yt+1). (3.15)

Adding these two inequalities gives:

f(xt+1,y∗)− f(x∗,yt+1)

≤ 2LXdg(x
∗,xt) + 2LY dh(y

∗,yt)− 2LXdg(x
∗,xt+1)− 2LY dh(y

∗,yt+1).

Summing over t yields:
∑T

t=1

(
f(xt,y∗)− f(x∗,yt)

)
≤ 2LXdg(x

∗,x0) + 2LY dh(y
∗,y0).

Proof of Theorem 3.2.5. Using (3.8) instead of (3.5), we deduce the following from (3.13)

instead of (3.14):

f(xt+1,yt+1) + LXdg(x
t+1,xt)

≤ f(x∗,yt+1) + LY dh(y
t+1,yt) + (2LX − σX)dg(x

∗,xt)− 2LXdg(x
∗,xt+1).
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Also, (3.15) is replaced by:

− f(xt+1,yt+1) + LY dh(y
t+1,yt)

≤ −f(xt+1,y∗) + LXdg(x
t+1,xt) + (2LY − σY )dh(y

∗,yt)− 2LY dh(y
∗,yt+1).

Summing up these two inequalities gives:

f(xt+1,y∗)− f(x∗,yt+1)

≤ (2LX − σX)dg(x
∗,xt) + (2LY − σY )dh(y

∗,yt)− 2LXdg(x
∗,xt+1)− 2LY dh(y

∗,yt+1).

Let σ = min
{
σX
LX
, σY
LY

}
. Then:

T−1∑
t=0

(
2

2− σ

)t (
f(xt+1,y∗)− f(x∗,yt+1)

)
≤ (2LX − σX)dg(x

∗,x0) + (2LY − σY )dh(y
∗,y0).

Note that f(xt,y∗)− f(x∗,yt) is positive for each t, so the result follows.

3.2.6 Analysis of Damped Proportional Response

Excluding Cobb-Douglas Utility Functions First, we consider a simplified situation

where there is no buyer with a Cobb-Douglas utility function. We want to use the technique

developed in the saddle point analysis to obtain a convergence result. The potential function

is the same as before.

We make the following observations.

Lemma 3.2.8. If ρi > 0 for buyer i, then the Damped Proportional Response (given by

(3.7)) is equivalent to mirror descent with a halved step size, defined as follows:

bt+1
i = arg minbi:

∑
j bij=ei

{
〈∇biΦ(bt),bi − bti〉+

2

ρi
KL(bi||bti)

}
;
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if −∞ < ρi < 0 for buyer i, then the Damped Proportional Response (given by (3.7)) is

equivalent to mirror descent (really ascent as this is a concave function) with a halved step

size defined as follows:

bt+1
i = arg minbi:

∑
j bij=ei

{
−〈∇biΦ(bt),bi − bti〉+

2(ρi − 1)

ρi
KL(bi||bti)

}
;

and if ρi = −∞ for buyer i, then the Damped Proportional Response (given by (3.7)) is

equivalent to mirror descent (really ascent as this is a concave function) with a halved step

sizem defined as follows:

bt+1
i = arg minbi:

∑
j bij=ei

{−〈∇biΦ(bt),bi − bti〉+ 2KL(bi||bti)}.

Proof. By calculation.

By Lemma 3.2.3 and with a simple calculation one can show that, in Definition 3.2.2, if we

set x = b>0, y = b<0, dg(x) =
∑

i:ρi>0
1
ρi

KL(bi||b′i), and dh(y) =
∑

i:∞<ρi<0
ρi−1
ρi

KL(bi||b′i)+∑
i:ρi=−∞KL(bi||b′i) , then Φ is (1, 1)-convex-concave function.

Furthermore, let b∗>0 and b∗<0 be the market equilibrium of the Fisher market. Then,

b∗>0 minimizes Φ(·,b∗<0), and b∗<0 maximizes Φ(b∗>0, ·),

which implies (b∗>0,b
∗
<0) is a saddle point of the potential function Φ. Theorem 3.2.4 yields

the following corollary.

Corollary 3.2.5. The Damped Proportional Response (given by (3.7)) converges to an equi-
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librium with a convergence rate of:

T∑
t=1

[
Φ(bt>0,b

∗
<0)− Φ(b∗>0,b

t
<0)

]

≤
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi>0

2

ρi
KL(b∗i ||b0

i ) +
∑

i:ρi=−∞

2KL(b∗i ||b0
i ).

Moreover, if we assume there is no buyer with either a linear utility or a Leontief utility

function, then, by Lemma 3.2.3, Ψ(·, ·) is a (mini:ρi>0{1 − ρi},mini:ρi<0{ 1
1−ρi}, 1, 1)-strong

Bregman convex-concave function with x = b>0, y = b<0, dg(x) =
∑

i:ρi>0
1
ρi

KL(bi||b′i) and

dh(y) =
∑

i:∞<ρi<0
ρi−1
ρi

KL(bi||b′i) (see Definition 3.2.4). Theorem 3.2.5 yields the following

corollary.

Corollary 3.2.6. Suppose there is no buyer with either a linear utility or a Leontief utility.

Let

σ>0 = min
i:ρi>0
{1− ρi} and σ<0 = min

i:ρi<0

{
1

1− ρi

}
.

Then the Damped Proportional Response (given by (3.7)) converges to the equilibrium with

a convergence rate of

Φ(bT>0,b
∗
<0)− Φ(b∗>0,b

T
<0)

≤
(

1− min{σ>0, σ<0}
2

)T−1
[ ∑
i:ρi<0

(2− σ<0)
ρi − 1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi>0

(2− σ>0)
1

ρi
KL(b∗i ||b0

i )

]
.

The Entire CES Range Now we consider the Damped Proportional Response with a

damping factor of 2 over the entire CES range, i.e. including Cobb-Douglas utilities. Recall

that we modify our potential function to include terms for the buyers with ρi = 0. However,

for this new modified function, the buyers with Cobb-Douglas utility functions don’t actually

perform mirror descent. Fortunately, we can make two observations.
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First, the buyers with Cobb-Douglas utility functions converge quickly to the equilibrium

independently of everyone else’s spending. Second, the buyers whose utility functions are

not Cobb-Douglas will still perform the mirror descent (ascent) procedure.

So, intuitively, in our analysis, we regard the spending of the buyers with Cobb-Douglas

utility functions as a parameter, θ, of fθ(x,y), where x represents the spending of the strictly

substitutes buyers and y represents the spending of the strictly complementary buyers.

Remember, in the case with no Cobb-Douglas utilities, the market equilibrium corresponded

to a saddle point. Here, similarly, a market equilibrium corresponds to a saddle point of

fθ∗(·, ·), where θ∗ is the spending at the market equilibrium of those buyers with Cobb-

Douglas utility functions. We prove the following two claims.

1. θ converges to θ∗ quickly;

2. when θ tends to θ∗, though x and y perform the mirror descent based on the gradient

of fθ(x,y) and not of fθ∗(x,y), (x,y) will still converge quickly to (x∗,y∗), the saddle

point of fθ∗(·, ·).

We thereby show that Damped Proportional Response converges to the market equilib-

rium even when faced with the entire range of CES utilities.

3.2.7 Other Measures of Convergence

The potential function φ appears to be closely related to the Eisenberg-Gale program. In

particular, we can show that in the substitutes domain, when applying update rule (3.2),

the Proportional Response update, the objective function Ψ for the Eisenberg-Gale program

converges at least as fast as Φ, i.e. that Ψ(x(b∗>0,b
∗
=0)) − Ψ(x(b>0,b

∗
=0)) ≤ Φ(b>0,b

∗
=0) −

Φ(b∗>0,b
∗
=0), and that in the complementary domain, when applying update rule (3.3), the

objective function for the dual of the Eisenberg-Gale program converges at least as fast as

Φ. These claims are shown in Section 3.2.8.2.
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Lemma 3.2.3 allows us to make some observations about the rate of convergence of the

spending. For update rule (3.2), in the substitutes domain excluding linear utilities, we

can deduce that
∑

i KL(bi||b∗i ) 6 maxi
ρi

1−ρi [Φ(b)− Φ(b∗)], and for update rule (3.3) in the

complementary domain excluding Leontief utilities, that
∑

i KL(bi||b∗i ) 6 maxi−ρi[Φ(b)−

Φ(b∗)]. As the equilibrium need not be unique in terms of spending for either linear or

Leontief utilities, this lemma is not going to yield a bound on the convergence rate of the

spending in these cases, as it can be applied to any equilibrium. Similarly in the combined

domain, still excluding linear and Leontief utilities, we can observe that

∑
i:ρi>0

1− ρi
ρi

KL(bi||b∗i )+
∑
i:ρi<0

−1

ρi
KL(bi||b∗i ) 6 [Φ(b>0,b

∗
<0)−Φ(b∗)]+[Φ(b∗)−Φ(b∗>0,b<0)].

In addition, since KL(p||p∗) 6 KL(b||b∗) we can immediately obtain analogous bounds on

the KL divergence of the prices. Furthermore, for the substitutes domain, including linear

utilities, Lemma 3.2.3 also implies that KL(p||p∗) 6 [Φ(b)− Φ(b∗)].

3.2.8 Missing Proofs

3.2.8.1 Proportional Response Including Cobb-Douglas Utilities

The Potential Function and its Properties The new potential function, Φ(b), which

includes buyers with Cobb-Douglas utilities, is defined as follows:

pj(b) =
∑
i

bij,

Φ(b) = −
∑

i:ρi 6={0,−∞}

1

ρi

∑
j

bij log
aijb

ρi−1
ij

[pj(b)]ρi
−

∑
i:ρi=−∞

∑
j

bij log
bij

cijpj(b)
+
∑
i:ρi=0

∑
j

bij log pj(b).
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Note that for those i for which ρi 6= {0,−∞},

∇bijΦ(b) = − 1

ρi
log aij −

ρi − 1

ρi
(log bij + 1) + log pj(b) +

∑
h

bhj
1

pj(b)

=
1

ρi

(
1− log

aijb
ρi−1
ij

[pj(b)]ρi

)
;

for those i for which ρi = −∞,

∇bijΦ(b) = − log
bij

cijpj(b)
;

and for those i for which ρi = 0,

∇bijΦ(b) = 1 + log pj(b).

Then, we can deduce that

Φ(b)− Φ(b′)− 〈∇Φ(b′),b− b′〉

= −
∑

i:ρi 6={0,−∞}

ρi − 1

ρi
KL(bi||b′i)−

∑
i:ρi=−∞

KL(bi||b′i) + KL(p||p′)

=
∑

i:ρi 6={0,−∞}

1

ρi
KL(bi||b′i) +

∑
i:ρi=0

KL(bi||b′i)

−
(∑

i

KL(bi||b′i)−KL(p||p′)
)
.

Since
∑

i KL(bi||b′i) ≥ KL(p||p′),

∑
i:ρi 6={0,−∞}

1− ρi
ρi

KL(bi||b′i)−
∑

i:ρi=−∞

KL(bi||b′i)

≤ Φ(b)− Φ(b′)− 〈∇Φ(b′),b− b′〉

≤
∑

i:ρi 6={0,−∞}

1

ρi
KL(bi||b′i) +

∑
i:ρi=0

KL(bi||b′i). (3.16)
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Proportional Response in the Substitutes Domain with Cobb-Douglas Utility

Functions As in the analysis of Proportional Response in the substitutes domain without

Cobb-Douglas utility functions, the following lemma states the equivalence between mirror

descent and proportional response in the substitutes domain; it follows readily from the

definition of bt+1 for Proportional Response (given by (3.2)).

Lemma 3.2.9. For buyers with strict CES substitutes utilities (ρi > 0), the Proportional

Response update is the same as the mirror descent update, given by:

bt+1
i = arg minbi:

∑
j bij=ei

{〈∇biΦ(bt),bi − bti〉+
1

ρi
KL(bi||bti)}.

Buyers with Cobb-Douglas utility functions use the following update rule:

bt+1
ij = ei

aij∑
j′ aij′

.

Note that this update rule is the limit of (3.2) and (3.3) when ρ tends to 0. With a simple

calculation, one can show the following properties:

1. bt=0 will be equal to b∗=0 for t > 0, which, for ρi = 0 and t > 0, implies that:

KL(b∗i ||bti) = 0; (3.17)

2. b>0 is the spending at the market equilibrium if and only if b>0 is the minimum point

of Φ(·,b∗=0) (see Section 3.2.8.3 for more information).

We will show the following result.

Theorem 3.2.7.

Φ(bT>0,b
∗
=0)− Φ(b∗>0,b

∗
=0) ≤ 1

T

( ∑
i:ρi>0

1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi=0

KL(b∗i ||b0
i )

)
.

86



We first show the following lemma.

Lemma 3.2.10. For t > 0, Φ(bt+1
>0 ,b

∗
=0) ≤ Φ(bt>0,b

∗
=0).

Proof. By Lemma 3.2.9, we know that for those i for which ρi > 0,

bt+1
i = arg minbi:

∑
j bij=ei

{
〈∇biΦ(bt),bi − bti〉+

1

ρi
KL(bi||bti)

}
.

Therefore, by Lemma 3.2.1 with x+ = bt+1
>0 , x = bt>0, and y = bt>0,

〈∇b>0Φ(bt>0,b
t
=0),bt+1

>0 − bt>0〉+
∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti)

≤ 〈∇b>0Φ(bt>0,b
t
=0),bt>0 − bt>0〉+

∑
i:ρi>0

1

ρi
KL(bti||bti)−

∑
i:ρi>0

1

ρi
KL(bti||bt+1

i ) ≤ 0.

Also, we know that for t > 0, bt=0 = b∗=0. Then, for t > 0:

〈∇Φ(bt>0,b
∗
=0), (bt+1

>0 ,b
∗
=0)− (bt>0,b

∗
=0)〉+

∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti) ≤ 0.

Applying (3.16) with b = (bt+1
>0 ,b

∗
=0) and b′ = (bt>0,b

∗
=0) yields:

Φ(bt+1
>0 ,b

∗
=0)− Φ(bt>0,b

∗
=0) ≤ 0,

which gives the result.

Proof of Theorem 3.2.7. By Lemma 3.2.9,

bt+1
i = arg minbi:

∑
j bij=ei

{
〈∇biΦ(bt),bi − bti〉+

1

ρi
KL(bi||bti)

}
.
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Then, by Lemma 3.2.1 with x+ = bt+1
>0 , x = b∗>0, and y = bt>0,

〈∇b>0Φ(bt>0,b
t
=0),bt+1

>0 − bt>0〉+
∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti)

≤ 〈∇b>0Φ(bt>0,b
t
=0),b∗>0 − bt>0〉+

∑
i:ρi>0

1

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

1

ρi
KL(b∗i ||bt+1

i ).

This is equivalent to:

〈∇Φ(bt>0,b
t
=0), (bt+1

>0 ,b
∗
=0)− (bt>0,b

t
=0)〉+

∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti)︸ ︷︷ ︸
LHS

≤ 〈∇Φ(bt>0,b
t
=0), (b∗>0,b

∗
=0)− (bt>0,b

t
=0)〉+

∑
i:ρi>0

1

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

1

ρi
KL(b∗i ||bt+1

i )︸ ︷︷ ︸
RHS

.

(3.18)

From the second inequality in (3.16) with b = (bt+1
>0 ,b

∗
=0) and b′ = (bt>0,b

t
=0), the LHS

term is lower bounded by:

Φ(bt+1
>0 ,b

∗
=0)− Φ(bt>0,b

t
=0)−

∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti)−
∑
i:ρi=0

KL(b∗i ||bti) +
∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti)

(3.19)

and from the first inequality with b = (b∗>0,b
∗
=0) and b′ = (bt>0,b

t
=0), the RHS term is

upper bounded by:

Φ(b∗>0,b
∗
=0)− Φ(bt>0,b

t
=0)−

∑
i:ρi>0

1− ρi
ρi

KL(b∗i ||bti)︸ ︷︷ ︸
B

+
∑
i:ρi>0

1

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

1

ρi
KL(b∗i ||bt+1

i ).

(3.20)
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As LHS ≤ RHS, and as B is positive, we have:

Φ(bt+1
>0 ,b

∗
=0)−

∑
i:ρi=0

KL(b∗i ||bti) ≤ Φ(b∗>0,b
∗
=0) +

∑
i:ρi>0

1

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

1

ρi
KL(b∗i ||bt+1

i ).

(3.21)

Summing over t gives:

T−1∑
t=0

(
Φ(bt+1

>0 ,b
∗
=0)− Φ(b∗>0,b

∗
=0)
)
≤
∑
i:ρi>0

1

ρi
KL(b∗i ||b0

i ) +
T−1∑
t=0

∑
i:ρi=0

KL(b∗i ||bti)

=
∑
i:ρi>0

1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi=0

KL(b∗i ||b0
i ).

The second equality holds because of (3.17).

By Lemma 3.2.10,

Φ(bT>0,b
∗
=0)− Φ(b∗>0,b

∗
=0) ≤ 1

T

( ∑
i:ρi>0

1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi=0

KL(b∗i ||b0
i )

)
.

Theorem 3.2.8. Suppose there is no buyer with a linear utility function. Let σ =
(

mini:ρi>0

{
1
ρi

})
.

Then,

Φ(bT>0,b
∗
=0)− Φ(b∗>0,b

∗
=0) ≤ σ − 1

σT − 1

( ∑
i:ρi>0

KL(b∗i ||b0
i ) +

∑
i:ρi=0

KL(b∗i ||b0
i )

)
.

Proof. If there is no buyer with a linear utility function, then we do not drop B in (3.20).

So, instead of (3.21), we have:

Φ(bt+1
>0 ,b

∗
=0)−

∑
i:ρi=0

KL(b∗i ||bti)

≤ Φ(b∗>0,b
∗
=0) +

∑
i:ρi>0

KL(b∗i ||bti)−
∑
i:ρi>0

1

ρi
KL(b∗i ||bt+1

i ). (3.22)
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Multiplying both sides by
(

mini:ρi>0

{
1
ρi

})t
and summing over all t yields:

T−1∑
t=0

(
min
i:ρi>0

{
1

ρi

})t(
Φ(bt+1

>0 ,b
∗
=0)− Φ(b∗>0,b

∗
=0)
)
≤
∑
i:ρi>0

KL(b∗i ||b0
i ) +

∑
i:ρi=0

KL(b∗i ||b0
i ).

Recall that σ =
(

mini:ρi>0

{
1
ρi

})
. By Lemma 3.2.10,

Φ(bT>0,b
∗
=0)− Φ(b∗>0,b

∗
=0) ≤ σ − 1

σT − 1

( ∑
i:ρi>0

KL(b∗i ||b0
i ) +

∑
i:ρi=0

KL(b∗i ||b0
i )

)
.

Proportional Response in the Complementary Domain with Cobb-Douglas Util-

ity Functions The argument in this case is quite similar to the one in the previous sub-

section.

First, the following lemma shows the equivalence between mirror descent and proportional

response (given by (3.3)) in the complementary domain.

Lemma 3.2.11. For those complementary buyers such that −∞ < ρi < 0, Proportional

Response, which is the best response in this domain, is equivalent to the mirror descent

update, given by:

bt+1
i = arg minbi:

∑
j bij=ei

{
−〈∇biΦ(bt),bi − bti〉+

ρi − 1

ρi
KL(bi||bti)

}
;

and for those buyers with Leontief utility functions, Proportional Response, which is also the

best response in this domain, is equivalent to the mirror descent update, given by:

bt+1
i = arg minbi:

∑
j bij=ei

{
−〈∇biΦ(bt),bi − bti〉+ KL(bi||bti)

}
.

Similar to the substitutes domain, buyers with Cobb-Douglas utility functions use the
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following update rule:

bt+1
ij = ei

aij∑
j′ aij′

.

We also have the following properties:

1. bt=0 will be equal to b∗=0 for t > 0, which, for ρi = 0 and t > 0, implies that:

KL(b∗i ||bti) = 0; (3.23)

2. b<0 is the spending at the market equilibrium if and only if b<0 is the maximum point

of Φ(·,b∗=0) (see Section 3.2.8.3 for more information).

We show the following result.

Theorem 3.2.9.

Φ(b∗=0,b
∗
<0)− Φ(b∗=0,b

T
<0)

≤ 1

T

( ∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||b0

i ) +
∑

i:ρi=−∞

KL(b∗i ||b0
i )
)
.

We first show the following lemma.

Lemma 3.2.12. For t > 0, Φ(b∗=0,b
t
<0) ≤ Φ(b∗=0,b

t+1
<0 ).

Proof. By Lemma 3.2.11, we know that for those i for which −∞ < ρi < 0,

bt+1
i = arg minbi:

∑
j bij=ei

{
−〈∇biΦ(bt),bi − bti〉+

ρi − 1

ρi
KL(bi||bti)

}
,

and for those i for which ρi = −∞,

bt+1
i = arg minbi:

∑
j bij=ei

{−〈∇biΦ(bt),bi − bti〉+ KL(bi||bti)}.
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Therefore, by Lemma 3.2.1, with x+ = bt+1
<0 , x = bt<0, and y = bt<0,

− 〈∇b<0Φ(bt=0,b
t
<0),bt+1

<0 − bt<0〉+
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

KL(bt+1
i ||bti)

≤ −〈∇b<0Φ(bt=0,b
t
<0),bt<0 − bt<0〉+

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(bti||bti)

−
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(bti||bt+1

i ) +
∑

i:ρi=−∞

KL(bti||bti)−
∑

i:ρi=−∞

KL(bti||bt+1
i )

≤ 0.

We know that for t > 0, bt=0 = b∗=0. Therefore, for t > 0,

− 〈∇Φ(b∗=0,b
t
<0), (b∗=0,b

t+1
<0 )− (b∗=0,b

t
<0)〉+

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

KL(bt+1
i ||bti)

≤ 0.

Using (3.16) yields:

Φ(b∗=0,b
t
<0)− Φ(b∗=0,b

t+1
<0 ) ≤ 0.

Proof of Theorem 3.2.9. First, by Lemma 3.2.11, we know that for those i for which −∞ <

ρi < 0,

bt+1
i = arg minbi:

∑
j bij=ei

{
−〈∇biΦ(bt),bi − bti〉+

ρi − 1

ρi
KL(bi||bti)

}
,

and for those i for which ρi = −∞,

bt+1
i = arg minbi:

∑
j bij=ei

{−〈∇biΦ(bt),bi − bti〉+ KL(bi||bti)},
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Therefore, by Lemma 3.2.1, with x+ = bt+1
<0 , x = b∗<0, and y = bt<0,

− 〈∇b<0Φ(bt=0,b
t
<0),bt+1

<0 − bt<0〉+
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

KL(bt+1
i ||bti)

≤ −〈∇b<0Φ(bt=0,b
t
<0),b∗<0 − bt<0〉+

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||bti)

−
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||bt+1

i ) +
∑

i:ρi=−∞

KL(b∗i ||bti)−
∑

i:ρi=−∞

KL(b∗i ||bt+1
i ).

This is equivalent to:

− 〈∇Φ(bt=0,b
t
<0), (b∗=0,b

t+1
<0 )− (bt=0,b

t
<0)〉

+
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

KL(bt+1
i ||bti)︸ ︷︷ ︸

LHS

≤ −〈∇Φ(bt=0,b
t
<0), (b∗=0,b

∗
<0)− (bt=0,b

t
<0)〉

+
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||bti)−

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||bt+1

i )

+
∑

i:ρi=−∞

KL(b∗i ||bti)−
∑

i:ρi=−∞

KL(b∗i ||bt+1
i ).︸ ︷︷ ︸

RHS

(3.24)

From the first inequality in (3.16), the LHS term is lower bounded by:

− Φ(b∗=0,b
t+1
<0 ) + Φ(bt=0,b

t
<0)−

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti)−
∑

i:ρi=−∞

KL(bt+1
i ||bti)

+
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

KL(bt+1
i ||bti) (3.25)
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and from the second inequality, the RHS term is upper bounded by:

− Φ(b∗=0,b
∗
<0) + Φ(bt=0,b

t
<0) +

∑
i:−∞<ρi<0

1

ρi
KL(b∗i ||bti)︸ ︷︷ ︸
D

+
∑
i:ρi=0

KL(b∗i ||bti)

+
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||bti)−

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||bt+1

i )

+
∑

i:ρi=−∞

KL(b∗i ||bti)−
∑

i:ρi=−∞

KL(b∗i ||bt+1
i ). (3.26)

As LHS ≤ RHS, and as D is negative, we have:

−Φ(b∗=0,b
t+1
<0 ) ≤ −Φ(b∗=0,b

∗
<0) +

∑
i:ρi=0

KL(b∗i ||bti)

+
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||bti)−

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||bt+1

i )

+
∑

i:ρi=−∞

KL(b∗i ||bti)−
∑

i:ρi=−∞

KL(b∗i ||bt+1
i ). (3.27)

Summing over all t yields:

T−1∑
t=0

(
Φ(b∗=0,b

∗
<0)− Φ(b∗=0,b

t+1
<0 )
)
≤

T−1∑
t=0

∑
i:ρi=0

KL(b∗i ||bti) +
∑

i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||b0

i )

+
∑

i:ρi=−∞

KL(b∗i ||b0
i )

≤
∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||b0

i )

+
∑

i:ρi=−∞

KL(b∗i ||b0
i ).

The second inequality holds because of (3.23).
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By Lemma 3.2.12,

Φ(b∗=0,b
∗
<0)− Φ(b∗=0,b

T
<0) ≤ 1

T

( ∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(b∗i ||b0

i )

+
∑

i:ρi=−∞

KL(b∗i ||b0
i )
)
.

Theorem 3.2.10. Suppose there is no buyer with a Leontief utility function. Let σ =

mini:ρi<0

{
ρi−1
ρi

}
. Then:

Φ(b∗=0,b
∗
<0)− Φ(b∗=0,b

T
<0) ≤ σ − 1

σT − 1

( ∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:ρi<0

KL(b∗i ||b0
i )
)
.

Proof. If there is no buyer with a Leontief utility function, then we do not drop D in (3.26).

Therefore, instead of (3.27), we have:

−Φ(b∗=0,b
t+1
<0 ) ≤ −Φ(b∗=0,b

∗
<0) +

∑
i:ρi=0

KL(b∗i ||bti)

+
∑
i:ρi<0

KL(b∗i ||bti)−
∑
i:ρi<0

ρi − 1

ρi
KL(b∗i ||bt+1

i ). (3.28)

Recall σ = mini:ρi<0

{
ρi−1
ρi

}
. Then, multiplying both sides by σt and summing over t

yields:

T−1∑
t=0

σt
(

Φ(b∗=0,b
∗
<0)− Φ(b∗=0,b

t+1
<0 )
)
≤
∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:ρi<0

KL(b∗i ||b0
i ).

By Lemma 3.2.12,

Φ(b∗=0,b
∗
<0)− Φ(b∗=0,b

T
<0) ≤ σ − 1

σT − 1

( ∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:ρi<0

KL(b∗i ||b0
i )
)
.
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Proportional Response with the Entire CES Range Formally, in this case, Damped

Proportional Response is defined as follows:

bt+1
ij = ei

[
btij · aij

(
btij
ptj

)ρi] 1
2

∑
k

[
btik · aik

(
btik
ptk

)ρi] 1
2

, for ρi > 0;

bt+1
ij = ei

[
btij · atij

] 1
2

∑
k

[
btik · atik

] 1
2

, for ρi = 0;

bt+1
ij = ei

[
btij ·

(
aij
ptj
ρi

) 1
1−ρi
] 1

2

∑
k

[
btik ·

(
aik
ptk
ρi

) 1
1−ρi
] 1

2

, for −∞ < ρi < 0;

bt+1
ij = ei

[
btij ·

(
cij
ptj

)−1] 1
2

∑
k

[
btik ·

(
cik
ptk

)−1] 1
2

, for ρi = −∞;

pt+1
j =

∑
j

bt+1
ij

Similarly to the Cobb-Douglas free domain, we have the following observations.

Lemma 3.2.13. If ρi > 0 for buyer i, then Damped Proportional Response is equivalent to

mirror descent with a halved step size, defined as follows:

bt+1
i = arg minbi:

∑
j bij=ei

{
〈∇biΦ(bt),bi − bti〉+

2

ρi
KL(bi||bti)

}
;

if −∞ < ρi < 0 for buyer i, then Damped Proportional Response is equivalent to mirror

descent with a halved step size, defined as follows:

bt+1
i = arg minbi:

∑
j bij=ei

{
−〈∇biΦ(bt),bi − bti〉+

2(ρi − 1)

ρi
KL(bi||bti)

}
.

and if ρi = −∞ for buyer i, then Damped Proportional Response is equivalent to mirror
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descent with a halved step size, defined as follows:

bt+1
i = arg minbi:

∑
j bij=ei

{−〈∇biΦ(bt),bi − bti〉+ 2KL(bi||bti)}.

Proof. By calculation.

However, we find that for the buyers with Cobb-Douglas utility functions, their updating

rule cannot be written in mirror descent form. Instead, we make a separate argument for

these buyers.

Let b∗i be the equilibrium spending of buyer i. If ρi = 0 for buyer i, then her updating

rule only depends on her previous spending and her preferences, and it is independent of

the other buyers. Consequently, as we show in the following lemma, the convergence rate of

Damped Proportional Response for the buyers with Cobb-Douglas utilities will be fast.

Lemma 3.2.14. If ρi = 0 for buyer i, then:

KL(b∗i ||b0
i ) ≥

T∑
t=1

KL(b∗i ||bti) and KL(b∗i ||bti) ≥ 2KL(b∗i ||bt+1
i ).

Proof. First, we want to show that for any buyer i with ρi = 0, Damped Proportional

Response is equivalent to mirror descent on Ψ(bi) = −
∑

j bij log
aij
bij

3 with halved step size:

bt+1
i = arg minbi:

∑
j bij=ei

{〈∇Ψ(bti),bi − bti〉+ 2KL(bi||bti)},

Note that

∇bijΨ(bi) = − log
aij
bij

+ 1.

Then, by calculation, bt+1
ij = ei

(btij ·aij)
1
2∑

k(btik·aik)
1
2

, which is exactly the Damped Proportional Re-

3By simple calculation, the optimal point of this function is b∗ij = ei
aij∑
j′ aij′

, which is the optimal spending

in the market equilibrium.
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sponse update rule.

Furthermore, it is easy to see that Ψ is a convex function and it satisfies the following

equality:

Ψ(bi)−Ψ(b′i)− 〈∇Ψ(b′i),bi − b′i〉 = KL(bi,b
′
i). (3.29)

Therefore, setting bi = bt+1
i and b′i = bti gives

Ψ(bt+1
i )−Ψ(bti) = 〈∇Ψ(bti),b

t+1
i − bti〉+ 2KL(bt+1

i ||bti)−KL(bt+1
i ||bti)

and then by Lemma 3.2.1 with g(·) = 〈∇Ψ(bti), · − bti〉, x+ = bt+1
i , x = b∗i , y = bti, and

d(·, ·) = 2KL(·||·):

Ψ(bt+1
i )−Ψ(bti) ≤ 〈∇Ψ(bti),b

∗
i − bti〉+ 2KL(b∗i ||bti)− 2KL(b∗i ||bt+1

i )−KL(bt+1
i ||bti).

(3.30)

Setting bi = b∗i , b′i = bti in (3.29) gives:

Ψ(bti)−Ψ(b∗i ) = −〈∇Ψ(bti),b
∗
i − bti〉 −KL(b∗i ||bti).

And combining this with (3.30) gives:

Ψ(bt+1
i )−Ψ(b∗i ) ≤ KL(b∗i ||bti)− 2KL(b∗i ||bt+1

i ). (3.31)

Since Ψ(·) is a convex function and b∗i is the minimum point for Ψ, (3.31) implies:

KL(b∗i ||bti) ≥ 2KL(b∗i ||bt+1
i ). (3.32)
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Note this inequality holds for any t ≥ 0. So, for any T ,

KL(b∗i ||b0
i ) ≥

T∑
t=1

KL(b∗i ||bti).

For the next part, recall that b>0, b=0 and b<0 denote the spending of those buyers with

ρi > 0, ρi = 0, and ρi < 0, respectively, and that we rewrote Φ(b) as Φ(b>0,b=0,b<0).

With a simple calculation one can show:

• For fixed b=0 and b<0, Φ(·,b=0,b<0) is a convex function.

• For fixed b>0 and b=0, Φ(b>0,b=0, ·) is a concave function.

• Let b∗>0, b∗=0 and b∗<0 be the market equilibrium of the Fisher market; then

– b∗>0 minimizes Φ(·,b∗=0,b
∗
<0);

– b∗<0 maximizes Φ(b∗>0,b
∗
=0, ·).

Theorem 3.2.11. Damped Proportional Response converges to the equilibrium with a con-

vergence rate of:

T∑
t=1

[
Φ(bt>0,b

∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

t
<0)

]

≤ 4
∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||b0

i )

+
∑
i:ρi>0

2

ρi
KL(b∗i ||b0

i ) +
∑

i:ρi=−∞

KL(b∗i ||b0
i ).

Proof. First, let’s look at bt>0. By Lemma 3.2.13, we know that for those i for which ρi > 0,

bt+1
i = arg minbi:

∑
j bij=ei

{
〈∇biΦ(bt),bi − bti〉+

2

ρi
KL(bi||bti)

}
.
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Therefore, by Lemma 3.2.1 with x+ = bt+1
>0 , x = b∗>0, y = bt>0,

〈∇b>0Φ(bt>0,b
t
=0,b

t
<0),bt+1

>0 − bt>0〉+
∑
i:ρi>0

2

ρi
KL(bt+1

i ||bti)

≤ 〈∇b>0Φ(bt>0,b
t
=0,b

t
<0),b∗>0 − bt>0〉+

∑
i:ρi>0

2

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

2

ρi
KL(b∗i ||bt+1

i ).

This is equivalent to:

〈∇Φ(bt>0,b
t
=0,b

t
<0), (bt+1

>0 ,b
∗
=0,b

t+1
<0 )− (bt>0,b

t
=0,b

t
<0)〉+

∑
i:ρi>0

2

ρi
KL(bt+1

i ||bti)︸ ︷︷ ︸
LHS

≤ 〈∇Φ(bt>0,b
t
=0,b

t
<0), (b∗>0,b

∗
=0,b

t+1
<0 )− (bt>0,b

t
=0,b

t
<0)〉

+
∑
i:ρi>0

2

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

2

ρi
KL(b∗i ||bt+1

i )︸ ︷︷ ︸
RHS

.

(3.33)

From the second inequality in (3.16), the LHS term is lower bounded by:

Φ(bt+1
>0 ,b

∗
=0,b

t+1
<0 )− Φ(bt>0,b

t
=0,b

t
<0)−

∑
i:ρi 6={0,−∞}

1

ρi
KL(bt+1

i ||bti)︸ ︷︷ ︸
A

−
∑
i:ρi=0

KL(b∗i ||bti) +
∑
i:ρi>0

2

ρi
KL(bt+1

i ||bti) (3.34)
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and from the first inequality, the RHS term is upper bounded by:

Φ(b∗>0,b
∗
=0,b

t+1
<0 )− Φ(bt>0,b

t
=0,b

t
<0)−

∑
i:ρi>0

1− ρi
ρi

KL(b∗i ||bti)︸ ︷︷ ︸
B

−
∑

i:−∞<ρi<0

1− ρi
ρi

KL(bt+1
i ||bti) +

∑
i:ρi=−∞

KL(bt+1
i ||bti)

+
∑
i:ρi>0

2

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

2

ρi
KL(b∗i ||bt+1

i ). (3.35)

As LHS ≤ RHS, as the portion of A for ρi < 0 is negative, and as B is positive, we have

Φ(bt+1
>0 ,b

∗
=0,b

t+1
<0 ) +

∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti)−
∑
i:ρi=0

KL(b∗i ||bti)

≤ Φ(b∗>0,b
∗
=0,b

t+1
<0 ) +

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

KL(bt+1
i ||bti)

+
∑
i:ρi>0

2

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

2

ρi
KL(b∗i ||bt+1

i ). (3.36)

Next, let’s look at bt<0. The argument used here is similar to that for bt>0. First, by

Lemma 3.2.13, we know that for those i for which −∞ < ρi < 0,

bt+1
i = arg minbi:

∑
j bij=ei

{
−〈∇biΦ(bt),bi − bti〉+

2(ρi − 1)

ρi
KL(bi||bti)

}
,

and for those i for which ρi = −∞,

bt+1
i = arg minbi:

∑
j bij=ei

{−〈∇biΦ(bt),bi − bti〉+ 2KL(bi||bti)},
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Therefore, by Lemma 3.2.1,

− 〈∇b<0Φ(bt>0,b
t
=0,b

t
<0),bt+1

<0 − bt<0〉+
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

2KL(bt+1
i ||bti)

≤ −〈∇b<0Φ(bt>0,b
t
=0,b

t
<0),b∗<0 − bt<0〉+

∑
i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bti)

−
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bt+1

i ) +
∑

i:ρi=−∞

2KL(b∗i ||bti)−
∑

i:ρi=−∞

2KL(b∗i ||bt+1
i ).

This is equivalent to:

− 〈∇Φ(bt>0,b
t
=0,b

t
<0), (bt+1

>0 ,b
∗
=0,b

t+1
<0 )− (bt>0,b

t
=0,b

t
<0)〉

+
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

2KL(bt+1
i ||bti)︸ ︷︷ ︸

LHS

≤ −〈∇Φ(bt>0,b
t
=0,b

t
<0), (bt+1

>0 ,b
∗
=0,b

∗
<0)− (bt>0,b

t
=0,b

t
<0)〉

+
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bti)−

∑
i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bt+1

i )

+
∑

i:ρi=−∞

2KL(b∗i ||bti)−
∑

i:ρi=−∞

2KL(b∗i ||bt+1
i ).︸ ︷︷ ︸

RHS

(3.37)

From the first inequality in (3.16), the LHS term is lower bounded by:

− Φ(bt+1
>0 ,b

∗
=0,b

t+1
<0 ) + Φ(bt>0,b

t
=0,b

t
<0)−

∑
i:ρi 6={0,−∞}

ρi − 1

ρi
KL(bt+1

i ||bti)︸ ︷︷ ︸
C

−
∑

i:ρi=−∞

KL(bt+1
i ||bti)

+
∑
i:ρi<0

2(ρi − 1)

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

2KL(bt+1
i ||bti) (3.38)
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and from the second inequality, the RHS term is upper bounded by:

− Φ(bt+1
>0 ,b

∗
=0,b

∗
<0) + Φ(bt>0,b

t
=0,b

t
<0) +

∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti) +
∑

i:−∞<ρi<0

1

ρi
KL(b∗i ||bti)︸ ︷︷ ︸
D

+
∑
i:ρi=0

KL(b∗i ||bti) +
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bti)−

∑
i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bt+1

i )

+
∑

i:ρi=−∞

2KL(b∗i ||bti)−
∑

i:ρi=−∞

2KL(b∗i ||bt+1
i ). (3.39)

As LHS ≤ RHS, as the portion of C for ρi > 0 is negative, and as D is negative, we have:

− Φ(bt+1
>0 ,b

∗
=0,b

t+1
<0 ) +

∑
i:−∞<ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti) +
∑

i:ρi=−∞

KL(bt+1
i ||bti)

≤ −Φ(bt+1
>0 ,b

∗
=0,b

∗
<0) +

∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti) +
∑
i:ρi=0

KL(b∗i ||bti)

+
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bti)−

∑
i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bt+1

i )

+
∑

i:ρi=−∞

2KL(b∗i ||bti)−
∑

i:ρi=−∞

2KL(b∗i ||bt+1
i ). (3.40)

Summing (3.36) and (3.40) gives:

Φ(bt+1
>0 ,b

∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

t+1
<0 )

≤ 2
∑
i:ρi=0

KL(b∗i ||bti) +
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bti)−

∑
i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bt+1

i )

+
∑
i:ρi>0

2

ρi
KL(b∗i ||bti)−

∑
i:ρi>0

2

ρi
KL(b∗i ||bt+1

i )

+
∑

i:ρi=−∞

2KL(b∗i ||bti)−
∑

i:ρi=−∞

2KL(b∗i ||bt+1
i ).
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Summing over all t yields:

T−1∑
t=0

Φ(bt+1
>0 ,b

∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

t+1
<0 )

≤ 2
T−1∑
t=0

∑
i:ρi=0

KL(b∗i ||bti) +
∑

i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||b0

i )

+
∑
i:ρi>0

2

ρi
KL(b∗i ||b0

i ) +
∑

i:ρi=−∞

KL(b∗i ||b0
i )

≤ 4
∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:−∞<ρi<0

2(ρi − 1)

ρi
KL(b∗i ||b0

i )

+
∑
i:ρi>0

2

ρi
KL(b∗i ||b0

i ) +
∑

i:ρi=−∞

KL(b∗i ||b0
i ),

where Lemma 3.2.14 is used in bounding the first sum on the right hand side.

Theorem 3.2.12. Suppose there is no buyer with either a linear utility or a Leontief utility.

Let

σ = min

{
min
i:ρi>0

{
2

1 + ρi

}
, min
i:ρi<0

{
2(ρi − 1)

2ρi − 1

}}
(and so 1 < σ < 2);

then Damped Proportional Response converges to the equilibrium with a convergence rate of:

Φ(bT>0,b
∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

T
<0) ≤ 1

σT−1

[
4

2− σ
∑
i:ρi=0

KL(b∗i ||b0
i )

+
∑
i:ρi<0

2ρi − 1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi>0

1 + ρi
ρi

KL(b∗i ||b0
i )

]
.
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Proof. In this case, on combining (3.34) and (3.35), (3.36) is changed to:

Φ(bt+1
>0 ,b

∗
=0,b

t+1
<0 ) +

∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti)−
∑
i:ρi=0

KL(b∗i ||bti)

≤ Φ(b∗>0,b
∗
=0,b

t+1
<0 ) +

∑
i:ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti) +
∑
i:ρi>0

1 + ρi
ρi

KL(b∗i ||bti)

−
∑
i:ρi>0

2

ρi
KL(b∗i ||bt+1

i ). (3.41)

Also, on combining (3.38) and (3.39), (3.40) is changed to:

− Φ(bt+1
>0 ,b

∗
=0,b

t+1
<0 ) +

∑
i:ρi<0

ρi − 1

ρi
KL(bt+1

i ||bti)

≤ −Φ(bt+1
>0 ,b

∗
=0,b

∗
<0) +

∑
i:ρi>0

1

ρi
KL(bt+1

i ||bti) +
∑
i:ρi=0

KL(b∗i ||bti)

+
∑
i:ρi<0

2ρi − 1

ρi
KL(b∗i ||bti)−

∑
i:ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bt+1

i ). (3.42)

Combining (3.41) and (3.42) yields:

Φ(bt+1
>0 ,b

∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

t+1
<0 )

≤ 2
∑
i:ρi=0

KL(b∗i ||bti) +
∑
i:ρi<0

2ρi − 1

ρi
KL(b∗i ||bti)−

∑
i:ρi<0

2(ρi − 1)

ρi
KL(b∗i ||bt+1

i )

+
∑
i:ρi>0

1 + ρi
ρi

KL(b∗i ||bti)−
∑
i:ρi>0

2

ρi
KL(b∗i ||bt+1

i ).
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Recall that σ = min
{

mini:ρi>0

{
2

1+ρi

}
, mini:ρi<0

{
2(ρi−1)
2ρi−1

}}
; then,

T−1∑
t=0

σt
(

Φ(bt+1
>0 ,b

∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

t+1
<0 )
)

≤ 2
T−1∑
t=0

∑
i:ρi=0

σt ·KL(b∗i ||bti)

+
∑
i:ρi<0

2ρi − 1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi>0

1 + ρi
ρi

KL(b∗i ||b0
i ).

By (3.32) and 1 < σ < 2,

T−1∑
t=0

σt
(

Φ(bt+1
>0 ,b

∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

t+1
<0 )
)

≤ 4

2− σ
∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:ρi<0

2ρi − 1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi>0

1 + ρi
ρi

KL(b∗i ||b0
i ).

Therefore,

Φ(bT>0,b
∗
=0,b

∗
<0)− Φ(b∗>0,b

∗
=0,b

T
<0)

≤ 1

σT−1

[
4

2− σ
∑
i:ρi=0

KL(b∗i ||b0
i ) +

∑
i:ρi<0

2ρi − 1

ρi
KL(b∗i ||b0

i ) +
∑
i:ρi>0

1 + ρi
ρi

KL(b∗i ||b0
i )

]
.

3.2.8.2 Relationship between the Eisenberg-Gale Program and our Potential

Function

In this section, we show a relationship between our potential function and the objective

functions in the Eisenberg-Gale convex program and its dual program.

Let ui(xi) be the utility of buyer i when the allocation is xi. Note that ui(xi) = (
∑

j aij ·

xρiij )
1
ρi for 1 ≥ ρi > 0 and 0 > ρi > −∞. For ρi = 0, ui(xi) =

∏
j x

aij
ij with

∑
j aij = 1. For
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ρi = −∞, ui(xi) = minj

{
xij
cij

}
. Our potential function is:

pj(b) =
∑

ibij,

Φ(b) = −
∑

i:ρi 6={0,−∞}

1

ρi

∑
j

bij log
aijb

ρi−1
ij

[pj(b)]ρi
−

∑
i:ρi=−∞

∑
j

bij log
bij

cijpj(b)
+
∑
i:ρi=0

∑
j

bij log pj(b).

Recall that the goal is to minimize Φ(b) in the substitutes domain and maximize Φ(b) in

the complementary domain.

The objective function for the Eisenberg-Gale program is:

Ψ(x) =
∑
i

ei log ui(xi).

Recall that the goal is to maximize Ψ(x).

The objective function for the dual of the Eisenberg-Gale convex program is:

Υ(p) = max
x

(∑
i

ei log ui(xi) +
∑
j

pj

(
1−

∑
i

xij

))
.

Recall that the goal is to minimize Υ(p).

Substitutes Domain In the substitutes domain (ρi ≥ 0), let b be the spending of the

buyers; recall that it satisfies
∑

j bij = ei for all i. We consider the corresponding allocation

x(b) and the Eisenberg-Gale program, in which xij =
bij
pj(b)

and pj(b) =
∑

h bhj. We have

the following result.

Theorem 3.2.13.

Ψ(x(b∗>0,b
∗
=0))−Ψ(x(b>0,b

∗
=0)) ≤ Φ(b>0,b

∗
=0)− Φ(b∗>0,b

∗
=0).
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Proof. First, as
∑

j bij = ei, using the concavity of the log function yields:

Ψ(x(b)) =
∑
i:ρi>0

ei
ρi

log

(∑
j

aij

( bij
p(b)

)ρi)
+
∑
i:ρi=0

∑
j

eiaij log
bij

p(b)

≥
∑
i:ρi>0

ei
ρi

∑
j

bij
ei

log
aijb

ρi−1
ij ei

(p(b))ρi
+
∑
i:ρi=0

∑
j

eiaij log
bij

p(b)

=
∑
ij:ρi>0

bij
ρi

log
aijb

ρi−1
ij

(p(b))ρi
+
∑
i:ρi>0

ei
ρi

log ei +
∑
i:ρi=0

∑
j

eiaij log
bij

p(b)
.

Note that if for each i such that ρi > 0, aij
b
ρi−1
ij∑
h b

ρi
hj

are the same for all j with bij > 0, then the

inequality above will become an equality. Also, at the market equilibrium b∗, this condition

holds. Therefore,

Ψ(x(b∗>0,b
∗
=0))−Ψ(x(b>0,b

∗
=0))

≤
∑
ij:ρi>0

b∗ij
ρi

log
aijb

∗
ij
ρi−1

(p(b∗>0,b
∗
=0))ρi

+
∑
i:ρi>0

ei
ρi

log ei +
∑
i:ρi=0

∑
j

eiaij log
b∗ij

p(b∗>0,b
∗
=0)

−
∑
ij:ρi>0

bij
ρi

log
aijb

ρi−1
ij

(p(b>0,b∗=0))ρi
−
∑
i:ρi>0

ei
ρi

log ei −
∑
i:ρi=0

∑
j

eiaij log
b∗ij

p(b>0,b∗=0)

= −Φ(b∗>0,b
∗
=0) + Φ(b>0,b

∗
=0).

The last equality follows because b∗ij = eiaij for ρi = 0.

Complementary Domain In the complementary domain (ρi ≤ 0), again b satisfies∑
j bij = ei for all i. Here we consider the corresponding price p(b) and the dual of the

Eisenberg-Gale program, in which pj(b) =
∑

h bhj. We have the following result.

Theorem 3.2.14.

Υ(p(b∗=0,b<0))−Υ(p(b∗=0,b
∗
<0)) ≤ Φ(b∗=0,b

∗
<0)− Φ(b∗=0,b<0).

Proof. In the proof of Lemma 5.1 in [CT16], it was shown that the maximum point x in
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Υ(p) satisfies
∑

j xijpj = ei for all i. Therefore,

Υ(p) = max
x:∀i(

∑
j xijpj=ei)

∑
i:0>ρi>−∞

ei log
(∑

j

aijx
ρi
ij

) 1
ρi +

∑
i:ρi=−∞

ei log min
j

{xij
cij

}
+
∑
i:ρi=0

∑
j

eiaij log xij +
∑
j

pj −
∑
i

ei.

Let bij = xijpj. Then,

Υ(p) = max
b:∀i(

∑
j bij=ei)

∑
i:0>ρi>−∞

ei log
(∑

j

aij

(bij
pj

)ρi) 1
ρi +

∑
i:ρi=−∞

ei log min
{ bij
pjcij

}
+
∑
i:ρi=0

∑
j

eiaij log
bij
pj

+
∑
j

pj −
∑
i

ei.

Let b(p) be the spending that maximizes

∑
i:0>ρi>−∞

ei log
(∑

j

aij

(bij
pj

)ρi) 1
ρi +

∑
i:ρi=−∞

ei log min
{ bij
pjcij

}
+
∑
i:ρi=0

∑
j

eiaij log
bij
pj

under the constraint ∀i(
∑

j bij = ei), so

Υ(p) =
∑

i:0>ρi>−∞

ei log
(∑

j

aij

(bij(p)

pj

)ρi) 1
ρi +

∑
i:ρi=−∞

ei log min
{bij(p)

pjcij

}
+
∑
i:ρi=0

∑
j

eiaij log
bij(p)

pj
+
∑
j

pj −
∑
i

ei

=
∑

i:0>ρi>−∞

ei log
(∑

j

aij

(bij(p)

pj

)ρi) 1
ρi +

∑
i:ρi=−∞

ei log min
{bij(p)

pjcij

}
+
∑
i:ρi=0

∑
j

b∗ij log
b∗ij
pj

+
∑
j

pj −
∑
i

ei. (3.43)

The second equality holds because, for those buyers with Cobb-Douglas utility functions,

their optimal spending is always equal to b∗ij = eiaij which is independent of the prices.

With a simple calculation, one can show the following:

1. For those i such that 0 > ρi > −∞, aij
bij(p)ρi−1

p
ρi
j

are the same for different j by the
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definition of b(p). Therefore,

ei log
(∑

j

aij

(bij(p)

pj

)ρi) 1
ρi =

ei
ρi

∑
j

bij(p)

ei
log eiaij

bij(p)ρi−1

pρij

=
1

ρi

∑
j

bij(p) log aij
bij(p)ρi−1

pρij
+
ei
ρi

log ei. (3.44)

For those i such that ρi = −∞,
bij(p)

pjcij
are the same for different j again by the definition

of b(p). Therefore,

ei log min
{bij(p)

pjcij

}
=
∑
j

bij(p) log
bij(p)

pjcij
. (3.45)

2. For those i such that 0 > ρi > −∞, we focus on the function 1
ρi
bij log aij

b
ρi−1
ij

p
ρi
j

. By

calculation, given p, this function is a convex function. In addition, the minimal point

bi of the function under the constraint
∑

j bij = ei is bi(p). Therefore, combining with

(3.44) yields

ei log
(∑

j

aij

(bij(p)

pj

)ρi) 1
ρi ≤ 1

ρi

∑
j

bij log aij
bρi−1
ij

pρij
+
ei
ρi

log ei. (3.46)

The inequality becomes an equality if bi = bi(p).

For those i such that ρi = −∞, we focus on the function
∑

j bij log
bij
pjcij

. Again, given

p, this function is a convex function, and the minimal point bi of the function under

the constraint
∑

j bij = ei is bi(p). Therefore,

ei log min
{bij(p)

pjcij

}
≤
∑
j

bij log
bij
pjcij

. (3.47)

Also, the inequality becomes an equality if bi = bi(p).
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Combining (3.43), (3.46) and (3.47)

Υ(p(b∗=0,b<0)) ≤
∑

i:0>ρi>−∞

(
1

ρi

∑
j

bij log aij
bρi−1
ij

(pj(b∗=0,b<0))ρi
+
ei
ρi

log ei

)

+
∑

i:ρi=−∞

∑
j

bij log
bij

pj(b∗=0,b<0)cij

+
∑
i:ρi=0

∑
j

b∗ij log
b∗ij

pj(b∗=0,b<0)
+
∑
j

pj(b
∗
=0,b<0)−

∑
i

ei

= −Φ(b∗=0,b<0) +
∑
j

pj(b
∗
=0,b<0) +

∑
i:ρi>−∞

ei
ρi

log ei

+
∑
i:ρi=0

∑
j

b∗ij log b∗ij −
∑
i

ei. (3.48)

Since we know b∗ = b(p(b∗=0,b
∗
<0)), this leads to equality in (3.46) and (3.47) in this case.

Therefore,

Υ(p(b∗=0,b
∗
<0)) =

∑
i:0>ρi>−∞

(
1

ρi

∑
j

bij log aij
bρi−1
ij

(pj(b∗=0,b
∗
<0))ρi

+
ei
ρi

log ei

)

+
∑

i:ρi=−∞

∑
j

bij log
bij

pj(b∗=0,b
∗
<0)cij

+
∑
i:ρi=0

∑
j

b∗ij log
b∗ij

pj(b∗=0,b
∗
<0)

+
∑
j

pj(b
∗
=0,b

∗
<0)−

∑
i

ei

= −Φ(b∗=0,b
∗
<0) +

∑
j

pj(b
∗
=0,b

∗
<0) +

∑
i:ρi>−∞

ei
ρi

log ei

+
∑
i:ρi=0

∑
j

b∗ij log b∗ij −
∑
i

ei. (3.49)

Note that
∑

j pj(b
∗
=0,b<0) =

∑
j pj(b

∗
=0,b

∗
<0) =

∑
i ei. On taking the difference of (3.48)

and (3.49), the theorem follows.
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3.2.8.3 Correspondence between Market Equilibrium and Minimal Point, Max-

imal Point and Saddle Point

Theorem 3.2.15. The minimal point in the substitutes domain, the maximal point in the

complementary domain, and the saddle point in the mixed case all corresponds to the respec-

tive market equilibria.

Proof. Suppose we have a market equilibrium (b,p). A market equilibrium satisfies two

conditions:

• At a market equilibrium, each buyer maximizes her utility function. With some calcu-

lation, we see this is equivalent to the following conditions.

– for ρi = 1: bij > 0 only if j maximizes
{
aij
pj

}
;

– for ρi = 0: bij = λiaij;

– for ρi = −∞: bij = λicijpj;

– for other ρi: bij = λiaij

(
bij
pj

)ρi
.

Also, note that for the potential function Φ(·), for those i for which ρi 6= {0,−∞},

∇bijΦ(b) = − 1

ρi
log aij −

ρi − 1

ρi
(log bij + 1) + log pj(b) +

∑
h

bhj
1

pj(b)

=
1

ρi

(
1− log

aijb
ρi−1
ij

[pj(b)]ρi

)
;

and for those i for which ρi = −∞,

∇bijΦ(b) = − log
bij

cijpj(b)
.

Therefore, the optimal point (b∗,p∗) of potential function Φ(·) satisfies

– for ρi = 1: b∗ij > 0 only if j maximizes
{
aij
p∗j

}
;
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– for ρi = −∞: b∗ij = λ′icijp
∗
j ;

– for other ρi: b
∗
ij = λ′iaij

(
b∗ij
p∗j

)ρi
.

We can conclude that for ρi 6= 0, buyers’ spending, b∗, maximizes these utilities under

price p∗. For ρi = 0, b∗i = ei
aij∑
j′ aij

, in which case, it also maximizes this buyer’s utility.

• At a market equilibrium, the allocation is equal to 1 if the price is strictly positive and

the allocation can be less than 1 if the price is 0. Therefore, if, for each item, the total

spending on this item equals its price, then the condition holds. This is ensured by

our constraint on Φ(·): ∀j, pj =
∑

i bij.

Consequently, the optimal point (b∗,p∗) of potential function Φ(·) is a market equilibrium.

3.3 Tatonnement

3.3.1 Preliminary

Tatonnement is perhaps the most intuitive candidate for a natural algorithm in Fisher

Markets. It raises the price of a good if its demand exceeds its supply, and decreases it if the

demand is too small. Implicitly, buyers’ demands are assumed to be a best-response to the

current prices. This highly intuitive algorithm was proposed by Walras well over a century

ago [Wal74].

This dissertation focuses on discrete versions of tatonnement. Unfortunately, as is well

known, discrete versions of tatonnement need not converge when buyer utilities are linear,

as shown in the following simple example.

Example 1. There are two items, both with unit supply, and one buyer with 2 units of

money whose utility equals the sum of the amount of the two items it receives. Suppose we

use the update rule p′j = pj · eλmin{xj−1,1}, where xj is the demand for good j, and λ > 0 is
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a parameter; this is essentially the version of the tatonnement rule we will consider in this

dissertation, and a version that has been analyzed previously. Suppose the prices for the two

items are initially p1 = eλ/2 and p2 = e−λ/2, respectively. Then the demand for good 1 is

0 and the demand for good 2 is 2eλ/2, so following one round of updates, the prices become

p1 = e−λ/2 and p2 = eλ/2. On subsequent updates the prices keep interchanging, so there is

no convergence.

In addition, and unsurprisingly, as one approaches linear settings, the step size employed

by the tatonnement algorithm needs to be increasingly small, which leads to a slower rate

of convergence, and indicates a lack of robustness in the tatonnement procedure.

In this dissertation, we show that in suitable large Fisher markets, this lack of robustness

disappears, so long as approximate rather than exact convergence suffices. In addition, we

obtain fast, i.e. linear, convergence to an approximate equilibrium. To see why approximate

convergence is a reasonable and even the right goal, consider dynamical settings; in these

settings, the equilibrium state can be expected to change over time, and then the natural

convergence question becomes how closely can one track the moving equilibrium? The

answer is that it is a function of the rate of change and the market parameters, as analyzed

by Cheung et al. [CHN19]. Clearly, in this type of setting, similar results will arise with an

approximate convergence result.

Our large market assumption requires that for goods with high elasticity, price changes

cause a relatively small change in spending. In the case of buyers with linear utility functions,

where the elasticity parameters are unbounded, this occurs if the buyers are heterogeneous,

meaning the collection of their utility functions is quite varied; also, we need each individual

buyer to constitute a small portion of the market and for the number of buyers to be large

compared to the number of goods.

To explain the intuition behind our results, we recall that Cheung, Cole and Deva-

nur [CCD19] showed that for many types of economies, including those we consider here, a
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suitable tatonnement update is equivalent to a form of mirror descent on a suitable convex

function (actually, mirror ascent on a concave function). To achieve convergence with mirror

descent, one needs the function F to have a bounded Lipschitz parameter L, namely that

||∇F (p)−∇F (q)|| 6 L||p− q||,

for any two price vectors p and q. The rate of convergence will depend inversely on L. Our

large market assumption ensures this property so long as ||p− q|| is not too small.

In addition, the boundedness of the Lipschitz parameter holds only if the prices are

bounded away from 0. Prior analyses implicitly bounded this parameter by showing the

prices are bounded away from zero, though this bound depended on the initial prices and

the particulars of the market. In this dissertation, we assume there are minimum or reserve

prices which provides an alternate way to implicitly bound this parameter.

Furthermore, to obtain a linear rate of convergence one needs the function F (p) to be

strongly convex w.r.t. the equilibrium point p∗, namely:

F (p)− f(p∗) > 〈∇F (p),p− p∗〉+ α||p− p∗||2.

Again, our large market assumption ensures this property so long as ||p − p∗|| is not too

small.

3.3.2 Large Market Assumption

Our large market assumption states that for the buyers with linear or close to linear

utilities, the spending on a single good does not vary too much as prices change. We define

“close to linear” in terms of a bound σ > 0 on the ρi parameters.

Assumption 3.3.1. [Large Market Assumption] There is a (small) constant ε > 0 such that
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for those buyers with parameter ρi > σ,

∑
i:ρi≥σ

|btij − bt+1
ij | ≤ ε

∑
i

btij + εrj.

In addition, the total available money E > maxj rj.

Remark We validate our assumption in the following two settings. In the first setting the

market has only a few buyers with ρi bigger than σ. In this case, it’s easy to see that the

assumption holds if we set ε = max
{∑

i:ρi≥σ
ei

rj

}
.

Our second setting is a large linear market. The property we want is that for each good

j, when there are price changes by factors of at most e±λ, a relatively small weight of buyers

will be added to and removed from those currently purchasing good j (where the weight is

measured in terms of the buyers’ budgets.)

More specifically, btij differs from bt+1
ij only if one of the following occur:

• there exists a k such that
aij
ptj
≤ aik

ptk
and

aij

pt+1
j

≥ aik
pt+1
k

• there exists a k such that
aij
ptj
≥ aik

ptk
and

aij

pt+1
j

≤ aik
pt+1
k

.

Note that our price update rule ensures that
pt+1
j

pt+1
k

∈ [e−2λ, e2λ]
ptj
ptk

. Therefore, btij differs from

bt+1
ij only if there exists a k such that

aij
aik
∈ [e−2λ, e2λ]

ptj
ptk

. Also, since one of btij and bt+1
ij is

non-zero, for all s,
aij
ais
≥ ptj

pts
e−2λ. Let qs ,

ptj
pts

. We conclude that

∑
i

|btij − bt+1
ij | ≤

∑
i:

∃k:
aij
aik
∈[e−2λqk,e

2λqk]
and ∀s

(
aij
ais
≥qse−2λ

)
ei, (3.50)

and

∑
i

btij ≥
∑

i:∀s 6=j
(
aij
ais

>qs
) ei. (3.51)
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If the buyers are diverse, meaning that for any pair of goods, j and k say, the ratios

aij
aik

vary substantially across the buyers, then so long as there are many buyers satisfy-

ing the condition ∀s 6= j
(
aij
ais

> qs

)
in (3.51), it seems reasonable that their purchas-

ing power be much larger than that of the buyers satisfying the condition ∃k :
aij
aik
∈[

e−2λqk, e
2λqk

]
and ∀s

(
aij
ais
≥ qse

−2λ
)

in (3.50). While if there are few buyers satisfying

the first condition, then it is reasonable to assume that only a small number of buyers will

switch their purchase to or from good j, and that this changed spending will be much smaller

than rj.

This motivates setting ε to be greater than or equal to

max
j,q:qk∈[

rk
E
, E
rk

]

{ ∑
i:

∃k:
aij
aik
∈[e−2λqk,e

2λqk]
and ∀s

(
aij
ais
≥qse−2λ

)
ei

/ ∑
i: ∀s

(
aij
ais

>qs
) ei + rj

}
,

causing our assumption to hold.

Our analysis is carried out with respect to the following potential function, which is the

dual of the Eisenberg-Gale convex program:

F(p) =
∑
j

pj +
∑
i

ei log max
xi·p=ei

ui(xi)

using the tatonnement update rule:

pt+1
j = ptj · e∆t

j ,

where ∆t
j = λmin{ztj, 1} and λ ≤ 1, unless this update would reduce pt+1

j below the reserve

price, in which case ∆t
j is chosen so that pt+1

j = rj.

Our main result shows an initial linear rate of convergence toward the equilibrium, and

also shows that so long as the current prices are not too close to the equilibrium then there
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is good progress toward the equilibrium. The latter statement can also be viewed as a result

regarding the tracking of a slowly moving equilibrium.

Before we state the main result, we define a parameter C(κ) introduced in [CCD19]. Here

κ is an upper bound on the ratio maxj
p∗j
rj

. C(κ) = min
{
hc(κ)
c
, κ−1−log κ

(κ−1)2

}
, where hc(κ) =

1−κc+c(κ−1)
(κ−1)2

for any κ ≥ 0 except κ = 1, hc(1) = c(1−c)
2

, and c = maxi ci
4. Note that c < 1.

Theorem 3.3.1. For any 0 < θ < 1, if λσ
1−σ 6 1 and κ > maxj

p∗j
rj

, then

F(pt)− F(p∗) ≤ (1− α)t
(
F(p0)− F(p∗)

)
+ 2

λε2M
αθ

,

where α =
(1−λ−2λ·max{ σ

1−σ ,1}−ε−2θ)

maxj

{
max{2, 1

2C(κ)} E
λrj

} andM = max
{∑

j p
0
j ,
((
eλ − 2λ

)
1+2λ−eλ

λ
+ λ
)(

E +
∑

j rj

)}
.

Furthermore, if F(pt)− F(p∗) > 4λε2M
αθ

then

F(pt+1)− F(p∗) ≤
(

1− α

2

) (
F(pt)− F(p∗)

)
.

Moreover, if ε ≤ 1
4

and we set σ = 1
2
, θ = λ = 1

20
, then α =

3
4
−ε

maxj

{
max{2, 1

2C(κ)} E
λrj

} and

M≤ max
{∑

j p
0
j , E +

∑
j rj

}
.

3.3.3 A High Level Overview of the Analysis

The analysis is largely based on deriving two bounds. The first is a progress lemma, a lower

bound on the reduction in value of F (p) due to the time t update, stated in Lemma 3.3.1 be-

low. The second is an upper bound on the distance to the equilibrium, stated in Lemma 3.3.2

below. We also need to relate the sum of the prices at time t+ 1 to the corresponding sum

for time 0, as stated in Lemma 3.3.3. Our main result then follows fairly readily.

With a slight abuse of notation, we let ui(bi,p) denote buyer i’s utility when spending

bi at prices p.

4ci = ρi
ρi−1 is defined in (1.1).
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We analyze the change to the potential function due to the time t updates. Note that

since buyers best respond, maxxi·p=ei ui(xi) = ui(b
t
i,p

t). So,

F(pt+1)− F(pt) =
∑
j

(pt+1
j − ptj) +

∑
i

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t)

. (3.52)

Lemma 3.3.1. For any 0 < σ < 1 such that λσ
1−σ ≤ 1, if |∆t

j| ≤ λ|min{ztj, 1}| and sign(∆t
j) =

sign(min{ztj, 1}), then

F(pt)− F(pt+1) ≥
(

1− λ− 2λ ·max

{
σ

1− σ
, 1

})∑
j

ptjz
t
j∆

t
j −

∑
i:ρi≥σ

ρi
∑
j

(
btij − bt+1

ij

)
∆t
j.

To obtain an upper bound on F(p) − F(p∗) we follow the approach taken in [CCD19].

They pointed out that if
p∗j
pj
≤ κ for all j, then

F(p∗)− F(p)− 〈∇F(p),p∗ − p〉 ≥
∑
j

C(κ)xj
(p∗j − pj)2

pj
, (3.53)

where C(κ) was specified above. We note that this is a strong convexity bound of the type

we need for a linear convergence rate.

We will show:

Lemma 3.3.2. If κ > maxj
p∗j
rj

, then

F(pt)− F(p∗) ≤
∑
j

max

{
2,

1

2C(κ)

}
E

λrj
ptjz

t
j∆

t
j.

Finally, the bound on the sum of the prices is stated in the next lemma.

Lemma 3.3.3. Using the definition of M from Theorem 3.3.1 gives

∑
j

pt+1
j 6 max

{∑
j

p0
j ,

((
eλ − 2λ

) 1 + 2λ− eλ

λ
+ λ

)(
E +

∑
j

rj

)}
=M.
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We are now ready to prove our main result.

Proof of Theorem 3.3.1. We will be applying Lemma 3.3.1, and we begin by bounding the

second term on the RHS of the expression there.

∑
i:ρi≥σ

ρi
∑
j

(
btij − bt+1

ij

)
∆t
j ≤

∑
i:ρi≥σ

ρi
∑
j

∣∣btij − bt+1
ij

∣∣ ∣∣∆t
j

∣∣
≤
∑
i:ρi≥σ

∑
j

∣∣btij − bt+1
ij

∣∣ ∣∣∆t
j

∣∣ .
By Assumption 3.3.1 for the first inequality, and because ptj ≥ rj for the second inequality,

∑
i:ρi≥σ

ρi
∑
j

(
btij − bt+1

ij

)
∆t
j ≤

∑
j

(ε
∑
i

btij + εrj)
∣∣∆t

j

∣∣ =
∑
j

(εptj(1 + ztj) + εrj)
∣∣∆t

j

∣∣
≤
∑
j

2εptj
∣∣∆t

j

∣∣+ εptjz
t
j

∣∣∆t
j

∣∣ ≤∑
j

2εptj
∣∣∆t

j

∣∣+ εptjz
t
j∆

t
j. (3.54)

We use the following result: for any θ > 0,

∑
j

2εptj
∣∣∆t

j

∣∣ ≤∑
j

2θptjz
t
j∆

t
j + 2

λε2

θ

∑
j

ptj. (3.55)

This holds because if εptj
∣∣∆t

j

∣∣ ≥ θptjz
t
j∆

t
j, then ε ≥ θ|ztj|. Therefore

2εptj
∣∣∆t

j

∣∣ ≤ 2
λε2

θ
ptj.

Substituting (3.54) and (3.55) in Lemma 3.3.1 yields

F(pt)− F(pt+1) ≥
(

1− λ− 2λ ·max

{
σ

1− σ
, 1

}
− ε− 2θ

)∑
j

ptjz
t
j∆

t
j − 2

λε2

θ

∑
j

ptj
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Applying Lemma 3.3.3 gives

F(pt)− F(pt+1) ≥
(

1− λ− 2λ ·max

{
σ

1− σ
, 1

}
− ε− 2θ

)∑
j

ptjz
t
j∆

t
j − 2

λε2

θ
M. (3.56)

Applying Lemma 3.3.2 and recalling that α =
(1−λ−2λ·max{ σ

1−σ ,1}−ε−2θ)

maxj

{
max

{
2, 1

2C(κj)

}
E
λrj

} yields:

F(pt)− F(pt+1) ≥ α[F (pt)− F (p∗)]− 2
λε2

θ
M.

Our first claim follows readily:

F(pt+1)− F(p∗) ≤ (1− α)
(
F(pt)− F(p∗)

)
+ 2

λε2

θ
M (3.57)

≤ (1− α)t
(
F(p0)− F(p∗)

)
+ 2

λε2M
θ

(
1 + (1− α) + (1− α)2 + · · ·

)
≤ (1− α)t

(
F(p0)− F(p∗)

)
+ 2

λε2M
αθ

.

To prove the second claim, recall that we are assuming F(pt) − F(p∗) ≤ 4λε
2

αθ
M. Then,

by (3.57),

F(pt+1)− F(p∗) ≤ (1− α)
(
F(pt)− F(p∗)

)
+
α

2
F(pt)− F(p∗)

6 (1− α

2
)
(
F(pt)− F(p∗)

)
.

3.3.4 The Proof of Lemma 3.3.1, the Progress Lemma

The starting point for our analysis is (3.52). The first step is to bound log
ui(b

t+1
i ,pt+1

i )

ui(bti,p
t
i)

.

The next four lemmas provide a variety of bounds depending on the value of ρi and other

parameters.
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Lemma 3.3.4. If buyer i has a linear utility function, then

ei log
ui(b

t+1
i ,pt+1

i )

ui(bti,p
t
i)
≤ −

∑
j

btij∆
t
j +
∑
j

(btij − bt+1
ij )∆t

j.

Lemma 3.3.5. For any 0 < ρi < 1, if |∆t
j| ≤ 1 for all j and t, then

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t)
≤ −

∑
j

btij∆
t
j +
∑
j

btijρi
(
∆t
j

)2 − ρi
∑
j

bt+1
ij ∆t

j + ρi
∑
j

btij∆
t
j.

Lemma 3.3.6. For any ρi > 0, if |λci| ≤ 1 and |∆t
j| ≤ 1 for all j and t, then

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t)
≤ −

∑
j

btij∆
t
j −

∑
j

btijci
(
∆t
j

)2
.

Lemma 3.3.7. If buyer i has a complementary utility function, then

ei log
ui(b

t+1
i ,pt+1

i )

ui(bti,p
t
i)
≤ −

∑
j

btij∆
t
j.

We are now ready to prove Lemma 3.3.1.

Proof of Lemma 3.3.1: Recall that ci = ρi
ρi−1

, and σ is a threshold designating the buyers

to which Assumption 3.3.1 applies, namely those with ρi > σ. We apply Lemma (3.3.6) to

the buyers with 0 < ρi ≤ σ. In order to apply Lemma (3.3.6), it suffices to have

λ · σ

1− σ
≤ 1.
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Therefore, by Lemmas 3.3.4–3.3.7 and equation (3.52), for any 0 < σ < 1 such that λ σ
1−σ ≤ 1,

F(pt+1)− F(pt) =
∑
j

pj(e
∆t
j − 1)−

∑
ij

btij∆
t
j

−
∑

ij:0<ρi<σ

btijci(∆
t
j)

2 +
∑

ij:σ≤ρi<1

btijρi(∆
t
j)

2

+
∑
i:ρi≥σ

ρi
∑
j

(
btij − bt+1

ij

)
∆t
j

=
∑
j

pj(e
∆t
j −∆t

j − 1)−
∑
j

(
∑
i

btij − ptj)∆t
j

−
∑

ij:0<ρi<σ

btijci(∆
t
j)

2 +
∑

ij:σ≤ρi<1

btijρi(∆
t
j)

2

+
∑
i:ρi≥σ

ρi
∑
j

(
btij − bt+1

ij

)
∆t
j.

Note that e∆t
j −∆t

j − 1 ≤
(
∆t
j

)2
as |∆t

j| ≤ 1, and
∑

i b
t
ij − ptj = ptjz

t
j. Therefore,

F(pt+1)− F(pt) ≤
∑
j

pj
(
∆t
j

)2

︸ ︷︷ ︸
A

−
∑
j

ptjz
t
j∆

t
j︸ ︷︷ ︸

B

−
∑
ij:ρi<σ

btijci(∆
t
j)

2

︸ ︷︷ ︸
C

+
∑

ij:σ≤ρi<1

btijρi(∆
t
j)

2

︸ ︷︷ ︸
D

+
∑
i:ρi≥σ

ρi
∑
j

(
btij − bt+1

ij

)
∆t
j.

It is easy to see that A ≤ λB if |∆t
j| ≤ λ|min{ztj, 1}| and sign(∆t

j) = sign(min{ztj, 1}).

Next, we will bound C and D in terms of B. To this end, we note that we can omit the

portion of C with ρi 6 0 as for these terms ci > 0 and consequently removing them only

increases the RHS expression. We then note that for ρi > 0,

−ci = − ρi
ρi − 1

6 − σ

σ − 1
=

σ

1− σ
.
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For term D we use the simple bound ρi 6 1. Thus terms C and D are bounded by

∑
i,j:ρi>0

max

{
σ

1− σ
, 1

}
btij
(
∆t
j

)2
.

We now give a bound on this expression in terms of B.

Claim 3.3.8. If |∆t
j| ≤ λ|min{ztj, 1}| and sign(∆t

j) = sign(min{ztj, 1}), then

∑
j

ptjz
t
j∆

t
j ≥

1

2λ

(∑
i

btij

)
(∆t

j)
2.

Thus

F(pt)− F(pt+1) ≥
∑
j

ptjz
t
j∆

t
j

(
1− λ− 2λmax

{
σ

1− σ
, 1

})
.

3.3.5 Bounding the Distance to the Optimum

In this section, we provide an upper bound on F(p)− F(p∗). Note that ∇F(p) = −z.

Equation (3.53) yields

F(pt)− F(p∗) ≤
∑
j

ztj(p
∗
j − ptj)−

∑
j

C(κj)x
t
j

(p∗j − ptj)2

ptj

≤ max
p′≥r

∑
j

(
ztj(p

′
j − ptj)− C(κj)x

t
j

(p′j − ptj)2

ptj

)
. (3.58)

In [CCD19], they prove that

max
p′

(
ztj(p

′
j − ptj)− C(κj)x

t
j

(p′j − ptj)2

ptj

)
≤ max

{
2,

1

2C(κj)

}(
ztj
)2
ptj. (3.59)
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Here, we want to prove one more upper bound.

Lemma 3.3.9. If pt+1
j = rj and ztj ≤ 0, then

max
p′j≥rj

(
ztj(p

′
j − ptj)− C(κj)x

t
j

(p′j − ptj)2

ptj

)
≤ ztjp

t
j log

pt+1
j

ptj
.

It’s easy to see that our update rule has ∆t
j = log

pt+1
j

ptj
. Now, combining (3.58), (3.59),

and Lemma 3.3.9, gives Lemma 3.3.2, as we show below.

Proof of Lemma 3.3.9: Let

I(p′j) = ztj(p
′
j − ptj)− C(κj)x

t
j

(p′j − ptj)2

ptj

and in the setting without reserve prices, let

poptj = arg max
p′j

{
I(p′j)

}
.

In this case, the maximum value of I(p′j) is

(
ztj
)2
ptj

4C(κj)xtj
,

and the optimum value is

poptj = ptj +
ztjp

t
j

2C(κj)xtj
.

Case 1: poptj ≥ rj.

This implies

ptj +
ztjp

t
j

2C(κj)xtj
≥ rj.
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Therefore, since ztj ≤ 0, − zjpj
2C(κj)xj

≤ pj − rj, and

(
ztj
)2
ptj

4C(κj)xj
≤ 1

2
ztjp

t
j

rj − ptj
ptj

≤ 1

2
ztjp

t
j log

rj
ptj
.

Case 2: poptj < rj.

Note that I(p′j) is a quadratic function. On the domain p′j > rj, it achieves its maximum

value when p′j = rj. Therefore, the maximum value is

(
ztj
)2
ptj

4C(κj)xj
−
C(κj)x

t
j

ptj
(rj − poptj )2 =

(
ztj
)2
ptj

4C(κj)xj
−
C(κj)x

t
j

ptj

(
rj − ptj −

ztjp
t
j

2C(κj)xtj

)2

= −C(κj)x
t
j

(rj − ptj)2

ptj
+ ztj(rj − ptj)

Since C(κj)x
t
j

(rj−ptj)2

ptj
≥ 0, this is less than

ztj(rj − ptj) ≤ ztjp
t
j

rj − ptj
ptj

≤ ztjp
t
j log

rj
ptj
.

Proof of Lemma 3.3.2: Case 1: pt+1
j > rtj.

Then ∆t
j = λmin{ztj, 1}. Note that ztj =

∑
i b
t
ij−ptj
ptj

≤ E
rj

. Therefore, |∆t
j| ≥

λrj
E
|ztj|. Since ∆t

j

and ztj are both positive or both negative, combining with (3.58) and (3.59) yields

F(pt)− F(p∗) ≤ max

{
2,

1

2C(κj)

}
(ztj)

2ptj ≤ max

{
2,

1

2C(κj)

}
E

λrj
ptjz

t
j∆

t
j.

Case 2: pt+1
j = rtj.

By (3.58) and using Lemma 3.3.9, the result follows as ∆t
j = log

pt+1
j

ptj
, and E > rj by

assumption.
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3.3.6 Dynamical Markets

In this section, we will study dynamical markets. For each round, there can be a small

change to the supplies, budgets and buyers’ preferences. We will seek to show that taton-

nement can cause the prices to pursue the market equilibrium. Note that, in general, we

need to modify the potential function to account for the possibly changing supplies wtj for

item j at time t; the new potential function is

∑
j

wtjp
t
j +
∑
i

ei log max
xi·pt=eti

ui(xi),

and our update rule will be

pt+1
j = ptje

∆t
j

where ∆t
j = λmax

{
ztj
wj
, 1
}

.

Cheung, Hoefer, and Nakhe [CHN19] analyzed the following settings:

• Supply Change If at time t, the supplies change by at most ε, then the potential function

changes by at most (P + E)ε, where P is the maximum price at time t+ 1;

• Budget Change If at time t, the sum of the absolute values of the changes to the buyers’

budgets is at most ε, then the potential function changes by at most Cε, where C is

the maximum possible ratio between a buyer’s utility at time t + 1 and her utility at

the market equilibrium at time t+ 1;

• Utility Change If at time t, given any prices, the ratio of the utility difference when

best responding is bounded by χ, then the potential function changes by at most 2Eχ.

In order to analyze the effect of these changes over time, in this dissertation, we let D

denote the maximum change to the potential function at each round. We let pt,∗ denote the

equilibrium prices at time t. We have the following theorem.
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Theorem 3.3.2. For any 0 < θ < 1, if λσ
1−σ 6 1 and κ > maxj

p∗j
rj

, then

Ft+1(pt+1)− Ft+1(pt+1,∗) ≤ (1− α)t
(
F(p0)− F(p0,∗)

)
+

1

α

(
2
λε2M
θ

+D

)
,

where α =
(1−λ−2λ·max{ σ

1−σ ,1}−ε−2θ)

maxj

{
max{2, 1

2C(κ)} E
λrj

} andM = max
{∑

j ŵjp
0
j ,
((
eλ − 2λ

)
1+2λ−eλ

λ
+ λ
)(

E +
∑

j rj

)}
.

Also, here E will be the maximum possible total money over time, and ŵj will be the maxi-

mum supply of item j over time. Furthermore, if Ft(pt)− Ft(pt,∗) > 2
α

(
2λε2M

θ
+D

)
then

Ft+1(pt+1)− Ft+1(pt+1,∗) ≤
(

1− α

2

) (
Ft(pt)− Ft(pt,∗)

)
.

Proof. This theorem follows directly from the proof of Theorem 3.3.1 if we replace 2λε
2M
θ

by

2λε
2M
θ

+D in (3.56).

3.3.7 Missing Proofs

Proof of Lemma 3.3.3:

∑
j

pt+1
j =

∑
j

ptje
∆t
j =

∑
j

ptj

(
e∆t

j − 1−∆t
j

)
+
∑
j

ptj
(
1 + ∆t

j

)
.

If pt+1
j = rj, then ptj

(
1 + ∆t

j

)
≤ ptje

∆t
j = rj ≤ (1 − λ)ptj + λrj. Otherwise, ptj

(
1 + ∆t

j

)
≤

ptj
(
1 + λztj

)
= (1− λ)ptj + λ

∑
i b
t
ij. This implies

∑
j

pt+1
j ≤

∑
j

ptj

(
e∆t

j − 1−∆t
j

)
+ λ

∑
j

rj + (1− λ)
∑
j

ptj + λ
∑
ij

btij.

Since |∆t
j| ≤ λ, e∆t

j − 1−∆t
j ≤ max

{
eλ − 1− λ, e−λ − 1 + λ

}
≤ eλ − 1− λ.

∑
j

pt+1
j ≤

(
eλ − 1− λ

)∑
j

ptj + λ
∑
j

rj + (1− λ)
∑
j

ptj + λ
∑
ij

btij. (3.60)
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If
∑

j p
t
j ≥

(
1+2λ−eλ

λ

)(∑
ij b

t
ij +

∑
j rj

)
, then rearranging (3.60) gives

∑
j p

t+1
j ≤

∑
j p

t
j.

Otherwise, replacing
∑

j p
t
j by

(
1+2λ−eλ

λ

)(∑
ij b

t
ij +

∑
j rj

)
gives∑

j p
t+1
j ≤

((
eλ − 2λ

)
1+2λ−eλ

λ
+ λ
)(

E +
∑

j rj

)
. Thus∑

j p
t+1
j 6 max

{∑
j p

t
j,
((
eλ − 2λ

)
1+2λ−eλ

λ
+ λ
)(

E +
∑

j rj

)}
and the result follows by

induction on t.

Proof of Lemma 3.3.4: For simplicity, we can assume that at any given time each buyer

will spend all her money on just one item. To handle the general case, we partition each

buyer into several buyers, each of whom buys one good. Then the same result follows.

So, here we use j(i,p) to denote the item with max utility-per-dollar for buyer i at price

p and buyer i spends the whole budget on this item. Note that

ei log
ui(b

t+1
i ,pt+1

i )

ui(bti,p
t
i)

= ei log
aij(i,pt+1)

pt+1
j(i,pt+1)

− ei log
aij(i,pt)
ptj(i,pt)

= ei log
aij(i,pt+1)p

t+1
j(i,pt)

aij(i,pt)p
t+1
j(i,pt+1)

− btij(i,pt) log
pt+1
j(i,pt)

ptj(i,pt)

= ei log
aij(i,pt+1)p

t+1
j(i,pt)

aij(i,pt)p
t+1
j(i,pt+1)

− btij(i,pt)∆t
j(i,pt). (3.61)

We also know that

aij(i,pt)

pt+1
j(i,pt)

=
aij(i,pt)

ptj(i,pt)e
∆t
j(i,pt)

≥
aij(i,pt+1)

ptj(i,pt+1)e
∆t
j(i,pt)

=
aij(i,pt+1)e

∆t
j(i,pt+1)

pt+1
j(i,pt+1)e

∆t
j(i,pt)

.

Therefore,

ei log
aij(i,pt+1)p

t+1
j(i,pt)

aij(i,pt)p
t+1
j(i,pt+1)

≤ ei(∆
t
j(i,pt) −∆t

j(i,pt+1)) =
∑
j

(btij − bt+1
ij )∆t

j. (3.62)

To see the final equality, note that bij(i,pt) = ei and bij = 0 for all other j; so
∑

j b
t
ij∆

t
j =

ei∆
t
j(i,pt); likewise,

∑
j b

t+1
ij ∆t

j = ei∆
t
j(i,pt+1).

Combining (3.61) and (3.62) yields the result.
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The remaining lemmas use the following observations from [CCD19].

max
xi·p=ei

ui(xi) =

 ei

(∑
j a

1−ci
ij pcij

)− 1
ci ρi < 1

ei maxj{aijpj } ρi = 1
, (3.63)

And the best response to price p for ρi < 1 is

bij = ei
a1−ci
ij pcij∑
j′ a

1−ci
ij′ pcij′

. (3.64)

Proof of Lemma 3.3.5: First, we decompose the LHS into two parts:

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t)

= ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t+1)

+ ei log
ui(b

t
i,p

t+1)

ui(bti,p
t)
.

We start by bounding the first term. Note that

ui(bi,p) =

(∑
j

aij

(
bij
pj

)ρi) 1
ρi

.

Using (3.64) yields:

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t+1)

=
ei
ρi

log

∑
j aij

 ei
a
1−ci
ij

(pt+1
j

)ci∑
j′ a

1−ci
ij′

(pt+1
j′

)ci

pt+1
j


ρi

∑
j aij

 ei
a
1−ci
ij

(pt
j
)ci∑

j′ a
1−ci
ij′

(pt
j′

)ci

pt+1
j


ρi

=
ei
ρi

log

∑
j aij

(
a
1−ci
ij (pt+1

j )ci

pt+1
j

)ρi
∑

j aij

(
a
1−ci
ij (ptj)

ci

pt+1
j

)ρi + ei log

∑
j′ a

1−ci
ij′ (ptj′)

ci∑
j′ a

1−ci
ij′ (pt+1

j′ )ci
.
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Recall that ci = ρi
ρi−1

. By calculation, 1 + (1− ci)ρi = 1− ci and (ci − 1)ρi = ci. So,

∑
j

aij

(
a1−ci
ij (pt+1

j )ci

pt+1
j

)ρi

=
∑
j

a1−ci
ij

(
pt+1
j

)ci and

∑
j

aij

(
a1−ci
ij (ptj)

ci

pt+1
j

)ρi

=
∑
j

a1−ci
ij

(
ptj
)ci ( ptj

pt+1
j

)ρi

Therefore,

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t+1)

= ei
1− ρi
ρi

log

∑
j a

1−ci
ij

(
pt+1
j

)ci
∑

j a
1−ci
ij

(
ptj
)ci ( ptj

pt+1
j

)ρi
︸ ︷︷ ︸

A

+ ei log

∑
j a

1−ci
ij

(
ptj
)ci

∑
j a

1−ci
ij

(
ptj
)ci ( ptj

pt+1
j

)ρi
︸ ︷︷ ︸

B

.

Note that, by (3.64), bt+1
ij = ei

a
1−ci
ij (pt+1

j )
ci∑

j′ a
1−ci
ij′

(
pt+1
j′

)ci and btij = ei
a
1−ci
ij (ptj)

ci∑
j′ a

1−ci
ij′

(
pt
j′

)ci . Therefore,

A = −ei
1− ρi
ρi

log

∑
j a

1−ci
ij

(
ptj
)ci ( ptj

pt+1
j

)ρi
∑

j a
1−ci
ij

(
pt+1
j

)ci
= −ei

1− ρi
ρi

log

∑
j a

1−ci
ij (pt+1

j )ci
(

ptj

pt+1
j

)ci (
ptj

pt+1
j

)ρi
∑

j a
1−ci
ij

(
pt+1
j

)ci
= −ei

1− ρi
ρi

log
∑
j

bt+1
ij

ei

(
ptj

pt+1
j

)ρi (
ptj

pt+1
j

)ci

,

and

B = −ei log

∑
j a

1−ci
ij

(
ptj
)ci ( ptj

pt+1
j

)ρi
∑

j a
1−ci
ij

(
ptj
)ci

= −ei log
∑
j

btij
ei

(
ptj

pt+1
j

)ρi

.
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Thus,

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t+1)

= −ei
1− ρi
ρi

log
∑
j

bt+1
ij

ei

(
ptj

pt+1
j

)ρi (
ptj

pt+1
j

)ci

− ei log
∑
j

btij
ei

(
ptj

pt+1
j

)ρi

.

As the log function is concave, log
∑

i aixi ≥
∑

i ai log xi when
∑

i ai = 1; this yields:

ei
1− ρi
ρi

log
∑
j

bt+1
ij

ei

(
ptj

pt+1
j

)ρi (
ptj

pt+1
j

)ci

≥
∑
j

bt+1
ij (ρi + ci)

1− ρi
ρi

log
ptj

pt+1
j

= −ρi
∑
j

bt+1
ij log

ptj

pt+1
j

and ei log
∑
j

btij
ei

(
ptj

pt+1
j

)ρi

≥ ρi
∑
j

btij log
ptj

pt+1
j

.

Therefore,

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t+1)

≤ ρi
∑
j

bt+1
ij log

ptj

pt+1
j

− ρi
∑
j

btij log
ptj

pt+1
j

= −ρi
∑
j

bt+1
ij ∆t

j + ρi
∑
j

btij∆
t
j. (3.65)
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Now let’s look at the second part, ei log
ui(b

t
i,p

t+1)

ui(bti,p
t)

.

ei log
ui(b

t
i,p

t+1)

ui(bti,p
t)

=
ei
ρi

log

∑
j aij

 ei
a
1−ci
ij

(ptj)
ci∑

j′ a
1−ci
ij′

(pt
j′

)ci

pt+1
j


ρi

∑
j aij

 ei
a
1−ci
ij

(pt
j
)ci∑

j′ a
1−ci
ij′

(pt
j′

)ci

ptj


ρi

=
ei
ρi

log

∑
j aij

(
a
1−ci
ij (ptj)

ci

pt+1
j

)ρi
∑

j aij

(
a
1−ci
ij (ptj)

ci

ptj

)ρi .

Recall that 1 + (1− ci)ρi = 1− ci and (ci − 1)ρi = ci. So,

ei log
ui(b

t
i,p

t+1)

ui(bti,p
t)

=
ei
ρi

log

∑
j a

1−ci
ij

(
ptj
)ci ( ptj

pt+1
j

)ρi
∑

j a
1−ci
ij

(
ptj
)ci .

Remember that btij = ei
a
1−ci
ij (ptj)

ci∑
j′ a

1−ci
ij′

(
pt
j′

)ci . Therefore,

ei log
ui(b

t
i,p

t+1)

ui(bti,p
t)

=
ei
ρi

log
∑
j

btij
ei

(
ptj

pt+1
j

)ρi

≤ ei
ρi

∑
j

btij
ei

((
ptj

pt+1
j

)ρi

− 1

)
,

using the fact that log x ≤ x− 1 for the last inequality, and noting that
∑

j b
t
ij = ei.

As
pt+1
j

ptj
= e∆t

j and |∆t
j| ≤ 1,

(
ptj

pt+1
j

)ρi
− 1

ρi
≤ −∆t

j + ρi
(
∆t
j

)2
.
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Therefore,

ei log
ui(b

t
i,p

t+1)

ui(bti,p
t)
≤ −

∑
j

btij∆
t
j +
∑
j

btijρi
(
∆t
j

)2
. (3.66)

Combining (3.65) and (3.66) gives the result.

The following claim is used in the final two results.

Claim 3.3.10. If ρ < 1,

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t)

= −ei
ci

log
∑
j

btij
ei

(
pt+1
j

ptj

)ci

.

Proof. As ρi < 1, by (3.63), maxxi·p=ei ui(xi) = ei

(∑
j a

1−ci
ij pcij

)− 1
ci . Thus,

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t)

= −ei
ci

log

∑
j a

1−ci
ij

(
pt+1
j

)ci∑
j a

1−ci
ij

(
ptj
)ci .

Substituting from (3.64) gives

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t)

= −ei
ci

log

∑
j a

1−ci
ij

(
pt+1
j

)ci∑
j a

1−ci
ij

(
ptj
)ci = −ei

ci
log
∑
j

btij
ei

(
pt+1
j

ptj

)ci

.

Proof of Lemma 3.3.6: By applying Claim 3.3.10, and noting that pt+1
j = ptje

∆t
j , |∆t

j| ≤
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λ, and ci < 0, yields

ei log
ui(b

t+1
i ,pt+1)

ui(bti,p
t)

= −ei
ci

log
∑
j

btij
ei

(
pt+1
j

ptj

)ci

≤ −ei
ci

∑
j

btij
ei

[(
pt+1
j

ptj

)ci

− 1

]

(using log x ≤ x− 1)

= −ei
ci

∑
j

btij
ei

(
eci∆

t
j − 1

)
≤ −

∑
j

btij
ci∆

t
j +
(
ci∆

t
j

)2

ci

(using ex ≤ 1 + x+ x2 if −1 ≤ x = ci∆
t
j ≤ 1)

= −
∑
j

btij∆
t
j −

∑
j

btijci
(
∆t
j

)2
.

Proof of Lemma 3.3.7: As ρ 6 0, by Claim 3.3.10,

ei log
ui(b

t+1
i ,pt+1

i )

ui(bti,p
t
i)

= −ei
ci

log
∑
j

btij
ei

(
pt+1
j

ptj

)ci

≤ −ei
ci

∑
j

btij
ei

log

(
pt+1
j

ptj

)ci

≤ −
∑
j

btij∆
t
j.

The first inequality holds as log is a concave function, ci > 0 for complementary buyers, and∑
j

btij
ei

= 1; the final inequality uses ∆t
j = log

pt+1
j

ptj
.

Proof of Claim 3.3.8: If zj = −1 then
∑

j b
t
ij = 0 and the claim holds. Otherwise,

zj > −1 and

ptjz
t
j∆

t
j =

(∑
i

btij − pj

)
∆t
j =

(∑
j

btij

)(
1− 1

1 + ztj

)
∆t
j

≥

(∑
i

btij

)(
1− 1

1 +
∆t
j

λ

)
∆t
j.
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If ztj ≥ 0, then 0 ≤ ∆t
j

λ
≤ 1. This implies

1− 1

1 +
∆t
j

λ

≥
∆t
j

2λ
;

and if ztj < 0, then −λ < ∆t
j ≤ 0. This implies

1− 1

1 +
∆t
j

λ

≤
∆t
j

λ
<

∆t
j

2λ
.

The result now follows.
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