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Abstract

Deep neural networks have fundamentally transformed the field of machine translation,

and replaced statistical phrase-based approaches to serve translations to millions of users

in production systems every day [Bahdanau et al., 2015; Fan et al., 2020; Hassan et al.,

2018; Wu et al., 2016]. Despite impressive progress in translation accuracy, improving

decoding speed remains a key challenge as most systems are autoregressive and generate

a sentence word-by-word. As neural machine translation (NMT) models are becoming

increasingly deep and complex, there is a growing need for more efficient translation

systems with sub-linear or constant inference latency, with respect to the sentence length.

The main challenge in non-autoregressive machine translation is capturing the de-

pendencies between tokens in a target sentence without autogression. Motivated by a

rich history of probabilistic graphical models in sequence generation, this thesis pro-

poses to use latent variables to model intra-sentence dependencies, such that the output

distribution can be factorized given the latent variables. We also present several infer-

ence algorithms for non-autoregressive machine translation based on iterative refinement,

which revises a sentence over multiple iterations. Our non-autoregressive models based

on latent variables and iterative refinement can deliver significant decoding speedup with

comparable translation accuracy relative to a strong autoregressive baseline ¹. Finally, we

investigate the correlation between training (log-likelihood) and test objective (BLEU)

of several model families. We observe the two metrics are not correlated when comparing

models from different families (e.g. between autoregressive and latent variable models).

1. 6.2× decoding speedup with 0.9 BLEU score difference on WMT’14 En→De [Lee et al., 2020a].
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Chapter 1

Introduction

Most perceptual data arise in a sequence of individual elements. Indeed, there often exists

a temporal ordering or internal structure to many data sources — e.g. text, speech,

music, image and video — that enables the whole to be organized as a sequence of

parts. Humans excel at understanding and making sense of these objects in terms of

their structural and temporal relationship, that we perceive and generate these objects

in an effortless manner. Building an intelligent machine that can perform human-level

perception and generation of sequential data, however, has remained elusive for decades.

Following the success in training deep neural networks in the 2000s [Hinton et al.,

2006; Salakhutdinov and Hinton, 2009] and the breakthrough in image recognition

in 2012 [Krizhevsky et al., 2012], deep neural networks fundamentally transformed

sequence generation across many domains and perceptual modalities. Fueled by large

amounts of training data and fast computation, deep neural networks brought impressive

improvements on generation tasks and made statistical models obsolete. These include

but are not limited to: image generation [Chen et al., 2018b; Menick and Kalchbrenner,
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2019; van den Oord et al., 2016b,c], speech recognition [Chan et al., 2016; Graves and

Jaitly, 2014; Graves et al., 2013; Hinton et al., 2012], speech synthesis [Kalchbrenner

et al., 2018; van den Oord et al., 2016a; Wang et al., 2017], machine translation [Bah-

danau et al., 2015; Cho et al., 2014b; Firat et al., 2016; Sutskever et al., 2014] and music

generation [Dhariwal et al., 2020; Engel et al., 2017; Huang et al., 2019a].

Many successful models highlighted above are autoregressive and generate a sequence

of data one element at a time, mostly in a left-to-right order. While autoregressive mod-

els can be straightforwardly trained on exact data log-likelihood, sampling from them is

inherently sequential and cannot be parallelized, despite wide availability of parallel hard-

ware accelerators. As their inference latency grows linearly with respect to the length

of the generated sequence, this limits their practical applicability to generating long

sequences such as images (1M samples for images of 1024×1024 resolution), speech

(16,000 samples per second for 16kHz audio) and text documents (an average article in

Wikipedia contains 320 words).

As neural sequence models become increasingly larger and more complex, the prob-

lem of slow inference intensifies. To improve the generation throughput of autoregressive

neural sequence models, several works proposed speed optimizations. In speech synthe-

sis, Kalchbrenner et al. [2018] achieved real-time generation of 24kHz audio without

loss of perceptual quality by replacing the deep convolutional WaveNet decoder [van den

Oord et al., 2016a] with a single-layer recurrent neural network (RNN). In machine

translation, Kim et al. [2019] also saw speech gains by using a light-weight RNN de-

coder, among other optimizations such as half-precision floating-point and knowledge

distillation [Hinton et al., 2015]. While these solutions are practically useful, they do

2



not improve the asymptotic decoding complexity of sequence generation.

Motivated by recent success in non-autoregressive neural machine translation [Gu

et al., 2018a] and speech synthesis [van den Oord et al., 2018], this thesis proposes sev-

eral training and inference algorithms for non-autoregressive neural machine translation.

The main challenges in non-autoregressive machine translation are twofold: (1) cap-

turing the dependencies between tokens in a target sentence without directly doing so

using autoregression, and (2) given a source sentence at test time, finding the most likely

target sentence in a constant or sub-linear number of steps with respect to the length

of the sentence. The former is a problem of learning and the latter is that of inference.

Motivated by a long and rich history of graphical models for sequential data, we explore

using latent variables to capture the dependencies between the target tokens, such that

the distribution of the target tokens can be factorized given the latent variables. We

use iterative refinement for efficient inference, where the model first generates a rough

output which is then successively refined until some convergence criterion is satisfied.

This thesis is organized as follows. Chapter 2 reviews autoregressive models and prob-

abilistic graphical models for sequence generation. Then, we present a non-autoregressive

model for machine translation that performs refinement in a discrete space (Chapter 3).

Next, we present a continuous latent variable model and a novel inference algorithm that

performs refinement in a hybrid space consisting of both discrete and continuous vari-

ables (Chapter 4). In Chapter 5, we present an inference algorithm where the refinement

is purely performed in a continuous space. In Chapter 6, we investigate the correlation

between the training objective (log-likelihood) and evaluation metric (BLEU) between

several density estimators on five machine translation tasks. Finally, we present our
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conclusion and future avenues for research in Chapter 7.

1.1 List of Contributions

The Chapters 3, 4, 5 and 6 of this thesis appeared in the following publications respec-

tively:

• Jason Lee∗, Elman Mansimov∗ and Kyunghyun Cho.

Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refine-

ment. Empirical Methods in Natural Language Processing (EMNLP), 2018.

Project source code and pretrained models can be found at https://github.

com/nyu-dl/dl4mt-nonauto.

• Raphael Shu, Jason Lee, Hideki Nakayama and Kyunghyun Cho.

Latent-Variable Non-Autoregressive Neural Machine Translation with Determin-

istic Inference using a Delta Posterior. AAAI Conference on Artificial Intelligence

(AAAI), 2020.

Project source code can be found at https://github.com/zomux/lanmt.

• Jason Lee, Raphael Shu and Kyunghyun Cho.

Iterative Refinement in the Continuous Space for Non-Autoregressive Neural Ma-

chine Translation. EmpiricalMethods in Natural Language Processing (EMNLP),

2020.

Project source code can be found at https://github.com/zomux/lanmt-ebm.

4

https://github.com/nyu-dl/dl4mt-nonauto
https://github.com/nyu-dl/dl4mt-nonauto
https://github.com/zomux/lanmt
https://github.com/zomux/lanmt-ebm
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Project source code can be found at
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Chapter 2

Background

We provide a brief history of neural machine translation (NMT) and its slow inference

speed that motivates this thesis (section 2.1). We then describe autoregressive sequence

models (section 2.2) and review prior work on speed optimizations for autoregressive

NMT systems (section 2.3). Probabilistic graphical models have a long and success-

ful history of modeling sequential data (section 2.4). Indeed, several prior works on

non-autoregressive neural sequence models that inspired this thesis (which we review in

section 2.5) obviate the need for autoregression by employing latent variables to capture

the structure underlying the data. Finally, we outline relevant work on generating text

using iterative refinement, another key element in this thesis (section 2.6).

2.1 Brief History of Neural Machine Translation

For decades, Statistical Machine Translation (SMT) has been the dominant paradigm

for machine translation [Brown et al., 1990, 1988, 1993]. One of the most successful

6



statistical methods was phrase-based SMT models that first construct a phrase table

from a corpus of sentence pairs, which is later used to generate translations by finding

the most likely sequence of phrase pairs scored by an external language model [Koehn

et al., 2003; Och and Ney, 2002, 2004; Zens et al., 2002].

Even before the advent of fully neural machine translation models, several work pro-

posed to use neural networks as components in an SMT system, e.g. by using their

conditional probabilities as a feature in an SMT decoder [Cho et al., 2014b; Devlin

et al., 2014]. Encouraged by these results, neural networks were then deployed to di-

rectly model the full conditional distribution of the target sentence given the source

sentence in an end-to-end fashion [Cho et al., 2014a; Kalchbrenner and Blunsom, 2013;

Sutskever et al., 2014]. Thanks to increasing availability of parallel computation and ad-

vances in model parameterization [e.g. attention, Bahdanau et al., 2015; Vaswani et al.,

2017], NMT systems have achieved the new state-of-the-art in machine translation [Wu

et al., 2016] and even outperformed human-level translation quality in some language

pairs [Hassan et al., 2018].

Despite their remarkable success, NMT systems come with much higher compu-

tational overhead compared to their SMT counterparts, as computing the conditional

distribution for each target token involves several layers of computations in a deep neu-

ral network. Junczys-Dowmunt et al. [2016] showed that decoding with a recurrent

NMT system [Nematus, Sennrich et al., 2017] is at least an order of magnitude slower

than a state-of-the-art SMT system [Moses, Koehn et al., 2007] on a CPU with 16

threads. As slow inference speed adversely affects the applicability of NMT systems to

real-life applications, researchers and practitioners seeking to deploy NMT systems pro-
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posed various speed optimizations (which we review in section 2.3). This dissertation

specifically seeks to improve the asymptotic inference complexity of NMT systems by

proposing training and inference algorithm for non-autoregressive machine translation,

where the target sentence is not generated word-by-word, but in parallel.

2.2 Autoregressive Models for Sequences

Given a sequence of variables y1:t, autoregressive models directly factorize their joint

distribution into a product of conditional distributions.

p(y1:t|x) =
t∏
i=1

p(yi|y<i, x), (2.1)

where x is any contextual information the prediction might depend on (e.g. source

sentence in machine translation, or possibly an empty set in the case of unconditional

generation such as language modeling).

In fully visible sigmoid belief networks [Frey et al., 1995; Neal, 1992], the joint

distribution of all the variables is similarly decomposed into a product of conditional

distribution of each variable given its parent.

2.2.1 n-gram Models

One popular class of autoregressive models known as n-gram models assumes an n-th

order Markov property, where the conditional distribution in Eq. 2.1 is truncated such

that each prediction only depends on the n − 1 preceding variables. This assumption
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results in the likelihood in the form of:

p(y1:t) =
t∏
i=1

p(yi|yi−n+1:i−1)

=
t∏
i=1

C(yi−n+1:i)

C(yi−n+1:i−1)
, (2.2)

where C(·) denotes the number of times a given n-gram occurs in the training data.

Therefore, Eq 2.2 can be estimated by dividing the number of occurrences of every

n-gram by that of the preceding (n−1)-gram in the training data. From this definition,

an n-gram model assigns a 0 probability to an n-gram that is never seen during training.

This is a major shortcoming due to the curse of dimensionality: the model can encounter

novel n-grams at test time, even when a large training data was used. To combat this,

various smoothing and back-off techniques were proposed. Smoothing methods allocate

extra probability mass to unseen n-grams by discounting the probabilities of words en-

countered in the training data [Chen and Goodman, 1999; Jelinek and Mercer, 1980;

Ney et al., 1994]. On the other hand, back-off models estimate the probability of an

unseen n-gram by progressively considering shorter n-grams until such n-gram is found

in the training data [Kneser and Ney, 1995]. Despite these empirical solutions, n-gram

models suffer from a fundamental limitation as a word sequence on which the model will

be tested is likely to be different from all the word sequences seen during training. There-

fore, an approach that represents the meaning of a word by its co-occurrences is bound

to not generalize well. While their simplicity and effectiveness made n-gram models a

popular choice for language modeling and speech recognition tasks, this limitation mo-

tivated research into learning distributed representations of words with neural networks,

such that semantically similar words will be closer in vector space than others [Bengio
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et al., 2003].

2.2.2 Neural autoregressive models

One of the first successful neural parameterization of an autoregressive sequence model

is the neural probabilistic language model [Bengio et al., 2003]. While it is still an

n-gram model, the model first embeds every (n − 1) preceding word to a distributed

representation, which is fed into a 2-layer multi-layer perceptron (MLP) with a tanh

nonlinearity. The final softmax layer produces a categorical distribution over the next

word. This work is notable because (1) discrete symbols are embedded into a continuous

representation, such that similar words are mapped to similar vector representations, and

(2) vector representations (embeddings) are jointly trained with the MLP that produces

the predictive distribution. Bengio et al. [2003] report significantly better perplexities

when using neural networks and distributed word representations, compared to the best

reported n-grammodels. While this model achieves great generalization and avoids curse

of dimensionality, it is still limited by the Markov assumption.

Recurrent neural language models [Mikolov et al., 2010, 2011] do not suffer from

this as they condition the prediction of every variable on all preceding variables. The

hidden state representation ht of a recurrent neural network [RNN, Elman, 1990] at

time t summarizes all the input variables up to that timestep (x1, . . . , xt). However,

training recurrent neural networks with gradient descent has remained challenging for

years. Bengio et al. [1994] discovered that the norm of the gradient (specifically its long

term components) either tends to a very large quantity (also known as exploding gradients)

or 0 (known as vanishing gradients) during training, making it impossible for the RNN to
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learn long range dependencies. Pascanu et al. [2013] demonstrated that gradient clipping,

or rescaling the gradient norm whenever it exceeds a certain threshold, can mitigate

exploding gradients. Introducing gated skip connections to the RNN effectively solved

the vanishing gradient problem, as the output gate regulates the long term dependencies.

Gated variants of recurrent neural networks, such as long short-term memory [LSTM,

Hochreiter and Schmidhuber, 1997] and gated recurrent units [GRUs, Chung et al.,

2014], could be successfully trained for language modeling and machine translation tasks.

While LSTMs and GRUs showed promising results onmachine translation tasks [Cho

et al., 2014a; Sutskever et al., 2014], these models were still outperformed by statistical

phrase-based machine translation systems. Cho et al. [2014a] showed that translation ac-

curacy drops significantly for longer sentences, and hypothesized that the main weakness

of neural models stems from encoding the entire source sentence into a single fixed-size

vector. To combat this, Bahdanau et al. [2015] proposed to take a weighted average of

the source sentence hidden states across all timesteps, instead of simply taking the last

hidden state. The multiplicative weights are produced by an attention module that com-

putes the relevance of every target word to every source word. With the addition of the

attention mechanism, recurrent NMT models outperformed the phrase-based machine

translation models [Jean et al., 2015; Wu et al., 2016].

As recurrent neural networks perform an inherently sequential computation, where

the amount of computation scales linearly with the length of the input data, training

RNNs cannot be accelerated with parallel hardware accelerators such as GPUs. To

overcome this, several works proposed non-recurrent parameterizations of autoregres-

sive sequence models, e.g. using convolutions [Gehring et al., 2017; van den Oord
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et al., 2016a] and self-attention [Vaswani et al., 2017], augmented with causal masking

such that the temporal dependencies are preserved. As these models are fully feed-

forward, both forward and backward passes in backpropagation can be performed in

parallel for all timesteps, unlike RNNs where these computations are sequential. With

the increasing availability of parallel computation such as GPUs and tensor processing

units [TPUs, Jouppi et al., 2017], it became possible to scale up the size of Transformer

models [Vaswani et al., 2017] to billions of parameters [Brown et al., 2020; Chen et al.,

2018a; Huang et al., 2019b; Lepikhin et al., 2020; Ott et al., 2018b; Shazeer et al., 2018],

achieving impressive performance across several text generation tasks.

2.2.3 Inference

Given an autoregressive model pθ(yt|y<t, x), performing maximum-a-posteriori (MAP)

decoding is a discrete combinatorial search problem.

ŷ = argmaxy1,...,yt pθ(y1, . . . , yt|x).

As the size of the search space grows exponentially with respect to the length t, an exact

search is intractable. Therefore, approximate search algorithms are used instead.

Greedy search Greedy search recursively selects themost likely variable at each timestep,

until the first <EOS> token.

ŷt = argmaxv∈V log pθ(yt = v|ŷ<t, x),

where V is the target token vocabulary.
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Beam search Beam search maintains a set of K partially-decoded sequences, called

hypotheses. At each time step, beam search extends each hypothesis by one element

by appending every token in the vocabulary, forming K · |V | candidate hypotheses. It

then scores these and only keeps the highest K hypotheses. As the de-facto decoding

algorithm for machine translation, it gives superior performance to greedy search in

practice, albeit at significant computational overhead.

Inference complexity Due to the autoregressive dependencies, inference complexity

scales linearly with respect to the length of the sequence being generated. For model-

ing long sequences such as documents or waveform, autoregressive models can be pro-

hibitively slow to use in practice.

2.3 Fast Decoding for Neural Machine Translation

Due to the high inference complexity discussed above, several works proposed speed opti-

mizations for autoregressive NMT systems. Devlin [2017] achieved equivalent decoding

throughput to a phrase-based decoder on a CPU by using half-precision floating-point

matrix multiplications. Zhang et al. [2018] employed cube pruning to coarsen the search

space by clustering similar target hidden states, leading to less softmax operations on the

large vocabulary. Hoang et al. [2018] and Iglesias et al. [2018] proposed to batch several

input sentences and refine k-best extraction with specialized GPU kernel functions. Ar-

gueta and Chiang [2019] achieved considerable decoding speedup by accelerating sparse

matrix operations (for both the input token embeddings and the pre-softmax output

linear layer). Senellart et al. [2018] trained a smaller model with knowledge distilla-
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tion [Hinton et al., 2015] for faster decoding speed.

Kim et al. [2019] introduced a C++ NMT system with a suite of speed optimiza-

tions [Marian, Junczys-Dowmunt et al., 2018], including pre-packed 8-bit matrix prod-

ucts, improved batched decoding, cache-friendly student architectures with parameter

sharing and light-weight RNN-based decoder architectures, that significantly improved

the Pareto curve of translation quality versus speed. Bogoychev et al. [2020] extensively

used quantization for the weights and activations of the neural network to reduce model

size and improve decoding speed.

2.4 Probabilistic Graphical Models for Sequences

2.4.1 Dynamic Bayesian Networks

Graphical models (or Bayesian networks) can provide a probabilistic framework for learn-

ing temporal dependencies in sequential or time-varying data by enforcing a causal struc-

ture based on temporal order. Indeed, many successful time series models such as hidden

Markov models (HMMs) [Rabiner and Juang, 1986] and Kalman filters [Kalman, 1960]

can be viewed as special cases of dynamic Bayesian networks. Given a sequence of ob-

servations (y1, . . . , yt), a dynamic Bayesian network posits that each observation yi is

dependent on a latent state zi, and that the sequence of states forms a Markov process.

p(y1:t, z1:t) = p(z1)p(y1|z1)
t∏
i=2

p(yi|zi) p(zi|zi−1), (2.3)

where p(yi|zi) and p(zi|zi−1) are respectively referred to as observation and state transition

probabilities.
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Hidden Markov Models In HMMs, the hidden state is assumed to be a Categorical

random variable that can take one of K distinct values. Therefore, both the initial

p(z1) and state transition probabilities p(zi|zi−1) are Categorical distributions. The joint

probability of the observed and hidden variables can be exactly specified as Eq. 2.3.

Kalman filters In Kalman filters (or state-space models), the hidden state is assumed to

be real-valued: zi ∈ RK . In linear-Gaussian state-space models (classical Kalman filters),

the state transition and the observation probabilities are modeled as linear functions

perturbed by Gaussian noise.

Inference and Learning Parameters of a dynamic Bayesian network can be estimated

by maximizing the log-likelihood of the training data log pθ(y). Omitting the time-

index suffixes for notational simplicity, we have the following lowerbound on the log-

likelihood:

log pθ(y) = log
∑
z

pθ(z, y)

= log
∑
z

q(z)pθ(z, y)
q(z) (2.4)

= logEz∼q

[
pθ(z, y)
q(z)

]
≥ Ez∼q

[
log pθ(z, y)

q(z)

]
(2.5)

= Ez∼q

[
log pθ(y|z) + log pθ(z)− log q(z)

]
= F(q, θ),

where Eq. 2.4 holds for any proposal distribution q(z) over the hidden variables, and

Eq. 2.5 follows from Jensen’s inequality (and the concavity of the log function). When

15



the hidden variable zi is continuous, one can replace each summation with an integral.

The lowerbound can be maximized with the Expectation-Maximization (EM) algo-

rithm [Baum et al., 1970; Dempster et al., 1977], which alternates between maximizing

F with respect to q(z) and θ, while holding the other fixed. It is an iterative algorithm

that given an initial parameter θ0 and the proposal distribution q0(z), alternates the fol-

lowing:

E step: qi+1 ← argmaxq F(q, θi)

M step: θi+1 ← argmaxθ F(qi+1, θ)

The EM algorithm in the context of HMMs is known as the Baum-Welch algorithm,

whose E step uses the forward-backward procedure. The forward and backward prob-

abilities (which respectively account for past and future timesteps) can be efficiently

computed using dynamic programming, and are used to revise the posterior. Finding

the most likely sequence in an HMM uses Viterbi algorithm, a similar dynamic program-

ming approach where expectation is replaced by maximization [Viterbi, 1967].

While HMMs and Kalman filters enjoyed widespread adoption in a variety of dis-

ciplines, including speech recognition, filtering and navigation applications, they suffer

from fundamental limitations. As the true state dynamics and observation distributions

can be nonlinear for most realistic data, Kalman filters cannot model these time series

accurately. While HMMs do not make these assumptions, they can easily overfit the

data as the state space is large (KT for T objects being modeled).
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2.4.2 Variational Autoencoders

Variational Autoencoders (VAEs) [Kingma and Welling, 2014a; Rezende et al., 2014] are

a family of graphical models where a shared non-linear function qϕ(z|y) approximates

the variational parameters from each datapoint (local latent variables), and the evidence

lowerbound is maximized end-to-end. It is also referred to as amortized variational

inference, as the cost of performing posterior inference is amortized across the entire

dataset via the shared inference network.

log pθ(y) ≥ Ez∼qϕ(·|y)
[
log pθ(y|z) + log pθ(z)− log qϕ(z|y)

]
(2.6)

VAEs have been one of the most successful classes of generative models across several

domains.

2.4.3 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) [Graves et al., 2006] is an algorithm for

labeling a sequential data with a sequence of discrete labels. Proposed in the context

of speech recognition where the input and output sequence lengths differ by orders of

magnitude, it can learn the alignment between input and output sequences with varying

length. Given an input and output sequence x = (x1, . . . , xt′) and y = (y1, . . . , yt), it

assumes there exists a monotonic alignment a = (a1, . . . , at′) between x and y, where ai
indicates the element in y that xi is aligned to. CTC makes a conditional independence

assumption between individual predictions:

pθ(a|x) =
T∏
i=1

pθ(ai|x) (2.7)

17



Then, CTC is trained to maximize the likelihood of all possible alignments of y to x:

pθ(y|x) =
∑

a∈β(y,x)
pθ(a|x) (2.8)

where β(y, x) marginalizes over all possible alignments between y and x. Due to the

conditional independence assumption, Eq. 2.8 can be exactly evaluated via dynamic pro-

gramming, and prediction for all positions can be produced in a single step in a non-

autoregressive fashion.

2.4.4 Conditional Random Fields

Conditional Random Fields (CRFs) [Lafferty et al., 2001; Sutton and McCallum, 2012]

are a class of discriminative model to segment and label sequential data that assumes first

order Markov property and uses feature functions of observations and states (labels).

pθ(y|x) =
1

Z(x) exp
( n∑
i=1

s(yi, x, i) +
n∑
i=2

t(yi−1, yi, x, i)
)
, (2.9)

Similarly to HMMs, learning and inference in a linear-chain CRF can be done efficiently

with the forward-backward algorithm with O(t · n2) complexity, where t is sequence

length and n is the total number of labels.
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2.5 Non-Autoregressive Neural Sequence Models

2.5.1 Definition

Given a sequence of variables y1:t, assuming each variable is independent of each other

allows one to factorize the joint distribution into a product of individual distributions:

p(y1:t|x) =
t∏
i=1

p(yi|x). (2.10)

However, this assumption is unrealistic for most natural data. For example, neighboring

pixel values are highly correlated, and rules of grammar govern the possible combination

of words. In order to capture the dependencies between individual variables, many non-

autoregressive sequence models turn to latent variables, such that the decoding distribu-

tion may be factorized.

p(y1:t, z|x) =
( t∏
i=1

p(yi|z, x)
)
p(z|x). (2.11)

2.5.2 Prior Work

Generative models for images have largely been non-autoregressive, from Restricted

Boltzmann Machines [Hinton, 2007; Salakhutdinov and Hinton, 2009] and Deep Belief

Networks [Hinton et al., 2006] trained to generate MNIST digits and small faces to the

state-of-the-art Generative Adversarial Networks [Brock et al., 2019] and Variational

Autoencoders [Child, 2020; Vahdat and Kautz, 2020] producing hyperrealistic images

that are indistinguishable from real images.

Generative models for text that do not use autoregression, however, have relatively

had little success to date. One of the main difficulties of non-autoregressive text gen-
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eration is fully capturing the dependencies between words without autoregression. In

phrase-based machine translation, Schwenk [2012] directly learned the conditional dis-

tribution of a target sentence given a source sentence, while dropping the dependence

between the target words. Their success was however limited as the maximum sentence

length was 7 words. In an investigation of neural GPU [Kaiser and Sutskever, 2016] for

machine translation, Kaiser and Bengio [2016] observed that a fully non-autoregressive

model yields very poor results.

The first successful non-autoregressive machine translation system was proposed by

Gu et al. [2018a]. They introduced a sequence of discrete latent variables to summa-

rize the alignment between each source and target word (known as fertility). However,

they used an external word alignment tool [Dyer et al., 2013] to supervise the poste-

rior distribution (in latent variable inference). Libovický and Helcl [2018] proposed a

non-autoregressive NMT system based on the CTC framework [Graves et al., 2006],

using dynamic programming to sum the log-likelihood of the output sequence over all

possible combinations. While their models yielded worse translation accuracy than [Gu

et al., 2018a], Saharia et al. [2020] later showed that using CTC loss with sequence-level

distillation [Kim and Rush, 2016] leads to very strong results rivalling autoregressive

baselines. Recently, Ghazvininejad et al. [2019] proposed an iterative refinement-based

system trained on masked language modeling objective similar to BERT [Devlin et al.,

2019]. By controlling the number of masked tokens in each refinement step, their model

can generate translations in a constant number of steps.

Meanwhile, Kaiser et al. [2018] proposed a semi-autoregressive NMT system that

learns a shorter sequence of discrete latent variables that summarizes the target sentence,
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and autoregressively predicts the latent sequence from the source sentence. Similar ap-

proach has been used for image generation [Reed et al., 2017] Sun et al. [2019] proposed

a non-autoregressive NMT system with a light-weight CRF [Lafferty et al., 2001] before

the softmax layer to introduce additional dependencies without incurring huge compu-

tational overhead.

This thesis was also inspired by work on non-autoregressive sequence model for

efficient speech synthesis [van den Oord et al., 2018]. By distilling an autoregressive

WaveNet [van den Oord et al., 2016a] teacher into a non-autoregressive inverse autore-

gressive flow [Kingma et al., 2016], they achieved 1000× speedup compared to the orig-

inal WaveNet model, capable of serving in production text-to-speech systems.

2.6 Iterative Refinement for Sequence Generation

Refinement has a long history in text generation. Several works proposed to retrieve

a (input, output) tuple from the training data and perform edit operations on the out-

put [Gu et al., 2018c; Hashimoto et al., 2018; Song et al., 2016; Sumita and Iida, 1991;

Weston et al., 2018]. The idea of refinement has also been applied in automatic post-

editing [Grangier and Auli, 2017; Novak et al., 2016] and style transfer Li et al. [2018].

Energy-based models [LeCun et al., 2006] and gradient-based inference [Kingma

and Welling, 2014b; Lee et al., 2019] can also be viewed as systems that generate by

iterative refinement. These models can generate images [Bordes et al., 2017], generate

structured outputs [Belanger et al., 2017] and segment images [Gygli et al., 2017].
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Chapter 3

Deterministic Non-Autoregressive

Neural Sequence Modeling by Iterative

Refinement

We propose a conditional non-autoregressive neural sequence model based on iterative re-

finement. The proposed model is designed based on the principles of latent variable mod-

els and denoising autoencoders, and is generally applicable to any sequence generation

task. We extensively evaluate the proposed model on machine translation (IWSLT’16

De↔En, WMT’16 En↔Ro and WMT’14 En↔De) and image caption generation, and

observe that it significantly speeds up decoding while maintaining the generation quality

comparable to the autoregressive counterpart.
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3.1 Introduction

Conditional neural sequence modeling has become a de facto standard in a variety of

tasks [see, e.g., Cho et al., 2015, and references therein]. Much of this recent success

is built on top of autoregressive sequence models in which the probability of a target

sequence is factorized as a product of conditional probabilities of next symbols given all

the preceding ones. Despite its success, neural autoregressive modeling has its weakness

in decoding, i.e., finding the most likely sequence. Because of intractability, we must

resort to suboptimal approximate decoding, and due to its sequential nature, decoding

cannot be easily parallelized and results in a large latency [see, e.g., Cho, 2016]. This has

motivated the recent investigation into non-autoregressive neural sequence modeling by

Gu et al. [2018a] in the context of machine translation and van den Oord et al. [2018]

in the context of speech synthesis.

In this chapter, we propose a non-autoregressive neural sequence model based on

iterative refinement, which is generally applicable to any sequence generation task beyond

machine translation. The proposed model can be viewed as both a latent variable model

and a conditional denoising autoencoder. We thus propose a learning algorithm that is

hybrid of lowerbound maximization and reconstruction error minimization. We further

design an iterative inference strategy with an adaptive number of steps to minimize the

generation latency without sacrificing the generation quality.

We extensively evaluate the proposed conditional non-autoregressive sequence model

and compare it against the autoregressive counterpart, using the state-of-the-art Trans-

former [Vaswani et al., 2017], on machine translation and image caption generation. In

the case of machine translation, the proposed deterministic non-autoregressive models
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are able to decode approximately 2−3× faster than beam search from the autoregressive

counterparts on both GPU and CPU, while maintaining 90-95% of translation quality

on IWSLT’16 En↔De, WMT’16 En↔Ro and WMT’14 En↔De. On image caption

generation, we observe approximately 3× and 5× faster decoding on GPU and CPU,

respectively, while maintaining 85% of caption quality.

3.2 Non-Autoregressive Sequence Models

Sequence modeling in deep learning has largely focused on autoregressive modeling.

That is, given a sequence Y = (y1, . . . , yT ), we use some form of a neural network

to parametrize the conditional distribution over each variable yt given all the preceding

variables, i.e.,

log p(yt|y<t) = fθ(y<t),

where fθ is for instance a recurrent neural network. This approach has become a de facto

standard in language modeling [Mikolov et al., 2010]. When this is conditioned on an

extra variable X , it becomes a conditional sequence model log p(Y |X) which serves as a

basis on which many recent advances in, e.g., machine translation [Bahdanau et al., 2015;

Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014] and speech recognition [Chiu

et al., 2017; Chorowski et al., 2015] have been made.

Despite the recent success, autoregressive sequence modeling has a weakness due to

its nature of sequential processing. This weakness shows itself especially when we try to

decode the most likely sequence from a trained model, i.e.,

Ŷ = argmax
Y

log p(Y |X).
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There is no known polynomial algorithm for solving it exactly, and practitioners have

relied on approximate decoding algorithms [see, e.g., Cho, 2016; Hoang et al., 2017a].

Among these, beam search has become the method of choice, due to its superior per-

formance over greedy decoding, which however comes with a substantial computational

overhead [Cho, 2016].

As a solution to this issue of slow decoding, two recent works have attempted

non-autoregressive sequence modeling. Gu et al. [2018a] have modified the Trans-

former [Vaswani et al., 2017] for non-autoregressive machine translation, and van den

Oord et al. [2018] a convolutional network [van den Oord et al., 2016a] for non-autoregressive

modeling of waveform. Non-autoregressive modeling factorizes the distribution over a

target sequence given a source into a product of conditionally independent per-step dis-

tributions:

p(Y |X) =
T∏
t=1

p(yt|X),

breaking the dependency among the target variables across time. This allows us to

trivially find the most likely target sequence by taking argmaxyt p(yt|X) for each t, ef-

fectively bypassing the computational overhead and sub-optimality of decoding from an

autoregressive sequence model.

This desirable property of exact and parallel decoding however comes at the expense

of potential performance degradation [Kaiser and Bengio, 2016]. The potential modeling

gap, which is the gap between the underlying, true model and the neural sequence model,

could be larger with the non-autogressive model compared to the autoregressive one due

to challenge of modeling the factorized conditional distribution above.
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3.3 Iterative Refinement for Deterministic

Non-Autoregressive Sequence Models

3.3.1 Latent variable model

Similarly to two recent works [Gu et al., 2018a; van den Oord et al., 2018], we introduce

latent variables to implicitly capture the dependencies among target variables. We how-

ever remove any stochastic behavior by interpreting this latent variable model, introduced

immediately below, as a process of iterative refinement.

Our goal is to capture the dependencies among target symbols given a source sentence

without auto-regression by introducing L intermediate random variables and marginal-

izing them out:

p(Y |X) =
∑

Y 0,...,Y L

(
T∏
t=1

p(yt|Y L, X)

)(
T∏
t=1

p(yLt |Y L−1, X)

)
· · ·

(
T∏
t=1

p(y0t |X)

)
.

(3.1)

Each product term inside the summation is modelled by a deep neural network that

takes as input a source sentence and outputs the conditional distribution over the target

vocabulary V for each t.

Deterministic Approximation The marginalization in Eq. (3.1) is intractable. In order

to avoid this issue, we consider two approximation strategies; deterministic and stochastic

approximation. Without loss of generality, let us consider the case of single intermediate

latent variable, that is L = 1. In the deterministic case, we set ŷ0t to the most likely value

according to its distribution p(y0t |X), that is ŷ0t = argmaxy0t p(y
0
t |X). The entire lower
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bound can then be written as:

log p(Y |X) ≥

(
T∑
t=1

log p(yt|Ŷ L, X)

)
+ · · ·

+

(
T∑
t=1

log p(y1t |Ŷ 0, X)

)
+

(
T∑
t=1

log p(ŷ0t |X)

)
.

Stochastic Approximation In the case of stochastic approximation, we instead sample

ŷ0t from the distribution p(y0t |X). This results in the unbiased estimate of the marginal

log-probability log p(Y |X). Other than the difference in whether most likely values or

samples are used, the remaining steps are identical.

Latent Variables Although the intermediate random variables could be anonymous, we

constrain them to be of the same type as the output Y is, in order to share an underlying

neural network. This constraint allows us to view each conditional p(Y l|Ŷ l−1, X) as

a single-step of refinement of a rough target sequence Ŷ l−1. The entire chain of L

conditionals is then theL-step iterative refinement. Furthermore, sharing the parameters

across these refinement steps enables us to dynamically adapt the number of iterations

per input X . This is important as it substantially reduces the amount of time required

for decoding, as we see later in the experiments.

Training For each training pair (X,Y ∗), we first approximate themarginal log-probability.

We then minimize

JLVM(θ) = −
L+1∑
l=0

(
T∑
t=1

log pθ(y∗t |Ŷ l−1, X)

)
, (3.2)
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where Ŷ l−1 = (ŷl−1
1 , . . . , ŷl−1

T ), and θ is a set of parameters. We initialize ŷ0t (t-th

target word in the first iteration) as xt′ , where t′ = (T ′/T ) · t. T ′ and T are the lengths

of the source X and target Y ∗, respectively.

3.3.2 Denoising Autoencoder

The proposed approach could instead be viewed as learning a conditional denoising au-

toencoder which is known to capture the gradient of the log-density. That is, we implic-

itly learn to find a direction ∆Y in the output space that maximizes the underlying true,

data-generating distribution logP (Y |X). Because the output space is discrete, much

of the theoretical analysis by Alain and Bengio [2014] are not strictly applicable. We

however find this view attractive as it serves as an alternative foundation for designing a

learning algorithm.

Training We start with a corruption process C(Y |Y ∗), which introduces noise to the

correct output Y ∗. Given the reference translation Y ∗, we sample Ỹ ∼ C(Y |Y ∗) which

becomes as an input to each conditional in Eq. (3.1). Then, the goal of learning is to

maximize the log-probability of the original reference Y ∗ given the corrupted version.

That is, to minimize

JDAE(θ) = −
T∑
t=1

log pθ(y∗t |Ỹ , X). (3.3)

Once this cost JDAE is minimized, we can recursively perform the maximum-a-

posterior inference, i.e., Ŷ = argmaxY log pθ(Y |X), to find Ŷ that (approximately) max-

imizes log p(Y |X).
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Corruption Process C There is little consensus on the best corruption process for

a sequence, especially of discrete tokens. In this work, we use a corruption process

proposed by Hill et al. [2016], which has recently become more widely adopted [see, e.g.,

Artetxe et al., 2017; Lample et al., 2017]. Each y∗t in a reference target Y ∗ = (y∗1, . . . , y
∗
T )

is corrupted with a probability β ∈ [0, 1]. If decided to corrupt, we either (1) replace y∗t+1

with this token y∗t , (2) replace y∗t with a token uniformly selected from a vocabulary of

all unique tokens at random, or (3) swap y∗t and y∗t+1. This is done sequentially from y∗1

until y∗T .

3.3.3 Learning

Cost function Although it is possible to train the proposed non-autoregressive se-

quence model using either of the cost functions above (JLVM or JDAE,) we propose to

stochastically mix these two cost functions. We do so by randomly replacing each term

Ŷ l−1 in Eq. (3.2) with Ỹ in Eq. (3.3):

J(θ) = −
L+1∑
l=0

(
αl

T∑
t=1

log pθ(y∗t |Ŷ l−1, X) + (1− αl)
T∑
t=1

log pθ(y∗t |Ỹ , X)

)
, (3.4)

where Ỹ ∼ C(Y |Y ∗), and αl is a sample from a Bernoulli distribution with the prob-

ability pDAE. pDAE is a hyperparameter. As the first conditional p(Y 0|X) in Eq. (3.1)

does not take as input any target Y , we set α0 = 1 always.

Distillation Gu et al. [2018a], in the context of machine translation, and van den

Oord et al. [2018], in the context of speech generation, have recently discovered that it

is important to use knowledge distillation [Hinton et al., 2015; Kim and Rush, 2016]

to successfully train a non-autoregressive sequence model. Following Gu et al. [2018a],
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we also use knowledge distillation by replacing the reference target Y ∗ of each train-

ing example (X,Y ∗) with a target Y AR generated from a well-trained autoregressive

counterpart. Other than this replacement, the cost function in Eq 3.4 and the model

architecture remain unchanged.

Target Length Prediction One difference between the autoregressive and non-autoregressive

models is that the former naturally models the length of a target sequence without any

arbitrary upper-bound, while the latter does not. It is hence necessary to separately

model p(T |X), where T is the length of a target sequence, although during training, we

simply use the length of each reference target sequence.

3.3.4 Inference: Decoding

Inference in the proposed approach is entirely deterministic. We start from the input

X and first predict the length of the target sequence T̂ = argmaxT log p(T |X). Then,

givenX and T̂ we generate the initial target sequence by ŷ0t = argmaxyt log p(y0t |X), for

t = 1, . . . , T We continue refining the target sequence by ŷlt = argmaxyt log p(ylt|Ŷ l−1, X),

for t = 1, . . . , T .

Because these conditionals, except for the initial one, are modeled by a single, shared

neural network, this refinement can be performed as many iterations as necessary until

a predefined stopping criterion is met. A criterion can be based either on the amount of

change in a target sequence after each iteration (i.e.,D(Ŷ l−1, Ŷ l) ≤ ϵ), or on the amount

of change in the conditional log-probabilities (i.e., | log p(Ŷ l−1|X)− log p(Ŷ l−1|X)| ≤ ϵ)

or on the computational budget. In our experiments, we use the first criterion and use
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Jaccard distance as our distance function D.

3.4 Related Work

Non-Autoregressive NeuralMachine Translation Schwenk [2012] proposed a continuous-

space translation model to estimate the conditional distribution over a target phrase given

a source phrase, while dropping the conditional dependencies among target tokens. The

evaluation was however limited to reranking and to short phrase pairs (up to 7 words

on each side) only. Kaiser and Bengio [2016] investigated neural GPU [Kaiser and

Sutskever, 2016], for machine translation. They evaluated both non-autoregressive and

autoregressive approaches, and found that the non-autoregressive approach significantly

lags behind the autoregressive variants. It however differs from our approach that each

iteration does not output a refined version from the previous iteration. The recent paper

by Gu et al. [2018a] is most relevant to the proposed work. They similarly introduced a

sequence of discrete latent variables. They however use supervised learning for inference,

using the word alignment tool [Dyer et al., 2013]. To achieve the best result, Gu et al.

[2018a] stochastically sample the latent variables and rerank the corresponding target

sequences with an external, autoregressive model. This is in contrast to the proposed

approach which is fully deterministic during decoding and does not rely on any extra

reranking mechanism.

Parallel WaveNet Simultaneously with Gu et al. [2018a], van den Oord et al. [2018]

presented a non-autoregressive sequence model for speech generation. They use inverse

autoregressive flow [IAF, Kingma et al., 2016] to map a sequence of independent random
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variables to a target sequence. They apply the IAF multiple times, similarly to our

iterative refinement strategy. Their approach is however restricted to continuous target

variables, while the proposed approach in principle could be applied to both discrete and

continuous variables.

Post-Editing for Machine Translation Novak et al. [2016] proposed a convolutional

neural network that iteratively predicts and applies token substitutions given a translation

from a phase-based translation system. Unlike their system, our approach can edit an

intermediate translation with a higher degree of freedom. QuickEdit [Grangier and Auli,

2017] and deliberation network [Xia et al., 2017] incorporate the idea of refinement into

neural machine translation. Both systems consist of two autoregressive decoders. The

second decoder takes into account the translation generated by the first decoder. We

extend these earlier efforts by incorporating more than one refinement steps without

necessitating extra annotations.

Infusion Training Bordes et al. [2017] proposed an unconditional generative model

for images based on iterative refinement. At each step l of iterative refinement, the

model is trained to maximize the log-likelihood of target Y given the weighted mixture

of generated samples from the previous iteration Ŷ l−1 and a corrupted target Ỹ . That

is, the corrupted version of target is “infused” into generated samples during training.

In the domain of text, however, computing a weighted mixture of two sequences of

discrete tokens is not well defined, and we propose to stochastically mix denoising and

lowerbound maximization objectives.
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Figure 3.1: We compose three transformer blocks (“Encoder”, “Decoder 1” and “Decoder
2”) to implement the proposed non-autoregressive sequence model.

3.5 Parameterization

We use three transformer-based network blocks to implement our model. The first

block (“Encoder”) encodes the input X , the second block (“Decoder 1”) models the

first conditional log p(Y 0|X), and the final block (“Decoder 2”) is shared across iterative

refinement steps, modeling log p(Y l|Ŷ l−1, X). These blocks are depicted side-by-side

in Fig. 3.1. The encoder is identical to that from the original Transformer [Vaswani

et al., 2017]. We however use the decoders from Gu et al. [2018a] with additional

positional attention and use the highway layer [Srivastava et al., 2015] instead of the

residual layer [He et al., 2016].

The original input X is padded or shortned to fit the length of the reference target
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sequence before being fed to Decoder 1. At each refinement step l, Decoder 2 takes

as input the predicted target sequence Ŷ l−1 and the sequence of final activation vectors

from the previous step.

3.6 Experimental Setting

We evaluate the proposed approach on two sequence modeling tasks: machine transla-

tion and image caption generation. We compare the proposed non-autoregressive model

against the autoregressive counterpart both in terms of generation quality, measured in

terms of BLEU [Papineni et al., 2002], and generation efficiency, measured in terms of

(source) tokens and images per second for translation and image captioning, respectively.

Machine Translation We choose three tasks of different sizes: IWSLT’16 En↔De

(196k pairs), WMT’16 En↔Ro (610k pairs) and WMT’14 En↔De (4.5M pairs). We

tokenize each sentence using a script from Moses [Koehn et al., 2007] and segment each

word into subword units using BPE [Sennrich et al., 2016b]. We use 40k tokens from

both source and target for all the tasks. For WMT’14 En-De, we use newstest-2013 and

newstest-2014 as development and test sets. For WMT’16 En-Ro, we use newsdev-2016

and newstest-2016 as development and test sets. For IWSLT’16 En-De, we use test2013

for validation.

We closely follow the setting by Gu et al. [2018a]. In the case of IWSLT’16 En-

De, we use the small model (dmodel = 278, dhidden = 507, pdropout = 0.1, nlayer = 5 and

nhead = 2).¹ For WMT’14 En-De and WMT’16 En-Ro, we use the base transformer
1. Due to the space constraint, we refer readers to [Gu et al., 2018a; Vaswani et al., 2017] for more

details.
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by Vaswani et al. [2017] (dmodel = 512, dhidden = 512, pdropout = 0.1, nlayer = 6 and

nhead = 8). We use the warm-up learning rate scheduling [Vaswani et al., 2017] for

the WMT tasks, while using linear annealing (from 3× 10−4 to 10−5) for the IWSLT

task. We do not use label smoothing nor average multiple check-pointed models. These

decisions were made based on the preliminary experiments. We train each model either

on a single P40 (WMT’14 En-De and WMT’16 En-Ro) or on a single P100 (IWSLT’16

En-De) with each minibatch consisting of approximately 2k tokens. We use four P100’s

to train non-autoregressive models on WMT’14 En-De.

Image Caption Generation: MS COCO We use MS COCO [Lin et al., 2014]. We

use the publicly available splits [Karpathy and Li, 2015], consisting of 113,287 train-

ing images, 5k validation images and 5k test images. We extract 49 512-dimensional

feature vectors for each image, using a ResNet-18 [He et al., 2016] pretrained on Im-

ageNet [Deng et al., 2009]. The average of these vectors is copied as many times to

match the length of the target sentence (reference during training and predicted during

evaluation) to form the initial input to Decoder 1. We use the base transformer [Vaswani

et al., 2017] except that nlayer is set to 4. We train each model on a single 1080ti with

each minibatch consisting of approximately 1,024 tokens.

Target Length Prediction We formulate the target length prediction as classification,

predicting the difference between the target and source lengths for translation and the

target length for image captioning. All the hidden vectors from the nlayer layers of the

encoder are summed and fed to a softmax classifier after affine transformation. We

however do not tune the encoder’s parameters for target length prediction. We use this
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Figure 3.2: (a) BLEU scores on WMT’14 En-De w.r.t. the number of refinement
steps (up to 102). The x-axis is in the logarithmic scale. (b) the decoding latencies
(sec/sentence) of different approaches on IWSLT’16 En→De. The y-axis is in the loga-
rithmic scale.

length predictor only during test time. We find it important to accurately predict the

target length for good overall performance. See Section 3.7 for an analysis on our length

prediction model.

Training and Inference We use Adam [Kingma and Ba, 2015] and use L = 3 in

Eq. (3.1) during training (itrain = 4 from hereon.) We use pDAE = 0.5. We use the

deterministic strategy for IWSLT’16 En-De, WMT’16 En-Ro and MS COCO, while

the stochastic strategy is used for WMT’14 En-De. These decisions were made based

on the validation set performance. After both the non-autogressive sequence model and

target length predictor are trained, we decode by first predicting the target length and

then running iterative refinement steps until the outputs of consecutive iterations are

the same (or Jaccard distance between consecutive decoded sequences is 1). To assess

the effectiveness of this adaptive scheme, we also test a fixed number of steps (idec).

36



IWSLT’16 En-De WMT’16 En-Ro
En→ De→ GPU CPU En→ Ro→ GPU CPU

AR
b = 1 28.64 34.11 70.3 32.2 31.93 31.55 55.6 15.7
b = 4 28.98 34.81 63.8 14.6 32.40 32.06 43.3 7.3

N
AT FT 26.52 – – – 27.29 29.06 – –

FT+NPD 28.16 – – – 29.79 31.44 – –

Ou
rM

od
el

idec = 1 22.20 27.68 573.0 213.2 24.45 25.73 694.2 98.6
idec = 2 24.82 30.23 423.8 110.9 27.10 28.15 332.7 62.8
idec = 5 26.58 31.85 189.7 52.8 28.86 29.72 194.4 29.0
idec = 10 27.11 32.31 98.8 24.1 29.32 30.19 93.1 14.8
Adaptive 27.01 32.43 125.9 29.3 29.66 30.30 118.3 16.5

Table 3.1: Generation quality (BLEU↑) and decoding efficiency (tokens/sec↑ for translation,
images/sec↑ for image captioning). Decoding efficiency is measured sentence-by-sentence. AR:
autoregressive models. b: beam width. idec: the number of refinement steps taken during decod-
ing. Adaptive: the adaptive number of refinement steps. NAT: non-autoregressive transformer
models [Gu et al., 2018a]. FT: fertility. NPD reranking using 100 samples.

In machine translation, we remove any repetition by collapsing multiple consecutive

occurrences of a token.

3.7 Results and Analysis

We make some important observations in Table 3.1. First, the generation quality im-

proves across all the tasks as we run more refinement steps idec even beyond that used

in training (itrain = 4), which supports our interpretation as a conditional denoising

autoencoder in Sec. 3.3.2. To further verify this, we run decoding on WMT’14 (both

directions) up to 100 iterations. As shown in Fig. 3.2 (a), the quality improves well

beyond the number of refinement steps used during training.

Second, the generation efficiency decreases as more refinements are made. We plot
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WMT’14 En-De MS COCO
En→ De→ GPU CPU BLEU GPU CPU

AR
b = 1 23.77 28.15 54.0 15.8 23.47 4.3 2.1
b = 4 24.57 28.47 44.9 7.0 24.78 3.6 1.0

N
AT FT 17.69 21.47 – – – – –

FT+NPD 19.17 23.30 – – – – –

Ou
rM

od
el

idec = 1 13.91 16.77 511.4 83.3 20.12 17.1 8.9
idec = 2 16.95 20.39 393.6 49.6 20.88 12.0 5.7
idec = 5 20.26 23.86 139.7 23.1 21.12 6.2 2.8
idec = 10 21.61 25.48 90.4 12.3 21.24 2.0 1.2
Adaptive 21.54 25.43 107.2 20.3 21.12 10.8 4.8

Table 3.2: Generation quality (BLEU↑) and decoding efficiency (tokens/sec↑ for translation,
images/sec↑ for image captioning). Decoding efficiency is measured sentence-by-sentence. AR:
autoregressive models. b: beam width. idec: the number of refinement steps taken during decod-
ing. Adaptive: the adaptive number of refinement steps. NAT: non-autoregressive transformer
models [Gu et al., 2018a]. FT: fertility. NPD reranking using 100 samples.

the average seconds per sentence in Fig. 3.2 (b), measured on GPU while sequen-

tially decoding one sentence at a time. As expected, decoding from the autoregres-

sive model linearly slows down as the sentence length grows, while decoding from the

non-autoregressive model with a fixed number of iterations has the constant complexity.

However, the generation efficiency of non-autoregressive model decreases as more refine-

ments are made. To make a smooth trade-off between the quality and speed, the adaptive

decoding scheme allows us to achieve near-best generation quality with a significantly

lower computational overhead. Moreover, the adaptive decoding scheme automatically

increases the number of refinement steps as the sentence length increases, suggesting

that this scheme captures the amount of information in the input well. The increase in

latency is however less severe than that of the autoregressive model.

We also observe that the speedup in decoding is much clearer on GPU than on CPU.
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En→De De→En
itrain pDAE distill rep no rep rep no rep

AR

b = 1 28.64 34.11
b = 4 28.98 34.81

Ou
rM

od
els

1 0 14.62 18.03 16.70 21.18
2 0 17.42 21.08 19.84 24.25
4 0 19.22 22.65 22.15 25.24
4 1 19.83 22.29 24.00 26.57
4 0.5 20.91 23.65 24.05 28.18
4 0.5 √ 26.17 27.11 31.92 32.59

Table 3.3: Ablation study on the dev set of IWSLT’16.

This is a consequence of highly parallel computation of the proposed non-autoregressive

model, which is better suited to GPUs, showcasing the potential of using the non-

autoregressive model with a specialized hardware for parallel computation, such as Google’s

TPUs [Jouppi et al., 2017]. The results of our model decoded with adaptive decoding

scheme are comparable to the results from [Gu et al., 2018a], without relying on any

external tool. On WMT’14 En-De, the proposed model outperforms the best model

from [Gu et al., 2018a] by two points.

Lastly, it is encouraging to observe that the proposed non-autoregressive model

works well on image caption generation. This result confirms the generality of our

approach beyond machine translation, unlike that by Gu et al. [2018a] which was for

machine translation or by van den Oord et al. [2018] which was for speech synthesis.

Ablation Study We use IWSLT’16 En-De to investigate the impact of different num-

ber of refinement steps during training (denoted as itrain) as well as probability of using

denoising autoencoder objective during training (denoted as pDAE). The results are pre-

39



stochastic distill IWSLT’16 (En→) WMT’14 (En→)
23.65 7.56√ 22.80 16.56

√ 27.11 18.91√ √ 25.39 21.22

Table 3.4: Deterministic and stochastic approximation

sented in Table 3.3.

First, we observe that it is beneficial to use multiple iterations of refinement dur-

ing training. By using four iterations (one step of decoder 1, followed by three steps

of decoder 2), the BLEU score improved by approximately 1.5 points in both direc-

tions. We also notice that it is necessary to use the proposed hybrid learning strat-

egy to maximize the improvement from more iterations during training (itrain = 4 vs.

itrain = 4, pDAE = 1.0 vs. itrain = 4, pDAE = 0.5.) Knowledge distillation was crucial

to close the gap between the proposed deterministic non-autoregressive sequence model

and its autoregressive counterpart, echoing the observations by Gu et al. [2018a] and

van den Oord et al. [2018]. Finally, we see that removing repeating consecutive symbols

improves the quality of the best trained models (itrain = 4, pDAE = 0.5) by approximately

+1 BLEU. This suggests that the proposed iterative refinement is not enough to remove

repetitions on its own. Further investigation is necessary to properly tackle this issue,

which we leave as a future work.

We then compare the deterministic and stochastic approximation strategies on IWSLT’16

En→De and WMT’14 En→De. According to the results in Table 3.4, the stochastic

strategy is crucial with a large corpus (WMT’14), while the deterministic strategy works

as well or better with a small corpus (IWSLT’16). Both of the strategies benefit from
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IWSLT’16 WMT’16 WMT’14
En→ →En En→ →En En→ →En

pred 27.01 32.43 29.66 30.30 21.54 25.43
ref 28.15 33.11 30.42 31.26 22.10 26.40

Table 3.5: BLEU scores on each dataset when using reference length (ref ) and predicted target
length (pred).

knowledge distillation, but the gap between the two strategies when the dataset is large

is much more apparent without knowledge distillation.

Impact of Length Prediction The quality of length prediction has an impact on the

overall translation/captioning performance. When using the reference target length (dur-

ing inference), we consistently observed approximately 1 BLEU score improvement over

reported results in the tables and figures across different datasets in the chapter (see

Table 3.5 for more detailed comparison).

We additionally compared our length prediction model with a simple baseline that

uses length statistics of the corresponding training dataset (a non-parametric approach).

To predict the target length for a source sentence with length Ls, we take the average

length of all the target sentences coupled with the sources sentences of length Ls in the

training set. Compared to this approach, our length prediction model predicts target

length correctly twice as often (16% vs. 8%), and gives higher prediction accuracy within

five tokens (83% vs. 69%)
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3.7.1 Qualitative Analysis

Machine Translation In Table 3.6, we present three sample translations and their iter-

ative refinement steps from the development set of IWSLT’16 (De→En). As expected,

the sequence generated from the first iteration is a rough version of translation and is it-

eratively refined over multiple steps. By inspecting the underlined sub-sequences, we see

that each iteration does not monotonically improve the translation, but overall modifies

the translation towards the reference sentence. Missing words are added, while unnec-

essary words are dropped. For instance, see the second example. The second iteration

removes the unnecessary “were”, and the fourth iteration inserts a new word “mostly”.

The phrase “at the time” is gradually added one word at a time.

Image Caption Generation Tables 3.7 and 3.8 show two examples of image caption

generation. We observe that each iteration captures more and more details of the input

image. In Table 3.7, the bus was described only as a “yellow bus” in the first iteration,

but the subsequent iterations refine it into “yellow and black bus”. Similarly, “road” is

refined into “lot”. We notice this behavior in the second example (Table 3.8) as well. The

first iteration does not specify the place in which “a woman” is “standing on”, which is

fixed immediately in the second iteration: “standing on a tennis court”. In the final and

fourth iteration, the proposed model captures the fact that the “woman” is “holding” a

racquet.
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3.8 Conclusion

Following on the exciting, recent success of non-autoregressive neural sequence modeling

by Gu et al. [2018a] and van den Oord et al. [2018], we proposed a deterministic non-

autoregressive neural sequence model based on the idea of iterative refinement. We

designed a learning algorithm specialized to the proposed approach by interpreting the

entire model as a latent variable model and each refinement step as denoising.

We implemented our approach using the Transformer and evaluated it on two tasks:

machine translation and image caption generation. On both tasks, we were able to

show that the proposed non-autoregressive model performs closely to the autoregressive

counterpart with significant speedup in decoding. Qualitative analysis revealed that the

iterative refinement indeed refines a target sequence gradually over multiple steps.

Despite these promising results, we observed that proposed non-autoregressive neu-

ral sequence model is outperformed by its autoregressive counterpart in terms of the gen-

eration quality. The following directions should be pursued in the future to narrow this

gap. First, we should investigate better approximation to the marginal log-probability.

Second, the impact of the corruption process on the generation quality must be studied.

Lastly, further work on sequence-to-sequence model architectures could yield better

results in non-autoregressive sequence modeling.

3.9 Developments Since Publication

Since the time of this chapter’s publication in 2018, several works proposed non-autoregressive

neural machine translation systems that perform iterative refinement in the token space.
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Among these, models trained on masked language modeling loss [Devlin et al., 2019]

have been particularly successful [Chan et al., 2019; Ghazvininejad et al., 2019, 2020; Ka-

sai et al., 2020; Kreutzer et al., 2020; Mansimov et al., 2019b]. On WMT’14 En→De, a

system proposed by Ghazvininejad et al. [2019] delivered comparable translation quality

to autoregressive baseline in 10 refinement steps. Another successful class of models

learn to generate text in non-monotonic orders [Gu et al., 2019a,b; Stern et al., 2019].

By specifying multiple token positions as insertion points, these models can generate

a sentence in a fixed number of steps. Finally, Stern et al. [2018]; Wang et al. [2018]

proposed semi-autoregressive approaches that autoregressively generate multiple tokens

at a time, thereby reducing inference latency. Overall, text generation by refining the

output remains an active avenue or research, and we believe that more exciting works

will follow.
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Src seitdem habe ich sieben Häuser in der Nachbarschaft mit den Lichtern versorgt und
sie funktionierenen wirklich gut .

Iter 1 and I ’ve been seven homes since in neighborhood with the lights and they ’re really
functional .

Iter 2 and I ’ve been seven homes in the neighborhood with the lights , and they ’re a
really functional .

Iter 4 and I ’ve been seven homes in neighborhood with the lights , and they ’re a really
functional .

Iter 8 and I ’ve been providing seven homes in the neighborhood with the lights and
they ’re a really functional .

Iter 20 and I ’ve been providing seven homes in the neighborhood with the lights , and
they ’re a very good functional .

Ref since now , I ’ve set up seven homes around my community , and they ’re really
working .

Src er sah sehr glücklich aus , was damals ziemlich ungewöhnlich war , da ihn die
Nachrichten meistens deprimierten .

Iter 1 he looked very happy , which was pretty unusual the , because the news was were
usually depressing .

Iter 2 he looked very happy , which was pretty unusual at the , because the news was s
depressing .

Iter 4 he looked very happy , which was pretty unusual at the , because news was mostly
depressing .

Iter 8 he looked very happy , which was pretty unusual at the time because the news was
mostly depressing .

Iter 20 he looked very happy , which was pretty unusual at the time , because the news was
mostly depressing .

Ref there was a big smile on his face which was unusual then , because the news mostly
depressed him .

Src furchtlos zu sein heißt für mich , heute ehrlich zu sein .
Iter 1 to be , for me , to be honest today .
Iter 2 to be fearless , me , is to be honest today .
Iter 4 to be fearless for me , is to be honest today .
Iter 8 to be fearless for me , me to be honest today .
Iter 20 to be fearless for me , is to be honest today .
Ref so today , for me , being fearless means being honest .

Table 3.6: Three sample De→En translations from the non-autoregressive sequence model.
Source sentences are from the dev set of IWSLT’16. The first iteration corresponds to Decoder
1, and from thereon, Decoder 2 is repeatedly applied. Sub-sequences with changes across the
refinement steps are underlined.
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Generated Caption
Iter 1 a yellow bus parked on parked in of parking road .
Iter 2 a yellow and black on parked in a parking lot .
Iter 3 a yellow and black bus parked in a parking lot .
Iter 4 a yellow and black bus parked in a parking lot .

Reference Captions
a tour bus is parked on the curb waiting
city bus parked on side of hotel in the rain .
bus parked under an awning next to brick sidewalk
a bus is parked on the curb in front of a building .
a double decked bus sits parked under an awning

Table 3.7: A sample image caption from the proposed non-autoregressive sequence model. The
images are from the development set of MS COCO. The first iteration is from decoder 1, while
the subsequent ones are from decoder 2. Subsequences with changes across the refinement steps
are underlined.
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Generated Caption
Iter 1 a woman standing on playing tennis on a tennis racquet .
Iter 2 a woman standing on a tennis court a tennis racquet .
Iter 3 a woman standing on a tennis court a a racquet .
Iter 4 a woman standing on a tennis court holding a racquet .

Reference Captions
a female tennis player in a black top playing tennis
a woman standing on a tennis court holding a racquet .
a female tennis player preparing to serve the ball .
a woman is holding a tennis racket on a court
a woman getting ready to reach for a tennis ball on the ground

Table 3.8: Another sample image caption from the proposed non-autoregressive sequence model.
The images are from the development set of MS COCO. The first iteration is from decoder 1,
while the subsequent ones are from decoder 2. Subsequences with changes across the refinement
steps are underlined.
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Chapter 4

Latent-Variable Non-Autoregressive

Neural Machine Translation with

Deterministic Inference using a Delta

Posterior

Although neural machine translation models reached high translation quality, the au-

toregressive nature makes inference difficult to parallelize and leads to high translation

latency. Inspired by recent refinement-based approaches, we propose LaNMT, a latent-

variable non-autoregressive model with continuous latent variables and deterministic

inference procedure. In contrast to existing approaches, we use a deterministic infer-

ence algorithm to find the target sequence that maximizes the lowerbound to the log-

probability. During inference, the length of translation automatically adapts itself. Our
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experiments show that the lowerbound can be greatly increased by running the inference

algorithm, resulting in significantly improved translation quality. Our proposed model

closes the performance gap between non-autoregressive and autoregressive approaches on

ASPEC Ja-En dataset with 8.6x faster decoding. OnWMT’14 En-De dataset, our model

narrows the gap with autoregressive baseline to 2.0 BLEU points with 12.5x speedup.

By decoding multiple initial latent variables in parallel and rescore using a teacher model,

the proposed model further brings the gap down to 1.0 BLEU point onWMT’14 En-De

task with 6.8x speedup.

4.1 Introduction

The field of Neural Machine Translation (NMT) has seen significant improvements in

recent years Bahdanau et al. [2015]; Gehring et al. [2017]; Vaswani et al. [2017]; Wu

et al. [2016]. Despite impressive improvements in translation accuracy, the autoregres-

sive nature of NMT models have made it difficult to speed up decoding by utilizing

parallel model architecture and hardware accelerators. This has sparked interest in non-

autoregressive NMT models, which predict every target tokens in parallel. In addition

to the obvious decoding efficiency, non-autoregressive text generation is appealing as it

does not suffer from exposure bias and suboptimal inference.

Inspired by recent work in non-autoregressive NMT using discrete latent variables [Kaiser

et al., 2018] and iterative refinement [Lee et al., 2018], we introduce a sequence of con-

tinuous latent variables to capture the uncertainty in the target sentence. We motivate

such a latent variable model by conjecturing that it is easier to refine lower-dimensional
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continuous variables¹ than to refine high-dimensional discrete variables, as done in Lee

et al. [2018]. Unlike Kaiser et al. [2018], the posterior and the prior can be jointly

trained to maximize the evidence lowerbound of the log-likelihood log p(y|x).

In this work, we propose a deterministic iterative algorithm to refine the approx-

imate posterior over the latent variables and obtain better target predictions. During

inference, we first obtain the initial posterior from a prior distribution p(z|x) and the

initial guess of the target sentence from the conditional distribution p(y|x, z). We then

alternate between updating the approximate posterior and target tokens with the help

of an approximate posterior q(z|x, y). We avoid stochasticity at inference time by intro-

ducing a delta posterior over the latent variables. We empirically find that this iterative

algorithm significantly improves the lowerbound and results in better BLEU scores. By

refining the latent variables instead of tokens, the length of translation can dynamically

adapt throughout this procedure, unlike previous approaches where the target length

was fixed throughout the refinement process. In other words, even if the initial length

prediction is incorrect, it can be corrected simultaneously with the target tokens.

Our models² outperform the autoregressive baseline on ASPEC Ja-En dataset with

8.6x decoding speedup and bring the performance gap down to 2.0 BLEU points on

WMT’14 En-De with 12.5x decoding speedup. By decoding multiple latent variables

sampled from the prior and rescore using a autoregressive teacher model, the proposed

model is able to further narrow the performance gap on WMT’14 En-De task down to

1.0 BLEU point with 6.8x speedup. The contributions of this work can be summarize

as follows:

1. We use 8-dimensional latent variables in our experiments.
2. Our code can be found in https://github.com/zomux/lanmt .
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1. We propose a continuous latent-variable non-autoregressive NMTmodel for faster

inference. The model learns identical number of latent vectors as the input tokens.

A length transformation mechanism is designed to adapt the number of latent

vectors to match the target length.

2. We demonstrate a principle inference method for this kind of model by introducing

a deterministic inference algorithm. We show the algorithm converges rapidly in

practice and is capable of improving the translation quality by around 2.0 BLEU

points.

4.2 Background

4.2.1 Autoregressive NMT

In order to model the joint probability of the target tokens y1, · · · , y|y| given the source

sentence x, most NMTmodels use an autoregressive factorization of the joint probability

which has the following form:

log p(y|x) =
|y|∑
i=1

log p(yi|y<i, x),

where y<i denotes the target tokens preceding yi. Here, the probability of emitting each

token p(yi|y<i, x) is parameterized with a neural network.

To obtain a translation from this model, one could predict target tokens sequentially

by greedily taking argmax of the token prediction probabilities. The decoding progress

ends when a “</s>” token, which indicates the end of a sequence, is selected. In practice,

however, this greedy approach yields suboptimal sentences, and beam search is often used
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to decode better translations by maintaining multiple hypotheses. However, decoding

with a large beam size significantly decreases translation speed.

4.2.2 Non-Autoregressive NMT

Although autoregressive models achieve high translation quality through recent advances

in NMT, the main drawback is that autoregressive modeling forbids the decoding algo-

rithm to select tokens in multiple positions simultaneously. This results in inefficient

use of computational resource and increased translation latency.

In contrast, non-autoregressive NMT models predict target tokens without depend-

ing on preceding tokens, depicted by the following objective:

log p(y|x) =
|y|∑
i=i

log p(yi|x). (4.1)

As the prediction of each target token yi now depends only on the source sentence x

and its location i in the sequence, the translation process can be easily parallelized. We

obtain a target sequence by applying argmax to all token probabilities.

The main challenge of non-autoregressive NMT is on capturing dependencies among

target tokens. As the probability of each target token does not depend on the sur-

rounding tokens, applying argmax at each position i may easily result in an inconsis-

tent sequence, that includes duplicated or missing words. It is thus important for non-

autoregressive models to apply techniques to ensure the consistency of generated words.

52



4.3 Latent-Variable Non-Autoregressive NMT

In this work, we propose LaNMT, a latent-variable non-autoregressive NMT model by

introducing a sequence of continuous latent variables to model the uncertainty about the

target sentence. These latent variables z are constrained to have the same length as the

source sequence, that is, |z| = |x|. Instead of directly maximizing the objective function

in Eq. (4.1), we maximize a lowerbound to the marginal log-probability log p(y|x) =

log
∫
p(y|z, x)p(z|x)dz:

L(ω, ϕ, θ) = Ez∼qϕ
[
log pθ(y|x, z)

]
− KL

[
qϕ(z|x, y)||pω(z|x)

]
, (4.2)

where pω(z|x) is the prior, qϕ(z|x, y) is an approximate posterior and pθ(y|x, z) is the

decoder. The objective function in Eq. (4.2) is referred to as the evidence lowerbound

(ELBO). As shown in the equation, the lowerbound is parameterized by three sets of

parameters: ω, ϕ and θ.

Both the prior pω and the approximate posterior qϕ are modeled as spherical Gaussian

distributions. The model can be trained end-to-end with the reparameterization trick

Kingma and Welling [2014a].

4.3.1 A Modified Objective Function with Length Prediction

During training, we want the model to maximize the lowerbound in Eq. (4.2). However,

to generate a translation, the target length ly has to be predicted first. We let the latent
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variables model the target length by parameterizing the decoder as:

pθ(y|x, z) =
∑
l

pθ(y, l|x, z)

= pθ(y, ly|x, z)

= pθ(y|x, z, ly)pθ(ly|z). (4.3)

Here ly denotes the length of y. The second step is valid as the probability pθ(y, l ̸=

ly|x, z) is always zero. Plugging in Eq. 4.3, with the independent assumption on both

latent variables and target tokens, the objective has the following form:

Ez∼qϕ

[ |y|∑
i=1

log pθ(yi|x, z, ly) + log pθ(ly|z)
]
−

|x|∑
k=1

KL
[
qϕ(zk|x, y)||pω(zk|x)

]
. (4.4)

4.3.2 Parameterization

As evident from in Eq. (4.4), there are four parameterized components in our model: the

prior pω(z|x), approximate posterior qϕ(z|x, y), decoder pθ(y|x, z, ly) and length predic-

tor pθ(ly|z). The architecture of the proposed non-autoregressive model is depicted in

Fig. 4.1, which reuses modules in Transformer [Vaswani et al., 2017] to compute the

aforementioned distributions.

Main Components To compute the prior pω(z|x), we use a multi-layer self-attention

encoder which has the same structure as the Transformer encoder. In each layer, a feed-

forward computation is applied after the self-attention. To obtain the probability, we

apply a linear transformation to reduce the dimensionality and compute the mean and

variance vectors.
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<latexit sha1_base64="Fqs/25fy/jpdXz1xGOAmYPHYeic=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahgpSkFPRY8OKxgv2ANpTNdtMu3WzS3Y0YY/+EFw+KePXvePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47Ttja9nfvueSsVCcaeTiLoBHgrmM4K1kTqT8uPTw0Vy3i+W7Io9B1olTkZKkKHRL371BiGJAyo04ViprmNH2k2x1IxwOi30YkUjTMZ4SLuGChxQ5abze6fozCgD5IfSlNBorv6eSHGgVBJ4pjPAeqSWvZn4n9eNtX/lpkxEsaaCLBb5MUc6RLPn0YBJSjRPDMFEMnMrIiMsMdEmooIJwVl+eZW0qhXHrji3tVK9msWRhxM4hTI4cAl1uIEGNIEAh2d4hTdrYr1Y79bHojVnZTPH8AfW5w+DoI+P</latexit><latexit sha1_base64="Fqs/25fy/jpdXz1xGOAmYPHYeic=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahgpSkFPRY8OKxgv2ANpTNdtMu3WzS3Y0YY/+EFw+KePXvePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47Ttja9nfvueSsVCcaeTiLoBHgrmM4K1kTqT8uPTw0Vy3i+W7Io9B1olTkZKkKHRL371BiGJAyo04ViprmNH2k2x1IxwOi30YkUjTMZ4SLuGChxQ5abze6fozCgD5IfSlNBorv6eSHGgVBJ4pjPAeqSWvZn4n9eNtX/lpkxEsaaCLBb5MUc6RLPn0YBJSjRPDMFEMnMrIiMsMdEmooIJwVl+eZW0qhXHrji3tVK9msWRhxM4hTI4cAl1uIEGNIEAh2d4hTdrYr1Y79bHojVnZTPH8AfW5w+DoI+P</latexit><latexit sha1_base64="Fqs/25fy/jpdXz1xGOAmYPHYeic=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahgpSkFPRY8OKxgv2ANpTNdtMu3WzS3Y0YY/+EFw+KePXvePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47Ttja9nfvueSsVCcaeTiLoBHgrmM4K1kTqT8uPTw0Vy3i+W7Io9B1olTkZKkKHRL371BiGJAyo04ViprmNH2k2x1IxwOi30YkUjTMZ4SLuGChxQ5abze6fozCgD5IfSlNBorv6eSHGgVBJ4pjPAeqSWvZn4n9eNtX/lpkxEsaaCLBb5MUc6RLPn0YBJSjRPDMFEMnMrIiMsMdEmooIJwVl+eZW0qhXHrji3tVK9msWRhxM4hTI4cAl1uIEGNIEAh2d4hTdrYr1Y79bHojVnZTPH8AfW5w+DoI+P</latexit><latexit sha1_base64="Fqs/25fy/jpdXz1xGOAmYPHYeic=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahgpSkFPRY8OKxgv2ANpTNdtMu3WzS3Y0YY/+EFw+KePXvePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47Ttja9nfvueSsVCcaeTiLoBHgrmM4K1kTqT8uPTw0Vy3i+W7Io9B1olTkZKkKHRL371BiGJAyo04ViprmNH2k2x1IxwOi30YkUjTMZ4SLuGChxQ5abze6fozCgD5IfSlNBorv6eSHGgVBJ4pjPAeqSWvZn4n9eNtX/lpkxEsaaCLBb5MUc6RLPn0YBJSjRPDMFEMnMrIiMsMdEmooIJwVl+eZW0qhXHrji3tVK9msWRhxM4hTI4cAl1uIEGNIEAh2d4hTdrYr1Y79bHojVnZTPH8AfW5w+DoI+P</latexit>

length transform

p(z|x)
<latexit sha1_base64="CywutxEfwEHEr3B5m1DM5Qqb0Io=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuKeix4MVjBfsB7VKyabaNzSZLkhXr2v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDXz2/dUaSbFrZnE1I/wULCQEWys1IrLj08P5/1iya24c6BV4mWkBBka/eJXbyBJElFhCMdadz03Nn6KlWGE02mhl2gaYzLGQ9q1VOCIaj+dXztFZ1YZoFAqW8Kgufp7IsWR1pMosJ0RNiO97M3E/7xuYsJLP2UiTgwVZLEoTDgyEs1eRwOmKDF8YgkmitlbERlhhYmxARVsCN7yy6ukVa14bsW7qZXq1SyOPJzAKZTBgwuowzU0oAkE7uAZXuHNkc6L8+58LFpzTjZzDH/gfP4AOTeO1Q==</latexit><latexit sha1_base64="CywutxEfwEHEr3B5m1DM5Qqb0Io=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuKeix4MVjBfsB7VKyabaNzSZLkhXr2v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDXz2/dUaSbFrZnE1I/wULCQEWys1IrLj08P5/1iya24c6BV4mWkBBka/eJXbyBJElFhCMdadz03Nn6KlWGE02mhl2gaYzLGQ9q1VOCIaj+dXztFZ1YZoFAqW8Kgufp7IsWR1pMosJ0RNiO97M3E/7xuYsJLP2UiTgwVZLEoTDgyEs1eRwOmKDF8YgkmitlbERlhhYmxARVsCN7yy6ukVa14bsW7qZXq1SyOPJzAKZTBgwuowzU0oAkE7uAZXuHNkc6L8+58LFpzTjZzDH/gfP4AOTeO1Q==</latexit><latexit sha1_base64="CywutxEfwEHEr3B5m1DM5Qqb0Io=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuKeix4MVjBfsB7VKyabaNzSZLkhXr2v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDXz2/dUaSbFrZnE1I/wULCQEWys1IrLj08P5/1iya24c6BV4mWkBBka/eJXbyBJElFhCMdadz03Nn6KlWGE02mhl2gaYzLGQ9q1VOCIaj+dXztFZ1YZoFAqW8Kgufp7IsWR1pMosJ0RNiO97M3E/7xuYsJLP2UiTgwVZLEoTDgyEs1eRwOmKDF8YgkmitlbERlhhYmxARVsCN7yy6ukVa14bsW7qZXq1SyOPJzAKZTBgwuowzU0oAkE7uAZXuHNkc6L8+58LFpzTjZzDH/gfP4AOTeO1Q==</latexit><latexit sha1_base64="CywutxEfwEHEr3B5m1DM5Qqb0Io=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuKeix4MVjBfsB7VKyabaNzSZLkhXr2v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDXz2/dUaSbFrZnE1I/wULCQEWys1IrLj08P5/1iya24c6BV4mWkBBka/eJXbyBJElFhCMdadz03Nn6KlWGE02mhl2gaYzLGQ9q1VOCIaj+dXztFZ1YZoFAqW8Kgufp7IsWR1pMosJ0RNiO97M3E/7xuYsJLP2UiTgwVZLEoTDgyEs1eRwOmKDF8YgkmitlbERlhhYmxARVsCN7yy6ukVa14bsW7qZXq1SyOPJzAKZTBgwuowzU0oAkE7uAZXuHNkc6L8+58LFpzTjZzDH/gfP4AOTeO1Q==</latexit>

Nx

p(y|x, z, ly)
<latexit sha1_base64="NnvEYCn1eY6L8+T3/06GbS3HVo0=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7RdBjwYvHCvYD2qVk02wbms2GJCuutX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyRn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0nitAmiXmsOgHWlDNBm4YZTjtSURwFnLaD8fXMb99TpVks7kwqqR/hoWAhI9hYqSfL6dND5bHC++l5v1hyq+4caJV4GSlBhka/+NUbxCSJqDCEY627niuNP8HKMMLptNBLNJWYjPGQdi0VOKLan8xvnqIzqwxQGCtbwqC5+ntigiOt0yiwnRE2I73szcT/vG5iwit/woRMDBVksShMODIxmgWABkxRYnhqCSaK2VsRGWGFibExFWwI3vLLq6RVq3pu1bu9KNVrWRx5OIFTKIMHl1CHG2hAEwhIeIZXeHMS58V5dz4WrTknmzmGP3A+fwBRqZEm</latexit><latexit sha1_base64="NnvEYCn1eY6L8+T3/06GbS3HVo0=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7RdBjwYvHCvYD2qVk02wbms2GJCuutX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyRn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0nitAmiXmsOgHWlDNBm4YZTjtSURwFnLaD8fXMb99TpVks7kwqqR/hoWAhI9hYqSfL6dND5bHC++l5v1hyq+4caJV4GSlBhka/+NUbxCSJqDCEY627niuNP8HKMMLptNBLNJWYjPGQdi0VOKLan8xvnqIzqwxQGCtbwqC5+ntigiOt0yiwnRE2I73szcT/vG5iwit/woRMDBVksShMODIxmgWABkxRYnhqCSaK2VsRGWGFibExFWwI3vLLq6RVq3pu1bu9KNVrWRx5OIFTKIMHl1CHG2hAEwhIeIZXeHMS58V5dz4WrTknmzmGP3A+fwBRqZEm</latexit><latexit sha1_base64="NnvEYCn1eY6L8+T3/06GbS3HVo0=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7RdBjwYvHCvYD2qVk02wbms2GJCuutX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyRn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0nitAmiXmsOgHWlDNBm4YZTjtSURwFnLaD8fXMb99TpVks7kwqqR/hoWAhI9hYqSfL6dND5bHC++l5v1hyq+4caJV4GSlBhka/+NUbxCSJqDCEY627niuNP8HKMMLptNBLNJWYjPGQdi0VOKLan8xvnqIzqwxQGCtbwqC5+ntigiOt0yiwnRE2I73szcT/vG5iwit/woRMDBVksShMODIxmgWABkxRYnhqCSaK2VsRGWGFibExFWwI3vLLq6RVq3pu1bu9KNVrWRx5OIFTKIMHl1CHG2hAEwhIeIZXeHMS58V5dz4WrTknmzmGP3A+fwBRqZEm</latexit><latexit sha1_base64="NnvEYCn1eY6L8+T3/06GbS3HVo0=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7RdBjwYvHCvYD2qVk02wbms2GJCuutX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyRn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0nitAmiXmsOgHWlDNBm4YZTjtSURwFnLaD8fXMb99TpVks7kwqqR/hoWAhI9hYqSfL6dND5bHC++l5v1hyq+4caJV4GSlBhka/+NUbxCSJqDCEY627niuNP8HKMMLptNBLNJWYjPGQdi0VOKLan8xvnqIzqwxQGCtbwqC5+ntigiOt0yiwnRE2I73szcT/vG5iwit/woRMDBVksShMODIxmgWABkxRYnhqCSaK2VsRGWGFibExFWwI3vLLq6RVq3pu1bu9KNVrWRx5OIFTKIMHl1CHG2hAEwhIeIZXeHMS58V5dz4WrTknmzmGP3A+fwBRqZEm</latexit>

p(ly|z)
<latexit sha1_base64="Ug6F83RkHMkINoaftUg/Cvt64N4=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfRY8OKxgv2AdinZNNuGZpM1yQrr2j/hxYMiXv073vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcj3zOw9UaSbFnUlj6kd4JFjICDZW6sZVPkifHs8H5Ypbc+dAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8DCvDCKfTUj/RNMZkgke0Z6nAEdV+Nr93is6sMkShVLaEQXP190SGI63TKLCdETZjvezNxP+8XmLCKz9jIk4MFWSxKEw4MhLNnkdDpigxPLUEE8XsrYiMscLE2IhKNgRv+eVV0q7XPLfm3V5UGvU8jiKcwClUwYNLaMANNKEFBDg8wyu8OffOi/PufCxaC04+cwx/4Hz+AL0bj7U=</latexit><latexit sha1_base64="Ug6F83RkHMkINoaftUg/Cvt64N4=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfRY8OKxgv2AdinZNNuGZpM1yQrr2j/hxYMiXv073vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcj3zOw9UaSbFnUlj6kd4JFjICDZW6sZVPkifHs8H5Ypbc+dAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8DCvDCKfTUj/RNMZkgke0Z6nAEdV+Nr93is6sMkShVLaEQXP190SGI63TKLCdETZjvezNxP+8XmLCKz9jIk4MFWSxKEw4MhLNnkdDpigxPLUEE8XsrYiMscLE2IhKNgRv+eVV0q7XPLfm3V5UGvU8jiKcwClUwYNLaMANNKEFBDg8wyu8OffOi/PufCxaC04+cwx/4Hz+AL0bj7U=</latexit><latexit sha1_base64="Ug6F83RkHMkINoaftUg/Cvt64N4=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfRY8OKxgv2AdinZNNuGZpM1yQrr2j/hxYMiXv073vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcj3zOw9UaSbFnUlj6kd4JFjICDZW6sZVPkifHs8H5Ypbc+dAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8DCvDCKfTUj/RNMZkgke0Z6nAEdV+Nr93is6sMkShVLaEQXP190SGI63TKLCdETZjvezNxP+8XmLCKz9jIk4MFWSxKEw4MhLNnkdDpigxPLUEE8XsrYiMscLE2IhKNgRv+eVV0q7XPLfm3V5UGvU8jiKcwClUwYNLaMANNKEFBDg8wyu8OffOi/PufCxaC04+cwx/4Hz+AL0bj7U=</latexit><latexit sha1_base64="Ug6F83RkHMkINoaftUg/Cvt64N4=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfRY8OKxgv2AdinZNNuGZpM1yQrr2j/hxYMiXv073vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcj3zOw9UaSbFnUlj6kd4JFjICDZW6sZVPkifHs8H5Ypbc+dAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8DCvDCKfTUj/RNMZkgke0Z6nAEdV+Nr93is6sMkShVLaEQXP190SGI63TKLCdETZjvezNxP+8XmLCKz9jIk4MFWSxKEw4MhLNnkdDpigxPLUEE8XsrYiMscLE2IhKNgRv+eVV0q7XPLfm3V5UGvU8jiKcwClUwYNLaMANNKEFBDg8wyu8OffOi/PufCxaC04+cwx/4Hz+AL0bj7U=</latexit>

Figure 4.1: Architecture of the proposed non-autogressive model. The model is composed of
four components: prior p(z|x), approximate posterior q(z|x, y), length predictor p(ly|z) and
decoder p(y|x, z). These components are trained end-to-end to maximize the evidence lower-
bound.

For the approximate posterior qϕ(z|x, y), as it is a function of the source x and the

target y, we first encode y with a self-attention encoder. Then, the resulting vectors

are fed into an attention-based decoder initialized by x embeddings. Its architecture is

similar to the Transformer decoder except that no causal mask is used. Similar to the

prior, we apply a linear layer to obtain the mean and variance vectors.

To backpropagate the loss signal of the decoder to qϕ, we apply the reparameterization

trick to sample z from qϕ with g(ϵ, q) = µq + σq ∗ ϵ. Here, ϵ ∼ N (0, 1) is Gaussian

noise.

The decoder computes the probability pθ(y|x, z, ly) of outputting target tokens y

given the latent variables sampled from qϕ(z|x, y). The computational graph of the
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z1<latexit sha1_base64="92D9flrge/nD4vKqFIPL9SPOCss=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwbqjYg=</latexit><latexit sha1_base64="92D9flrge/nD4vKqFIPL9SPOCss=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwbqjYg=</latexit><latexit sha1_base64="92D9flrge/nD4vKqFIPL9SPOCss=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwbqjYg=</latexit><latexit sha1_base64="92D9flrge/nD4vKqFIPL9SPOCss=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwbqjYg=</latexit>

z2<latexit sha1_base64="7DB4l+gUmMOm+L+4jFEShqDYbHw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAIbo2J</latexit><latexit sha1_base64="7DB4l+gUmMOm+L+4jFEShqDYbHw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAIbo2J</latexit><latexit sha1_base64="7DB4l+gUmMOm+L+4jFEShqDYbHw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAIbo2J</latexit><latexit sha1_base64="7DB4l+gUmMOm+L+4jFEShqDYbHw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAIbo2J</latexit>

z3
<latexit sha1_base64="g5YKrVn1Xl/MwX8PhspUpeTxDFo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Rb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7rNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAJ8o2K</latexit><latexit sha1_base64="g5YKrVn1Xl/MwX8PhspUpeTxDFo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Rb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7rNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAJ8o2K</latexit><latexit sha1_base64="g5YKrVn1Xl/MwX8PhspUpeTxDFo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Rb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7rNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAJ8o2K</latexit><latexit sha1_base64="g5YKrVn1Xl/MwX8PhspUpeTxDFo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Rb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7rNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAJ8o2K</latexit>

z4<latexit sha1_base64="ghW6u8ci48YNJUYRmyKWRJJbKHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddK+rHluzburVxrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwALdo2L</latexit><latexit sha1_base64="ghW6u8ci48YNJUYRmyKWRJJbKHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddK+rHluzburVxrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwALdo2L</latexit><latexit sha1_base64="ghW6u8ci48YNJUYRmyKWRJJbKHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddK+rHluzburVxrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwALdo2L</latexit><latexit sha1_base64="ghW6u8ci48YNJUYRmyKWRJJbKHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddK+rHluzburVxrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwALdo2L</latexit>

z̄1
<latexit sha1_base64="20p4PrHTG+nqXXnL7HmDBPQ8i2A=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2A9oQ9lsJ+3SzSbuboQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJzdzvPKLSPJb3ZpqgH9GR5CFn1Fip2w+oIk8Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfra4d0YurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMn+eDLlCZsTUEsoUt7cSNqaKMmMjKtkQvNWX10n7sua5Ne/uqtKo5nEU4QzOoQoe1KEBt9CEFjAQ8Ayv8OY8OC/Ou/OxbC04+cwp/IHz+QNY1I9r</latexit><latexit sha1_base64="20p4PrHTG+nqXXnL7HmDBPQ8i2A=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2A9oQ9lsJ+3SzSbuboQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJzdzvPKLSPJb3ZpqgH9GR5CFn1Fip2w+oIk8Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfra4d0YurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMn+eDLlCZsTUEsoUt7cSNqaKMmMjKtkQvNWX10n7sua5Ne/uqtKo5nEU4QzOoQoe1KEBt9CEFjAQ8Ayv8OY8OC/Ou/OxbC04+cwp/IHz+QNY1I9r</latexit><latexit sha1_base64="20p4PrHTG+nqXXnL7HmDBPQ8i2A=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2A9oQ9lsJ+3SzSbuboQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJzdzvPKLSPJb3ZpqgH9GR5CFn1Fip2w+oIk8Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfra4d0YurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMn+eDLlCZsTUEsoUt7cSNqaKMmMjKtkQvNWX10n7sua5Ne/uqtKo5nEU4QzOoQoe1KEBt9CEFjAQ8Ayv8OY8OC/Ou/OxbC04+cwp/IHz+QNY1I9r</latexit><latexit sha1_base64="20p4PrHTG+nqXXnL7HmDBPQ8i2A=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2A9oQ9lsJ+3SzSbuboQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJzdzvPKLSPJb3ZpqgH9GR5CFn1Fip2w+oIk8Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfra4d0YurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMn+eDLlCZsTUEsoUt7cSNqaKMmMjKtkQvNWX10n7sua5Ne/uqtKo5nEU4QzOoQoe1KEBt9CEFjAQ8Ayv8OY8OC/Ou/OxbC04+cwp/IHz+QNY1I9r</latexit>

z̄2
<latexit sha1_base64="iGAyTKiCpCFzFTse2OkH6+slCJQ=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2A9oQ5lsN+3SzSbuboQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3Mz9ziNTmsfy3kwT5kc4kjzkFI2Vuv0AFXka1AfliltzFyDrxMtJBXI0B+Wv/jCmacSkoQK17nluYvwMleFUsFmpn2qWIJ3giPUslRgx7WeLe2fkwipDEsbKljRkof6eyDDSehoFtjNCM9ar3lz8z+ulJrz2My6T1DBJl4vCVBATk/nzZMgVo0ZMLUGquL2V0DEqpMZGVLIheKsvr5N2vea5Ne/ustKo5nEU4QzOoQoeXEEDbqEJLaAg4Ble4c15cF6cd+dj2Vpw8plT+APn8wdaWI9s</latexit><latexit sha1_base64="iGAyTKiCpCFzFTse2OkH6+slCJQ=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2A9oQ5lsN+3SzSbuboQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3Mz9ziNTmsfy3kwT5kc4kjzkFI2Vuv0AFXka1AfliltzFyDrxMtJBXI0B+Wv/jCmacSkoQK17nluYvwMleFUsFmpn2qWIJ3giPUslRgx7WeLe2fkwipDEsbKljRkof6eyDDSehoFtjNCM9ar3lz8z+ulJrz2My6T1DBJl4vCVBATk/nzZMgVo0ZMLUGquL2V0DEqpMZGVLIheKsvr5N2vea5Ne/ustKo5nEU4QzOoQoeXEEDbqEJLaAg4Ble4c15cF6cd+dj2Vpw8plT+APn8wdaWI9s</latexit><latexit sha1_base64="iGAyTKiCpCFzFTse2OkH6+slCJQ=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2A9oQ5lsN+3SzSbuboQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3Mz9ziNTmsfy3kwT5kc4kjzkFI2Vuv0AFXka1AfliltzFyDrxMtJBXI0B+Wv/jCmacSkoQK17nluYvwMleFUsFmpn2qWIJ3giPUslRgx7WeLe2fkwipDEsbKljRkof6eyDDSehoFtjNCM9ar3lz8z+ulJrz2My6T1DBJl4vCVBATk/nzZMgVo0ZMLUGquL2V0DEqpMZGVLIheKsvr5N2vea5Ne/ustKo5nEU4QzOoQoeXEEDbqEJLaAg4Ble4c15cF6cd+dj2Vpw8plT+APn8wdaWI9s</latexit><latexit sha1_base64="iGAyTKiCpCFzFTse2OkH6+slCJQ=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2A9oQ5lsN+3SzSbuboQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3Mz9ziNTmsfy3kwT5kc4kjzkFI2Vuv0AFXka1AfliltzFyDrxMtJBXI0B+Wv/jCmacSkoQK17nluYvwMleFUsFmpn2qWIJ3giPUslRgx7WeLe2fkwipDEsbKljRkof6eyDDSehoFtjNCM9ar3lz8z+ulJrz2My6T1DBJl4vCVBATk/nzZMgVo0ZMLUGquL2V0DEqpMZGVLIheKsvr5N2vea5Ne/ustKo5nEU4QzOoQoeXEEDbqEJLaAg4Ble4c15cF6cd+dj2Vpw8plT+APn8wdaWI9s</latexit>

z̄3
<latexit sha1_base64="KU7jje9tAU1GVOCz5uIt+q/KHu8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Ae0oWy2m3bpZhN3J0IN/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilTi+gmjz1L/rliltz5yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/N752SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLIheMsvr5LWec1za97dZaVezeMowgmcQhU8uII63EIDmsBAwjO8wpvz4Lw4787HorXg5DPH8AfO5w9b3I9t</latexit><latexit sha1_base64="KU7jje9tAU1GVOCz5uIt+q/KHu8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Ae0oWy2m3bpZhN3J0IN/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilTi+gmjz1L/rliltz5yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/N752SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLIheMsvr5LWec1za97dZaVezeMowgmcQhU8uII63EIDmsBAwjO8wpvz4Lw4787HorXg5DPH8AfO5w9b3I9t</latexit><latexit sha1_base64="KU7jje9tAU1GVOCz5uIt+q/KHu8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Ae0oWy2m3bpZhN3J0IN/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilTi+gmjz1L/rliltz5yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/N752SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLIheMsvr5LWec1za97dZaVezeMowgmcQhU8uII63EIDmsBAwjO8wpvz4Lw4787HorXg5DPH8AfO5w9b3I9t</latexit><latexit sha1_base64="KU7jje9tAU1GVOCz5uIt+q/KHu8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Ae0oWy2m3bpZhN3J0IN/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilTi+gmjz1L/rliltz5yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/N752SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLIheMsvr5LWec1za97dZaVezeMowgmcQhU8uII63EIDmsBAwjO8wpvz4Lw4787HorXg5DPH8AfO5w9b3I9t</latexit>

z̄4
<latexit sha1_base64="PbphlYUtfgCMM9w1cG+4RZHGsjA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx4r2A9oQ9lsN+3SzSbuToQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2J1j9OE+xEdKREKRtFK3X5ANXka1AfliltzFyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8t7p2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjtZ0IlKXLFlovCVBKMyfx5MhSaM5RTSyjTwt5K2JhqytBGVLIheKsvr5P2Zc1za95dvdKo5nEU4QzOoQoeXEEDbqEJLWAg4Rle4c15cF6cd+dj2Vpw8plT+APn8wddYI9u</latexit><latexit sha1_base64="PbphlYUtfgCMM9w1cG+4RZHGsjA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx4r2A9oQ9lsN+3SzSbuToQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2J1j9OE+xEdKREKRtFK3X5ANXka1AfliltzFyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8t7p2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjtZ0IlKXLFlovCVBKMyfx5MhSaM5RTSyjTwt5K2JhqytBGVLIheKsvr5P2Zc1za95dvdKo5nEU4QzOoQoeXEEDbqEJLWAg4Rle4c15cF6cd+dj2Vpw8plT+APn8wddYI9u</latexit><latexit sha1_base64="PbphlYUtfgCMM9w1cG+4RZHGsjA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx4r2A9oQ9lsN+3SzSbuToQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2J1j9OE+xEdKREKRtFK3X5ANXka1AfliltzFyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8t7p2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjtZ0IlKXLFlovCVBKMyfx5MhSaM5RTSyjTwt5K2JhqytBGVLIheKsvr5P2Zc1za95dvdKo5nEU4QzOoQoeXEEDbqEJLWAg4Rle4c15cF6cd+dj2Vpw8plT+APn8wddYI9u</latexit><latexit sha1_base64="PbphlYUtfgCMM9w1cG+4RZHGsjA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx4r2A9oQ9lsN+3SzSbuToQa+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2J1j9OE+xEdKREKRtFK3X5ANXka1AfliltzFyDrxMtJBXI0B+Wv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8t7p2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYnjtZ0IlKXLFlovCVBKMyfx5MhSaM5RTSyjTwt5K2JhqytBGVLIheKsvr5P2Zc1za95dvdKo5nEU4QzOoQoeXEEDbqEJLWAg4Rle4c15cF6cd+dj2Vpw8plT+APn8wddYI9u</latexit>

z̄5
<latexit sha1_base64="ouL46GxSws+9f5rHmihrbswmV1o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Ae0oWy2m3bpZhN3J0IN/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilTi+gmjz1L/vliltz5yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/N752SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLIheMsvr5LWec1za97dRaVezeMowgmcQhU8uII63EIDmsBAwjO8wpvz4Lw4787HorXg5DPH8AfO5w9e5I9v</latexit><latexit sha1_base64="ouL46GxSws+9f5rHmihrbswmV1o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Ae0oWy2m3bpZhN3J0IN/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilTi+gmjz1L/vliltz5yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/N752SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLIheMsvr5LWec1za97dRaVezeMowgmcQhU8uII63EIDmsBAwjO8wpvz4Lw4787HorXg5DPH8AfO5w9e5I9v</latexit><latexit sha1_base64="ouL46GxSws+9f5rHmihrbswmV1o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Ae0oWy2m3bpZhN3J0IN/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilTi+gmjz1L/vliltz5yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/N752SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLIheMsvr5LWec1za97dRaVezeMowgmcQhU8uII63EIDmsBAwjO8wpvz4Lw4787HorXg5DPH8AfO5w9e5I9v</latexit><latexit sha1_base64="ouL46GxSws+9f5rHmihrbswmV1o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Ae0oWy2m3bpZhN3J0IN/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilTi+gmjz1L/vliltz5yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/N752SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLIheMsvr5LWec1za97dRaVezeMowgmcQhU8uII63EIDmsBAwjO8wpvz4Lw4787HorXg5DPH8AfO5w9e5I9v</latexit>

+

z7
<latexit sha1_base64="Kf7sBV+udN7hRlwtIyllyuW7ECc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJzdzvPKLSPJYPZpqgH9GR5CFn1Fjp/mlQH5Qrbs1dgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+rHluzbu7qjSqeRxFOINzqIIHdWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAQAo2O</latexit><latexit sha1_base64="Kf7sBV+udN7hRlwtIyllyuW7ECc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJzdzvPKLSPJYPZpqgH9GR5CFn1Fjp/mlQH5Qrbs1dgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+rHluzbu7qjSqeRxFOINzqIIHdWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAQAo2O</latexit><latexit sha1_base64="Kf7sBV+udN7hRlwtIyllyuW7ECc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJzdzvPKLSPJYPZpqgH9GR5CFn1Fjp/mlQH5Qrbs1dgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+rHluzbu7qjSqeRxFOINzqIIHdWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAQAo2O</latexit><latexit sha1_base64="Kf7sBV+udN7hRlwtIyllyuW7ECc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJzdzvPKLSPJYPZpqgH9GR5CFn1Fjp/mlQH5Qrbs1dgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+rHluzbu7qjSqeRxFOINzqIIHdWjALTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAQAo2O</latexit>

z5
<latexit sha1_base64="oF+cmSAO9JbOXTDoJVyEfFVW9Dk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Zb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAM+o2M</latexit><latexit sha1_base64="oF+cmSAO9JbOXTDoJVyEfFVW9Dk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Zb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAM+o2M</latexit><latexit sha1_base64="oF+cmSAO9JbOXTDoJVyEfFVW9Dk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Zb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAM+o2M</latexit><latexit sha1_base64="oF+cmSAO9JbOXTDoJVyEfFVW9Dk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Zb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAM+o2M</latexit>

z6
<latexit sha1_base64="joqIBQpNbgdwoluSJnBIHmcwD2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Zb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAOfo2N</latexit><latexit sha1_base64="joqIBQpNbgdwoluSJnBIHmcwD2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Zb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAOfo2N</latexit><latexit sha1_base64="joqIBQpNbgdwoluSJnBIHmcwD2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Zb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAOfo2N</latexit><latexit sha1_base64="joqIBQpNbgdwoluSJnBIHmcwD2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Zb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAOfo2N</latexit>

w2
i
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Figure 4.2: Illustration of the length transformation mechanism.

decoder is also similar to the Transformer decoder without using causal mask. To com-

bine the information from the source tokens, we reuse the encoder vector representation

created when computing the prior.

Length Prediction and Transformation Given a latent variable z sampled from the ap-

proximate posterior qϕ, we train a length prediction model pθ(ly|z). We train the model

to predict the length difference between |y| and |x|. In our implementation, pθ(ly|z)

is modeled as a categorical distribution that covers the length difference in the range

[−50, 50]. The prediction is produced by applying softmax after a linear transformation.

As the latent variable z ∼ qϕ(z|x, y) has the length |x|, we need to transform the

latent variables into ly vectors for the decoder to predict target tokens. We use a mono-

tonic location-based attention for this purpose, which is illustrated in Fig. 4.2. Let the
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resulting vectors of length transformation be z̄1, ..., z̄ly . we produce each vector with

z̄j =

|x|∑
k=1

wjkzk,

wjk =
exp(ajk)∑|x|
k′=1 exp(a

j
k′)
,

ajk =−
1

2σ2
(k − |x|

ly
j)2,

where each transformed vector is a weighted sum of the latent variables. The weight

is computed with a softmax over distance-based logits. We give higher weights to the

latent variables close to the location |x|
ly
j. The scale σ is the only trainable parameter in

this monotonic attention mechanism.

4.3.3 Training

If we train a model with the objective function in Eq. (4.4), the KL divergence often

drops to zero from the beginning. This yields a degenerate model that does not use the

latent variables at all. This is a well-known issue in variational inference called posterior

collapse [Bowman et al., 2016; Dieng et al., 2019; Razavi et al., 2019]. We use two

techniques to address this issue. Similarly to Kingma et al. [2016], we give a budget to

the KL term as
|x|∑
k=1

max(b,KL
[
qϕ(zk|x, y)||pω(zk|x)

]
),

where b is the budget of KL divergence for each latent variable. Once the KL value drops

below b, it will not be minimized anymore, thereby letting the optimizer focus on the

reconstruction term in the original objective function. As b is a critical hyperparameter,
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it is time-consuming to search for a good budget value. Here, we use the following

annealing schedule to gradually lower the budget:

b =


1, if s < M/2

(M−s)
M/2

, otherwise

s is the current step in training, and M is the maximum step. In the first half of the

training, the budget b remains 1. In the second half of the training, we anneal b until it

reaches 0.

Similarly to previous work on non-autoregressive NMT, we apply sequence-level

knowledge distillation [Kim and Rush, 2016] where we use the output from an autore-

gressive model as target for our non-autoregressive model.

4.4 Inference with a Delta Posterior

Once the training has converged, we use an inference algorithm to find a translation y

that maximizes the lowerbound in Eq. (4.2):

argmaxyEz∼qϕ
[
log pθ(y|x, z)

]
− KL

[
qϕ(z|x, y)||pω(z|x)

]
It is intractable to solve this problem exactly due to the intractability of computing the

first expectation. We avoid this issue in the training time by reparametrization-based

Monte Carlo approximation. However, it is desirable to avoid stochasticity at inference

time where our goal is to present a single most likely target sentence given a source

sentence.
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We tackle this problem by introducing a proxy distribution r(z) defined as

r(z) =


1, if z = µ

0, otherwise

This is a Dirac measure, and we call it a delta posterior in our work. We set this delta

posterior to minimize the KL divergence against the approximate posterior qϕ, which is

equivalent to

∇µ log qϕ(µ|x, y) = 0⇔ µ = Eqϕ [z] . (4.5)

We then use this proxy instead of the original approximate posterior to obtain a

deterministic lowerbound:

L̂(ω, θ, µ) = log pθ(y|x, z = µ)− log pω(µ|x).

As the second term is constant with respect to y, maximizing this lowerbound with

respect to y reduces to

argmaxy log pθ(y|x, z = µ), (4.6)

which can be approximately solved by beam search when pθ is an autoregressive sequence

model. If pθ factorizes over the sequence y, as in our non-autoregressive model, we can

solve it exactly by

ŷi = argmaxyi log pθ(yi|x, z = µ).

With every estimation of y, the approximate posterior q changes. We thus alternate

between fitting the delta posterior in Eq. (4.5) and finding the most likely sequence y

in Eq. (4.6).
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Algorithm 1 Deterministic Iterative Inference
Inputs:

x : source sentence
T : maximum step

µ0 = Epω(z|x) [z]
y0 = argmaxy log pθ(y|x, z = µ0)
for t← 1 to T do

µt = Eqϕ(z|x,yt−1) [z]
yt = argmaxy log pθ(y|x, z = µt)
if yt = yt−1 then

break
output yt

We initialize the delta posterior r using the prior distribution:

µ = Epω(z|x) [z] .

With this initialization, the proposed inference algorithm is fully deterministic. The

complete inference algorithm for obtaining the final translation is shown in Algorithm 1.

4.5 Related Work

This work is inspired by a recent line of work in non-autoregressive NMT. Gu et al.

[2018a] first proposed a non-autoregressive framework by modeling word alignment as

a latent variable, which has since then been improved by Wang et al. [2019]. Lee et al.

[2018] proposed a deterministic iterative refinement algorithm where a decoder is trained

to refine the hypotheses. Our approach is most related to Kaiser et al. [2018]; Roy et al.

[2018]. In both works, a discrete autoencoder is first trained on the target sentence, then

an autoregressive prior is trained to predict the discrete latent variables given the source

sentence. Our work is different from them in three ways: (1) we use continuous latent
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variables and train the approximate posterior q(z|x, y) and the prior p(z|x) jointly; (2)

we use a non-autoregressive prior; and (3) the refinement is performed in the latent space,

as opposed to discrete output space (as done in most previous works using refinement

for non-autoregressive machine translation).

Concurrently to our work, Ghazvininejad et al. [2019] proposed to translate with

a masked-prediction language model by iterative replacing tokens with low confidence.

Gu et al. [2019a]; Stern et al. [2019]; Welleck et al. [2019] proposed insertion-based

NMT models that insert words to the translations with a specific strategy. Unlike these

works, our approach performs refinements in the low-dimensional latent space, rather

than in the high-dimensional discrete space.

Similarly to our latent-variable model, Zhang et al. [2016] proposed a variational

NMT, and Shah and Barber [2018] and Eikema and Aziz [2018] models the joint dis-

tribution of source and target. Both of them use autoregressive models. Shah and Bar-

ber [2018] designed an EM-like algorithm similar to Markov sampling Arulkumaran

et al. [2017]. In contrast, we propose a deterministic algorithm to remove any non-

determinism during inference.

4.6 Experimental Settings

Data and preprocessing We evaluate our model on two machine translation datasets:

ASPEC Ja-En [Nakazawa et al., 2016] and WMT’14 En-De [Bojar et al., 2014]. The

ASPEC dataset contains 3M sentence pairs, and the WMT’14 dataset contains 4.5M

senence pairs.

To preprocess the ASPEC dataset, we use Moses toolkit [Koehn et al., 2007] to
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ASPEC Ja-En
BLEU(%) speedup wall-clock (std)

Base Transformer, beam size=3 27.1 1x 415ms (159)
Base Transformer, beam size=1 24.6 1.1x 375ms (150)
Latent-Variable NAR Model 13.3 17.0x 24ms (2)

+ knowledge distillation 25.2 17.0x 24ms (2)
+ deterministic inference 27.5 8.6x 48ms (2)

+ latent search 28.3 4.8x 86ms (2)

Table 4.1: Comparison of the proposed non-autoregressive (NAR) models with the autoregres-
sive baselines. Our implementation of the Base Transformer is 1.0 BLEU point lower than the
original paper Vaswani et al. [2017] on WMT’14 dataset.

WMT’14 En-De
BLEU(%) speedup wall-clock (std)

Base Transformer, beam size=3 26.1 1x 602ms (274)
Base Transformer, beam size=1 25.6 1.3x 461ms (219)
Latent-Variable NAR Model 11.8 22.2x 27ms (1)

+ knowledge distillation 22.2 22.2x 27ms (1)
+ deterministic inference 24.1 12.5x 48ms (8)

+ latent search 25.1 6.8x 88ms (8)

Table 4.2: Comparison of the proposed non-autoregressive (NAR) models with the autoregres-
sive baselines. Our implementation of the Base Transformer is 1.0 BLEU point lower than the
original paper Vaswani et al. [2017] on WMT’14 dataset.

tokenize the English sentences, and Kytea [Neubig et al., 2011] for Japanese sentences.

We further apply byte-pair encoding [Sennrich et al., 2016b] to segment the training

sentences into subwords. The resulting vocabulary has 40K unique tokens on each side

of the language pair. To preprocess the WMT’14 dataset, we apply sentencepiece Kudo

and Richardson [2018a] to both languages to segment the corpus into subwords and

build a joint vocabulary. The final vocabulary size is 32K for each language.
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Learning To train the proposed non-autoregressive models, we adapt the same learning

rate annealing schedule as the Base Transformer. Model hyperparameters are selected

based on the validation ELBO value.

The only new hyperparameter in the proposed model is the dimension of each latent

variable. If each latent is a high-dimension vector, although it has a higher capacity, the

KL divergence in Eq. (4.2) becomes difficult to minimize. In practice, we found that

latent dimensionality values between 4 and 32 result in similar performance. However,

when the dimensionality is significantly higher or lower, we observed a performance

drop. In all experiments, we set the latent dimensionionality to 8. We use a hidden

size of 512 and feedforward filter size of 2048 for all models in our experiments. We

use 6 transformer layers for the prior and the decoder, and 3 transformer layers for the

approximate posterior.

Evaluation We evaluate the tokenized BLEU for ASPEC Ja-En datset. For WMT’14

En-De datset, we use SacreBLEU Post [2018] to evaluate the translation results. We fol-

low Lee et al. [2018] to remove repetitions from the translation results before evaluating

BLEU scores.

Latent Search To further exploit the parallelizability of GPUs, we sample multiple ini-

tial latent variables from the prior pω(z|x). Then we perform the deterministic inference

on each latent variable to obtain a list of candidate translations. However, we can not

afford to evaluate each candidate using Eq. (4.4), which requires importance sampling on

qϕ. Instead, we use the autoregressive baseline model to score all the candidates, and pick

the candidate with the highest log probability. Following Parmar et al. [2018], we re-
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duce the temperature by a factor of 0.5 when sampling latent variables, resulting in better

translation quality. To avoid stochasticity, we fix the random seed during sampling.

4.7 Result and Analysis

4.7.1 Quantitative Analysis

Our quantitative results on both datasets are presented in Table 4.1, 4.2. The baseline

model in our experiments is a base Transformer. Our implementation of the autoregres-

sive baseline is 1.0 BLEU points lower than the original paper Vaswani et al. [2017] on

WMT’14 En-De datase. We measure the latency of decoding each sentence on a single

NVIDIA V100 GPU for all models, which is averaged over all test samples.

As shown in Table 4.1, 4.2, without knowledge distillation, we observe a significant

gap in translation quality compared to the autoregressive baseline. This observation is in

line with previous works on non-autoregressive NMTGu et al. [2018a]; Lee et al. [2018];

Wang et al. [2019]. The gap is significantly reduced by using knowledge distillation, as

translation targets provided by the autoregressive model are easier to predict.

With the proposed deterministic inference algorithm, we significantly improve trans-

lation quality by 2.3 BLEU points on ASPEC Ja-En dataset and 1.9 BLEU points on

WMT’14 En-De dataset. Here, we only run the algorithm for one step. We observe

gain on ELBO by running more iterative steps, which is however not reflected by the

BLEU scores. As a result, we outperform the autoregressive baseline on ASPEC dataset

with a speedup of 8.6x. For WMT’14 dataset, although the proposed model reaches a

speedup of 12.5x, the gap with the autoregressive baseline still remains, at 2.0 BLEU
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points. We conjecture that WMT’14 En-De is more difficult for our non-autoregressive

model as it contains a high degree of noise [Ott et al., 2018a].

By searching over multiple initial latent variables and rescoring with the teacher Trans-

former model, we observe an increase in performance by 0.7 ∼ 1.0 BLEU score at the

cost of lower translation speed. In our experiments, we sample 50 candidate latent vari-

ables and decode them in parallel. The slowdown is mainly caused by rescoring. With

the help of rescoring, our final model further narrows the performance gap with the

autoregressive baseline to 1.0 BLEU with 6.8x speedup on WMT’14 En-De task.

4.7.2 Non-autoregressive NMT Models

In Table 4.3, we list the results onWMT’14 En-De by existing non-autoregressive NMT

approaches. All the models use Transformer as their autoregressive baselines. In com-

parison, our proposed model suffers a drop of 1.0 BLEU points over the baseline, which

is a relatively small gap among the existing models. Thanks to the rapid convergence

of the proposed deterministic inference algorithm, our model achieves a higher speed-

up compared to other refinement-based models and provides a better speed-accuracy

tradeoff.

Concurrently to our work, the mask-prediction language model Ghazvininejad et al.

[2019] was found to reduce the performance gap down to 0.9 BLEU onWMT’14 En-De

while still maintaining a reasonable speed-up. The main difference is that we update a

delta posterior over latent variables instead of target tokens. Both Ghazvininejad et al.

[2019] and Wang et al. [2019] with autoregressive rescoring decode multiple candidates

in batch and choose one final translation from them. FlowSeq Ma et al. [2019] is an
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BLEU(%) speed-up
Transformer Vaswani et al. [2017] 27.1 -

Baseline Gu et al. [2018a] 23.4 1x
NAT (+FT +NPD S=100) 19.1 (-4.3) 2.3x
Baseline Lee et al. [2018] 24.5 1x

Adaptive NAR Model 21.5 (-3.0) 1.9x
Baseline Kaiser et al. [2018] 23.5 1x

LT, Improved Semhash 19.8 (-3.7) 3.8x
Baseline Wang et al. [2019] 27.3 1x

NAT-REG, no rescoring 20.6 (-6.7) 27.6x⋆
NAT-REG, autoregressive rescoring 24.6 (-2.7) 15.1x⋆

Baseline Ghazvininejad et al. [2019] 27.8 1x
CMLM with 4 iterations 26.0 (-1.8) -
CMLM with 10 iterations 26.9 (-0.9) 2∼3x

Baseline Ma et al. [2019] 27.1 -
FlowSeq-large (NPD n = 30) 25.3 (-1.8) -

Baseline (Ours) 26.1 1x
NAR with deterministic Inference 24.1 (-2.0) 12.5x

+ latent search 25.1 (-1.0) 6.8x

Table 4.3: A comparison of non-autoregressive NMT models on WMT’14 En-De dataset in
BLEU(%) and decoding speed-up. ⋆ measured on IWSLT’14 DE-EN dataset.

recent interesting work on flow-based prior. With noisy parallel decoding, FlowSeq can

be fairly compared to the latent search setting of our model. In Table 4.3, we can see that

our model is equivalently or more effective without a flow-based prior. It is intriguing

to see a combination with the flow approach.
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Figure 4.3: ELBO and BLEU scores measured with the target predictions obtained at each
inference step for ASPEC Ja-En and WMT’14 En-De datasets.
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Figure 4.4: Trade-off between BLEU scores and speedup on WMT’14 En-De task by varying
the number of candidates computed in parallel from 10 to 100.

4.7.3 Analysis of Deterministic Inference

Convergences of ELBO and BLEU In this section, we empirically show that the pro-

posed deterministic iterative inference improves the ELBO in Eq. (4.2). As the ELBO
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is a function of x and y, we measure the ELBO value with the new target prediction

after each iteration during inference. For each instance, we sample 20 latent variables

to compute the expectation in Eq. (4.2). The ELBO value is further averaged over data

samples.

In Fig. 4.3, we show the ELBO value and the resulting BLEU scores for both datasets.

In the initial step, the delta posterior is initialized with the prior distribution pω(z|x).

We see that the ELBO value increases rapidly with each refinement step, which means a

higher lowerbound to log p(y|x). The improvement is highly correlated with increasing

BLEU scores. For around 80% of the data samples, the algorithm converges within

three steps. We observe the BLEU scores peaked after only one refinement step.

Trade-off between Quality and Speed In Fig. 4.4, we show the trade-off between

translation quality and the speed gain on WMT’14 En-De task when considering multi-

ple candidates latent variables in parallel. We vary the number of candidates from 10 to

100, and report BLEU scores and relative speed gains in the scatter plot. The results are

divided into two groups. The first group of experiments search over multiple latent vari-

ables and rescore with the teacher Transformer. The second group applies the proposed

deterministic inference before rescoring.

We observe that the proposed deterministic inference consistently improves transla-

tion quality in all settings. The BLEU score peaks at 25.2. As GPUs excel at processing

massive computations in parallel, we can see that the translation speed only degrades by

a small magnitude.
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Example 1: Sequence modified without changing length
Source hyouki gensuiryou hyoujun no kakuritsu wo kokoromita. (JA)

Reference the establishment of an optical fiber attenuation standard ...
Initial an attempt was made establish establish damping attenuation ...

Refined an attempt was to establish the damping attenuation standard ...

Example 2: One word removed from the sequence
Source ...``sen bouchou keisu no toriatsukai'' nitsuite nobeta. (JA)

Reference ... handling of linear expansion coefficient .
Initial ... `` handling of of linear expansion coefficient '' are ...

Refined ... `` handling of linear expansion coefficient '' are ...

Example 3: Four words added to the sequence
Source ... maikuro manipyureshon heto hatten shite kite ori ...(JA)

Reference ... with wide application fields so that it has been ...
Initial ... micro micro manipulation and ...

Refined ... and micro manipulation , and it has been developed , ...

Table 4.4: Ja-En sample translation with the proposed iterative inference algorithm. In the
first example, the initial guess is refined without a change in length. In the last two examples,
the iterative inference algorithm changes the target length along with its content. This is more
pronounced in the last example, where a whole clause is inserted during refinement.

4.7.4 Qualitative Analysis

We present some translation examples to demonstrate the effect of the proposed iterative

inference in Table 4.4. In Example 1, the length of the target sequence does not change

but only the tokens are replaced over the refinement iterations. The second and third

examples show that the algorithm removes or inserts words during the iterative inference

by adaptively changing the target length. Such a significant modification to the predicted

sequence mostly happens when translating long sentences.

For some test examples, however, we still find duplicated words in the final transla-
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tion after applying the proposed deterministic inference. For them, we notice that the

quality of the initial guess of translation is considerably worse than average, which typi-

cally contains multiple duplicated words. Thus, a high-quality initial guess is crucial for

obtaining good translations.

4.8 Conclusion

Our work presents the first approach to use continuous latent variables for non-autoregressive

Neural Machine Translation. The key idea is to introduce a sequence of latent variables

to capture the uncertainly in the target sentence. The number of latent vectors is always

identical to the number of input tokens. A length transformation mechanism is then

applied to adapt the latent vectors to match the target length. We train the proposed

model by maximizing the lowerbound of the log-probability log p(y|x).

We then introduce a deterministic inference algorithm that uses a delta posterior

over the latent variables. The algorithm alternates between updating the delta posterior

and the target tokens. Our experiments show that the algorithm is able to improve

the evidence lowerbound of predicted target sequence rapidly. In our experiments, the

BLEU scores converge in one refinement step.

Our non-autoregressive NMT model closes the performance gap with autoregressive

baseline on ASPEC Ja-En task with a 8.6x speedup. By decoding multiple latent variables

sampled from the prior, our model brings down the gap on En-De task down to 1.0

BLEU with a speedup of 6.8x.
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4.9 Developments Since Publication

Following our publication, Ma et al. [2019] proposed a continuous latent variable model

for non-autoregressive NMT that employs a normalizing flow prior. Across several pub-

lished non-autoregressive NMT models including the latent variable models, Zhou et al.

[2019] investigated the cause of the importance of knowledge distillation [Kim and Rush,

2016] and discovered a strong correlation between model capacity and the complexity of

the distilled data (measured by, e.g. conditional entropy). Outside of machine transla-

tion, conditional latent variable models have been proposed for dialogue generation [Han

et al., 2020], controllable story generation [Fang et al., 2021] and non-autoregressive

speech synthesis [Elias et al., 2020].
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Chapter 5

Iterative Refinement in the Continuous

Space for Non-Autoregressive Neural

Machine Translation

We propose an efficient inference procedure for non-autoregressive machine translation

that iteratively refines translation purely in the continuous space. Given a continuous

latent variable model for machine translation [Shu et al., 2020], we train an inference

network to approximate the gradient of the marginal log probability of the target sen-

tence, using only the latent variable as input. This allows us to use gradient-based op-

timization to find the target sentence at inference time that approximately maximizes

its marginal probability. As each refinement step only involves computation in the la-

tent space of low dimensionality (we use 8 in our experiments), we avoid computational

overhead incurred by existing non-autoregressive inference procedures that often refine
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in token space. We compare our approach to a recently proposed EM-like inference

procedure [Shu et al., 2020] that optimizes in a hybrid space, consisting of both discrete

and continuous variables. We evaluate our approach on WMT’14 En→De, WMT’16

Ro→En and IWSLT’16 De→En, and observe two advantages over the EM-like infer-

ence: (1) it is computationally efficient, i.e. each refinement step is twice as fast, and (2)

it is more effective, resulting in higher marginal probabilities and BLEU scores with the

same number of refinement steps. On WMT’14 En→De, for instance, our approach is

able to decode 6.2 times faster than the autoregressive model with minimal degradation

to translation quality (0.9 BLEU).

5.1 Introduction

Most neural machine translation systems are autoregressive, hence decoding latency

grows linearly with respect to the length of the target sentence. For faster generation,

several work proposed non-autoregressive models with sub-linear decoding latency given

sufficient parallel computation [Gu et al., 2018a; Kaiser et al., 2018; Lee et al., 2018].

As it is challenging to precisely model the dependencies among the tokens without

autoregression, many existing non-autoregressive models first generate an initial trans-

lation which is then iteratively refined to yield better output [Ghazvininejad et al., 2019;

Gu et al., 2019a; Lee et al., 2018]. While various training objectives are used to admit

refinement (e.g. denoising, evidence lowerbound maximization and mask language mod-

eling), the generation process of these models is similar in that the refinement process

happens in the discrete space of sentences.

Meanwhile, another line of work proposed to use continuous latent variables for non-
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autoregressive translation, such that the distribution of the target sentences can be fac-

torized over time given the latent variables [Ma et al., 2019; Shu et al., 2020]. Unlike

the models discussed above, finding the most likely target sentence under these models

requires searching over continuous latent variables. To this end, Shu et al. [2020] pro-

posed an EM-like inference procedure that optimizes over a hybrid space consisting of

both continuous and discrete variables. By introducing a deterministic delta posterior,

it maximizes a proxy lowerbound by alternating between matching the delta posterior

to the original approximate posterior (continuous optimization), and finding a target

sentence that maximizes the proxy lowerbound (discrete search).

In this work, we propose an iterative inference procedure for latent variable non-

autoregressive models that purely operates in the continuous space.¹ Given a latent vari-

able model, we train an inference network to estimate the gradient of the marginal log

probability of the target sentence, using only the latent variable as input. At inference

time, we find the target sentence that approximately maximizes the log probability by

(1) initializing the latent variable e.g. as the mean of the prior, and (2) following the

gradients estimated by the inference network.

We compare the proposed approach with the EM-like inference [Shu et al., 2020] on

three machine translation datasets: WMT’14 En→De,WMT’16 Ro→En and IWSLT’16

De→En. The advantages of our approach are twofold: (1) each refinement step is twice

as fast, as it avoids discrete search over a large vocabulary, and (2) it is more effective,

giving higher marginal probabilities and BLEU scores with the same number of refine-

ment steps. Our procedure results in significantly faster inference, for instance giving

6.2× speedup over the autoregressive baseline on WMT’14 En→De at the expense of
1. We open source our code at https://github.com/zomux/lanmt-ebm
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0.9 BLEU score.

5.2 Background: Iterative Refinement for

Non-Autoregressive Translation

We motivate our approach by reviewing existing refinement-based non-autoregressive

models for machine translation in terms of their inference procedure. Let us use V, D, T

and L to denote vocabulary size, latent dimensionality, target sentence length and the

number of refinement steps, respectively.

Most machine translation models are trained to maximize the conditional log prob-

ability log p(y|x) of the target sentence y given the source sentence x, averaged over the

training data consisting of sentence pairs {(xn, yn)}Nn=1. To find the most likely target

sentence at test time, one performs maximum-a-posteriori inference by solving a search

problem ŷ = argmaxy log p(y|x).

5.2.1 Refinement in a Discrete Space

As the lack of autoregression makes it challenging to model the dependencies among the

target tokens, most of the existing non-autoregressive translation models use iterative re-

finement to impose dependencies in the generation process. Various training objectives

are used to incorporate refinement, e.g. denoising [Lee et al., 2018], mask language

modeling [Ghazvininejad et al., 2019] and evidence lowerbound maximization [Chan

et al., 2019; Gu et al., 2019a]. However, inference procedures employed by these models

are similar in that an initial hypothesis is generated and then successively refined. We

75



refer the readers to [Mansimov et al., 2019b] for a formal definition of a sequence gen-

eration framework that unifies these models, and briefly discuss the inference procedure

below.

By viewing each refinement step as introducing a discrete random variable zi (a T ×

V -dimensional matrix, where each row is one-hot), inference with L refinement steps

requires finding y that maximizes the log probability log p(y|x).

log pθ(y|x) = log
∑
z1:L

pθ(y, z1:L|x)

= log
∑
z1:L

(
pθ(y|z1:L, x) ·

L∏
i=1

pθ(zi|z<i, x)
)

≥
∑
z1:L

(
log pθ(y|z1:L, x) +

L∑
i=1

log pθ(zi|z<i, x)
)
.

As the marginalization over z1:L is intractable, inference for these models instead maxi-

mize the log joint probability with respect to ẑ1:L and y:

log pθ(y|̂z1:L, x) +
L∑
i=1

log pθ(ẑi |̂z<i, x).

Approximate search methods are used to find ẑ1:L as ẑi = argmaxzi log pθ(zi |̂z<i, x).

5.2.2 Refinement in a Hybrid Space

Learning On the other hand, Ma et al. [2019]; Shu et al. [2020] proposed to use con-

tinuous latent variables for non-autoregressive translation. By letting the latent variables

z (of dimensionality T × D) capture the dependencies between the target tokens, the

decoder pθ(y|z, x) can be factorized over time. As exact posterior inference and learning

is intractable for most deep parameterized prior and decoder distributions, these models
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are trained to maximize the evidence lowerbound (ELBO) [Kingma and Welling, 2014a;

Wainwright and Jordan, 2008].

log pθ(y|x) ≥ E
z∼qϕ

[
log pθ(y, z|x)

qϕ(z|y, x)
]

Inference Exact maximization of ELBO with respect to y is challenging due to the

expectation over z ∼ qϕ. To approximately maximize the ELBO, Shu et al. [2020]

proposed to optimize a deterministic proxy lowerbound using a Dirac delta posterior:

δ(z|µ) = 1µ(z)

Then, the ELBO reduces to the following proxy lowerbound:

E
z∼δ(z|µ)

[
pθ(y|z, x) + pθ(z|x)

]
+

=0︷ ︸︸ ︷
H(δ),

= log pθ(y|µ, x) + log pθ(µ|x).

Shu et al. [2020] proposed to approximately maximize the ELBO with an EM-like infer-

ence procedure, to which we refer as delta inference. It alternates between continuous and

discrete optimization: (1) E-step matches the delta posterior with the approximate poste-

rior by minimizing their KL divergence: µi = argminµKL
[
δ(z|µ)

∥∥ qϕ(z|ŷi−1, x)
]
, and

(2)M-stepmaximizes the proxy lowerbound with respect to y: ŷi = argmaxy log pθ(y|µi, x).

Overall, delta inference finds y and µ that maximizes log pθ(y|µ, x)+log qϕ(µ|y, x). This

iterative inference procedure in hybrid space was empirically shown to result in improved

BLEU scores and ELBO on each refinement step [Shu et al., 2020].
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5.3 Iterative Refinement in a Continuous Space

While the delta inference procedure is an effective inference algorithm for machine trans-

lation models with continuous latent variables, it is unsatisfactory as the M-step requires

searching over V tokens T times for each refinement step. As V is large for most machine

translation models, this is an expensive operation, even when the T searches can be par-

allelized. We thus propose to replace the delta inference with continuous optimization

in the latent space only, given the underlying latent variable model.

5.3.1 Learning

Let us define τθ(z; x) as the marginal log probability of the most likely target sentence

under the latent variable model given z.

τθ(z; x) = log pθ(ŷ|x), (5.1)

where ŷ = argmaxy log pθ(y|z, x). Our goal is to find a function −Eψ(z; x) that approxi-

mates τθ(z; x) up to an additive constant and a positive multiplicative factor, such that

argminz
(
Eψ(z; x)

)
≈ argmaxz

(
τθ(z; x)

)
.

In this work, instead of directly approximating τθ, we train −Eψ to learn the difference

of τθ between a pair of configurations of latent variables. Omitting the source sentence

x and the model parameters θ for notational simplicity, we solve the following problem

for z ̸= z:
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min
ψ

∥∥∥(− Eψ(z) + Eψ(z)
)
−
(
τ(z)− τ(z)

)∥∥∥2 (5.2)

≈ min
ψ

∥∥∥((z− z)⊺ · ∇z(−Eψ(z))
)

−
(
(z− z)⊺ · ∇zτ(z)

)∥∥∥2 (5.3)

≈ min
ψ

∥∥∥(z− z
)⊺(∇z(−Eψ(z))−∇zτ(z)

)∥∥∥2
≈ min

ψ

(
∇z(−Eψ(z))−∇zτ(z)

)⊺(
z− z

)
(
z− z

)⊺(∇z(−Eψ(z))−∇zτ(z)
)

≈ min
ψ

(
∇z(−Eψ(z))−∇zτ(z)

)⊺∥∥z− z
∥∥2(

∇z(−Eψ(z))−∇zτ(z)
)

(5.4)

≈ min
ψ

∥∥∥∇z(−Eψ(z))−∇zτ(z)
∥∥∥2

≈ min
ψ

∥∥∥∇z(−Eψ(z))
∥∥∥2 + ∥∥∥∇zτ(z)

∥∥∥2
− 2

(
∇z(−Eψ(z))⊺ · ∇zτ(z)

)
(5.5)

≈ min
ψ

∥∥∥∇zEψ(z)
∥∥∥2 + 2

(
∇zEψ(z)⊺ · ∇zτ(z)

)
Eq. 5.3 follows from linear approximation, as

−
(
Eψ(z)− Eψ(z)

)
≈ (z− z)⊺ · ∇z(−Eψ(z))

τ(z)− τ(z) ≈ (z− z)⊺ · ∇zτ(z)

∥z− z∥2 in Eq. 5.4 can be eliminated, as dividing the objective with a positive constant

does not change the solution. The second term in Eq. 5.5 is also a constant with respect

to ψ, hence can be ignored. Intuitively, ∇z
(
− Eψ(z; x)

)
is trained to approximate

∇z τθ(z; x), as Eq. 5.2 maximizes their dot product while minimizing its squared norm.
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As τθ(z; x) is not differentiable with respect to z due to the argmax operation in

Eq. 5.1, ∇z τθ(z; x) is not defined. We thus use a proxy gradient from delta inference.

Furthermore, we weigh the latent configuration z according to the prior. Our final

training objective for Eψ is then as follows:

Ez∼pθ(z|x)

[ ∥∥∥∇zEψ(z; x)
∥∥∥2 + 2

((
∇zEψ(z; x)

)⊺ · (̃z− z)
)]
, (5.6)

where z̃ is the output of applying k steps of delta inference on z. If delta inference

improves the log probability at each iteration, we hypothesize that (̃z− z) is a reasonable

approximation to the true gradient ∇z τθ(z; x). We empirically show that this is indeed

the case in Sec. 5.5.2.

5.3.2 Parameterization

We have two options for parameterizing∇zEψ(z; x) when minimizing Eq. 5.6. First, we

can parameterize it as the gradient of a scalar-valued function E, to which earlier work

have referred as an energy function [LeCun et al., 2006; Teh et al., 2003]. Second, we

can parameterize it as a function Sψ(z; x) that directly outputs the gradient of the log

probability with respect to z (which is often referred to as a score function [Hyvärinen,

2005]), without estimating the energy directly.

While previous work found direct score estimation that bypasses energy estimation

unstable [Alain and Bengio, 2014; Saremi et al., 2018], it leads to faster inference by

avoiding backpropagation in each refinement step. We compare the two approaches in

our experiments.
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Algorithm 2 Inference for Latent Variable Models using Learned Gradients
Inputs:

x : source sentence
α : step size
θ : latent variable model
ψ : inference module

z = Ez∼pθ(z|x)[z]
while termination condition not met, do

z = z− α · (∇zEψ(z; x))
ŷ = argmaxy log pθ(y|z, x)
output ŷ

5.3.3 Inference

At inference time, we initialize the latent variable (e.g. using either a sample from the

prior or its mean) and iteratively update the latent variable using the estimated gradients

(see Alg. 2). As our inference procedure only involves optimization in the continuous

space each step, we avoid having to search over a large vocabulary. We can either perform

iterative refinement for a fixed number of steps, or until some convergence condition is

satisfied.

5.4 Experimental Setup

5.4.1 Datasets and Preprocessing

We evaluate our approach on three widely used machine translation datasets: IWSLT’16

De→En² (containing 197K training, 2K development and 2K test sentence pairs), WMT’16

2. https://wit3.fbk.eu/
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Ro→En³ (612K, 2K, 2K pairs) and WMT’14 En→De⁴ (4.5M, 3K, 3K pairs).

We use sentencepiece tokenization [Kudo and Richardson, 2018b] with 32K senten-

cepieces on all datasets. For WMT’16 Ro→En, we follow Sennrich et al. [2016a] and

normalize Romanian and remove diacritics before applying tokenization. For training,

we discard sentence pairs if either the source or the target length exceeds 64 tokens.

Following Lee et al. [2018], we remove repetitions from the translations with a

simple postprocessing step before computing BLEU scores. We use detokenized BLEU

with Sacrebleu [Post, 2018].

Distillation Following previous work on non-autoregressive translation, we train non-

autoregressive models on the target sentences generated by an autoregressive model [Gu

et al., 2018a; Kim and Rush, 2016] trained using the FairSeq framework [Ott et al.,

2019].

5.4.2 Models and Baselines

Autoregressive baselines We use Transformers [Vaswani et al., 2017] with the follow-

ing hyperparameters. ForWMT’16 Ro→En andWMT’14 En→De, we use Transformer-

base. For IWSLT’16 De→En, we use a smaller model with (dmodel, dfilter, nlayers, nheads) =

(256, 1024, 5, 2).

Non-autoregressive latent variable models We closely follow the implementation de-

tails from [Shu et al., 2020]. The prior and the approximate posterior distributions are

3. www.statmt.org/wmt16/translation-task.html
4. www.statmt.org/wmt14/translation-task.html
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spherical Gaussian distributions with learned mean and variance, and the decoder is fac-

torized over time. The only difference is at inference time, the target sentence length

is predicted once and fixed throughout the refinement procedure. Therefore, the latent

variable dimensionality RT×D does not change.

The decoder, prior and approximate posterior distributions are all parameterized us-

ing nlayers Transformer decoder layers (the last two also have a final linear layer that out-

puts mean and variance). For IWSLT’16 De→En, we use (dmodel, dfilter, nlayers, nheads) =

(256, 1024, 3, 4). ForWMT’14 En→De andWMT’16 Ro→En, we use (512, 2048, 6, 8).

The latent dimensionality dlatent is set to 8 across all datasets. The source sentence en-

coder is implemented with a standard Transformer encoder. Given the hidden states of

the source sentence, the length predictor (a 2-layer MLP) predicts the length difference

between the source and target sentences as a categorical distribution in [−50, 50].

Energy function Eψ(z; x) is parameterized with nlayers Transformer decoder layers and

a final linear layer with the output dimensionality of 1. We average the last Transformer

hidden states across time and feed it to a linear layer to yield a scalar energy value.

Score function When directly estimating the gradient of the log probability with re-

spect to z, Sψ(z; x) is parameterized with nlayers Transformer decoder layers and a final

linear layer with the output dimensionality of dlatent.

5.4.3 Training and Optimization

We use the Adam optimizer [Kingma and Ba, 2015] with batch size of 8192 tokens

and the learning rate schedule used by Vaswani et al. [2017] with warmup of 8K steps.
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When training our inference networks, we fix the underlying latent variable model. Our

inference networks are trained for 1M steps to minimize Eq. 5.6, where z̃ is obtained

by applying k(= 4) iterations of delta inference on z sampled from the prior. We also

find that stochastically applying one gradient update (using the estimated gradients) to

z before computing z̃ leads to better performance.

5.4.4 Inference

Step size For the proposed inference procedure, we use the step size α = 1.0 as it

performed well on the development set.

Length prediction Given a distribution of target sentence length, we can either (1) take

the argmax, or (2) select the top l candidates and decode them in parallel [Ghazvininejad

et al., 2019]. In the second case, we select the output candidate with the highest log

probability under an autoregressive model, normalized by its length.

Latent search In Alg. 2, we can either initialize the latent variable with a sample from

the prior, or its mean. We use nw samples from the prior and perform iterative refinement

(e.g. delta inference or the proposed inference procedures) in parallel. Similarly to length

prediction, we select the output with the highest log probability. To avoid stochasticity,

we fix the random seed during sampling.
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WMT’14 En→De WMT’16 Ro→En IWSLT’16 De→En
Bleu Speed Time Bleu Speed Time Bleu Speed Time

AR

b = 1 27.5 1.1× 251 30.9 1.1× 511 31.1 1.1× 178
±175 ±560 ±139

b = 4 28.3 1× 291 31.5 1× 610 31.5 1× 210
±194 ±630 ±161

N
AR

LV
M

D
elt
a

L = 0 25.7 15× 19 ±1 28.4 34× 18 ±5 27.0 19× 11 ±5

L = 1 26.1 6.3× 46 ±5 29.0 19× 32 ±5 28.3 11× 18 ±6

L = 2 26.2 4.0× 72 ±3 29.1 14× 45 ±7 28.5 8.0× 26 ±7

L = 4 26.1 2.8× 103 ±5 29.1 8.5× 72 ±5 28.6 5.2× 40 ±9

Search 26.9 5.5× 63 ±8 30.3 13× 48 ±7 29.7 6.0× 35 ±6

En
er
gy

L = 0 25.7 15× 19 ±1 28.4 34× 18 ±5 27.0 19× 11 ±5

L = 1 26.1 5.8× 50 ±3 28.8 17× 36 ±5 28.6 9.5× 22 ±7

L = 2 26.1 4.2× 69 ±4 28.9 11× 55 ±9 28.7 7.0× 30 ±9

L = 4 26.0 2.5× 117 ±6 28.8 7.1× 85 ±5 28.8 4.5× 46 ±9

Search 27.1 4.4× 66 ±9 30.4 12× 53 ±7 29.9 5.0× 42 ±7

Sc
or
e

L = 0 25.7 15× 19 ±1 28.4 34× 18 ±5 27.0 19× 11 ±5

L = 1 26.3 10× 29 ±2 29.1 24× 25 ±5 28.8 13× 16 ±6

L = 2 26.3 7.6× 38 ±2 29.1 19× 32 ±6 29.0 10× 20 ±5

L = 4 26.3 5.7× 51 ±4 29.1 14× 44 ±5 29.1 7.5× 28 ±5

Search 27.4 6.2× 47 ±8 30.4 15× 41 ±6 30.2 6.3× 33 ±4

Table 5.1: Translation quality and inference speed of autoregressive baseline (AR) and several
inference procedures for non-autoregressive latent variable model (NAR LVM): Delta inference
(Delta) [Shu et al., 2020], the proposed inference procedure with estimated energy (Energy) or
score (Score). Speed: inference speedup compared to the autoregressive model with beam width 4.
Time: Average wall clock time per example in milliseconds on a Tesla V100 GPU (with standard
deviations). b: beam width, L: the number of refinement steps. Search: parallel decoding with
5 length candidates and 5 samples from the prior, with 1 refinement step. Results above Search
are obtained by initializing the latent variable as the mean of the prior. We boldface the highest
BLEU among the latent variable models.
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5.5 Quantitative Results

5.5.1 Translation Quality and Speed

Table 5.1 presents translation performance and inference speed of several inference pro-

cedures for the non-autoregressive latent variable models, along with the autoregressive

baselines. We emphasize that the same underlying latent variable model is used across

three different inference procedures (Delta, Energy, Score), to compare their efficiency

and effectiveness.

Translation quality We observe that both of the proposed inference procedures result

in improvements in translation quality with more refinement steps. For instance, 4

refinement steps using the learned score function improves BLEU by 2.1 on IWSLT’16

De→En. Among the proposed inference procedures, we find it more effective to use a

learned score function, as it gives comparable or better performance to delta inference

on all datasets. A learned energy function results in comparable performance to delta

inference. Parallel decoding over multiple target length candidates and sampled latent

variables leads to significant improvements in BLEU, resulting in 1 BLEU increase or

more on all datasets. Similarly to delta inference, we find that the proposed iterative

inference procedures converge quite quickly, and often 1 refinement step gives comparable

translation quality to running 4 refinement steps.

Inference speed We observe that using a learned score function is significantly faster

than delta inference: twice as fast on IWSLT’16 De→En and WMT’16 Ro→En and

almost four times as fast on WMT’14 En→De. On WMT’14 En→De, the decoding
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Figure 5.1: Marginal log probability log pθ(ŷ|x) of output ŷ from each refinement step.

latency for 4 steps using the score is close to (within one standard deviation of ) running

1 refinement step of delta inference. On the other hand, we find that using the learned

energy function is slower, presumably due to the overhead from backpropagation. We

find its wall clock time to be similar to delta inference. As the entire inference process

can be parallelized, we find that parallel decoding with multiple length candidates and

latent variable samples only incurs minimal overhead. Finally, we confirm that decoding

latency for non-autoregressive models is indeed constant with respect to the sequence

length (given parallel computation), as the standard deviation is small (< 10 ms) across

test examples.

Overall result Overall, we find the proposed inference procedure using the learned

score function highly effective and efficient. On WMT’14 En→De, using 1 refinement

step and parallel search leads to 6.2× speedup over the autoregressive baseline with min-

imal degradation to translation quality (0.9 BLEU score).
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Figure 5.2: Edit distance from the first output (left) and the number of repetitions in the output
(right) for L = {1, 2, 4, 8} refinement steps for delta inference and inference using a learned score
function.

5.5.2 Log Probability Comparison

In Fig 5.1, we report the marginal log probability log pθ(ŷ|x) of ŷ found after L steps of

each iterative inference procedure on IWSLT’16 De→En. We estimate the marginal log

probability by importance sampling with 500 samples from the approximate posterior.

We observe that the log probability improves with more refinement steps for all inference

procedures (delta inference and the proposed procedures). We draw two conclusions

from this. First, delta inference indeed increases log probability at each iteration. Second,

the proposed optimization scheme increases the target objective function it was trained

on (log probability).

5.5.3 Token Statistics

We compare delta inference and the proposed inference with a learned score function in

terms of token statistics in the output translations on IWSLT’16 De→En. In Figure 5.2

(left), we compute the average edit distance (in sentencepieces) per test example from the
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Figure 5.3: Visualization of estimated gradients and optimization trajectory. Above each plot
are tokens predicted from the following latent variables: (1) approximate posterior mean, (2) prior
mean, (3) delta inference and (4) inference with the learned score. Black star: latent variable
before refinement (prior mean). Blue cross: latent variables after L = {1, 2, 3, 4} steps of delta
inference (collapsed into a single point). Green circle: latent variables after L steps of inference
with a learned score function. Marker size decreases with successive refinement steps. Red square:
approximate posterior mean.

initial output (mean of the prior). It is clear that each refinement step using a learned

score function results in more changes in terms of edit distance than delta inference. In

Figure 5.2 (right), we compute the number of token repetitions in the output transla-

tions (before removing them in a post-processing step), relative to the initial output.

We observe that refining with a learned score function results in less repetitive output

compared to delta inference.

5.6 Qualitative Results

5.6.1 Visualization of learned gradients

We visualize the learned gradients and the optimization trajectory in Figure 5.3, from a

score inference network trained on a two-dimensional latent variable model on IWSLT’16

De→En. The example used to generate the visualization is shown below.
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Source Was öffnete mir also die Augen?
Reference So what opened my eyes ?
Posterior So what opened my eyes ?

Prior So what opened me eyes ?
Delta So what opened me eyes ?
Score So what opened my eyes ?

Example 1
Source There aren ’t many doctors in the west African country ; just one for every 5,000 people

Reference In dem westafrikanischen Land gibt es nicht viele Ärzte, nur einen für 5.000 Menschen
Original Es gibt nicht viele Ärzte im westafrikanischen Land, nur eine für 5.000 Menschen.
Refined Im westafrikanischen Land gibt es nicht viele Ärzte, nur eine für 5.000 Menschen.

Example 2
Source Costumes are expected to account for $ 1.2 billion dollars out of the $ 6.9

billion spent , according to the NRF .
Reference Die Kostüme werden etwa 1,2 Milliarden der 6,9 Milliarden ausgegebenen

US-Dollar ausmachen, so der NRF.
Original Es wird von, Kostüme, dass sie die dem NRF ausgegebenen 6,9 Milliarden Dollar

1,2 Milliarden Dollar ausmachen.
Refined Es wird erwartet, dass die Kostüme nach Angaben des NRF 1,2 Milliarden Dollar

aus den 6,9 Milliarden Dollar ausmachen.

Example 3
Source It was with this piece of Bedouin wisdom that the first ever chairman Wolfgang

Henne described the history and fascination behind the “Helping Hands” society .
Reference Mit dieser Beduinenweisheit beschrieb der erste Vorsitzende Wolfgang Henne

die Geschichte und Faszination des Vereins “Helfende Hände”.
Original Der erste Vorsitzende Wolfgang Henne beschrieb mit dieser erste Weisheit in

Bedouin” die Geschichte und Faszination hinter der “Helenden Hands” Gesellschaft
Refined Mit diesem Stück Bedouin-Weisheit beschrieb der erste Vorsitzende Wolfgang

Henne jemals die Geschichte und Faszination hinter der “Heling Hands” Gesellschaft

Table 5.2: Sample translations on WMT’14 En→De. We show the translation from a latent
variable sampled from the prior (Original) and the translation after one refinement step in the
continuous space with the learned score function (Refined). We emphasize phrases whose posi-
tions are swapped in the refinement process in red and blue.

We observe that for tokens 1, 2 and 6, delta inference converges quickly to the approxi-

mate posterior mean. We also find that the local optima estimated by the score function
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do not necessarily coincide with the approximate posterior mean. For Token 4, while

the local optima estimated by the score function (green circle) is far from the posterior

mean (red square), they both map to the reference translation (“my”), indicating that

there exist multiple latent variables that map to the reference output.

5.6.2 Sample translations

We demonstrate that refining in the continuous space results in non-local, non-trivial

revisions to the original sentence. For each example in Table 5.2, we show the English

source sentence, German reference sentence, original translation decoded from a sample

from the prior, and the revised translation with one gradient update using the estimated

score function.

In Example 1, the positions of the main clause (“Es gibt nicht viele Ärzte”) and

the prepositional phrase (“im westafrikanischen Land”) are reversed in the continuous

refinement process. Inside the main clause, “es gibt” is revised to “gibt es”, a correct

grammatical form in German when the prepositional phrase comes before the main

clause.

In Example 2, the two numbers are exchanged (“ 1,2 Milliarden Dollar” and “ 6,9

Milliarden Dollar”) in the revised translation. Also, the phrase “aus den” (out of the) is

correctly inserted between the two.

In Example 3, the noun phrase “Weisheit in Bedouin” is combined into a single

German compound noun “Bedouin-Weisheit”. Also, the phrases “Der erste …” and

“mit dieser …” are swapped in the refinement process, to better resemble the reference

sentence.
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5.7 Related Work

Learning Our training objective is closely related to the score matching objective Hyväri-

nen [2005], with the following differences. First, we approximate the gradient of the data

log density using a proxy gradient, whereas this term is replaced by the Hessian of the

energy in the original score matching objective. Second, we only consider samples from

the prior. Saremi et al. [2018] proposed a denoising interpretation of the Parzen score

objective [Vincent, 2011] that avoids estimating the Hessian. Although score function

estimation that bypasses energy estimation was found to be unstable [Alain and Bengio,

2014; Saremi et al., 2018], it has been successfully applied to generative modeling of

images [Song and Ermon, 2019].

Inference While we categorize inference methods for machine translation as (1) dis-

crete search, (2) hybrid optimization [Shu et al., 2020] and (3) continuous optimization

(this work) in Section 6.2, another line of work relaxes discrete search into continuous

optimization [Gu et al., 2018b; Hoang et al., 2017b; Tu et al., 2020]. By using Gumbel-

softmax relaxation [Jang et al., 2017; Maddison et al., 2017], they train an inference

network to generate target tokens that maximize the log probability under a pretrained

model.

Gradient-based Inference Performing gradient descent over structured outputs was

mentioned in LeCun et al. [2006], and has been successfully applied to many structured

prediction tasks [Belanger andMcCallum, 2016; Belanger et al., 2017;Wang et al., 2016].

Other work performed gradient descent over the latent variables to optimize objectives
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for a wide variety of tasks, including chemical design [Gómez-Bombarelli et al., 2018]

and text generation [Mueller et al., 2017]

Generation by Refinement Refinement has a long history in text generation. The

retrieve-and-refine framework retrieves an (input, output) pair from the training set

that is similar to the test example, and performs edit operations on the corresponding

output [Gu et al., 2018c; Hashimoto et al., 2018; Song et al., 2016; Sumita and Iida,

1991; Weston et al., 2018]. The idea of refinement has also been applied in automatic

post-editing [Grangier and Auli, 2017; Novak et al., 2016].

5.8 Conclusion

We propose an efficient inference procedure for non-autoregressive machine translation

that refines translations purely in the continuous space. Given a latent variable model

for machine translation, we train an inference network to approximate the gradient of

the marginal log probability with respect to the target sentence, using only the latent

variable. This allows us to use gradient based optimization to find a target sentence at

inference time that approximately maximizes the marginal log probability. As we avoid

discrete search over a large vocabulary, our inference procedure is more efficient than

previous inference procedures that refine in the token space.

We compare our approach with a recently proposed delta inference procedure that

optimizes jointly in discrete and continuous space on three machine translation datasets:

WMT’14 En→De, WMT’16 Ro→En and IWSLT’16 De→En. With the same un-

derlying latent variable model, the proposed inference procedure using a learned score
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function has following advantages: (1) it is twice as fast as delta inference, and (2) it is

able to find target sentences resulting in higher marginal probabilities and BLEU scores.

While we showed that iterative inference with a learned score function is effective for

spherical Gaussian priors, more work is required to investigate if such an approach will

also be successful for more sophisticated priors, such as Gaussian mixtures or normalizing

flows. This will be particularly interesting, as recent study showed latent variable models

with a flexible prior give high test log-likelihoods, but suffer from poor generation quality

as inference is challenging [Lee et al., 2020b].

5.9 Developments Since Publication

Concurrent to our work, Saharia et al. [2020] proposed a non-autoregressive NMT sys-

tem based on the CTC loss [Graves et al., 2006]. While an earlier work by Libovický

and Helcl [2018] explored using CTC for non-autoregressive MT, Saharia et al. [2020]

observed that a CTC model trained with sequence-level distillation [Kim and Rush,

2016] can achieve very strong performance. Furthermore, their proposed model gives

comparable performance to the autoregressive baseline on WMT’14 En→Dein only 2

iterations. Most recently, a system proposed by Gu and Kong [2020] gave 27.49 BLEU

on WMT’14 En→Dewith 1 iteration, effectively achieving performance parity with au-

toregressive models on this particular benchmark with 16.5× decoding speedup. Their

success was enabled by combining two successful approaches: latent variable and CTC

loss, and is currently the state-of-the-art in non-autoregressive NMT as of writing this

thesis.

Outside of machine translation, several generative models that learn the gradient
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of the data log density (score) were proposed across different domains, including im-

ages [Durkan and Song, 2021; Ho et al., 2020; Saharia et al., 2021; Song et al., 2020]

and speech [Chen et al., 2020]. Overall, we hope that our work on text refinement using

gradient-based inference inspires new avenues in non-autoregressive text generation and

encourage more researchers to explore this area.
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Chapter 6

On the Discrepancy between Density

Estimation and Sequence Generation

Many sequence-to-sequence generation tasks, including machine translation and text-to-

speech, can be posed as estimating the density of the output y given the input x: p(y|x).

Given this interpretation, it is natural to evaluate sequence-to-sequence models using

conditional log-likelihood on a test set. However, the goal of sequence-to-sequence

generation (or structured prediction) is to find the best output ŷ given an input x, and

each task has its own downstream metric R that scores a model output by comparing

against a set of references y∗: R(ŷ, y∗|x). While we hope that a model that excels in

density estimation also performs well on the downstream metric, the exact correlation

has not been studied for sequence generation tasks. In this chapter, by comparing several

density estimators on five machine translation tasks, we find that the correlation between

rankings of models based on log-likelihood and BLEU varies significantly depending on

the range of the model families being compared. First, log-likelihood is highly correlated
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with BLEUwhen we consider models within the same family (e.g. autoregressive models,

or latent variable models with the same parameterization of the prior). However, we

observe no correlation between rankings of models across different families: (1) among

non-autoregressive latent variable models, a flexible prior distribution is better at density

estimation but gives worse generation quality than a simple prior, and (2) autoregressive

models offer the best translation performance overall, while latent variable models with

a normalizing flow prior give the highest held-out log-likelihood across all datasets.

6.1 Introduction

Sequence-to-sequence generation tasks can be cast as conditional density estimation

p(y|x) where x and y are input and output sequences. In this framework, density esti-

mators are trained to maximize the conditional log-likelihood, and also evaluated using

log-likelihood on a test set. However, many sequence generation tasks require finding

the best output ŷ given an input x at test time, and the output is evaluated against a set of

references y∗ on a task-specific metric: R(ŷ, y∗|x). For example, machine translation sys-

tems are evaluated using BLEU scores [Papineni et al., 2002], image captioning systems

use METEOR [Banerjee and Lavie, 2005] and text-to-speech systems use MOS (mean

opinion scores). As density estimators are optimized on log-likelihood, we want models

with higher held-out log-likelihoods to give better generation quality, but the correla-

tion has not been well studied for sequence generation tasks. In this work, we investigate

the correlation between rankings of density estimators based on (1) test log-likelihood

and (2) the downstream metric for machine translation.

On five language pairs from three machine translation datasets (WMT’14 En↔De,
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WMT’16 En↔Ro, IWSLT’16 De→En), we compare the held-out log-likelihood and

BLEU scores of several density estimators: (1) autoregressive models [Vaswani et al.,

2017], (2) latent variable models with a non-autoregressive decoder and a simple (di-

agonal Gaussian) prior [Shu et al., 2020], and (3) latent variable models with a non-

autoregressive decoder and a flexible (normalizing flow) prior [Ma et al., 2019].

We present two key observations. First, among models within the same family, we

find that log-likelihood is strongly correlated with BLEU. The correlation is almost per-

fect for autoregressive models and high for latent variable models with the same prior.

Between models of different families, however, log-likelihood and BLEU are not corre-

lated. Latent variable models with a flow prior are in fact the best density estimators (even

better than autoregressive models), but they give the worst generation quality. Gaussian

prior models offer comparable or better BLEU scores, while autoregressive models give

the best BLEU scores overall. From these findings, we conclude that the correlation

between log-likelihood and BLEU scores varies significantly depending on the range of

model families considered.

Second, we find that knowledge distillation drastically hurts density estimation per-

formance across different models and datasets, but consistently improves translation qual-

ity of non-autoregressive models. For autoregressive models, distillation slightly hurts

translation quality. Among latent-variable models, iterative inference with a delta pos-

terior [Shu et al., 2020] significantly improves the translation quality of latent variable

models with a Gaussian prior, whereas the improvement is relatively small for the flow

prior. Overall, for fast generation, we recommend a latent variable non-autoregressive

model using a simple prior (rather than a flexible one), knowledge distillation, and it-
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erative inference. This is 5–7x faster than the autoregressive model at the expense of

2 BLEU scores on average, and it improves upon latent variable models with a flexible

prior across generation speed, BLEU, and parameter count.

6.2 Background

Sequence-to-sequence generation is a supervised learning problem of generating an out-

put sequence given an input sequence. For many such tasks, conditional density estima-

tors have been very successful [Bahdanau et al., 2015; Sutskever et al., 2014; Vinyals and

Le, 2015; Vinyals et al., 2015].

To learn the distribution of an output sequence, it is crucial to give enough capacity to

the model to be able to capture the dependencies among the output variables. We explore

two ways to achieve this: (1) directly modeling the dependencies with an autoregressive

factorization of the variables, and (2) letting latent variables capture the dependencies,

so the distribution of the output sequence can be factorized given the latent variables

and therefore more quickly be generated. We discuss both classes of density estimators

in depth below. We denote the training set as a set of tuples {(xn, yn)}Nn=1 and each

input and output example as sequences of random variables x = {x1, . . . , xT ′} and y =

{y1, . . . , yT} (where we drop the subscript n for notational simplicity). We use θ to

denote the model parameters.
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6.2.1 Autoregressive Models

Learning Autoregressive models factorize the joint distribution of the sequence of out-

put variables y = {y1, . . . , yT} as a product of conditional distributions:

log pAR(y|x) =
T∑
t=1

log pθ(yt|y<t, x).

They are trained to maximize the log-likelihood of the training data:

LAR(θ) =
1

N

N∑
n=1

log pAR(yn|xn).

Parameterization Recurrent neural networks and their gated variants are natural param-

eterizations of autoregressive models [Chung et al., 2014; Elman, 1990; Hochreiter and

Schmidhuber, 1997]. By ensuring that no future information y≥t is used in predicting

the current timestep yt, non-recurrent architectures can also parameterize autoregres-

sive models, such as convolutions [Gehring et al., 2017; van den Oord et al., 2016a] and

Transformers [Vaswani et al., 2017], which are feedforward networks with self-attention.

Inference Finding the most likely output sequence given an input sequence under an

autoregressive model amounts to solving a search problem: argmaxy1:T
∑T

t=1 log pθ(yt|y<t, x).

As the size of the search space grows exponentially with the length of the output sequence

T , solving this exactly is intractable. Therefore, approximate search algorithms are often

used such as greedy search or beam search.

6.2.2 Latent Variable Models

Learning Latent variable models posit a joint distribution of observed variables (y) and

unobserved variables (z). They are trained to maximize the marginal log-likelihood of
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the training data:

log pLVM(y|x) = log
∫
z
pθ(y|z, x) pθ(z|x)dz. (6.1)

As the marginalization over z makes computing the marginal log-likelihood and poste-

rior inference intractable, variational inference proposes to use a parameterized family

of distributions qϕ(z|y, x) to approximate the true posterior p(z|y, x). Then, we have

the evidence lowerbound (ELBO) [Kingma and Welling, 2014a; Wainwright and Jordan,

2008]:

log pLVM(y|x) ≥ ELBO(y, x; θ, ϕ) (6.2)

= E
z∼qϕ

[
log pθ(y, z|x)− log qϕ(z|y, x)

]
,

where pθ(y|z, x) is the decoder, qϕ(z|y, x) is the variational posterior and pθ(z|x) is the

prior. Both the model and variational parameters θ, ϕ are estimated to maximize ELBO

over the training set: LLVM(θ, ϕ) =
1
N

∑N
n=1 ELBO(yn, xn; θ, ϕ).

Parameterization As latent variables can capture the dependencies between the output

variables, the decoding distribution can be factorized: pθ(y|z, x) =
∏T

t=1 pθ(yt|z, x). The

approximate posterior distribution is also often factorized, which can be parameterized

by any neural network that outputs mean and standard deviation for each output posi-

tion: qϕ(z1:T |y, x) =
∏T

t=1N
(
zt

∣∣∣µϕ,t(y, x), σϕ,t(y, x)). We discuss prior distributions

in section 6.2.3.

Inference Generating the most likely output given an input with a latent variable model

requires optimizing ELBO with respect to the output: argmaxyELBO(y, x; θ, ϕ). As
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computing the expectation in Eq. 6.2 is intractable, we instead optimize a proxy lower-

bound using a delta posterior [Shu et al., 2020]:

δ(z|µ) =


1, if z = µ

0, otherwise

Then, the ELBO reduces to:

E
z∼δ(z|µ)

[
pθ(y|z, x) + pθ(z|x)

]
+

=0︷ ︸︸ ︷
H(δ),

= log pθ(y|µ, x) + log pθ(µ|x). (6.3)

We maximize Eq. 6.3 with iterative refinement: the EM algorithm alternates be-

tween (1) matching the proxy to the original lowerbound by setting µ = Eqϕ [z], and (2)

maximizing the proxy lowerbound with respect to y by: ŷ = argmaxy(log pθ(y|µ, x)).

The delta posterior is initialized using the prior (e.g. µ = Ez∼pθ(z|x)[z] in case of a Gaus-

sian prior) so that the inference algorithm is fully deterministic, a desirable property for

sequence generation tasks. We study the effect of iterative refinement on BLEU score

in detail.

6.2.3 Prior for Latent Variable Models

Several work have discovered that the prior distribution plays a critical role in balancing

the variational posterior and the decoder, and a standard normal distribution may be too

rigid for the aggregate posterior to match [Hoffman and Johnson, 2016; Rosca et al.,

2018]. Indeed, follow-up work found that more flexible prior distributions outperform

simple priors on several density estimation tasks [Bauer and Mnih, 2019; Tomczak and
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Welling, 2018]. Therefore, we explore two choices for the prior distribution: a factorized

Gaussian and a normalizing flow.

Diagonal Gaussian A simple model of the conditional prior is a factorized Gaussian

distribution:

log pθ(z1:T |x) =
T∑
t=1

logN
(
zt

∣∣∣µθ,t(x), σθ,t(x)),
where each latent variable zt is modeled as a diagonal Gaussian with mean and standard

deviation computed from a learned function.

Normalizing Flow Normalizing flows [Papamakarios et al., 2019; Rezende and Mo-

hamed, 2015; Tabak and Turner, 2013] offer a general method to construct complex

probability distributions over continuous random variables. It consists of (1) a base

distribution pb(ϵ) (often chosen as a standard Gaussian distribution) and an invertible

transformation f and its inverse f−1, such that f(z) = ϵ, f−1(ϵ) = z. As our prior

is conditioned on x, so are the transformations: f(z; x) = ϵ, f−1(ϵ; x) = z. Then, by

change-of-variables, we can evaluate the exact density of the latent variable z under the

flow prior:

log pθ(z|x) = log pb
(
f(z; x)

)
+ log

∣∣∣∣det∂f(z; x)∂z

∣∣∣∣.
Affine coupling flows [Dinh et al., 2017] enable efficient generation and computation of

the Jacobian determinant by constructing each transformation such that only a subset of

the random variables undergoes affine transformation, using parameters computed from
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the remaining variables:

zid, ztr = split(z)

s, b = gparam(zid) (6.4)

f(z) = concat(zid; s · ztr + b),

where gparam can be arbitrarily complex as it needs not be invertible. As invertibility

is closed under function composition and the Jacobian determinant is multiplicative,

increasingly flexible coupling flows can be constructed by stacking multiple flow layers

and reordering such that all the variables are transformed.

6.2.4 Knowledge Distillation

While most density estimators for sequence generation tasks are trained to maximize

the log-likelihood of the training data, recent work have shown that it is possible to

improve the performance of non-autoregressive models significantly by training them

on the predictions of a pre-trained autoregressive model [Gu et al., 2018a; van den Oord

et al., 2018]. While Zhou et al. [2019] recently found that distillation reduces complexity

of the training data, its effect on density estimation performance has not been studied.

6.3 Problem Definition

On a sequence generation task, a conditional density estimator F ∈ H (where H is

a hypothesis set of density estimators in section 6.2) is trained to maximize the log-
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likelihood (or its approximation) of the training set {(xn, yn)}Nn=1:

L(F ) =
1

N

N∑
n=1

log pF (yn|xn).

Once training converges, the model F is evaluated on the test set {(xm, ym)}Mm=1

using a downstream metric R:

R(F ) = R
(
{(xm, ym, ŷm)}Mm=1

)
,

where ŷm = argmaxy log pF (y|xm).

To perform model selection, we can rank a set of density estimators {F1, . . . , FK}

based on either the held-out log-likelihood or the downstream metric. We measure the

correlation between the rankings given by the log-likelihood L(F ) and the downstream

metric R(F ).

6.4 Experimental Setup

Onmachine translation, we train several autoregressive models and latent variable models

and analyze the correlation between their rankings based on log-likelihood and BLEU.

6.4.1 Datasets and Preprocessing

We use five language pairs from three translation datasets: IWSLT’16 De→En¹ (con-

taining 197K training, 2K development and 2K test sentence pairs), WMT’16 En↔Ro²

1. https://wit3.fbk.eu/
2. www.statmt.org/wmt16/translation-task.html
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(612K, 2K, 2K pairs) and WMT’14 En↔De³ (4.5M, 3K, 3K pairs). For WMT’14

En↔De and WMT’16 En↔Ro, both directions are used.

We use the preprocessing scripts with default hyperparameters from the tensor2tensor

framework.⁴ Namely, we use wordpiece tokenization [Schuster and Nakajima, 2012] with

32K wordpieces on all datasets. For WMT’16 En↔Ro, we follow Sennrich et al. [2016a]

and normalize Romanian and remove diacritics before applying wordpiece tokenization.

For training, we discard sentence pairs if either the source or the target length exceeds

64 tokens. As splitting along the time dimension [Ma et al., 2019] in the coupling flow

layer requires that the length of the output sequence is a multiple of 2 at each level,

<EOS> tokens are appended to the target sentence until its length is a multiple of 4.

6.4.2 Autoregressive Models

We use three Transformer [Vaswani et al., 2017] models of different sizes: Transformer-

big (Tr-L), Transformer-base (Tr-B) and Transformer-small (Tr-S). The first twomodels

have the same hyperparameters as in Vaswani et al. [2017]. Transformer-small has 2

attention heads, 5 encoder and decoder layers, dmodel = 256 and dfilter = 1024.

6.4.3 Latent Variable Models

The latent variable models in our experiments are composed of the source sentence en-

coder, length predictor, prior, decoder and posterior. The source sentence encoder is im-

plemented with a standard Transformer encoder. Given the hidden states of the source

3. www.statmt.org/wmt14/translation-task.html
4. https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/bin/

t2t-datagen
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sentence, the length predictor (a 2-layer MLP) predicts the length difference between

the source and target sentences as a categorical distribution in [−30, 30].We implement

the decoder pθ(y|z, x) with a standard Transformer decoder that outputs the logits of

all target tokens in parallel. The approximate posterior qϕ(z|y, x) is implemented as a

Transformer decoder with a final Linear layer with weight normalization [Salimans and

Kingma, 2016] to output the mean and standard deviation (having dimensionality dlatent).

Both the decoder and the approximate posterior attend to the source hidden states.

Diagonal Gaussian Prior The diagonal Gaussian prior is implemented with a Trans-

former decoder which receives a sequence of positional encodings of length T as input,

and outputs the mean and standard deviation of each target token (of dimensionality

dlatent). We train two models of different sizes: Gauss-base (Ga-B) and Gauss-large (Ga-

L). Gauss-base has 4 attention heads, 3 posterior layers, 3 decoder layers and 6 encoder

layers, whereas Gauss-large has 8 attention heads, 4 posterior layers, 6 decoder layers, 6

encoder layers. (dmodel, dlatent, dfilter) is (512, 512, 2048) for WMT experiments and (256,

256, 1024) for IWSLT experiments.

Normalizing Flow Prior The flow prior is implemented with Glow [Kingma andDhari-

wal, 2018]. We use a single Transformer decoder layer with a final Linear layer with

weight normalization to parameterize gparam in Eq. 6.4. This produces the shift and scale

parameters for the affine transformation. Our flow prior has the multi-scale architec-

ture with three levels [Dinh et al., 2017]: at the end of each level, half of the latent

variables are modeled with a standard Gaussian distribution. We use three split pat-

terns and multi-headed 1x1 convolution from Ma et al. [2019]. We experiment with the
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following hyperparameter settings: Flow-small (Fl-S) with 12/12/8 flow layers in each

level and Flow-base (Fl-B) with 12/24/16 flow layers in each level. The first level corre-

sponds to the latent distribution and the last level corresponds to the base distribution.

(dmodel, dlatent, dfilter) is (320, 320, 640) for all experiments. For the Transformer decoder

in gparam, we use 4 attention heads for Flow-small and 8 attention heads for Flow-base.

6.4.4 Training and Optimization

We use the Adam optimizer [Kingma and Ba, 2015] with the learning rate schedule

used by Vaswani et al. [2017]. The norm of the gradients is clipped at 1.0. We perform

early stopping and choose the learning rate warmup steps and dropout rate based on the

BLEU score on the development set. To train non-autoregressive models, the loss from

the length predictor is minimized jointly with negative ELBO loss.

Knowledge Distillation Following previous work [Gu et al., 2018a; Kim and Rush,

2016; Lee et al., 2018], we construct a distilled dataset by decoding the training set using

Transformer-base with beam width 4. For IWSLT’16 De→En, we use Transformer-

small.

Latent Variable Models To ease optimization of latent variable models [Bowman et al.,

2016; Higgins et al., 2017], we set the weight of the KL term to 0 for the first 5,000

SGD steps and linearly increase it to 1 over the next 20,000 steps. Similarly with Man-

simov et al. [2019a], we find it helpful to add a small regularization term to the training

objective that matches the approximate posterior with a standard Gaussian distribution:
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α · KL
[
qϕ(z|y, x) || N (0, I)

]
, as the original KL term KL

[
qϕ(z|y, x)

∣∣∣∣ pθ(z|x)] does not
have a local point minimum but a valley of minima. We find α = 10−4 to work best.

Flow Prior Models We perform data-dependent initialization of actnorm parameters

for the flow prior [Kingma and Dhariwal, 2018] at the 5,000-th step, which is at the

beginning of KL scheduling.

6.4.5 Evaluation Metrics

Log-likelihood is the main metric for measuring density estimation (data modeling)

performance. We compute exact log-likelihood for autoregressive models. For latent

variable models, we estimate the marginal log-likelihood by importance sampling with

1K samples from the approximate posterior and using the ground truth target length.

BLEU measures the similarity (in terms of n-gram overlap) between a generated out-

put and a set of references, regardless of the model. It is a standard metric for generation

quality of machine translation systems.

Generation Speed In addition to the quality-driven metrics, we measure the generation

speed of each model in the number of sentences generated per second on a single V100

GPU.
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BLEU (↑) LL (↑)
Raw Dist. Raw Dist.

W
M
T’
14

En
→
D
e

Tr-S 24.54 24.94 -1.77 -2.36
Tr-B 28.18 27.86 -1.44 -2.19
Tr-L 29.39 28.29 -1.35 -2.23
Ga-B 15.74 24.54 -1.51 -2.44
Ga-L 17.33 25.53 -1.47 -2.24
Fl-S 18.17 21.98 -1.41 -2.13
Fl-B 18.57 21.82 -1.23 -2.05
Fl-B(∗) 18.55 21.45
Fl-L(∗) 20.85 23.72

W
M
T’
14

D
e→

En

Tr-S 29.15 28.40 -1.66 -2.24
Tr-B 32.21 32.24 -1.42 -2.12
Tr-L 33.16 32.24 -1.35 -2.05
Ga-B 21.64 29.29 -1.41 -2.17
Ga-L 23.03 30.30 -1.31 -2.04
Fl-S 23.17 27.14 -1.28 -1.73
Fl-B 23.12 26.72 -1.20 -1.71
Fl-B(∗) 23.36 26.16
Fl-L(∗) 25.40 28.39

Table 6.1: Test BLEU score and log-likelihood of each model. Raw: models trained
on raw data. Dist.: models trained on distilled data. Tr-S: Transformer-small. Tr-B:
Transformer-base. Tr-L: Transformer-big. Ga-B: Gauss-base. Ga-L: Gauss-large. Fl-S:
Flow-small. Fl-B: Flow-base. Fl-L: Flow-large. We use beam search with width 4 for
inference with autoregressive models, and one step of iterative inference [Shu et al., 2020]
for latent variable models. On most datasets, our Flow-base model gives comparable
results to those from Ma et al. [2019], which are denoted with (∗). We boldface the best
log-likelihood overall and the best BLEU score among the latent variable models. We
underscore best BLEU score among the autoregressive models.
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BLEU (↑) LL (↑)
Raw Dist. Raw Dist.

W
M
T’
16

En
→
Ro

Tr-S 30.12 29.57 -1.72 -1.95
Tr-B 33.46 33.28 -1.63 -2.52
Ga-B 28.03 29.71 -2.38 -3.48
Ga-L 28.16 30.91 -2.44 -3.54
Fl-S 26.85 28.63 -1.53 -2.42
Fl-B 27.49 29.09 -1.50 -2.31
Fl-B(∗) 29.26 29.34
Fl-L(∗) 29.86 29.73

W
M
T’
16

Ro
→
En

Tr-S 29.33 28.87 -1.84 -1.93
Tr-B 32.19 31.15 -1.79 -2.28
Ga-B 26.48 27.81 -2.41 -2.92
Ga-L 27.35 28.02 -2.32 -3.01
Fl-S 26.03 26.12 -1.65 -2.05
Fl-B 27.14 27.33 -1.64 -2.01
Fl-B(∗) 30.16 30.44
Fl-L(∗) 30.69 30.72

IW
SL

T

Tr-S 31.54 31.72 -1.84 -2.56
Ga-B 24.36 26.80 -1.98 -2.70
Fl-S 23.64 26.69 -1.66 -2.28
Fl-B 24.89 27.00 -1.57 -2.46
Fl-B(∗) 24.75 27.75

Table 6.2: Test BLEU score and log-likelihood of each model. Raw: models trained
on raw data. Dist.: models trained on distilled data. Tr-S: Transformer-small. Tr-B:
Transformer-base. Tr-L: Transformer-big. Ga-B: Gauss-base. Ga-L: Gauss-large. Fl-S:
Flow-small. Fl-B: Flow-base. Fl-L: Flow-large. We use beam search with width 4 for
inference with autoregressive models, and one step of iterative inference [Shu et al., 2020]
for latent variable models. On most datasets, our Flow-base model gives comparable
results to those from Ma et al. [2019], which are denoted with (∗). We boldface the best
log-likelihood overall and the best BLEU score among the latent variable models. We
underscore best BLEU score among the autoregressive models.
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Tr-B Ga-B Fl-B
Raw 0.926 0.831 0.678
Dist. -0.758 -0.897 -0.873

Table 6.3: Pearson’s correlation between log-likelihood and BLEU across the training
checkpoints of Transformer-base, Gauss-base and Flow-base on WMT’14 En→De.

6.5 Results

6.5.1 Correlation between rankings of models

Tables 6.1 and 6.2 presents the comparison of three model families (Transformer, Gauss,

Flow) on five language pairs in terms of generation quality (BLEU) and log-likelihood

(LL). We present two sets of results: one from models trained on raw data (Raw),

and another from models trained on distilled data (Dist.) (which we mostly discuss in

section 6.5.2). We use the original test set in computing the log-likelihood and BLEU

scores of the distilled models, so the results are comparable with the undistilled models.

We make two main observations:

1. Log-likelihood is highly correlated with BLEU when considering models within the

same family.

a) Among autoregressive models (Tr-S, Tr-B and Tr-L), there is a perfect correlation

between log-likelihood and BLEU. On all five language pairs (undistilled), the

rankings of autoregressive models based on log-likelihood and BLEU are identical.

b) Among non-autoregressive latent variable models with the same prior distribution,

there is a strong but not perfect correlation. Between Gauss-large and Gauss-base,

the model with higher held-out log-likelihood also gives higher BLEU on four
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out of five datasets. Similarly, Flow-base gives higher log-likelihood and BLEU

score than Flow-small on all datasets except WMT’14 De→En.

2. Log-likelihood is not correlated with BLEU when comparing models from different

families.

a) Between latent variable models with different prior distributions, we observe no

correlation between log-likelihood and BLEU. On four out of five language pairs

(undistilled), Flow-base gives much higher log-likelihood but similar or worse

BLEU score than Gauss-base. With distillation, Gauss-large considerably out-

performs Flow-base in BLEU on all datasets, while Flow-base gives better log-

likelihood.

b) Overall, autoregressive models offer the best translation quality but not the best

modeling performance. In fact, Flow-base model with a non-autoregressive de-

coder gives the highest held-out log-likelihood on all datasets.

Correlation between log-likelihood and BLEU across checkpoints Table 6.3 presents

the correlation between log-likelihood and BLEU across the training checkpoints of

several models. The findings are similar to Table 6.1: for Transformer-base, there is

almost perfect correlation (0.926) across the checkpoints. For Gauss-base and Flow-

base, we observe strong but not perfect correlation (0.831 and 0.678). Overall, these

findings suggest that there is a high correlation between log-likelihood and BLEU when

comparing models within the same family. We discuss the correlation for models trained

with distillation below in section 6.5.2.
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6.5.2 Knowledge Distillation

In Table 6.3, we observe a strong negative correlation between log-likelihood and BLEU

across the training checkpoints of several density estimators trained with distillation.

Indeed, distillation severely hurts density estimation performance on all datasets (see

Table 6.1). In terms of generation quality, it consistently improves non-autoregressive

models, yet the amount of improvement varies across models and datasets. On WMT’14

En→De andWMT’14 De→En, distillation gives a significant 7–9 BLEU increase for di-

agonal Gaussian prior models, but the improvement is relatively smaller on other datasets.

Flow prior models benefit less from distillation, only 3–4 BLEU scores on WMT’14

En↔De and less on other datasets. For autoregressive models, distillation results in a

slight decrease in generation performance.

6.5.3 Iterative inference on Gaussian vs. flow prior

We analyze the effect of iterative inference on the Gaussian and the flow prior models.

Table 6.4 shows that iterative refinement improves BLEU and ELBO for both Gaussian

prior and flow prior models, but the gain is relatively smaller for the flow prior model.

Number of refinement steps
0 1 2 4

BLEU Ga-B 22.88 24.36 24.60 24.69
Fl-B 24.57 24.89 24.81 24.92

ELBO Ga-B -1.11 -0.93 -0.90 -0.89
Fl-B -1.22 -1.17 -1.16 -1.15

Table 6.4: Iterative inference with a delta posterior improves BLEU and ELBO for Gauss-
base and Flow-base on IWSLT’16 De→En (without distillation).
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Figure 6.1: Visualization of the latent space with 1K samples from the prior (green
plus sign), the approximate posterior (blue circle) and the delta posterior (red cross) of
Gauss-base (top) and Flow-small (bottom) on a IWSLT’16 De→En test example.

BLEU Speed Size
k = 0 1 2 4 8 0 1 2 4 8
Tr-S 24.54 2.69 17M
Tr-B 28.18 2.58 60M
Tr-L 29.39 1.93 208M
Ga-B 23.15 24.54 24.87 24.94 24.92 28.77 20.52 16.51 12.00 8.11 75M
Ga-L 24.31 25.53 25.69 25.68 25.68 19.83 14.72 10.25 7.88 4.91 95M
Fl-B 21.57 21.82 21.79 21.81 21.80 5.82 5.60 4.84 3.60 3.37 75M
Fl-L(∗) 23.72 258M

Table 6.5: BLEU score, generation speed and size of various models on WMT’14 En→De test
set. We measure generation speed in sentence/s on a single V100 GPU with batch size 1. We
perform inference of autoregressive models using beam search with width 4. For latent variable
models, we train perform k steps of iterative inference [Shu et al., 2020] (where k ∈ {0, 1, 2, 4, 8})
and report results from models trained with distillation. (∗) results are from Ma et al. [2019].

Visualization of latent space In Figure 6.1, we visualize the latent space of the ap-

proximate prior, the prior and the delta posterior of the latent variable models using

t-SNE [van der Maaten, 2014]. It is clear from the figures that the delta posterior of
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Gauss-base has high overlap with the approximate posterior, while the overlap is rela-

tively low for Flow-small. We conjecture that while the loss surface of ELBO contains

many local optima that we can reach via iterative refinement, not all of them share the

support of the approximate posterior density (hence correspond to data). This is partic-

ularly pronounced for the flow prior model.

6.5.4 Generation speed and model size

We compare performance, generation speed and size of various models in Table 6.5.

While autoregressive models offer the best translation quality, inference is inherently

sequential and slow. Decoding from non-autoregressive latent variable models is much

more efficient, and requires constant time with respect to sequence length given parallel

computation. Compared to Transformer-base, Gauss-large with 1 step of iterative infer-

ence improves generation speed by 6x, at the cost of 2.6 BLEU. On WMT’14 De→En,

the performance degradation is 1.9 BLEU. Flow prior models perform much worse than

the Gaussian prior models despite having more parameters and slower generation speed.

6.6 Related Work

For sequence generation, the gap between log-likelihood and downstream metric has

long been recognized. To address this discrepancy between density estimation and ap-

proximate inference (generation), there has largely been two lines of prior work: (1)

structured perceptron training for conditional random fields [Collins, 2002; Lafferty

et al., 2001; Liang et al., 2006] and (2) empirical risk minimization with approximate
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inference [Hopkins and May, 2011; Och, 2003; Povey and Woodland, 2002; Qiang Fu

and Biing-Hwang Juang, 2007; Shen et al., 2016; Stoyanov et al., 2011; Valtchev et al.,

1997]. More recent work proposed to train neural sequence models directly on task-

specific losses using reinforcement learning [Bahdanau et al., 2017; Jaques et al., 2017;

Ranzato et al., 2016] or adversarial training [Goyal et al., 2016].

Despite such a plethora of work in bridging the gap between log-likelihood and the

downstream task, the exact correlation between the two has not been established well.

Our work investigates the correlation for neural sequence models (autoregressive models

and latent variable models) in machine translation. Among autoregressive models for

open-domain dialogue, a concurrent work [Adiwardana et al., 2020] found a strong

correlation between perplexity and a human evaluation metric that awards sensibleness

and specificity. This work confirms a part of our finding that log-likelihood is highly

correlated with the downstream metric when we consider models within the same family.

Our work is inspired by recent work on latent variable models for non-autoregressive

neural machine translation [Gu et al., 2018a; Kaiser et al., 2018; Lee et al., 2018]. Specif-

ically, we compare continuous latent variable models with a diagonal Gaussian prior [Shu

et al., 2020] and a normalizing flow prior [Ma et al., 2019]. We find that while having

an expressive prior is beneficial for density estimation, a simple prior delivers better

generation quality while being smaller and faster.

6.7 Conclusion

In this work, we investigate the correlation between log-likelihood and the downstream

evaluation metric for machine translation. We train several autoregressive models and
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latent variable models on five language pairs from three machine translation datasets

(WMT’14 En↔De, WMT’16 En↔Ro and IWSLT’16 De→En), and find that the

correlation between log-likelihood and BLEU changes drastically depending on the

range of model families being compared: Among the models within the same family,

log-likelihood is highly correlated with BLEU. Between models of different families,

however, we observe no correlation: the flow prior model gives higher held-out log-

likelihood but similar or worse BLEU score than the Gaussian prior model. Further-

more, autoregressive models give the highest BLEU scores overall but the latent variable

model with a flow prior gives the highest test log-likelihoods on all datasets.

In the future, we will investigate the factors behind this discrepancy. One possibility

is the inherent difficulty of inference for latent variable models, which might be resolved

by designing better inference algorithms. We will also explore if the discrepancy is mainly

caused by the difference in the decoding distribution (autoregressive vs. factorized) or

the training objective (maximum likelihood vs. ELBO).

6.8 Developments Since Publication

This chapter was published close to the time of this writing. We hope that our study

on the correlation between the training objective and the evaluation metric on machine

translation can be a useful reminder to researchers in sequence generation.
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Chapter 7

Conclusions and Future Work

Neural sequence generation has seen massive progress in recent years, and deep neu-

ral networks trained on large datasets can now successfully generate sequential data of

various modalities including text, speech, music, images and video. Many successful

generative models proposed thus far are autoregressive, and generate data one element

at a time in a given (often temporal) order. While autoregressive models can be straight-

forwardly trained on exact likelihood, decoding (or sampling) is sequential and cannot

be parallelized. Furthermore, inference complexity grows linearly with respect to the

length of the sequence being generated. Given the increasing depth and complexity

of neural sequence models, generating long sequences such as text documents or wave-

form with autoregressive models is prohibitively slow to be useful in real applications.

While various hardware and software optimizations have been proposed to increase the

decoding throughput of neural autoregressive models, improving the asymptotic infer-

ence complexity of neural sequence generation is important from a practical standpoint.

Motivated by this consideration, this thesis proposes several training and inference algo-
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rithms for non-autoregressive neural machine translation.

We explore using latent variables to capture the dependencies between the target

tokens, and different ways to incorporate the concept of iterative refinement into the

inference procedure. In Chapter 3, we introduced a model that introduces additional

dependencies with discrete latent variables, and used denoising autoencoder loss as aux-

iliary training objective. For inference, we proposed argmax decoding of intermediate

discrete latent variables, and an adaptive decoding scheme where the output is repeat-

edly refined until convergence. In Chapter 4, we introduced a continuous latent variable

model trained to maximize the evidence lowerbound (ELBO). We proposed a novel in-

ference algorithm that performs coordinate ascent in both discrete (token) space and

continuous (latent) space to maximize ELBO, which we dub delta inference. Delta in-

ference performs refinement in a hybrid space consisting of both discrete and continuous

variables. In Chapter 5, we proposed a novel inference algorithm for the continuous la-

tent variable model that performs refinement purely in a continuous space. We train

an inference network to approximate the gradient of the log-likelihood with respect to

the latent variable, and follow the gradients it approximates to find better latent vari-

able configurations during inference time. In Chapter 6, we investigate the correlation

between the training objective (log-likelihood) and the generation quality (BLEU) of

several families of density estimators on five machine translation tasks. We discover that

the log-likelihood and BLEU are highly correlated when comparing between the same

model class, but they are not correlated when comparing between models from different

families.

Despite rapid progress in recent years, non-autoregressive neural machine translation
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is far from solved. We outline a number of avenues for future research in detail below.

Difficulty in learning and MAP inference in VAEs Despite significant progress in

variational inference, training variational autoencoders is notoriously difficult and prone

to two suboptimal solutions: (1) the generative model ignores the latent variables and

the latent codes do not represent the data well [Dai et al., 2020; Lucas et al., 2019], and

(2) the aggregate approximate posterior fails to match the prior, hence samples from the

prior cannot generate realistic data [Makhzani et al., 2015; Tomczak and Welling, 2018].

While several works studied and proposed solutions to these phenomena for VAEs with

an autoregressive decoder [Bowman et al., 2016; Dieng et al., 2019; He et al., 2019; Kim

et al., 2018], non-autoregressive VAEs have received relatively little attention to date. As

decoder capacity plays a large role in determining the amount of information encoded

in the latent codes [Chen et al., 2017], future work should study the extent to which

training non-autoregressive VAEs results in such undesirable solutions.

As Lee et al. [2020b] showed, performing efficient maximum-a-posterior (MAP) in-

ference with a latent variable model is challenging, particularly when a flexible prior [Bauer

and Mnih, 2019; Ma et al., 2019; Tomczak and Welling, 2018] is used. We observed

that while VAEs with a normalizing flow prior achieved superior modeling performance

to those with a spherical Gaussian prior, it gave worse generation quality. One poten-

tial cause is the tendency of normalizing flows to to assign higher likelihood to out-of-

distribution than in-distribution data [Kirichenko et al., 2020; Nalisnick et al., 2019].

While our deterministic delta inference [Shu et al., 2020] had limited success with VAEs

with a normalizing flow prior, future work should explore different inference algorithms

for VAEs with flexible priors, such as sampling-based approaches [Shah and Barber,
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2018] or gradient-based inference [Lee et al., 2020a].

Speed comparison with optimized autoregressive NMT systems Non-autoregressive

neural machine translation has achieved tremendous progress in recent years. Most

recently, Gu and Kong [2020] achieved 16.5× speedup on WMT’14 En→De with com-

parable performance as the baseline autoregressive Transformer model (27.48 BLEU vs.

27.49 BLEU) on GPU. However, the baseline autoregressive Transformer model used in

this work and other work on non-autoregressive machine translation (including this the-

sis) is not optimized for speed. The autoregressive systems with various speed optimiza-

tions (e.g. quantization, light-weight decoder, distillation and improved kernels) [Bogoy-

chev et al., 2020; Kim et al., 2019] report lower latency than non-autoregressive models

on standard machine translation tasks in the literature. In order for non-autoregressive

machine translation systems to have practical significance, future work should either

(1) find use cases where non-autoregressive systems are unequivocally faster, perhaps

on document translation, or (2) develop non-autoregressive systems with similar speed

optimizations and demonstrate lower latency than autoregressive systems.

Alternative generation paradigm to autoregressive decoding Autoregressive text gen-

eration with approximate decoding such as beam search is prone to several well known

pathologies. Beam search outputs often contain repetitive text [Holtzman et al., 2020]

and can even have infinite length [Welleck et al., 2020]. On the other hand, autoregres-

sive machine translation models often output an empty string when the beam width is

sufficiently large [Stahlberg and Byrne, 2019]. In fact, Eikema and Aziz [2020] showed

that the most likely translation (mode) under the trained model is often an empty string.
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As one possible explanation of such 0-length generation, Shi et al. [2020] recently

showed that the probability of observing the <EOS> token is smoothed across differ-

ent token positions, even allocating probability mass to the first position.

While research on non-autoregressive text generation has mostly focused on im-

proving the decoding speed (including this thesis), it is an interesting future work to

investigate whether non-autoregressive decoding with iterative refinement is susceptible

to the same pathological generations that suffer autoregressive decoding. Intuitively,

non-autoregressive decoding with iterative refinement might potentially find different

solutions from autoregressive decoding with beam search. While beam search maintains

a fixed number of candidates to choose from, it cannot revise any of the tokens already

generated. In contrast, iterative refinement based approaches can refine a word by con-

sulting both its past and future context, several times. We encourage future work to

investigate these issues in detail.
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