
Mobility, Route Caching, and TCP Performance

in Mobile Ad Hoc Networks

by

Xin Yu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2005

David B. Johnson

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3170894

Copyright 2005 by

Yu, Xin

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3170894

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Xin Yu

All Rights Reserved, 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank Prof. Zvi Kedem for his guidance in the first year of my thesis

work, especially for his help while I was preparing the first submission of my algorithm.

I gratefully acknowledge my advisor, Prof. David Johnson from Rice University, for

his guidance, encouragement, and help. Since no professor here works on networks, I

did not know whether the topic I chose can be a thesis topic. When I asked for help from

Prof. Johnson, he readily agreed to be my thesis reader and helped me decide this topic;

later he became my thesis advisor. Prof. Johnson gave me not only valuable technical

advice but also good suggestions on improving my writing skills. He is a great advisor.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In a mobile ad hoc network, mobile nodes communicate with each other through wire

less links. Mobility causes frequent topology changes. This thesis addresses the funda

mental challenges mobility presents to on-demand routing protocols and to TCP.

On-demand routing protocols use route caches to make routing decisions. Due to

mobility, cached routes easily become stale. To address the cache staleness issue, prior

work used adaptive timeout mechanisms. However, heuristics cannot accurately esti

mate timeouts because topology changes are unpredictable. I propose to proactively

disseminate the broken link information to the nodes that have cached the link. I de

fine a new cache structure called a cache table to maintain the information necessary

for cache updates, and design a distributed cache update algorithm. This algorithm is

the first work that proactively updates route caches in an adaptive manner. Simulation

results show that proactive cache updating is more efficient than adaptive timeout mech

anisms. I conclude that proactive cache updating is key to the adaptation of on-demand

routing protocols to mobility.

TCP does not perform well in mobile ad hoc networks. Prior work provided link

failure feedback to TCP so that it can avoid invoking congestion control mechanisms

for packet losses caused by route failures. Simulation results show that my cache update

algorithm significantly improves TCP throughput since it reduces the effect of mobil

ity on TCP. TCP still suffers from frequent data and ACK losses. I propose to make

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

routing protocols aware of lost TCP packets and help reduce TCP timeouts. I design

two mechanisms that exploit cross-layer information awareness: early packet loss no

tification (EPLN) and best-effort ACK delivery (BEAD). EPLN notifies TCP senders

about lost data. BEAD retransmits ACKs at intermediate nodes or at TCP receivers.

Simulation results show that the two mechanisms significantly improve TCP through

put. I conclude that cross-layer information awareness is key to making TCP efficient in

the presence of mobility.

I also study the impact of caching strategies on the scalability of on-demand routing

protocols with mobility. I show that making route caches adapt quickly and efficiently to

topology changes is key to the scalability of on-demand routing protocols with mobility.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Dedication iii

Acknowledgements iv

Abstract v

List of Figures xi

1 Introduction 1

1.1 Routing Protocols for Mobile Ad Hoc Networks..................................... 2

1.2 The Cache Staleness Issue in On-Demand Routing Protocols 4

1.3 Overview of T C P ... 4

1.4 TCP Performance in Mobile Ad Hoc N e tw o rk s 7

1.5 Thesis Contributions ... 8

1.6 Thesis Outline ... 11

2 Related Work 12

2.1 Caching Strategies in On-Demand Routing Protocols 12

2.2 TCP Performance in Ad Hoc Networks 16

3 The Distributed Adaptive Cache Update Algorithm 19

3.1 Introduction . .. 20

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Routing Caching in DSR 22

3.3 The Distributed Cache Update A lg o rith m ... 24

3.3.1 Problem S tatem ent......................... 24

3.3.2 Assumption .. 25

3.3.3 Overview 26

3.3.4 The Definition of a Cache T a b le 28

3.3.5 Information Collection and Maintenance 28

3.3.6 The Distributed Cache Update A lgorithm 35

3.3.7 Correctness .. 46

3.3.8 Algorithm Summary 49

3.3.9 Implementation D ecisions...................... 50

3.3.10 Working with Promiscuous M o d e 51

3.4 Performance Evaluation 52

3.4.1 Evaluation Methodology ... 52

3.4.2 Simulation R esu lts ... 53

3.5 Conclusions.................................... 62

4 Reducing the Effect of Mobility on TCP by Proactive Cache Updating 64

4.1 Introduction... 64

4.2 Mobility, Route Caches, and TCP 65

4.2.1 The Effect of Mobility on T C P .. 66

4.2.2 The Effect of Proactive Cache Updating on T C P 66

4.3 Performance Evaluation.. 67

4.3.1 Simulation Environm ent............................. 67

4.3.2 Simulation R esu lts .. 68

4.4 Conclusions .. 79

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Improving TCP Performance in Mobile Ad Hoc Networks by Exploiting

Cross-Layer Information Awareness 80

5.1 Introduction .. 81

5.2 Mobility, TCP, and EL FN 84

5.2.1 How should RTO and cwnd be Set after Congestion Control

Mechanisms are Restored? .. 85

5.2.2 When should TCP be Frozen? 87

5.2.3 The network layer is unaware of Lost Data Packets and ACKs . 88

5.3 Early Packet Loss Notification and Best-Effort ACK Delivery................. 89

5.3.1 O verview ... 89

5.3.2 Packet Loss Notifications.. 91

5.3.3 EPLN and BEA D .. 91

5.4 Performance Evaluation of EPLN and B E A D ...100

5.4.1 Evaluation M ethodology...................... 100

5.4.2 Two Choices for Setting RTO and c w n d .. 102

5.4.3 Evaluation Results of EPLN and B E A D .. 107

5.5 Conclusions... 117

6 The Impact of Caching Strategies on the Scalability of On-Demand Routing

Protocols 119

6.1 Introduction ..120

6.2 The Impact of Caching Strategies on the Scalability of DSR124

6.2.1 The Adverse Effects of Stale R ou tes.. 124

6.2.2 Path Caches with F IF O .. 125

6.2.3 Adaptive Timeout Mechanisms 125

6.2.4 Cache Tables with Distributed Cache U p d a tin g126

6.3 Simulation M ethodology............................ 127

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Simulation Results 129

6.4.1 Varying Node Pause T im e 129

6.4.2 Varying Node Mean Speed .. 136

6.5 Conclusions 147

7 Conclusions 149

7.1 Thesis Contributions ... 149

7.2 Future W ork.................................. 152

Bibliography 153

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 An Example of Sliding Window in T C P ... 5

2.1 Path Cache and Link Cache Structure in D S R .. 13

3.1 An Example of Routing Caching in DSR 25

3.2 Pseudo Code for Algorithm a d d R o u te 30

3.3 Pseudo Code for Algorithmfin d R o u te 31

3.4 An Example N etw ork............................ 32

3.5 Pseudo Code for the Distributed Adaptive Cache Update Algorithm

(Part I) 36

3.6 Pseudo Code for the Distributed Adaptive Cache Update Algorithm

(Part I I) .. 37

3.7 Pseudo Code for the Distributed Adaptive Cache Update Algorithm

(Part III) 38

3.8 Example 1 (Case 1 and Case 2) .. 42

3.9 Example 1 (Case 3) 42

3.10 Example 2 43

3.11 Example 3 45

3.12 Example 4 46

3.13 A Route with n Nodes.. 48

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.14 Distributed Cache Updating for the Example shown in Figure 3.1 49

3.15 Packet Delivery Ratio vs. Mobility (Pause Time (s)) 54

3.16 Percentage of Good Replies Sent from Caches vs. Mobility (Pause Time

(s)) 55

3.17 Packet Delivery Latency vs. Mobility (Pause Time (s)) 57

3.18 Packet Delivery Latency vs. Mobility (Pause Time (s)) 58

3.19 Packet Overhead vs. Mobility (Pause Time (s)) 60

3.20 Normalized Routing Overhead vs. Mobility (Pause Time (s)) 61

4.1 TCP Throughput vs. Mobility (Mean Speed (m/s)) for 50 Node Scenarios 69

4.2 TCP Throughput vs. Mobility (Mean Speed (m/s)) for 100 Node Scenarios 70

4.3 Normalized Routing Overhead vs. Mobility (Mean Speed (m/s)) for 50

Node Scenarios... 72

4.4 Normalized Routing Overhead vs. Mobility (Mean Speed (m/s)) for 100

Node Scenarios... 73

4.5 Route Requests Sent vs. Mobility (Mean Speed (m/s)) 74

4.6 Packet Overhead vs. Mobility (Mean Speed (m/s)) 75

4.7 Cache Hit Ratio at both TCP senders and receivers vs. Mobility (Mean

Speed (m /s)).. 76

4.8 Percentage of Valid Cache Hits at both TCP senders and receivers vs.

Mobility (Mean Speed (m/s)) ... 77

5.1 An Example of How Mobility Affects TCP 85

5.2 Pseudo Code Executed at the Node Receiving a Packet Loss Notification 95

5.3 An Example of Early Packet Loss Notification.............................. 96

5.4 An Example of Best-Effort ACK D elivery .. 97

5.5 Pseudo Code Executed at TCP sender When Receiving an ICMP Message 99

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 TCP Throughput vs. Mobility under Two Choices for Setting RTO and

cwnd 103

5.7 Average Number of Slow-starts vs. Mobility under Two Choices for

Setting RTO and c w n d 104

5.8 TCP Throughput vs. Mobility under Two Choices for Setting RTO and

cw nd........................... 105

5.9 Average Number of Slow-starts vs. Mobility under Two Choices for

Setting RTO and c w n d ... 106

5.10 TCP Throughput vs. Mobility (mean speed (m /s))............... 109

5.11 TCP Throughput vs. Mobility (mean speed (m /s)).................. 110

5.12 Average Number of Slow-starts vs. Mobility (mean speed (m/s)) 112

5.13 Average Number of Slow-starts vs. Mobility (mean speed (m/s)) 113

5.14 Packet Overhead vs. Mobility (mean speed (m /s))115

5.15 Packet Overhead vs. Mobility (mean speed (m /s))116

6.1 Packet Delivery Ratio vs. Mobility (Pause Time (s))130

6.2 Percentage of Good Replies Sent from Caches vs. Mobility (Pause Time

(s)) 131

6.3 Packet Delivery Latency vs. Mobility (Pause Time (s))132

6.4 Packet Delivery Latency vs. Mobility (Pause Time (s)) 133

6.5 Packet Overhead vs. Mobility (Pause Time (s)) 134

6.6 Normalized Routing Overhead vs. Mobility (Pause Time (s)) 135

6.7 Packet Delivery Ratio vs. Mobility (Mean Speed (m/s)) 137

6.8 Percentage of Good Replies Sent from Caches vs. Mobility (Mean

Speed (m /s)).................. 138

6.9 Packet Delivery Latency vs. Mobility (Mean Speed (m/s)) 140

6.10 Packet Delivery Latency vs. Mobility (Mean Speed (m/s))141

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.11 Packet Overhead vs. Mobility (Mean Speed (m/s)) 142

6.12 Normalized Routing Overhead vs. Mobility (Mean Speed (m/s)) 143

6.13 Route Requests Sent vs. Mobility (Mean Speed (m/s)) 145

6.14 Average Cache Size of DSR-Update 146

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

A mobile ad hoc network [32] is a collection of mobile nodes that communicate with

each other through wireless links. There is no fixed network infrastructure; nodes coop

erate to forward packets for other nodes not within wireless transmission range. Mobile

ad hoc networks can be used in situations where an infrastructure does not exist or is

inconvenient to use, thus enabling anytime and anywhere connectivity. Promising appli

cations of ad hoc networks include emergency disaster relief, military communication,

space exploration, and monitoring scenarios such as sensor networks.

Mobile ad hoc networks have several unique characteristics that differentiate them

from traditional wired networks [8]: limited bandwidth, scarce energy since nodes typi

cally rely on batteries for their power, and dynamic network topology. Since nodes may

move arbitrarily, network topology changes frequently. Mobility is a crucial factor af

fecting the design of network protocols for ad hoc networks, including MAC (medium

access control), routing, and transport protocols.

This thesis addresses the fundamental challenges mobility presents to on-demand

routing protocols and to TCP (Transport Control Protocol) in ad hoc networks. The

first problem I address is how to make on-demand routing protocols quickly adapt to

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

topology changes. The second problem I address is how to improve TCP performance

in the presence of frequent packet losses. The third problem I address is how to improve

the scalability of on-demand routing protocols with respect to mobility. In this chapter,

I present the background, motivation, and contributions of my thesis work.

LI Routing Protocols for Mobile Ad Hoc Networks

Frequent topology changes present a fundamental challenge to routing protocols in ad

hoc networks. Routing protocols for ad hoc networks can be classified into two ma

jor types: proactive and reactive (on-demand). Proactive routing protocols attempt

to maintain up-to-date routing information to all nodes, regardless of the need for

such routes. Examples of proactive protocols include DSDV (Destination-Sequenced

Distance-Vector routing) [42], OLSR (Optimized Link State Routing) [28], and TBRPF

(Topology Broadcast Based on Reverse-Path Forwarding routing) [5], In contrast, on-

demand routing protocols initiate a routing discovery only when a route is needed.

Several routing protocols use on-demand mechanisms, including DSR (the Dynamic

Source Routing protocol) [29, 30, 31], AODV (Ad-hoc On-Demand Distance Vector

routing) [44, 43], TORA (Temporally-Ordered Routing Algorithm) [41], and LAR

(Location-Aided Routing) [33].

Proactive routing protocols attempt to keep route tables up-to-date by periodically

propagating topology updates throughout the network, thus incurring significant over

head. On-demand routing protocols avoid such overhead by adapting routing activities

to traffic needs, thus efficiently utilizing network bandwidth and reducing power con

sumption. To reduce the overhead and latency of initiating a route discovery for each

packet to be sent, on-demand routing protocols use route caches to store discovered

routes for future use.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In my thesis, I focus on DSR [29, 30,31], a well-known on-demand routing protocol.

DSR consists of two on-demand mechanisms: Route Discovery and Route Maintenance.

When a source node wants to send a packet to a destination to which it does not have

a route, it initiates a Route Discovery by broadcasting a ROUTE R e q u e s t to its neigh

bors. Each R o u te R e q u e s t contains a unique identifier generated by the node initi

ating the Route Discovery. A node receiving a R o u te R e q u e s t discards the R o u te

R e q u e s t if it has recently seen a R o u te R e q u e s t with the same unique identifier.

Otherwise, the node checks whether it has a route to the destination in its cache. If

so, it sends a R o u te R e p ly to the source node including a source route, which is the

concatenation of the source route accumulated in the R o u te R e q u e s t and the cached

route. If the node does not have a cached route to the destination, it adds its address

to the source route in the R o u te R e q u e s t and rebroadcasts the R o u te R e q u e s t .

When the destination node receives the R o u te R e q u e s t , it sends to the source node a

R o u te R e p ly containing the source route from the R o u te R e q u e s t . When a node

forwards a ROUTE REPLY, it caches the route starting from itself to the destination.

When the source node receives the R o u te R e p ly , it caches the source route.

In Route Maintenance, a node forwarding a packet is responsible for confirming that

the packet has been received by the next hop. If no acknowledgement is received after

the maximum number of retransmissions, the forwarding node sends a ROUTE ERROR

to the source node, indicating the broken link. When a node receives (or forwards) a

ROUTE Er ro r , it removes routes containing the broken link from its cache.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 The Cache Staleness Issue in On-Demand Routing

Protocols

Due to mobility, cached routes can easily become stale. In on-demand routing, a node

is not notified when a cached route becomes stale until it uses the route to send packets.

Using stale routes causes packet losses if packets cannot be salvaged by intermediate

nodes, increases delivery latency due to expensive link failure detections, and increases

routing overhead caused by ROUTE Er r o r s . Since a node can respond to a Ro ute

Re q u e st with a cached route, stale routes can also be quickly propagated to the caches

of other nodes. The first problem I address in this thesis is how to make route caches

quickly adapt to topology changes. This problem is very important because on-demand

routing protocols use route caches to make routing decisions. The problem is also very

challenging because topology changes are frequent.

To address the cache staleness issue, prior work in DSR used adaptive timeout mech

anisms [23, 39, 37]. Such mechanisms use heuristics with ad hoc parameters to predict

the lifetime of a link or a route. However, a predetermined choice of ad hoc parame

ters for certain scenarios may not work well for others, and scenarios in the real world

are different from those used in simulations. Moreover, heuristics cannot accurately es

timate timeouts because topology changes are unpredictable. As a result, either valid

routes will be removed or stale routes will be kept in caches. Thus, adaptive timeout

mechanisms cannot make route caches quickly adapt to topology changes.

1.3 Overview of TCP

TCP is a reliable transport protocol that is widely used in the Internet. Before introduc

ing the TCP performance issue in mobile ad hoc networks, I give an overview of TCP

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial w indow

1 2 | 3 4 5 6 7 8 9 10

(a)

W indow slides— -+

1 2 3 4 5 6 7 8 9 10

(b)

Figure 1.1: An Example of Sliding Window in TCP

including TCP congestion control mechanisms [27, 1].

TCP provides reliable end-to-end data transfer through a technique known as posi

tive acknowledgement with retransmission [9]. This technique requires a TCP receiver

to send an acknowledgement (ACK) to a TCP sender as it receives data. The sender

starts a timer called the retransmission timer when it sends a packet. If the timer expires

before the sender receives a corresponding ACK, the sender retransmits the packet.

If a sender sends each packet and waits for an ACK before sending another packet,

potential throughput will be wasted. To make transmission efficient, TCP uses a tech

nique known as a sliding window. The sliding window allows the sender to send mul

tiple packets before waiting for an ACK. The window size is defined as the number of

transmitted packets that can be unacknowledged at any given time [9]. For example,

as shown in Figure 1.1, the window size is 8, and thus the sender is permitted to send

8 packets before waiting for an ACK. Once the sender receives an ACK for the first

packet inside the window, it slides the window, enabling it to send the next packet. The

maximum size of the sliding window is limited by the size of the receiver’s advertised

window, which indicates the amount of available buffer space at the receiver.

To avoid congestion, TCP maintains a second limit called the congestion window,

which restricts the amount of data TCP can send. TCP must not send data with a se-

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quence number higher than the sum of the highest acknowledged sequence number and

the minimum of the congestion window size and the receiver’s advertised window size.

TCP congestion control mechanisms consist of four algorithms: slow start, conges

tion avoidance, fast retransmit, and fast recovery [1]. The slow start and congestion

avoidance algorithms are used by a TCP sender to control the amount of data that can be

present in the network at any time. The slow start algorithm is used at the beginning of

a transfer or after retransmitting a lost packet. During slow start, the congestion window

size is increased by one packet each time an ACK is received; thus, it grows exponen

tially. When the congestion window size reaches the slow-start threshold (ssthresh),

TCP performs congestion avoidance. During congestion avoidance, the congestion win

dow size is incremented by (segsize x segsize) I cwnd each time an ACK is received,

where segsize is the packet (or segment) size and cwnd is the congestion window size,

maintained in bytes. Thus, the congestion window size grows linearly and is increased

by one packet each time a full window has been acknowledged. Congestion avoidance

continues until congestion is detected.

TCP assumes that a packet loss is due to congestion. TCP detects a packet loss

using a retransmission timeout (RTO) and duplicate ACKs. TCP uses cumulative ACKs,

which acknowledge up through the last in-order packet received. A TCP receiver sends

a duplicate ACK when an out-of-order packet arrives [1], A duplicate ACK informs

the TCP sender that a packet was received out-of-order and which sequence number is

expected. A duplicate ACK can be caused a lost packet or by the re-ordering of packets

by the network. TCP assumes that a packet is lost if it receives three duplicate ACKs,

since it is unlikely that three duplicate ACKs are caused by the re-ordering of packets.

If the retransmission timer expires, TCP retransmits the lost packet, sets ssthresh to

half of the congestion window size, reduces the congestion window size to one packet,

and enters slow start. If a sender receives three consecutive duplicate ACKs, it invokes

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the fast retransmit and fast recovery algorithms. The sender retransmits the packet that

appears to be lost, and the fast recovery algorithm governs the transmission of new data

until a non-duplicate ACK arrives. When the ACK that acknowledges the new data

arrives, TCP sets cwnd to ssthresh and enters congestion avoidance.

1.4 TCP Performance in Mobile Ad Hoc Networks

Mobility presents a fundamental challenge to TCP [27, 1, 9], and TCP performance

degrades significantly in mobile ad hoc networks [21, 13, 51]. It has been observed

that route failures are the primary reason for most packet losses [13, 51]. Since TCP

assumes that packet losses occur because of congestion, it will invoke congestion control

mechanisms even for packet losses caused by route failures, resulting in the reduction

in throughput. It is important to make TCP perform well in ad hoc networks, because of

the universal use of TCP in the Internet and because connecting ad hoc networks to the

Internet is a natural trend, which holds the promise of pervasive communication.

It is challenging to make TCP efficient in ad hoc networks. Several modifications to

TCP [7,21,10,36] have been proposed to address the problems caused by mobility. The

major approach has been to provide link failure feedback to TCP so that TCP can avoid

responding to route failures as if congestion had occurred. ELFN (Explicit Link Failure

Notification) [21] is such a mechanism. With ELFN, when a node detects a link failure,

it notifies the TCP sender about the link failure and the packet that encountered the fail

ure. When receiving a notification, TCP freezes its retransmission timer and periodically

sends a probing packet until it receives an ACK. TCP then restores congestion control

mechanisms and continues as normal. ELFN was shown to outperform TCP [21].

TCP benefits from link failure feedback but is still affected by route failures. Holland

and Vaidya [21] observed that TCP experiences repeated route failures due to the inabii-

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ity of a TCP sender’s routing protocol to quickly recognize and remove stale routes

from its cache. This problem is complicated by allowing nodes to respond to Rou te

Re q u e st s with cached routes, because they often respond with stale routes. They also

showed that turning off replying from caches improves TCP performance for a network

with a single TCP connection. However, this approach will degrade TCP performance

in a network with multiple traffic sources due to increased routing overhead.

Prior work ignored an important fact: route failures are not equivalent to packet

losses. Route failures do not imply that packets are lost, since packets can be salvaged

by an intermediate node using a cached route. Many packets are dropped without being

noticed: upon a link failure, existing routing protocols drop all packets with the same

next hop from the network interface transmit queue. TCP will time out because of these

losses. It will also time out for ACK losses caused by route failures. It is unclear how to

make TCP efficient in the presence of frequent packet losses.

1.5 Thesis Contributions

This thesis makes four contributions. First, I addressed the cache staleness issue of

on-demand routing protocols through a novel distributed cache update algorithm [58].

This algorithm is the first work that proactively updates route caches in an adaptive

manner, in contrast to proactive protocols in which topology updates are periodically

propagated to all nodes. I show that proactive cache updating is more efficient than

adaptive timeout mechanisms. Second, I show that my cache update algorithm signifi

cantly improves TCP throughput without any modification to TCP [57]. This is the first

work to demonstrate improved TCP performance through an efficient caching strategy.

Third, I addressed the challenge mobility presents to TCP by exploiting cross-layer in

formation awareness [55]. I proposed two mechanisms: early packet loss notification

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(EPLN) and best-effort ACK delivery (BEAD). Both mechanisms significantly improve

TCP throughput. Finally, I show that my cache update algorithm makes DSR scale sig

nificantly better with mobility [56]. This is the first work that studies the scalability of

on-demand routing protocols with mobility. In the reminder of this section, I give an

overview of my thesis work.

To make route caches quickly adapt to topology changes, I proposed to proactively

disseminate the information about a broken link to the nodes that have that link in their

route caches. This goal is very challenging because of mobility and fast propagation of

routing information. To achieve this goal, I defined a new cache structure called a cache

table and designed a distributed cache update algorithm. During route discoveries and

data transmission, each node maintains in its cache table the information necessary for

cache updates. When a link failure is detected, the algorithm notifies in a distributed

manner all reachable nodes that have cached the link. The algorithm does not use any

ad hoc parameters, thus making route caches fully adaptive to topology changes. I

show that the algorithm outperforms DSR with path caches and with Link-MaxLife,

an adaptive timeout mechanism for link caches [23]. I conclude that proactive cache

updating is key to the adaptation of on-demand routing protocols to mobility.

Most attempts to improve TCP performance focused on transport layer mechanisms.

I proposed a new approach to improve TCP performance at the network layer: reducing

route failures by making route caches quickly adapt to topology changes. I investigated

the impact of my cache update algorithm on TCP performance, without any modification

to TCP. I show that this algorithm significantly improves TCP throughput and reduces

normalized routing overhead. I conclude that it is important to make route caches reflect

topology changes quickly so that the adverse effect of mobility on TCP is reduced.

To make TCP efficient in the presence of frequent packet losses, my solution is to

exploit cross-layer information awareness. I proposed to make routing protocols aware

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of lost TCP packets and help reduce TCP timeouts. To this end, I designed two mech

anisms: early packet loss notification (EPLN) and best-effort ACK delivery (BEAD).

EPLN seeks to notify TCP senders about lost data so that TCP retransmits lost pack

ets earlier. For lost ACKs, BEAD attempts to retransmit ACKs either at intermediate

nodes or at TCP receivers; therefore, TCP is unaware of lost ACKs. Both mechanisms

extensively use cached routes, without initiating route discoveries at any intermediate

node. The two mechanisms can be adapted to any routing protocol, as they address

general problems that occur at the network layer. I evaluated TCP-ELFN enhanced with

the two mechanisms using two caching strategies for DSR, path caches and my cache

update algorithm. I show that TCP-ELFN with EPLN and BEAD significantly outper

forms TCP-ELFN under both caching strategies. I conclude that cross-layer information

awareness is key to making TCP efficient in the presence of mobility.

Scalability is an important design goal of routing protocols. Prior work in ad

hoc network routing mainly focused on making routing protocols scale with network

size [26, 50, 3, 35, 11]. It is essential for routing protocols to scale not only with

network size but also with mobility. If a routing protocol cannot scale with mobility,

its performance will degrade significantly as mobility increases for medium-scale net

works. However, the scalability of on-demand routing protocols with mobility has not

been studied. I studied the impact of caching strategies on the scalability of on-demand

routing protocols with mobility in the context of DSR. I considered three caching strate

gies for DSR: path caches with FIFO, link caches with adaptive timeout mechanisms,

and cache tables with my cache update algorithm. Simulation results show that the al

gorithm makes DSR scale significantly better with mobility. I conclude that making

route caches adapt quickly and efficiently to topology changes is key to the scalability

of on-demand routing protocols with mobility.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.6 Thesis Outline

The organization of this thesis is as follows. In Chapter 2, I discuss related work on

caching strategies in on-demand routing protocols and on TCP performance in ad hoc

networks. In Chapter 3 ,1 present the design and evaiuation of my distributed adaptive

cache update algorithm. In Chapter 4 ,1 show that the cache update algorithm improves

TCP throughput without modification to TCP. In Chapter 5 ,1 show how mobility affects

TCP and present two mechanisms to improve TCP throughput. In Chapter 6 ,1 present

my study on the scalability of on-demand routing protocols with mobility, and finally in

Chapter 7 ,1 present my conclusions.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work

In this chapter, I discuss related work on caching strategies in on-demand routing proto

cols and on TCP performance in ad hoc networks.

2.1 Caching Strategies in On-Demand Routing Protocols

Proactive protocols periodically disseminate topology updates in order to keep routing

tables up-to-date. On-demand routing protocols use route caches to reduce the cost of

route discoveries but face the problem of cache maintenance. Maltz et al. [38] were the

first to study the cache performance of DSR. They found that the majority of R o u te

Re p l ie s are based on cached routes, and only 59% of R o u te R e p lie s carry correct

routes. They also observed that even R o u te R e p lie s from the target are not 100%

correct, since routes may break while a R o u te R e p ly is sent back to the source node.

Hu and Johnson [24] proposed a mechanism called epoch numbers to reduce cache

staleness. This mechanism prevents a node from re-leaming a stale link after having

earlier heard that the link is broken. The mechanism does not rely on ad hoc mechanisms

such as a short-lived negative cache; rather, it allows a node having heard of a broken

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2H2H§H§KI>
(a) Path caches

d M 2)“ ® —©
\§K D

(b) Link caches

Figure 2.1: Path Cache and Link Cache Structure in DSR

link and a discovery of the same link to sequence the two events in order to determine

which event occurred before the other. The mechanism did help reduce stale cache

information; however, re-leaming stale links is only one aspect of the cache staleness

issue. How to quickly remove stale routes from route caches remains unaddressed.

Hu and Johnson [23] studied the design choices for cache structure, cache capacity,

and cache timeout. The first cache structure proposed for DSR is a path cache [6], in

which a node caches each path separately. Figure 2.1 (a) illustrates an example path

cache for node S. In [23], the authors proposed a link cache structure and several adap

tive timeout mechanisms for link caches. In a link cache, a node adds each link to a

topology graph. Links obtained from different routes can form new routes, which may

not be available in path caches. Figure 2.1 (b) illustrates an example link cache for

node S. Adaptive timeout mechanisms estimate the lifetime of a link based on observed

link usages and breakages. Link-MaxLife [23] was shown to outperform other adaptive

timeout mechanisms. In Link-MaxLife, the timeout of a link is chosen according to a

stability table in which a node records its perceived stability of each other node. A node

chooses the shortest-length path that has the longest expected lifetime (the highest min

imum timeout of any link in the path). When a link is used, the stability metric for both

endpoints is incremented by the amount of time since the link was last used, multiplied

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by som e factor. When a link is observed to break, the stability metric for both endpoints

is multiplicatively decreased by a different factor. When a link is added to the cache, it

is given a lifetime equal to the stability of the less stable endpoint, but the lifetime is not

allowed to be set to less than 1 s. The ad hoc parameters are set as follows: the additive

increase factor is 4, the multiplicative decrease factor is 1.25, and the stability metric for

each node is initialized to be 25 s.

Lou and Fang [37] proposed an adaptive timeout mechanism that adjusts the link

lifetime based on the moving average of link lifetime statistics. Each link in a link cache

is associated with three attributes: bom, lastUsed, and UveTo. Attribute bom indicates

the time when a link is cached. Attribute lastUsed is the time when a link is last used to

forward a packet. Attribute liveTo is the time when a link expires. The statistical lifetime

data is collected whenever a link is removed. If a link is removed due to the reception

of a Ro u t e Err o r , lifetime I is calculated as the difference between the current time

and the value of bom. If a link is removed due to timeouts, lifetime I is calculated as

the difference between the value of lastUsed and the value of bom. Variable LIFETIME

indicates the estimation of the link lifetime. It is assigned a static value initially and is

adjusted dynamically using a moving average method whenever a lifetime I is collected:

LIFETIM E = (1 — a) x LIFETIM E + a x /, where a is set to 0.01.

Marina and Das [39] proposed wider error notification and timer-based route expiry.

Wider error notification aims at increasing the speed and extent of Ro u t e Error prop

agation. Ro u t e Erro rs are transmitted as broadcast packets at the MAC layer. A

node receiving a Route Error will rebroadcast it, but only if the node has a cached

route containing the broken link and that route was used to forward packets. Thus,

stale routes propagated through Ro u t e Replies and cached for future use will not be

removed. Moreover, some nodes that have cached broken links may not receive noti

fications, since broadcast is unreliable. Timer-based expiry is a heuristic for adaptive

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selection of timeouts based on the average route lifetime and the time between link

breakages. An average route lifetime is obtained using the lifetime of all broken routes

in the past. Timeout AT is defined as the maximum of a x average route lifetime and

the time since last link breakage, where a is set to 5 and the minimum AT is 1 s. The

time since last link breakage is used to correct the AT estimates during periods when no

routes break. Although this approach works well when routes break uniformly in time,

mobility may not be uniform in time or space.

Adaptive timeout mechanisms have several limitations. First, heuristics cannot give

accurate timeout estimates because topology changes are unpredictable. Second, ad

hoc parameters used in such mechanisms work well for certain scenarios but may not

work well for others. Finally, the effectiveness of such mechanisms relies on the timely

acquisition of the link failure information; however, a node may not be able to know

about a link failure as soon as a link breaks. In contrast, my cache update algorithm

does not use ad hoc mechanisms or heuristics. The algorithm allows the nodes that have

cached a broken link to know about the link failure at the earliest possible time.

AODV [44, 43] (the Ad hoc On-demand Distance Vector routing protocol) uses a

mechanism called “the precursor list” for ROUTE ERROR reporting. For each route

table entry, a node maintains a list of precursors that may be forwarding packets on this

route. When a node forwards a Ro u te Re ply , it adds the last hop node (from which it

received the Ro u te Re q u e st) into the precursor list for the forward route entry, i.e.,

the entry for the destination. The node also adds the next hop towards the destination

into the precursor list for the reverse route entry, i.e., the entry for the originator of the

Ro u te Re q u e st . These precursors will receive notifications from the node when the

next hop link is detected as broken. Each time a route table entry is used, the lifetime

of that route is updated to be the current time plus a fixed parameter. When a route

table entry is expired, the precursor list associated with the entry will be removed. The

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

precursor list is designed with a similar goal as the ReplyRecord field in a cache table,

which records the neighbor to which a Ro u te Reply is forwarded and the route starting

from the current node to the destination. The main difference is that there is no timeout

for a ReplyRecord entry. Moreover, precursor lists keep track of only the nodes recently

using some route; once a route table entry is expired, precursors that have not used or did

not recently use that route will not be tracked. In contrast, my mechanism completely

keeps track of topology propagation state in a distributed manner.

2.2 TCP Performance in Ad Hoc Networks

As described in Section 1.4, TCP does not perform well in ad hoc networks. Several

studies have attempted to identify the factors that affect TCP performance. Gerla et

al. [16] investigated the impact of the MAC protocol on TCP performance. Holland

and Vaidya [22] studied the effect of routing and link layer mechanisms on TCP per

formance in a static ad hoc network. Fu et al. [14] studied the effect of the wireless

channel on TCP throughput and loss and proposed two link layer techniques to improve

TCP throughput. Xu et al. [53] studied the TCP fairness issue in ad hoc networks and

proposed a neighborhood RED (Random Early Detection) [15] scheme to improve TCP

unfairness. Fu et al. [13] observed that mobility has the most significant impact on TCP

performance. TCP achieves only about 10% of a reference TCP’s throughput. As mobil

ity increases, the relative throughput drop ranges from almost 0% in static scenarios to

1000% in highly mobile scenarios where node speed is 20 m/s. In contrast, congestion

and mild channel errors have less effect on TCP, with less than 10% performance drop

compared with the reference TCP.

Anantharaman and Sivakumar [2] identified several problems at the MAC and the

network layers and proposed a framework called ATRA to address these problems.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ATRA includes three mechanisms: Symmetric Route Pinning (SRP), Route Failure

Prediction (RFP), and Proactive Route Errors (PRE). In a routing protocol, the route

used to send data packets can be different from the route used to send ACKs. SRP aims

to reduce route failures by ensuring that the ACK path is always the same as the data

path. In RFP, a node predicts the occurrence of a link failure based on the progression

of signal strength of packet receptions from the concerned neighbor. When a source

receives a predicted route failure message, it initiates a route discovery but continues

to use the current path. PRE aims at reducing the latency involved in the propagation

of link failure information to the sources that use the broken link. In PRE, each node

maintains a cache of TCP senders that have used a particular link in the past T seconds.

When a link failure is detected, all sources that have used the link in the past T seconds

are informed about the link failure. Thus, this approach reduces the latency involved in

route failure propagation.

Sundaresan et al. [51] argued that a majority of the components of TCP are inap

propriate for ad hoc networks. They developed a new transport protocol called ATP.

ATP consists of the following mechanisms: rate based transmissions, quick-start dur

ing connection initiation and route switching, network supported congestion detection

and control, no retransmission timeouts, decoupled congestion control and reliability,

and coarse grained receiver feedback. ATP focuses on achieving effective congestion

control and reliability.

Most prior work on TCP performance in ad hoc networks focused on transport layer

mechanisms. The major approach has been to provide link failure feedback to TCP so

as to prevent TCP from invoking congestion control mechanisms. Chandran et al. [7]

proposed a feedback-based technique called TCP-Feedback. An intermediate node that

detects a broken link sends a route failure notification (RFN) to the TCP sender. TCP

freezes its state and resumes transmission only when it receives a route reestablishment

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

notification (RRN) from the intermediate node. This technique was not evaluated in mo

bile ad hoc networks. Holland and Vaidya [21] proposed explicit link failure notification

(ELFN) to counter the effects of mobility. ELFN freezes TCP upon route failures and

periodically sends a probing packet until a sender receives an ACK. The authors also

observed that stale routes seriously degrade TCP throughput. ELFN was shown to out

perform TCP in mobile ad hoc networks. However, the authors studied only scenarios

with a single TCP connection. It is unclear how ELFN performs when traffic load is

high. I will give more detailed discussion about ELFN in Chapter 5.

Monks et al. [40] studied ELFN in both static and dynamic networks and proposed

hop-by-hop rate control-based mechanisms along with ELFN for congestion control.

Dyer and Boppana [10] proposed a heuristic called fixed RTO to distinguish route fail

ures from congestion. They assume that consecutive timeouts are an evidence of a route

loss. Thus, a TCP sender retransmits the unacknowledged packet before the second

RTO expires and the RTO is not doubled a second time. The RTO remains fixed until

the retransmitted packet is acknowledged. Liu and Singh [36] introduced a thin layer

between TCP and the network layer, which listens to the network feedback informa

tion provided by explicit congestion notification (ECN) and by destination unreachable

message and puts TCP at the sender into the appropriate state. Wang and Zhang [52]

proposed an approach to make TCP adapt to frequent route changes without relying

on network feedback. This approach is based on TCP detecting out-of-order delivery

events and inferring route changes from these events.

In summary, prior work mainly focused on making TCP aware of route failures.

However, it is insufficient to notify TCP only about route failures. In contrast, my work

focuses on issues at the network layer, the transport layer, and cross-layer. My work

aims to make routing protocols in ad hoc networks efficiently handle both data and

ACK losses so as to reduce TCP timeouts for mobility-induced losses.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The Distributed Adaptive Cache

Update Algorithm

On-demand routing protocols use route caches to make routing decisions. Due to mo

bility, cached routes easily become stale. To address the cache staleness issue in DSR,

I propose to proactively disseminate the information about a broken link to the nodes

that have that link in their caches. I define a new cache structure called a cache table

and design a novel distributed cache update algorithm. Each node maintains in its cache

table the information necessary for cache updates. Based on the information kept by

each node, the algorithm notifies all reachable nodes that have cached a broken link in

a distributed manner. Therefore, it enables route caches to adapt quickly to topology

changes. In this chapter, I present the design and evaluation of my distributed cache up

date algorithm. Although this work is presented in the context of DSR, it can be adapted

to other on-demand ad hoc network routing protocols as well.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Introduction

To address the cache staleness issue, prior work [23, 39,37] in DSR used adaptive time

out mechanisms. Such mechanisms use heuristics with ad hoc parameters to estimate

the lifetime of a link or a route. However, a predetermined choice of ad hoc parameters

for certain scenarios may not work well for others. Moreover, topology changes are

unpredictable. If the timeout is set too short, valid routes will be removed; if the timeout

is set too long, stale routes will be kept in caches. Thus, adaptive timeout mechanisms

cannot make route caches adapt quickly to topology changes.

To evict stale routes faster, some implementations of DSR use a small cache size.

However, as traffic load or network size increases, small caches will cause route re

discoveries, because more routes need to be stored, but small caches cannot hold all

useful routes. If the cache size is set large, more stale routes will stay in caches because

FIFO becomes less effective. It was shown [23] that path caches with unlimited size

perform much worse than caches with limited size, due to the large amount of Ro ute

Erro rs caused by the use of stale routes. No single cache size provides the best per

formance for all mobility scenarios [23], Whether the cache size is small or large, fast

cache updating is critical.

I propose to proactively disseminate the information about a broken link to the nodes

that have that link in their caches. Proactive cache updating is key to making route

caches quickly reflect topology changes. It is also important to constrain cache update

notifications to the nodes that have cached a broken link to avoid unnecessary overhead.

Thus, when a link failure is detected, my goal is to notify all reachable nodes that have

cached the broken link to update their caches.

I define a new cache structure called a cache table to maintain the information neces

sary for cache updates. A cache table has no capacity limit, and thus its size dynamically

changes as needed. Each node maintains in its cache table two types of information for

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each route. The first type of information is how well routing information is synchro

nized among nodes on a route: whether a link has been cached in only upstream nodes,

or in both upstream and downstream nodes, or neither. The second type of information

is which neighbor has learned which links through a Ro u t e Reply . Thus, for each

cached link, a node knows which neighbors have that link in their caches. Therefore,

topology propagation state, the information necessary and sufficient to remove stale

routes, is kept in a distributed manner.

I design a novel algorithm for distributed cache updating using the information kept

by each node. When a link failure is detected, the algorithm notifies selected neigh

borhood nodes about the broken link: the closest upstream and/or downstream nodes in

each route containing the broken link, and other neighbors that cached the link through

Ro u te Re p l ie s . When a node receives a notification, it starts the algorithm to no

tify selected neighbors. Therefore, the information about a broken link will be quickly

propagated to all reachable nodes that need to be notified.

My algorithm has the following desirable properties:

• Distributed: The algorithm uses only local information and communicates with

neighborhood nodes; therefore, it is scalable with network size.

• Adaptive: The algorithm notifies only the nodes that have cached a broken link to

update their caches; therefore, cache update overhead is low.

• Proactive on-demand: Proactive cache updating is triggered on-demand, without

periodic behavior.

• Without ad hoc mechanisms: The algorithm does not use any ad hoc parameters,

thus making route caches fully adaptive to topology changes.

Each node gathers the information about which node learns which link through for

warding packets, not through promiscuous mode, which is an optimization for DSR [38].

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To handle situations where promiscuous mode is used, I combine my algorithm and the

secondary cache used in DSR with path caches, without modification to the algorithm.

I evaluated the algorithm with and without promiscuous mode through detailed sim

ulations. Although Link-MaxLife was not designed to operate without promiscuous

mode, it is useful to evaluate it in this way to reveal more about its behavior. Under

non-promiscuous mode, the algorithm outperforms DSR with path caches by up to 19%

and DSR with Link-MaxLife by up to 41% in packet delivery ratio. Under promiscuous

mode, the algorithm improves packet delivery ratio by up to 7% for both caching strate

gies and reduces delivery latency by up to 27% for DSR and 49% for Link-MaxLife.

My contributions are threefold. First, I addressed the cache updating issue of on-

demand routing protocols. Second, I show that proactive cache updating is more effi

cient than adaptive timeout mechanisms. Finally, I conclude that proactive cache updat

ing is key to the adaptation of on-demand routing protocols to mobility.

The organization of this chapter is as follows. Section 3.2 gives an overview of

route caching in DSR. Section 3.3 describes my cache update algorithm and two algo

rithms used to maintain the information for cache updating. In Section 3 .4 ,1 present an

evaluation of my algorithm, and in Section 3 .5 ,1 present conclusions.

3.2 Routing Caching in DSR

Two caching structures have been proposed for DSR: path caches [6] and link caches [23],

In a path cache, a node stores each route starting from itself to another node separately.

In a link cache, a node adds a link to a topology graph, which represents the node’s view

of the network topology. Links obtained from different routes can form new routes.

Thus, link caches provide more routing information than path caches.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As described in Chapter 1, DSR uses source routes in routing packets: each packet

carries the complete path to its destination in the packet header. A node can leam a routes

through forwarding R o u te R e p lie s and data packets, or by overhearing packets when

promiscuous mode is used [38]. Although a ROUTE R e q u e s t also contains a source

route accumulated so far, DSR does not cache such a route because R o u te R e q u e s t s

are broadcast packets and hence links discovered may not be bi-directional [31], Due to

the same reason, when forwarding a R o u te R e p ly , DSR caches only the links that have

been confirmed by the MAC layer to be bi-directional [31], which are the downstream

links starting from the node to a destination. When forwarding a data packet, a node

caches the upstream links as a separate route. After initiating a Route Discovery, a

source node may leam many routes returned either by intermediate nodes or by the

destination; it will cache all those routes. Thus, DSR aggressively caches and uses

routing information.

As described in Chapter 1, DSR uses on-demand Route Maintenance to detect

whether a route has broken. If any link on a source route is detected as broken, the

node detecting the link failure will send a ROUTE ERROR to the source. Thus, on-

demand Route Maintenance removes stale routes only from the upstream nodes. Besides

Route Maintenance, DSR uses two mechanisms to maintain its cache. First, a source

piggybacks on the next Ro u te Re q u e st the last broken link information, which is

called a Gr a t u ito u s Ro ute Er r o r . Although this optimization helps remove stale

routes from more caches, GRATUITOUS Ro u t e E rro rs are not able to reach all nodes

whose caches contain the broken link, because some Ro u t e Re q u e st s will not be fur

ther propagated due to the use o f responding to ROUTE REQUESTS with cached routes.

Second, DSR uses heuristics: a small cache size with FIFO replacement for path caches

and adaptive timeout mechanisms for link caches [23], where link timeouts are chosen

based on observed link usages and breakages.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33 The Distributed Cache Update Algorithm

In this section, I first describe the cache staleness issue. Then I give the definition of

a cache table and present two algorithms used to maintain the information for cache

updates. Finally, I present my cache update algorithm in detail.

3.3.1 Problem Statement

On-demand Route Maintenance results in delayed awareness of mobility, because a node

is not notified when a cached route breaks until it uses the route to send packets. I

classify a cached route into three types:

• pre-active, if a route has not been used;

• active, if a route is being used;

• post-active, if a route was used before but now is not.

It is not necessary to detect whether a route is active or post-active, but these terms

help clarify the cache staleness issue. Stale pre-active and post-active routes will not

be detected until they are used. Due to the use of responding to ROUTE REQUESTS

with cached routes, stale routes may be quickly propagated to the caches of other nodes.

Thus, pre-active and post-active routes are an important source of cache staleness.

An example of the cache staleness issue is shown in Figure 3.1. Assume that route

ABCDE is active, route FGCDH is post-active, and route IGCDJ is pre-active. Thus,

node C has cached both the upstream and the downstream links for the active and post

active routes, but only the downstream links, CDJ, for the pre-active route. When for

warding a packet for the source A, node C detects that the link from node C to node D

is broken. It removes stale routes from its cache and sends a Ro u te E rror to node

A. However, the downstream nodes, D and E, will not know about the broken link.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

§3 r j \ Ts cache:
82 y IGCDJ

F’s cache: © y © r y y s cache:
FGCDH A G ^ W empty

s i d i

C’s cache: E ’s cache:
CDE, CBA 0 2 @ EDCBA
CDH, CGF FPs cache:

CDJ HDCGF

Figure 3.1: An Example of Routing Caching in DSR

Moreover, node C does not know that other nodes also have cached the broken link,

including all the nodes on the post-active route, F, G, D, and H, and the upstream nodes

on the pre-active route, I and G.

Stale routes have several adverse effects:

• Using stale routes causes packet losses if packets cannot be salvaged by interme

diate nodes;

• Using stale routes increases delivery latency, since the MAC layer goes through

multiple retransmissions before concluding a link failure;

• Using stale routes increases routing overhead, since the node detecting a link fail

ure will send a ROUTE ERROR to the source;

• Using stale routes degrades TCP performance, since TCP will invoke congestion

control mechanisms for packet losses caused by route failures.

33 .2 Assumption

Promiscuous mode [38] disables the network interface’s address filtering function and

thus causes a protocol to receive all packets overheard by the interface. I did not consider

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this mode when maintaining the information for cache updates, because it is impossible

to know which neighbor overhears which link. In Section 3.3.10,1 present an approach

to handle promiscuous mode without any modification to the algorithm.

3 .33 Overview

When a link failure is detected, my design goal is to disseminate the information about

the broken link to all reachable nodes that have that link in their caches. To achieve

this goal, the node detecting a link failure needs to know which nodes have cached the

broken link and needs to notify such nodes efficiently. This goal is very challenging

because of mobility and the fast propagation of routing information.

My solution is to keep track of topology propagation state in a distributed manner.

Topology propagation state means which node has cached which link. Each node main

tains in its cache two types of information for each route: (1) whether a link has been

cached in only upstream nodes, or both upstream and downstream nodes, or neither; and

(2) which neighbor has learned which links through a Ro u te Re pl y . A node gathers

this information during route discoveries and data transmission, without introducing ad

ditional overhead. To remove stale routes, such information is sufficient, because each

node knows for each cached link which neighbors have that link in their caches.

Each entry in the cache table contains a field called DataPackets. This field records

whether a node has forwarded 0, 1, or 2 data packets. A node knows how well routing

information is synchronized through the first data packet. When forwarding a ROUTE

REPLY, a node caches only the downstream links; thus, its downstream nodes did not

cache the first downstream link through this ROUTE REPLY. When receiving the first

data packet, the node knows that upstream nodes have cached all downstream links.

The node adds the upstream links to the route consisting of the downstream links. Thus,

when a downstream link is broken, the node knows which upstream node needs to be

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

notified. The node also sets DataPackets to 1 before it forwards the first data packet to

the next hop. If the node can successfully deliver this packet, it is highly likely that the

downstream nodes will cache the first downstream link; otherwise, they will not cache

the link through forwarding packets with this route.

Each entry in the cache table contains another field called ReplyRecord. This field

records which neighbor learned which links through a Ro u t e Re pl y . Before forward

ing a Route Re ply , a node records the neighbor to which the Rou te Reply is sent

and the downstream links as an entry. Thus, when a ReplyRecord entry contains a bro

ken link, the node will know which neighbor needs to be notified.

The algorithm uses the information kept by each node to achieve distributed cache

updating. When a node detects a link failure while forwarding a packet, the algorithm

checks the DataPackets field of the entries containing the broken link: (1) If it is 0,

indicating that the node has not forwarded any data packet using the route, then no

downstream nodes need to be notified because they did not cache the broken link. (2)

If it is 1 and the route being examined is the same as the source route in the packet,

indicating that the packet is the first data packet, then no downstream nodes need to be

notified but all upstream nodes do. (3) If it is 1 and the route being examined is dif

ferent from the source route in the packet, then both upstream and downstream nodes

need to be notified, because they cached the link when the first data packet traversed

the route. (4) If it is 2, then both upstream and downstream nodes need to be notified,

because at least one data packet has traversed the route. The algorithm notifies the clos

est upstream and/or downstream nodes and the neighbors that learned the broken link

through Ro u te Re p l ie s . When a node receives a notification, the algorithm notifies

selected neighbors: upstream and/or downstream neighbors, and other neighbors that

have cached the broken link through Ro u te Re p l ie s . Thus, the information about a

broken link will be quickly propagated to all reachable nodes that have cached that link.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.4 The Definition of a Cache Table

A cache table has no capacity limit. Its size increases as new routes are discovered and

decreases as stale routes are removed. There are four fields in a table entry:

• Route: It stores the links starting from the current node to a destination or from a

source to a destination.

• SourceDestination: It is the source and destination pair.

• DataPackets: It records whether the current node has forwarded 0, 1, or 2 data

packets. It is 0 initially, incremented to 1 when the node forwards the first data

packet, and incremented to 2 when it forwards the second data packet.

• ReplyRecord: This field may contain multiple entries and has no capacity limit.

A ReplyRecord entry has two fields: the neighbor to which a ROUTE REPLY

is forwarded and the route starting from the current node to a destination. A

ReplyRecord entry will be removed in two cases: when the second field contains

a broken link, and when the concatenation of the two fields is a sub-route of the

source route, which starts from the previous node in the source route to the desti

nation of the data packet.

3.3.5 Information Collection and Maintenance

I use algorithms addRoute mdfindRoute to maintain the information necessary for cache

updates. Algorithm addRoute is called when a node adds a route to its cache. Algorithm

findRoute is called when a node tries to find a route to some destination.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adding a Route

Algorithm addRoute is shown in Figure 3.2. A node adds a route either from a ROUTE

Reply or from a data packet. When receiving a ROUTE Re ply , a node attempts to add

the route starting from itself to the destination (lines: 1-14). If the node is the source

node (lines: 2-5), it stores the source route and sets DataPackets to 0, since the route has

not been used. If the node is an intermediate node forwarding the ROUTE REPLY (lines:

7 -14), it checks whether the route exists in its cache. If the route does not exist, the

node creates an entry in which DataPackets is set to 0 and a ReplyRecord entry records

which neighbor will leam the downstream links. If the route exists, the node adds a

ReplyRecord entry if the entry does not exist in the corresponding table entry.

When receiving a data packet, a node checks whether the source route exists in its

cache. If the route exists and DataPackets is 1 (lines: 16-18), the node sets DataPackets

to 2, since the node is forwarding the second data packet. If the route does not exist

and the node is the destination (lines: 19-21), it creates an entry and sets DataPackets

to 1, since the destination has received the first data packet. If the route does not exist

and the node is an intermediate node (lines: 24-34), it searches its cache for a route

consisting of the downstream links of the source route. If such a route exists, the node

adds the upstream links to the route to complete a full path, and sets DataPackets to

1, since it is forwarding the first data packet. The node also removes the ReplyRecord

entry in which the concatenation of two fields is the route starting from the previous

node to the destination of the packet. This is because the node has kept the information

that the upstream nodes have cached the downstream links. The upstream nodes Include

the neighbor recorded in the ReplyRecord entry. If the node cannot complete a full

path (lines: 35 -36), it creates a cache table entry to store the source route and sets

DataPackets to 1. For this case, the packet is the first packet from the source node

that received a Rou te R eply sent by the current node or by another node that has a

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm : addRoute
I n p u t : PACKET p ;
V a r i a b l e s :
ID f i r s t , la s t; ID next; ID netlD ; ID p re ; b o o l e a n is ̂ completed ;

1 i f p i s a Ro u t e R e pl y t h e n
2 i f netlD — p.dest t h e n
3 e := getFromCacheTahle(p.srcRoute) ;
4 if c = null then
5 cacheTable := cacheTableU {(p.srcRoute, (firs t,la s t) ,0,0)}
6 else
7 newRoute p.srcRoute.subPath(netID, last) ;
8 reply-pair: = (neV, newRoute) ;
9 e := getFromCacheTable(newRoute) ;

10 i f £ = null then
11 cacheTable cacheTableU {(newRoute, (firs t,la st),0 , replypiair)}
12 else
13 if reply-pair ^ e.replyRecord then
14 e.replyRecord e.replyRecordU {reply-pair}
15 elseif p i s a d a t a p a c k e t then
16 e := getFromCacheTable(p.srcRoute) ;
17 if e f null then
18 if e.D P — 1 then e.DP := 2
19 else
20 if netlD —p.dest then
21 cacheTable := cacheTable U f (p.srcRoute, (p.src,p .dest), 1,0)}
22 else
23 for e a c h e n t r y e E cacheTable d o
24 if e.srcDest.src — p.src and e.srcDest.dest = p.dest

and p.src = p.route[0] th e n
2 5 temp := p .srcRoute.subPath(netlD, last) ;
2 6 i f temp — e.route and e.DP = 0 th e n
27 e.route p.srcRoute; e.D P:— 1; is-.completed TRUE
28 f o r e a c h e n t r y r E e.replyRecord do
2 9 temp := p.srcRoute.subPath(pre, la s t);
3 0 i f (r.nodeNotified\\r.subrouteSent) — temp t h e n
31 e.replyRecord : = e.replyRecord\ {r} ;
32 i f n o t is-.completed a n d p.src — p.route[0] t h e n
33 cacheTable := cacheTableU {(p.srcRoute, (p.src,p.dest), 1,0)}

Figure 3.2: Pseudo Code for Algorithm addRoute

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm : findRoute
I n p u t : ID dest, PACKET p , boolean respond Jo JRREQ,

b o o le a n used fior salvaging
O u t p u t : PATH route

1 eo := 0 ;
2 f o r e a c h e n t r y e € cacheTable d o
3 if dest € e.route then
4 temp e.route.subPath(netID, dest)
5 if route = 0 or \temp\ < \route\ then
6 route := temp; eo e
7 if eo = 0 then e x i t ;
8 if respond Jo-RREQ then
9 reply-pair {p.srcRoute [p. srcRoute. length — 1], route)

10 if reply ..pair e®.replyRecord then
11 eo.replyRecord := eo.replyRecordU {reply4>air]
12 e l s e i f not usedJbrsalvaging then
13 if route = eg.route and eo.DP ^ 2 then
14 eo.DP := eo.DP + I
15 else
16 cacheTable : = cacheTable U {(route, (netlD,dest),1 ,0)}

Figure 3.3: Pseudo Code for Algorithm findRoute

cached route to the destination, and the route consisting o f the downstream links has

been completed by another flow.

Finding a Route

Algorithm findRoute is shown in Figure 3.3. A node attempts to find a route either to

respond to a R o u te R e q u e s t or to send data packets. If a node finds a route to send

a ROUTE R e p ly , it adds an entry to the ReplyRecord field o f the corresponding cache

table entry, which includes the neighbor to which the R o u te R e p ly is forwarded and

the found route. If a node is a source node and finds a route to send data packets, it

increments DataPackets by 1 if it is not already set to 2, since the node is going to send

the first or second data packet. If the found route is a sub-route o f the route stored, the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4: An Example Network

node creates a new cache table entry to store the found route and sets DataPackets to

1. If a node finds a route to salvage a data packet or forwards a data packet that was

salvaged, it does not change the content o f its cache table, because the synchronization

information will be maintained when the first data packet traverses the original route.

Examples

I use the network shown in Figure 3.4 for examples. Initially, there are no data flows

and all caches are empty. I use S-D for SourceDestination and DP for DataPackets in

the tables describing the content of caches.

Node A initiates a route discovery to node E, and E sends a R o u te R e p ly to A.

Each node forwarding the R o u te R e p ly creates a table entry (addRoute: 6 -11). For

instance, node C creates an entry consisting o f four fields: the route consisting o f the

downstream links, the source and destination pair, the number o f data packets the node

has forwarded using the route, and which neighbor will leam which links through the

R o u te R ep ly .

Route S-D DP ReplyRecord |
CDE A E 0 B <- CDE

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When node A receives the ROUTE R eply , it creates a table entry (addRoute: 1-5):

Route S-D DP
ABCDE A E 0

When node A uses this route to send the first data packet, it increments DataPackets

to 1 (findRoute: 12-14). Each intermediate node receiving the first data packet updates

its table entry (addRoute: 22-31). For instance, node C increments DataPackets to 1,

adds the upstream links to CDE, and removes the ReplyRecord entry, as the complete

route indicates that the upstream nodes, A and B, have cached the downstream links,

CDE.

Route S-D DP
ABCDE A E 1

When node E receives the first data packet, it creates an entry (addRoute: 19-21)

and its cache is the same as that of node C. When a node on this route receives the

second data packet, it increments DataPackets to 2 (addRoute: 15-18).

Assume that after transmitting at least two data packets for flow 1, node C receives

a Ro ute Re q u est from node G with source F and destination E. Before sending a

Ro u te Reply to G, C adds a ReplyRecord entry to its cache (findRoute: 1-11):

Route S-D DP ReplyRecord
ABCDE A E 2 G * - CDE

Before sending a Ro ute Reply to node F, node G creates a table entry (addRoute:

6- 11):

G:
Route S-D DP ReplyRecord
GCDE F E 0 GCDE

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When F receives the R o u te R e p ly , it creates an entry (addRoute: 1-5):

Route S-D DP
FGCDE F E 0

When C receives a Ro u te Re q u est from 1 with source H and destination A, it

adds the second ReplyRecord entry to its cache (findRoute: 1-11):

Route S-D DP ReplyRecord ReplyRecord
ABCDE A E 2 G <— CDE I CBA

As described in Section 3.3.5, a node creates an entry to store a source route if a

route consisting of the downstream links in the source route does not exist in its cache

(addRoute: 32-33). Assume that flow 2 starts. When it reaches node D, D adds the

second entry to its cache, as the sub-route CDE has been completed by flow 1. When

receiving the first data packet, node D knows that its upstream nodes have cached the

downstream link, DE.

D:
D:

When F receives a ROUTE REQUEST from node K with source J and destination D,

it extends its cache entry (findRoute: 1-11):

Route S-D DP ReplyRecord
FGCDE F E 2 K <- FGCD

Summary

The first data packet serves as a “synchronization signal,” indicating that the upstream

nodes have cached the downstream links. By storing a full path, a node keeps the associ

ation between the upstream and the downstream nodes, so that it knows which upstream

34

Route S-D DP
ABCDE A E 2
FGCDE F E 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes need to be notified if a downstream link is broken. Based on the information in

the DataPackets field, a node determines whether downstream nodes need to be notified

about a broken link. Based on the information in the ReplyRecord field, a node knows

which neighbors have cached a broken link through R o u te R e p l ie s . Each node gath

ers the local information about which neighbors have cached which link, without the

need to know all the nodes in the network that have cached a particular link. Thus,

topology propagation state is kept in a distributed manner.

3.3*6 The Distributed Cache Update Algorithm

In this section, I present my cache update algorithm. I define a broken link as a forward

or backward link. A link is a forward link if the flow using the route crosses the link in

the same direction as the flow detecting the link failure; otherwise, it is a backward link.

For these two types of links, the operation of the algorithm is symmetric.

Detailed Description

The algorithm starts either when a node detects a link failure or when it receives a

notification. In either case, the algorithm generates a notification list, which is a list of

neighborhood nodes that need to be notified. Each entry in this list includes a node and

a cached route to reach that node. A notification will be sent as a Ro u t e E r r o r . The

algorithm is shown in Figure 3.5, Figure 3.6, and Figure 3.7.

When a node detects a link failure, the algorithm checks the cache table. If a route

contains a forward link, the algorithm does the following steps (lines: 11-25):

1. If DataPackets is 0, indicating that the route is pre-active, then no downstream

node needs to be notified, because the downstream nodes did not cache the link when

forwarding a Ro u te Re ply . For example, in Figure 3.4, before C forwards a Route

Reply to B, it caches route CDE, sets DataPackets to 0, and creates a ReplyRecord entry

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm : cache Update
I n p u t : ID from, ID to, PACKET p

b o o le a n , detect Jbyjne, b o o le a n continue Jo -notify
/* I f p i s a ROUTE ERROR a n d p .src—from a n d netID = telllD , * /
/* t h e n continue Jo-notify i s s e t TRUE. * /
O u tp u t : vector < N o ti f y E n tr y * > notifyList

1 f o r e a c h e n t r y e E cacheTable do
2 if l i n k (from,to) E e.route then
3 has .broken Jink := TRUE ;
4 direction :=forward
5 elseif l i n k (to,from) E e.route then
6 has ̂ broken Jink : = TRUE ;
7 direction:= backward
8 else hasJbroken Jink := FALSE;
9 if has-broken Jink then

10 position := Index(e.route,from) ;
11 if detect Jbyjne then
12 if direction — forward then
13 if (e.DP = 1 or e.DP ^ 2)

and (not isFirstNode(e.route,netID)) then
14 notifyList:= notifyList U {(e.route\position — 1],

(netlD\\e.route\position — 1]))}
15 if e.DP = 2 or (e.DP = 1 and

(not (/> i s a d a t a p a c k e t
and (p.srcRoute = e.route)))) then

16 routeToUse = 0 ;
17 for e a c h n o d e n G 1],

e.route[e.route.length — 1]} d o
18 S e a r c h f o r a s h o r t e s t c a c h e d r o u t e t o n;
19 if s u c h a r o u t e i s f o u n d then
20 foundRoute i - t h e fo u n d r o u t e ;
21 i f routeToUse = 0 o r \foundRoute\ < \routeToUse\ t h e n
2 2 routeToUse :—foundRoute ;
23 t e l l l D n
24 i f routeToUse 0 t h e n
2 5 notifyList := notifyListU {(telllD, routeToUse)}

Figure 3.5: Pseudo Code for the Distributed Adaptive Cache Update Algorithm (Part I)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm: cache Update (c o n t in u e d)
26 e l s e l f direction — backward then
27 i f not isLastNode(e.route,netID) t h e n
2 8 notifyList: = notifyList U {(e.route\position + 1],

(netID\\e. route {position + 1]))}
2 9 routeToUse = 0 ;
30 for e a c h n o d e n G {e.route\position — 1],,..,e.route[0}} do
31 S e a r c h f o r a s h o r t e s t c a c h e d r o u t e t o n;
32 if s u c h a r o u t e i s f o u n d then
33 foundRoute : = t h e fo u n d r o u t e ;
34 if routeToUse — 0 or \foundRoute\ <\routeToUse\ then
3 5 routeToUse :=foundRoute ;
36 telllD \—n
37 if routeToUse f 0 then
3 8 notifyList: — notifyListU {{telllD, routeToUse)}
3 9 else /* The n o d e r e c e i v e s a n o t i f i c a t i o n . */
40 index := Index(e.route, netID) ;
41 if direction — forward and index < position and

(not isFirstNode{e.route,netID)) then
42 notifyList := notifyList U

{{e.route[index — \],{netlD\\e.route[index— 1]))}
43 if direction — backward and index > position and

(not isLastNode(e.route,netID)) then
44 n o tify L is tn o tifyL is t U

{{e.route[index+ 1], {netlD\\e. route[index + 1]))}
45 if (e.DP = 1 or e.DP = 2) and

{ {direction = forward and index > position) or
[direction = backward and index < position) } then

46 if continue Jo Jiotify then
47 if [direction = forward and netID = to and

(not isLastNode(e.route,netID))) or
(direction = backward and isFirstNode(e.route, netID)
and (not netID — to)) t h e n

48 notifyList:— notifyList U
{(e.route[index + 1], {netID\\e.route[index + 1]))}

Figure 3.6; Pseudo Code for the Distributed Adaptive Cache Update Algorithm (Part II)

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm : cache Update (c o n tin u e d)
49 if (direction — forward and isLastNode(e.route,netID) and

(n o t netID — to)) o r {direction — backward and
netID — to and (not isFirstNode(e.route,netID))) then

5 0 notifyList := notifyList U
{(e.route[index — 1], (netID\\e.route[index — 1]))}

51 if not (netID = to or {direction — forward and
isLastNode(e.route,netID)) or {direction = backward and
isFirstNode(e.route, netID))) then

52 notifyList := notifyList U
{(e.route[index + 1], (netID\\e .route[index + 1]))} ;

53 notifyList := notifyList U
{(e.route[index — 1], (netID\ \e.route[index — 1]))}

54 for each entry r £ e.replyRecord do
55 if link (from,to) £ e.replyRecord.subrouteSent or

link (to,from) £ e.reply Record.subrouteSent then
5 6 telllD : = e.reply Record.nodeNotified ;
57 n o tifyL is tn o tifyL is tU {(telllD, (netlD\ |telllD))} ;
5 8 e.replyRecord := e.replyRecord \ {r} ;
5 9 cacheTable : = cacheTable \ { e } ;
60 else /* The route does not contain the broken link.*/
61 for each entry r £ e.replyRecord do
62 if r.nodeNotified — to and netID — from then
63 e.replyRecord := e.replyRecord\ {r} ;
64 for each entry n £ notifyList do
65 if (p is a ROUTE ERROR and n.telllD = p.src) o r

{n.routeToUse is a sub-route of another entry' s routeToUse)
o r (e n t r y m £ notifyList and n.telllD = m.telllD and
\n.routeToUse\ > \m.routeToUse\) t h e n notifyList := notifyList \ {n} ;

66 r e t u r n notifyList;

Figure 3.7: Pseudo Code for the Distributed Adaptive Cache Update Algorithm (Part
III)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recording that B will learn route CDE. Assume that C detects through another flow that

link CD is broken. Node C does not need to notify D and E because they did not cache

link CD when forwarding the R o u t e R e p l y .

2. If DataPackets is 1 or 2, then the upstream nodes need to be notified, because at

least one data packet has reached the node and hence the upstream nodes have cached

the broken link. The algorithm adds the upstream neighbor to the notification list.

3. If DataPackets is 2, or if DataPackets is 1 and the route being examined is differ

ent from the source route in the packet, then the downstream nodes need to be notified,

because at least one data packet has traversed the route and hence the downstream nodes

have cached the link. I show an example for the second case. As shown in Figure 3.1,

node C detects that CD is broken when using route ABCDE. In the table entry with route

FGCDH, DataPackets is 1 or 2 since the route is post-active. Node C needs to notify D

and H because they cached the link when forwarding the first data packet. The algorithm

searches the cache to find a shortest route to reach one of the downstream nodes. If it

finds such a route, it adds that downstream node to the list. If DataPackets is 1 and the

route being examined is the same as the source route in the packet, then no downstream

node needs to be notified, because the first data packet cannot be delivered and hence

downstream nodes did not cache the link through forwarding packets with this route.

If a route contains a backward link (lines: 26-38), which means the link to the

previous hop in the route is broken, the algorithm adds the downstream neighbor to

the list. Since the node has forwarded at least one data packet using the route, the

downstream nodes have cached that link. The upstream nodes also need to be notified.

The algorithm searches the cache to find a shortest route to reach one of the upstream

nodes. If it finds such a route, it adds that upstream node to the notification list.

When a node detects a link failure, the algorithm does the above operation to add

the closest upstream and/or downstream nodes to the list. When a node learns through

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a notification that a link is broken, it is responsible for notifying its upstream and/or

downstream neighbors. It determines the neighbors to be notified based on the position

of the node in a route and whether the link is forward or backward (lines: 39-53):

1. If the link is a forward link, and the node is upstream to it but not the source

node, then the algorithm adds the upstream neighbor to the notification list. If the link

is a backward link, and the node is downstream to it but not the destination, then the

algorithm adds the downstream neighbor to the notification list.

2. If the link is a forward link, and the node is downstream to it and receives a

notification from the upstream endpoint of the broken link, then there are three cases:

(1) If the node is the other endpoint of the link, then the algorithm adds its downstream

neighbor to the notification list; (2) If the node is the destination, then the algorithm adds

its upstream neighbor to the notification list; (3) Otherwise, the algorithm adds both the

upstream and downstream neighbors to the notification list.

3. If the link is a backward link, and the node is upstream to it and receives a

notification from the downstream endpoint of the broken link, then there are three cases:

(1) If the node is the other endpoint of the link, then the algorithm adds its upstream

neighbor to the notification list; (2) If the node is the source, then the algorithm adds its

downstream neighbor to the notification list; (3) Otherwise, the algorithm adds both the

upstream and downstream neighbors to the notification list.

After adding upstream and/or downstream neighbors to the list, the algorithm checks

the ReplyRecord field. If an entry contains a broken link, the algorithm adds the neighbor

that learned the link to the list (lines: 54—58). The algorithm then removes the cache en

try containing the broken link (line: 59). If a node detects a link failure when attempting

to send a Route Re ply , the algorithm removes the corresponding ReplyRecord entry

(lines: 61-63). Finally, the algorithm removes duplicate nodes from the list. Duplicate

nodes may occur in the list when the node is on multiple routes containing a broken

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

link. The algorithm also removes the node that is the source node of a notification, since

the algorithm adds both upstream and downstream neighbors to the list for the node that

receives a notification from its upstream or downstream neighbor (lines: 51-53).

Each node receiving a notification notifies its selected neighbors about the broken

link. Therefore, if a route contains a forward link, notifications will be propagated

among the upstream nodes towards the source, and among the downstream nodes to

wards the destination and/or towards the downstream endpoint of the broken link. If a

route contains a backward link, notifications will be propagated among the downstream

nodes towards the destination, and among the upstream nodes towards the source and/or

towards the upstream endpoint of the broken link. Notifications will also be propagated

to the nodes that learned routes containing a broken link from Ro ute Re p l ie s .

Examples

Example 1 Figure 3.8 shows an example where only flow 1 starts. The focus of this

example is the DataPackets field. Assume that node A initiates a route discovery to node

E and receives a ROUTE REPLY with the source route, ABCDE. Before any data packet

from flow 1 reaches node C, node C detects through another flow or a control packet

that the link from node C to node D is broken.

Route S-D DP ReplyRecord
CDE A E 0 B CDE

Since DataPackets is 0, the algorithm knows that route CDE is a pre-active route,

and therefore no downstream nodes need to be notified. The algorithm then checks

the ReplyRecord field for possible neighbors that have learned the broken link through

Route Replies (cacheUpdate: 54-58). It removes the ReplyRecord entry and noti

fies the neighbor B. Node B also cached a pre-active route, BCDE. According to the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ -® -(3» « bm 3)
1 ' " ‘ ^

—* Cache update notifications

Figure 3.8: Example 1 (Case 1 and Case 2)

—► Cache update notifications

Figure 3.9: Example 1 (Case 3)

ReplyRecord field in node 5 ’s cache, node B removes the stale route and notifies node A

(cachellpdate: 54-58). Finally, node A removes the stale route from its cache.

Assume that node C detects that the link from node C to node D is broken while

attempting to transmit a data packet for flow 1. Node C’s cache is:

Route S-D DP
ABCDE A E d

Here d = 1 or d — 2. For either case, upstream nodes need to be notified. The al

gorithm adds only the upstream neighbor B to the notification list (cachellpdate: 9-14).

The algorithm then determines whether it needs to notify the downstream nodes (cache-

Update: 15-25). If d — 1 and the route being examined is the same as the source route

in the packet, indicting that the packet is the first data packet, then downstream nodes

do not need to be notified. Thus, node C notifies only node B (cacheUpdate: 39-42).

When B receives the notification, the algorithm checks the cache entries containing the

broken link (cacheUpdate: 1-10). The algorithm determines which upstream and/or

downstream neighbors need to be notified based on the position of the node in the route

and whether the link is a forward or backward link. Since the broken link is a for-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— ► Cache update notifications

Figure 3.10: Example 2

ward link and node B is upstream to it, the algorithm notifies its upstream neighbor A

{cacheUpdate: 39-42). This is the second case, which is also shown in Figure 3.8.

If d = 1 and the route being examined is different from the source route in the packet,

then downstream nodes need to be notified, since one data packet carrying the broken

link has traversed that route. If d — 2, indicting that node C is forwarding at least the

second data packet, then downstream nodes also need to be notified. For either case,

the algorithm attempts to find a shortest route to reach one of the downstream nodes

(cacheUpdate: 11-25). Assume that the algorithm finds a route to node D, so it adds D

to the list. The algorithm then checks the ReplyRecord field (cacheUpdate: 54-59). As

the cache table entry does not contain any ReplyRecord entry, no other neighbors need to

be notified. Finally, the algorithm removes the cache table entry and sends notifications

to node B and node D, as shown in Figure 3.9. When B receives a notification, it starts

the algorithm to notify its upstream neighbor A (cacheUpdate: 39-42). When node D

receives a notification, it notifies its downstream neighbor E (cacheUpdate: 45-48).

Example 2 Figure 3.10 shows another example. The focus of this example is the

ReplyRecord field. Assume that node A discovers route r\, ABODE; node F discovers

route r2, FGCDE; and node J discovers route r%, JKFGCD. Also assume that route r\ is

active, and both route r^ and route r^ are pre-active. When transmitting a packet using

route rj, node C detects that the link from node C to node D is broken.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Route S-D DP ReplyRecord
C: ABCDE A E 2 G <— CDE
G: GCDE F E 0 F +— GCDE
F: FGCDE F E 0 K <- FGCD
K: KFGCD J D 0 J <- KFGCD
J: JKFGCD J D 0

For route r \ , node C needs to notify its upstream neighbor B and the closest reachable

downstream node, since DataPackets is 2. Assume that node C does not have a cached

route to reach node D but finds a route to reach node E, so the algorithm adds E to its

notification list (cacheUpdate: 9-25). The algorithm then checks the ReplyRecord field

and finds that node G learned a route containing the broken link (cacheUpdate: 54-58).

Thus, the algorithm adds G to the list and sends notifications to B, E, and G. When B

receives a notification, it starts the algorithm to notify node A. When node E receives

a notification, it starts the algorithm. The algorithm adds node D to the list, since the

broken link is & forward link and node E is the destination (cacheUpdate: 49-50). When

node G receives a notification, it starts the algorithm to notify node F according to the

ReplyRecord field in its cache. Similarly, node F notifies node K, and node K notifies

node J. Thus, stale pre-active routes will be quickly removed.

Example 3 This example shows how the algorithm handles a backward link. As

shown in Figure 3.11, assume that route r\ is post-active, and route r4, HICBA, is active.

While transmitting a packet for flow 4, node C detects that the link from node C to node

B is broken.

C:
C:

Route S-D DP
ABCDE A E 2
HICBA H A 2

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cache update notifications

Figure 3.11: Example 3

For route r4, node C needs to notify its upstream neighbor I and the closest reachable

downstream node. For route r \ , the link from node C to node 5 is a backward link,

and thus node C needs to notify its downstream neighbor D and the closest reachable

upstream node (cacheUpdate: 26-38). Assume that the algorithm finds a route to reach

node B, so it sends notifications to I, D, and B. Node I notifies node H as the broken link

is & forward link and node I is upstream to the link. When node D receives a notification,

it starts the algorithm to notify node E, since the broken link is a backward link and node

D is downstream to the link (cacheUpdate: 43-44). When node B receives a notification,

it starts the algorithm. For route r$, the algorithm adds the downstream neighbor A to

the list (cacheUpdate: 45-48), since the broken link is a forward link and node B is

downstream to the link. For route r \ , the algorithm adds the upstream neighbor A to the

list, since the broken link is a backward link and node B is upstream to the link. Finally,

the algorithm sends a notification to node A.

Example 4 For the forward link on route r\ in Figure 3.10, notifications are propa

gated among the upstream nodes towards the source, and among the downstream nodes

towards the downstream endpoint of the broken link. For the backward link on route r\

in Figure 3.11, notifications are propagated among the downstream nodes towards the

destination, and among the upstream nodes towards the source. This example shows a

situation in which notifications will be propagated in two directions either among down-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 (a)

1 (b)
—> Cache update notifications
—> Data flow detecting the

link failure

Figure 3.12: Example 4

stream nodes for a forward link, or among upstream nodes for a backward link.

In Figure 3.12 (a), the link from node B to node C is a forward link. Assume that

DataPackets is 2 in node B’s cache, and node B finds a shortest path to reach node D, so

it sends notifications to node A and node D. When node D receives a notification, it starts

the algorithm. The algorithm adds both the upstream neighbor C and the downstream

neighbor E to the list {cacheUpdate: 51-53).

In Figure 3.12 (b), the link from node D to node C is detected as broken by another

flow and thus is a backward link. Assume that node D finds a shortest path to reach

node B and sends a notification to node B. When node B receives a notification, it starts

the algorithm. The algorithm adds both the upstream neighbor A and the downstream

neighbor C to the list {cacheUpdate: 51-53).

3.3.7 Correctness

In this section, I prove the correctness of my algorithm.

Definition Let node u be the node that detects a link failure. Node v is reachable from

node u if node u has a cached route to node v, or node u has a cached route to some

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intermediate node and that intermediate node has a cached route to node v.

Theorem 3.1 When a node detects a link failure, the algorithm notifies all reachable

nodes that have cached the link about the link failure.

Proof In a network with many nodes, suppose that node i on a route with n nodes

detects that link (i, i+ 1) is broken. This route is shown in Figure 3.13. Let J? be a set of

nodes that have cached the broken link and are reachable from node i. Nodes in R must

learn the link either from data packets or from Rou te Re pl ie s . If a node in R learned

the link from a data packet, then the node has cached a complete source route, which is

either active or post-active. If a node in R learned the link from a ROUTE REPLY, then

the node has cached the route starting from itself to a destination, which is pre-active.

Thus, all nodes in R must be on pre-active, active, or post-active routes.

Node i may have cached multiple routes containing the broken link. These routes

contain either a forward link or a backward link: a link is either O', i+ 1) or (/+ 1, i)

on a route. For the current route, the broken link is a forward link and DataPackets

is either 1 or 2. If DataPackets is 1, the algorithm notifies only node i — 1 (i 1). If

DataPackets is 2, the algorithm notifies both node i — 1 (i ^ 1) and the closest reachable

downstream node, say node j, where i + 1 < j < n . For other routes containing & for

ward link, the DataPackets is either 1 or 2 since at least one data packet has traversed the

route. For either case, the algorithm notifies both the upstream neighbor and the clos

est reachable downstream node. For routes containing a backward link, the algorithm

notifies the downstream neighbor and the closest reachable upstream node. According

to the ReplyRecord field, the algorithm also notifies the neighbors that learned the link

through R o u te R e p lie s . Thus, all neighbors of node i that have cached the broken

link are notified about the link failure.

Each node receiving a notification starts the algorithm to notify the upstream and/or

downstream neighbors for each route containing the broken link. For the route shown

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.13: A route with n nodes

in Figure 3.13, node i — 1 notifies its upstream neighbor i — 2 (i ^ 2). For node j ,

there are three cases: (1) If j = i + 1, the algorithm notifies its downstream neighbor

j + 1; (2) If i + 1 < j < n, the algorithm notifies both its upstream neighbor j — I and

downstream neighbor j + 1 ; (3) If j = n, the algorithm notifies its upstream neighbor n —

1. When node i — 2 receives a notification, the algorithm notifies its upstream neighbor.

Thus, all upstream nodes are notified. When node j + 1 receives a notification, the

algorithm notifies its downstream neighbor j + 2 (j + 2 < n). When node j — 1 receives

the notification, the algorithm notifies its upstream neighbor j — 2 (j — 2 > i + 1). Thus,

all downstream nodes are notified. Similarly, each node on other routes that receives a

notification notifies its upstream and/or downstream neighbors. Thus, all nodes in R that

are either on active or on post-active routes are notified. If a node receiving a notification

sent a ROUTE REPLY containing the broken link, the algorithm notifies the neighbor that

learned the link. Thus, all nodes in R that are on pre-active routes are notified.

Now I show when the algorithm terminates. For a route with a forward link, the

algorithm terminates at the source node, the downstream endpoint of the broken link

and/or the destination. For a route with a backward link, the algorithm terminates at

the destination, the upstream endpoint of the broken link and/or the source node. The

algorithm also terminates at a source node that has cached a stale pre-active route.

Some nodes that have cached a broken link may not be reachable in four cases. First,

a node detecting a link failure may not have a cached route to any downstream node.

Second, a notification may encounter a broken link, and the node detecting the link

failure may not have a cached route to salvage the notification. Third, some nodes that

have cached a broken link may not be reachable due to a node failure. If a node crashes

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F’s cache: Fs cache:
FGCDH, 2 S3 IGCDJ, 0

G ’s cache:
FGCDH, 2

GCDJ, 0, K-GCDJ

B ’s cache: qi (1
ABCDE, 2 ^

3 jT' i s

ABCDE, 2 kfiy
FGCDH, 2 H ’s cache:

CDJ, 0, G«-CDJ FGCDH, 2

Fs cache:
empty

D ’s cache:
ABCDE, 2
FGCDH, 2

DJ, 0, C«-DJ

Figure 3.14: Distributed Cache Updating for the Example shown in Figure 3.1

and reboots, the information in its cache table will be lost; therefore, it will not be able to

notify its neighbors that may have cached a broken link. Finally, if the cache size is set

with some limit, for example because the node has only a very small amount of memory,

it is possible that not all nodes on a route have the route in their caches. As a result, a

notification cannot be propagated to some nodes that have cached a broken link. For all

cases, the algorithm will notify those nodes that previously cannot be reached when a

flow detects the link failure through normal on-demand Route Maintenance. Thus, node

failures or a limited cache size do not affect the correctness of the algorithm. |

3.3.8 Algorithm Sum m ary

The algorithm has achieved the design goal: it notifies all reachable nodes that have

cached a broken link. For the example shown in Figure 3.1, in which route ABCDE

is active, route FGCDH is post-active, and route IGCDJ is pre-active, the algorithm

notifies all nodes that need to be notified (assume that node C has a cached route to

reach node D), as shown in Figure 3.14.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

My algorithm enables DSR to quickly remove stale routes, thus reducing packet

losses, delivery latency, and routing overhead. These benefits will become more signif

icant as mobility, traffic load, or network size increases. As mobility increases, routes

break more frequently. As traffic load increases, stale routes affect more traffic sources:

without proactive cache updating, each flow has to detect a broken route on-demand. As

network size increases, more nodes will cache stale routes. Thus, proactive cache up

dating provides more advantages under more challenging network characteristics. Since

the algorithm informs only the nodes that have cached a broken link, cache update over

head is low. Since the algorithm does not use any ad hoc parameters, it makes DSR fully

adaptive to topology changes.

3.3.9 Implementation Decisions

I use two optimizations for my algorithm. First, to reduce duplicate notifications to a

node, I attach a reference list to each notification. The node detecting a link failure is the

root, initializing the list to be its notification list. Each child notifies only the nodes not

in the list and updates the list by adding the nodes in its notification list. The graph will

be close to a tree. Second, I piggyback a notification on the data packet that encounters

a broken link if that packet can be salvaged.

When using the algorithm, I also use a small list of broken links, which is similar

to the negative cache proposed in prior work [30], to prevent a node’s cache from being

re-polluted by in-flight stale routes. This component is not a part of the algorithm. The

size of the list is 5 and the timeout is set to 2 s. This list can be replaced by a non-ad-hoc

technique proposed by Hu and Johnson [24],

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.10 Working with Promiscuous Mode

To handle situations where promiscuous mode is used, I combine my algorithm and

the secondary cache used in DSR with path caches, without any modification to the

algorithm. This section presents this implementation.

W hen using promiscuous mode, DSR with path caches uses a secondary cache to

store the routes a node overhears. If a route in the secondary cache is used to respond to

a Ro u t e Re q u e st or to send packets, it will be added to a primary cache. DSR does

not distinguish whether the route contained in a ROUTE REPLY is an overhead route,

and stores overhead routes in ROUTE REPLIES in the primary cache.

I use the secondary cache to store both the routes a node overhears and the overheard

routes learned from Ro u te Re p l ie s . The second type o f overheard routes is not added

to the cache table because the algorithm does not keep track o f which neighbor overhears

which link, but completely maintains topology propagation state in cache tables. If an

intermediate node sends a Ro u te Reply using an overhead route, it marks a flag in the

packet, so that the node forwarding the ROUTE Reply stores the downstream links o f

the source route in its secondary cache.

An overheard route in a secondary cache will be added to a cache table when a

source node uses the route to send data packets. Each node on the route will add the

route to its cache table. The algorithm begins to track which node caches which link

of the route. An overheard route in the secondary cache will also be evicted by FIFO

replacement or through overhearing Ro u te Er r o r s .

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Performance Evaluation

3A1 Evaluation Methodology

I compared my algorithm called DSR-Update with DSR with path caches and with Link-

MaxLife under both promiscuous and non-promiscuous mode. When promiscuous mode

(also called tapping) was not used, I did not use G r a t u i t o u s R o u te R e p lie s since

it relies on this mode. For DSR-Update under non-promiscuous mode, I did not use

G r a t u i t o u s R o u te E r r o r s , since I wanted to use the algorithm as the only mecha

nism to remove stale routes. When promiscuous mode was used, I used all optimizations

for the three caching strategies.

I used the ns-2 [12] network simulator with the Monarch Project’s wireless exten

sions [6 , 47]. The network interface is modelled after Lucent’s WaveLAN, which pro

vides a 2 Mbps transmission rate and a nominal transmission range of 250 m. The

network interface uses IEEE 802.11 Distributed Coordination Function (DCF) MAC

protocol [25], The mobility model is random waypoint model [6]. In this model, a node

starts in a random position, picks a random destination, moves to it at a randomly chosen

speed, and pauses for a specified pause time. Node speed was randomly chosen from

10 ± 1 m/s. I used two field configurations: a 1500 m x 500 m field with 50 nodes and a

2200 m x 600 m field with 100 nodes. I used CBR traffic with four packets per second

and packet size of 64 bytes to factor out the effect of congestion [6]. I used 20 and 40

flows for 50-node scenarios and 20 flows for 100-node scenarios. Simulations ran for

900 s of simulated time. Each data point in the graphs represents an average of 10 runs

of randomly generated scenarios. I will use labels such as “50n-20f” for 50 node and 20

flow scenarios, etc.

I used four metrics: (1) Packet Delivery Ratio: the ratio of the number of data packets

received by the destination to the number of data packets sent by the source; (2) Packet

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Delivery Latency: the delay from when a packet is sent by the source until it is received

by the destination; (3) Percentage o f Good Replies Sent from Caches: the percentage of

ROUTE Replies sent by intermediate nodes that do not contain broken links; (4) Packet

Overhead: the total number of routing packets transmitted; and (5) Normalized Routing

Overhead: the ratio of the number of routing packets transmitted to the number of data

packets received. For DSR-Update, packet overhead and normalized routing overhead

include Ro u t e Erro rs used for cache updating.

3.4.2 Simulation Results

Packet Delivery Ratio

Figure 3.15 shows packet delivery ratio and Figure 3.16 shows the percentage of good

ROUTE Re plies sent from caches. Without promiscuous mode, DSR-Update outper

forms DSR by up to 19% and Link-MaxLife by up to 41%. The improvement demon

strates that proactive cache updating is more efficient than FIFO and predicting timeouts.

Moreover, the improvement increases as mobility, traffic load, or network size increases.

As mobility increases, more routes become stale; therefore, the advantages of fast cache

updating become more significant. As traffic load increases, proactive cache updating

reduces packet losses from more traffic sources. Proactive cache updating is important

for large networks because as network size increases, more nodes will cache stale routes.

Link-MaxLife performs better than DSR with path caches under high mobility and

low traffic load, because it expires links aggressively when links break more frequently.

It performs worse than DSR-Update, especially for high traffic load and large networks

because of worse cache performance. For example, for 50n-40f at pause time 0 s, the

percentage of good Ro u t e R ep lies sent from caches is 68% for DSR-Update and 51%

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0
'&c304
£
>V

Z3
e

0 1

1

0.98

0.96

0.94

0.92

0.9

X--- --- X--.X-..... .
<§>—----4-... +......... A

s ' y -
p —----m / 0

^ / / DSR ...+--
^ e f / DSR-Update ---#—:
^■..^ DSR-LinkMaxlife ...X..-

DSR (no tapping) ...A....
DSR-Update (no tapping) —Hi---

DSR-LinkMaxlife (no tapping)

30 60 120 300 600 900
(a) 50 nodes, 20 flows

O

1

0.9
03
05 0.8
6*
> 0.7<o
Q
3 0.6
8P* 0.5

0.4
30 60 120 300 600

(b) 50 nodes, 40 flows
900

o’■Sc3&

_>
13
Q-*-*
3oasPh

0.95

0.9

0.85

0.75

0.7

0.65

0.6
0 30 60 120 300 600 900

(c) 100 nodes, 20 flows

Figure 3.15: Packet Delivery Ratio vs. Mobility (Pause Time (s))

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S5<D00

aa)&T3

Od>t>0
£3e
§<DPC

100

80

60

40

20

0

DSR
DSR-Update

DSR-LinkMaxlife
DSR (no tapping)

DSR-Update (no tapping)
DSR-LinkMaxlife (no tapping) -~©~

30 60 120 300 600
(a) 50 nodes, 20 flows

900

100

'fe:;.....+"•'~ "..-x— ■A-

0 30 60 120 300 600 900
(b) 50 nodes, 40 flows

100

4 —<o -A-

<U
SO&

0 30 60 120 300 600 900
(c) 100 nodes, 20 flows

Figure 3.16: Percentage of Good Replies Sent from Caches vs. Mobility (Pause Time

(s))

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for Link-MaxLife. Under promiscuous mode, Link-MaxLife performs better than DSR-

Update under low traffic load, since it caches more overheard routes in the topology

graph, but performs worse than DSR-Update under high traffic load.

Compared with DSR under promiscuous mode, DSR-Update performs better but

does not give as much improvement as it does under non-promiscuous mode. DSR-

Update stores overheard routes learned from ROUTE Replies in a secondary cache,

whereas DSR stores such routes in a primary cache. Thus, DSR benefits more from

promiscuous mode than DSR-Update by storing more overheard routes. But DSR-

Update achieves the improvement of 7% under high traffic load.

Since packet delivery ratio is affected by both cache performance and promiscu

ous mode, the results without promiscuous mode allow the effect of different caching

strategies on this metric to be observed.

Packet Delivery Latency

Figure 3.17 and Figure 3.18 show packet delivery latency. Without promiscuous mode,

DSR-Update reduces latency by up to 54% of DSR. Since detecting a link failure is

the dominant factor of latency, the reduction demonstrates the effectiveness of the al

gorithm. The reduction increases as mobility, traffic load, or network size increases

because quick removing stale routes reduces link failure detections by multiple flows.

DSR-Update has lower latency than Link-MaxLife in most cases of 100 node sce

narios. Although link caches help reduce latency due to fewer route discoveries, Link-

MaxLife has higher overall latency because packets are salvaged multiple times due to

stale links. Under promiscuous mode, the reduction becomes more significant. For ex

ample, for 100n-20f, the maximum reduction is 49%. At pause time 30 s, where the

maximum reduction is achieved, the percentage of good Ro u t e Replies sent from

caches is 46% for Link-MaxLife and 59% for DSR-Update.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.07

0 30 60 120 300 600 900
(a) 50 nodes, 20 flows

>,0
1
1

>.
VhU
"5Q
o
oC3Ph

e5
1-4
6 <o

73
a
Mo
0-.

0.7
A...

0 6

0 5

0.4

0 3

0 2

0.1

0
0 60 120 300 600 90030

0.6

0.5

0.4

0.3

0.2

(b) 50 nodes, 40 flows

DSR (no tapping) A..
DSR-Update (no tapping) — ■-

_A DSR-LinkMaxlife (no tapping) ©--

30 60 120 300 600
(c) 100 nodes, 20 flows

900

Figure 3.17: Packet Delivery Latency vs. Mobility (Pause Time (s))

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oc<L>cS
e*«_>
Tja
is
oC3

07

06

.X"05

04

03

02
DSR

DSR-Update
DSR-LinkMaxlife

01

0
30 60 120 300 600 9000

(a) 50 nodes, 20 flows

0.35

0.3

0.25

0.2

0.15

0.1

0.05

30 60 120 300 600 9000
(b) 50 nodes, 40 flows

0.2
DSR +-

DSR-Update — *-
DSR-LinkMaxlife >

. - x .

0.15
--

0.05

30 60 120 300 600 9000
(c) 100 nodes, 20 flows

Figure 3.18: Packet Delivery Latency vs. Mobility (Pause Time (s))

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compared with DSR under promiscuous mode, DSR-Update reduces latency '

up to 27% for 100n-20f. The higher latency in DSR also results from worse cac

performance. For example, for 50n-40f at pause time 0 s, the percentage of good R oir

Re plies sent from caches is 71 % for DSR-Update and 58% for DSR.

Overhead

Although the algorithm introduces cache update overhead, it reduces R o u t e E r r o i

caused by stale routes. Overall, under non-promiscuous mode, DSR-Update uses mu

fewer R o u te E r r o r s to maintain caches than both DSR and Link-MaxLife, since t

latter two protocols also rely on GRATUITOUS ROUTE ERRORS to remove stale routf

Under promiscuous mode, DSR-Update uses slightly more R o u t e E r r o r s than DS

for 50 node scenarios and a similar number of ROUTE ERRORS for 100 node scenark

Figure 3.19 and Figure 3.20 show packet overhead and normalized routing overher

Without promiscuous mode, DSR-Update has slightly higher packet overhead than D5

for 50-node scenarios, but achieves a large reduction for 100-node scenarios. The hi.

overhead in DSR with path caches results from a large number of route discover]

caused by the small cache size. Under promiscuous mode, there is not much differen

in overhead, since DSR uses a secondary cache to store more routes. DSR-Update h

similar normalized routing overhead as DSR under promiscuous mode. Under no

promiscuous mode, it achieves a reduction by up to 35% for DSR under high traffic lo

and large networks.

Analysis of the Cache Size

The cache table size dynamically changes as needed. I define the average cache size

the average over the size sampled when a route is added or when at least one route

deleted. Under non-promiscuous mode, the average cache size at pause time 0 s is 10 i

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T3
s
-£<u>o
sAto03
ft.

-oC3u
J S<D>o
"S
Ato03fu

£>>O
s
Ato
r ifL.

80000

70000 ...A,
A-

60000

50000

40000

30000

20000 -X

10000

30 60 120 300 600 9000
(a) 50 nodes, 20 flows

140000

120000

100000

80000

60000

40000

20000

30 60 120 300 600 9000
(b) 50 nodes, 40 flows

350000

300000

250000

200000

150000 -<r

100000

50000 fx

0
30 60 120 300 600 9000

(c) 100 nodes, 20 flows

Figure 3.19: Packet Overhead vs. Mobility (Pause Time (s))

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4

0.6

0.4

0.2 'X-.

60 120 300 600 9000 30
(a) 50 nodes, 20 flows

J3 A-
1.4

0.6
0.4
0.2

- - X - .

'X -

60 120 300 600 9000 30
(b) 50 nodes, 40 flows

T3
2XJU
<0>o
G£>
■S13O04
"S

o

8
7

6
5

4

2
1 -x..-

0
120 300 600 9000 30 60

(c) 100 nodes, 20 flows

Figure 3.20: Normalized Routing Overhead vs. Mobility (Pause Time (s))

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50n-20f, 20 for 50n-40f, and 18 for 100n-20f. Under promiscuous mode, the average

cache size at pause time 0 s is 8 for 50n-20f, 15 for 50n-40f, and 12 for 100n-20f.

Thus, the cache size increases as traffic load or network size increases. It also increases

as mobility increases because more route discoveries take place. I also measured the

maximum cache size. Under non-promiscuous mode, the maximum cache size at pause

time 0 s is 68 for 50n-20f, 80 for 50n-40f, and 112 for 100n-20f. Under promiscuous

mode, the maximum cache size at pause time 0 s is 50 for 50n-20f, 96 for 50n-40f, and

86 for 100n-20f. The maximum cache size also decreases as mobility decreases.

3.5 Conclusions

In this chapter, I have presented the first work that proactively updates route caches

in an adaptive manner. I have defined a new cache structure called a cache table to

maintain the information necessary for cache updates. Based on the local information

kept by each node, my cache update algorithm disseminates the broken link information

to all reachable nodes that have cached the link in a distributed manner. Therefore, my

algorithm enables DSR to adapt quickly to topology changes.

I show that, under non-promiscuous mode, the algorithm outperforms DSR with

path caches by up to 19% and Link-MaxLife by up to 41% in packet delivery ratio. It

reduces normalized routing overhead by up to 35% for DSR with path caches. Under

promiscuous mode, the algorithm improves packet delivery ratio by up to 7% for both

caching strategies, and reduces latency by up to 27% for DSR with path caches and 49%

for Link-MaxLife. The improvement demonstrates the benefits of the algorithm.

The central challenge to routing protocols is how to efficiently handle topology

changes. Proactive protocols periodically exchange topology updates among all nodes,

incurring significant overhead. On-demand protocols avoid such overhead but face the

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem of cache updating. Simulation results show that proactive cache updating is

more efficient than adaptive timeout mechanisms. This work combines the advantages

of proactive and on-demand protocols: on-demand link failure detection and proactive

cache updating. My solution is applicable to other on-demand routing protocols. I

conclude that proactive cache updating is key to the adaptation of on-demand routing

protocols to mobility.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Reducing the Effect of Mobility on

TCP by Proactive Cache Updating

As discussed in Chapter 1, TCP performance is adversely affected by frequent route

failures. Most recent attempts to improve TCP performance focus on transport layer

mechanisms. Several modifications to TCP were proposed to prevent TCP from invok

ing congestion control mechanisms for packet losses caused by route failures. Chapter 3

presented a distributed cache update algorithm for DSR. In this chapter, I investigate the

impact of the algorithm on TCP performance, without any modification to TCP.

4.1 Introduction

On-demand routing protocols use route caches to reduce the cost of route discoveries.

Stale routes present a serious challenge to TCP [21,10], Stale routes cause route failures

and packet losses. For such losses, TCP will invoke congestion control mechanisms, re

sulting in the reduction in throughput. If stale routes are not removed quickly, TCP may

retransmit lost packets still using stale routes, resulting in repeated timeouts. Although

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

several caching strategies [23, 39, 37,24] have been proposed to improve cache correct

ness of DSR, their impact on TCP performance has not been studied.

Although route failures are inherent due to mobility, not all of them are unavoidable.

Route failures can be classified into two cases. In the first case, a route is valid when

the source node uses it, but some link breaks during the transmission of a packet; such

route failures are unavoidable. In the second case, a route has broken when a source

node uses it; such route failures can be reduced by making route caches up-to-date.

The closer route caches track topology changes, the fewer route failures there will

be. My distributed cache update algorithm makes route caches in DSR adapt quickly to

topology changes. When a link failure is detected, the algorithm proactively notifies all

reachable nodes that have cached a broken link. Proactive cache updating reduces route

failures and consequent packet losses. Fast cache updating also prevents stale routes

from being propagated to the caches of other nodes.

I investigate the impact of the algorithm on TCP performance by comparing DSR

with the algorithm to DSR with path caches. Simulation results show that the algorithm

significantly improves TCP throughput. For example, the algorithm improves through

put by 134% for 50 node scenarios at node mean speed of 15 m/s and by 193% for 100

node scenarios at node mean speed of 20 m/s. Moreover, the improvement increases

as mobility, traffic load, and network size increase. The algorithm also significantly re

duces normalized routing overhead. For example, it reduces overhead by up to 27% for

50-node and up to 89% for 100-node scenarios.

4.2 Mobility, Route Caches, and TCP

In this section, I discuss the effect of mobility on TCP and the effect of proactive cache

updating on TCP.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 The Effect of Mobility on TCP

The effect of mobility on TCP can be either direct or indirect. The former means that

a route breaks although it was valid when the source node selected it, resulting in un

avoidable route failures. The latter means that TCP is indirectly affected by mobility

through stale routes. It was reported [51] that more than 80% of packet losses are due

to route failures; as a result, TCP spends more than 50% time in slow-start.

The effect of stale routes on TCP is summarized as follows:

• Data and ACK losses. Each route failure will result in up to a congestion window

number of data losses. Moreover, stale routes will cause ACK losses in the reverse

path, and therefore TCP has to wait for timeouts, since TCP relies on the arrival

of an ACK to trigger further transmission.

• Increased latency. Link failure detection through several retransmissions in

creases packet delivery latency if packets can be salvaged by intermediate nodes.

Since only the source node is notified about a link failure, other TCP senders that

have cached the broken link will have to detect the link failure themselves.

• Increased MAC layer contentions. ROUTE ERRORS caused by the use of stale

routes can interfere with the transmission of data packets and ACKs.

TCP is very sensitive to timeliness: even a small delay in the transmission of data

packets or the receipt of ACKs will easily result in timeouts at a TCP sender. Therefore,

it is important to make route caches up-to-date as much as possible.

4.2.2 The Effect of Proactive Cache Updating on TCP

Through proactive link failure feedback, TCP senders and receivers will learn the infor

mation about a broken link at the earliest possible time, so that they use other cached

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

routes or initiate route discoveries earlier. As a result, packet losses and the latency

due to link failure detection are reduced. The benefits of timely awareness of topology

changes become significant when there are multiple TCP connections from multiple

sources. I will validate these claims in the next section.

43 Performance Evaluation

4.3.1 Simulation Environment

I evaluated the performance of TCP with DSR augmented with DSR-Update and com

pared it with DSR with path caches through detailed simulations. I did not use promis

cuous mode and thus did not use two optimizations, GRATUITOUS ROUTE REPLY and

tapping, which rely on this mode. I used all other standard optimizations for DSR with

path caches, but did not use G r a t u i t o u s R o u t e E r r o r for DSR-Update.

I used the ns-2 [12] network simulator together with the Monarch Project’s wireless

and mobile extensions [6, 47], The mobility model is random waypoint model [6] in a

rectangular field. Pause time 0 s was used for all scenarios. Node speed was randomly

chosen from the interval v± 0 .1v for mean speeds v of 5 m/s, 10 m/s, 15 m/s and 20

m/s. Two field configurations were used: a 1500m x 1000m field with 50 nodes and a

2200m x 600m field with 100 nodes.

I used 10 CBR connections with 4 packets per second and packet size of 512 bytes as

background traffic. After a warm-up time of 100 s, one or more TCP connections were

established. FTP is the application over TCP. The FTP file transfer ran 900 s for 50-node

and 500 s for 100-node scenarios. I used TCP-Reno with a packet size 1460 bytes. The

maximum size of both the congestion window and the receiver’s advertised window is 8.

Each data point on the graph is the average of 10 runs of randomly generated scenarios.

Four metrics were used in the evaluation:

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• TCP Throughput: the total size of TCP packets received by the TCP receiver

divided by the duration of the TCP connection. For multiple TCP connections,

this metric refers to the aggregate throughput.

• Normalized Routing Overhead: the ratio of the total number of routing packets

transmitted (both sent and forwarded) to the total number of data packets received

including both TCP packets and CBR packets. Routing packets include ROUTE

E r r o r s used for cache updates.

• Cache Hit Ratio: the ratio of the number of cache lookups in which routes are

found to the total number of cache lookups.

• Percentage o f Valid Cache Hits: the percentage of the total number of cache hits

that result in valid routes.

4.3.2 Simulation Results

TCP Throughput

TCP throughput is the best TCP measure of the effectiveness of a caching strategy, as

using stale routes can cause TCP repeated timeouts. The results for TCP throughput are

shown in Figure 4.1 and Figure 4.2. For 50-node scenarios, the maximum improvement

achieved by DSR-Update is 134% for one connection, 42% for 5 connections, and 22%

for 10 connections. For 100-node scenarios, the maximum improvement is 86% for one

connection, 174% for 5 connections, and 193% for 10 connections.

Such improvement demonstrates that DSR-Update quickly removes stale routes.

Recall that DSR evicts stale routes through Route Maintenance, GRATUITOUS ROUTE

E r r o r s , and FIFO replacement policy. Because Route Maintenance operates fully on-

demand, a TCP sender will not know about a broken link until a data packet from its

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aXi
3ax
00

H
auH

200
DSR with path caches

DSR-Update

150

100

50

0
15 205 10

axm
ax
00
3O
s -XH
aoH

(a) 50 nodes, 1 TCP connection

600
DSR with path caches

DSR-Update
-x-

500

400

300 x-

200

100

155 10 20
(b) 50 nodes, 5 TCP connections

900
DSR with path caches

DSR-Update800

700

600

500

400

300

200
10 15 20

(c) 50 nodes, 10 TCP connections

Figure 4.1: TCP Throughput vs. Mobility (Mean Speed (m/s)) for 50 Node Scenarios

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

350
DSR with path caches

DSR-Update300abD*
g. 250

200

150

& 100

-x

15 205 10
(a) 100 nodes, 1 TCP connection

700
DSR with path caches x-

DSR-Update —&600

500

400

300

 ̂ 200
a
H 100

15 205 10
(b) 100 nodes, 5 TCP connections

1000
DSR with path caches

DSR-Update
800

600

400

200
-x

10 15 205
(c) 100 nodes, 10 TCP connections

Figure 4.2: TCP Throughput vs. Mobility (Mean Speed (m/s)) for 100 Node Scenarios

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

connection encounters the link failure. Thus, the routing protocol at the TCP sender has

delayed awareness of topology changes. Although GRATUITOUS R o u t e E r r o r s help

remove stale routes from the caches of additional nodes, a source node will not initiate

a route discovery until no other route to the destination is available in its cache. FIFO

also cannot quickly remove stale routes as it has little control of evicting which route at

what time. As a result, TCP suffers from frequent route failures.

I make the following key observations:

• The improvement increases as mobility increases. This result is more significant

for 100-node scenarios than for 50-node ones. For example, for 10-connection

scenarios shown in Figure 4.2 (c), TCP throughput is improved by 21% at 5 m/s,

34% at 10 m/s, 124% at 15 m/s, and 194% at 20 m/s. As mobility increases,

more routes become stale; therefore, the advantages of quick and efficient cache

updating becomes more significant.

• The improvement increases as the number of TCP connections increases. For

example, for 100-node scenarios at mean speed of 15 m/s, shown in Figure 4.2, the

improvement increases from 30% for one connection to 124% for 10 connections.

• The improvement increases as network size increases. As network size increases

from 50 to 100 nodes, higher improvement is achieved. For example, for 5-

connection scenarios at mean speed 20 m/s, TCP with DSR-Update obtains 41%

improvement for 50-node and 175% for 100-node scenarios. This result demon

strates the benefits of proactive cache updating for large networks.

Normalized Routing Overhead

The results for normalized routing overhead are shown in Figure 4.3 and Figure 4.4.

For 50-node scenarios, TCP with DSR-Update has higher overhead than TCP with DSR

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

4

3

2

DSR with path caches
DSR-Update

1

0
5 10 15 20

(a) 50 nodes, 1 TCP connection

3.5

2.5BO

DSR with path caches
DSR-Update0.5

15 205 10
(c) 50 nodes, 5 TCP connections

3.5

2.5

. X '

DSR with path caches
DSR-Update0.5

5 10 15 20
(c) 50 nodes, 10 TCP connections

Figure 4.3: Normalized Routing Overhead vs. Mobility (Mean Speed (m/s)) for 50

Node Scenarios

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

3O&
•3
N

o2:

t
6 bo
.3
3OPi
T3

.§
13

80
DSR with path caches

DSR-Update70

60

50

40

30

20

10

0
205 10 15

13s
J Su«U>Obo
•s
3

•2Ni3cd
o2;

70

60

50

40

30

20

10

0

70

60

50

40

30

20

10

0

(a) 100 nodes, 1 TCP connection

DSR with path caches -x~
DSR-Update — B-

10 15
(b) 100 nodes, 5 TCP connections

20

DSR with path cachesx....
DSR-Update — b— ,x

, x

........X"'
j*...7 ------S ---------------------- B

205 10 15
(c) 100 nodes, 10 TCP connections

Figure 4,4: Normalized Routing Overhead vs. Mobility (Mean Speed (m/s)) for 100

Node Scenarios

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sum
*2
<0acr4JPiU
5o
Pi

a
00
asa
S'
Piua
(§

14000

12000

10000

8000

6000

4000

2000

0

DSR with path caches x
DSR-Update —a— x

10 15 20
(a) 100 nodes, 1 TCP connection

14000
DSR with path caches

DSR-Update12000

1000000

8000

6000

4000

2000

20155 10

18000
16000

14000
12000
10000
8000
6000

4000
2000

0

(b) 100 nodes, 5 TCP connections

DSR with path caches
DSR-Update

--X
x- ■
B-

5 10 15 20
(c) 100 nodes, 10 TCP connections

Figure 4.5: Route Requests Sent vs. Mobility (Mean Speed (m/s))

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4)>o
flj
O

O h

’’OOS<D
•e
4)>o
u
octf

O h

O
•£
<0>O
3&
g

Oh

450000
400000
350000
300000
250000
200000
150000
100000
50000

0

500000
450000
400000
350000
300000
250000
200000
150000
100000
50000

0

DSR with path caches x ■
DSR-Update —b-

5 10 15
(a) 1 TCP connection

DSR with path caches x~
DSR-Update —B-

5 10 15
(b) TCP connections

20

20

600000
DSR with path caches x

DSR-Update —&500000

400000

300000

200000 -

X"
100000

20155 10
(c) 10 TCP connections

Figure 4.6: Packet Overhead vs. Mobility (Mean Speed (m/s))

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o\da

oJGOcSU

c3&
S<L>
"uaO

r3

au■CocdU

1

0.8

0.6

0.4

0.2

0

DSR with path caches x-
DSR-Update —&-

10 15
(a) 1 TCP connection

20

0.6

0.4

DSR with path caches
DSR-Update

0.2

2015105
(b) 5 TCP connections

"-X

0.6

0.4

DSR with path caches
DSR-Update

0.2

2010 155
(c) 10 TCP connections

Figure 4.7: Cache Hit Ratio at both TCP senders and receivers vs. Mobility (Mean

Speed (m/s))

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

3
2
o
o-cs
> 40oDan-2cQJO DSR with path caches x

DSR-Update — E—

15 205 10

100

£
s 80
0)
O
u 60
-a;=
> 40
o
GO
£ 20
§

a, 0

(a) 1 TCP connection

(b) 5 TCP connections

10 15
(c) 10 TCP connections

100

12
s4J
J3

40tt-HO

DSR with path caches
DSR-Update

15 205 10

DSR with path caches x-
DSR-Update — B-

20

Figure 4.8: Percentage of Valid Cache Hits at both TCP senders and receivers vs.

Mobility (Mean Speed (m/s))

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

under low mobility, but has lower overhead under high mobility. Although the algorithm

introduces overhead due to cache update notifications, it reduces the number o f R o u t e

ERRORS caused by the use of stale routes. Another reason for the reduced overhead is

that DSR initiates more route discoveries than DSR-Update because stale routes are not

evicted quickly and valid routes are removed due to the small cache size.

The reduction in overhead also increases as the number of TCP connections in

creases. For example, for 50-node scenarios at mean speed of 20 m/s, the reduction is

19%, 25%, and 28% for 1, 5, and 10 connections respectively. Moreover, the reduc

tion increases as network size increases, especially under high mobility. As shown in

Figure 4.4, for 100-node scenarios at mean speed of 20 m/s, the maximum reduction is

84%, 86%, and 89% for 1, 5, and 10 connections respectively.

DSR with path caches has high normalized routing overhead for 100-node scenarios

at mean speeds of 15 m/s and 20 m/s. As shown in Figure 4.5, DSR initiates a large

number of route discoveries for these scenarios, resulting in the higher packet overhead

shown in Figure 4.6. I attribute two reasons for this observation. The first reason is the

fixed and small cache size. As network size increases, more routes will be discovered.

As mobility increases, route failures become more frequent, and thus more route dis

coveries will take place and more routes need to be stored. However, a small cache is

not large enough to hold all discovered routes. I confirm this analysis through cache hit

ratio metric. As shown in Figure 4.7, there are more cache misses in DSR than in DSR-

Update at mean speeds of 15 m/s and 20 m/s. The second reason is that stale routes are

not removed quickly, and the FIFO policy evicts many valid routes. I verify this point

through the percentage of valid cache hits metric. As shown in Figure 4.8, DSR-Update

has better cache performance than DSR with path caches, providing higher improve

ment at mean speed of 20 m/s. Note that this metric reflects the percentage of valid

routes among all cache hits at both TCP senders and receivers. DSR-Update allows

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

both senders and receivers to use more valid routes, contributing to the improvement in

throughput.

44 Conclusions

Route failures due to mobility are the major factor degrading TCP performance in mo

bile ad hoc networks. I presented a new approach to improve TCP performance: reduc

ing route failures by making route caches in on-demand routing protocols adapt quickly

to topology changes. In this chapter, I investigated the impact of my distributed cache

update algorithm on TCP performance. I evaluated TCP performance with DSR aug

mented with this algorithm and compared it with DSR with path caches through detailed

simulations. I show that the algorithm improves TCP throughput and reduces normal

ized routing overhead. I conclude that it is important to make route caches quickly

reflect topology changes so that the effect of mobility on TCP is reduced.

It is important for the network layer to be more mobility-aware. It is also necessary

to modify TCP so as to prevent congestion control mechanisms from being falsely trig

gered, as done in recent work. However, it is insufficient to make route caches more

up-to-date and to make TCP aware of route failures. In the next chapter, I will show

why TCP enhanced with these two approaches still does not perform well.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Improving TCP Performance in Mobile

Ad Hoc Networks by Exploiting

Cross-Layer Information Awareness

In this chapter, I first investigate how mobility affects TCP. I found that it is insufficient

to notify TCP only about route failures. After a link failure is detected, several packets

with the same next hop will be dropped from the network interface queue; TCP will time

out because of these losses. It will also time out for ACK losses caused by route failures.

To reduce TCP timeouts for mobility-induced losses, I present two mechanisms: early

packet loss notification (EPLN) and best-effort ACK delivery (BEAD). EPLN seeks to

notify TCP senders about lost data. For lost ACKs, BEAD attempts to retransmit ACKs

either at intermediate nodes or at TCP receivers. Both mechanisms exploit cross-layer

information awareness: the network layer is aware of lost TCP packets. I evaluated TCP-

ELFN [21] enhanced with the two mechanisms using two caching strategies for DSR,

path caches and my distributed cache update algorithm. I show that TCP-ELFN with

EPLN and BEAD significantly outperforms TCP-ELFN under both caching strategies.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Introduction

TCP performance degrades significantly in mobile ad hoc networks [21, 13,51]. In such

networks, nodes move arbitrarily. Route failures due to mobility are the primary reason

for most packet losses [13,51], Since TCP assumes that packet losses occur because of

congestion, it will invoke congestion control mechanisms for packet losses caused by

route failures, resulting in the reduction in throughput.

Several transport layer mechanisms [7, 21,10, 36] have been proposed to address the

problems caused by mobility. One of the promising approaches is to provide link failure

feedback to TCP so that TCP can avoid responding to route failures as if congestion had

occurred. ELFN (Explicit Link Failure Notification) [21] is such a mechanism. With

ELFN, when a node detects a link failure, it will notify the TCP sender about the link

failure and the packet that encountered the failure. When receiving a notification, TCP

freezes its retransmission timer and periodically sends a probing packet until it receives

an ACK. TCP then restores its retransmission timer and continues as normal. ELFN was

shown to outperform TCP in mobile ad hoc networks.

TCP benefits from link failure feedback but is still affected by frequent route failures.

Holland and Vaidya [21] observed that TCP experiences repeated route failures due to

the inability of a TCP sender’s routing protocol to quickly recognize and remove stale

routes from its cache. This problem is complicated by allowing nodes to respond to

route discovery requests with routes from their caches, because they often respond with

stale routes. Holland and Vaidya showed that turning off replying from caches improves

TCP performance for a network with a single TCP connection. However, this approach

will degrade TCP performance when multiple traffic sources exist because of increased

routing overhead. Thus, stale routes present a serious challenge to TCP.

To address the cache staleness issue in the context of DSR (the Dynamic Source

Routing protocol) [30, 31], Chapter 3 presented a distributed cache update algorithm.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When a link failure is detected, the algorithm proactively notifies all reachable nodes

that have cached that link to update their caches. Therefore, the algorithm enables the

routing protocol at TCP senders and receivers to quickly remove stale routes from their

caches. Chapter 4 showed that this algorithm improves TCP throughput, because it

reduces route failures by making the network layer more mobility-aware.

In this chapter, I investigate how to make TCP perform well in the presence of fre

quent packet losses due to mobility. In contrast to prior work, my work focuses on

issues at both the network layer and the transport layer, as well as the interactions be

tween these two layers. I seek to answer two questions:

1. What should be the appropriate responses of TCP to frequent route failures and

packet losses? For example, is it always good to freeze TCP when route failures

occur? Or is it better to freeze TCP only when packets losses occur?

2. How can TCP be made efficient through approaches at the network layer and

cross-layer?

To answer these questions, I first study how mobility affects TCP through simula

tion of ELFN. I make several observations. First, I find that, after congestion control

mechanisms are restored, keeping TCP’s state the same as it was when TCP was frozen

improves throughput and reduces TCP timeouts compared with using default values.

Second, I find that there is a trade-off between freezing TCP upon route failures and

upon packet losses. Route failures do not imply packet losses because packets can be

salvaged by an intermediate node using a cached route. If packets are salvaged, freezing

TCP may decrease throughput because TCP can continue to send packets using other

routes; however, if TCP is not frozen when packets are salvaged, it will time out if

salvaged packets are dropped. I observe that these two choices result in similar through-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

put, but freezing TCP upon route failures reduces TCP timeouts. Finally, I identify two

problems at the network layer that affect the efficient operation of TCP:

® Unaware of lost data packets: Prior work mainly focused on making TCP aware

of route failures. However, after a link failure is detected, a routing protocol will

drop all the data packets with the same next hop in the network interface queue.

TCP will time out because of these losses.

• Unaware of lost ACKs: Upon route failures, ACKs are also dropped silently. As

a result, TCP senders have to wait for timeouts and retransmit unacknowledged

packets. Waiting for timeouts not only degrades throughput but wastes bandwidth;

retransmitting the packets that have been received wastes nodes’ energy.

I propose to make routing protocols aware of lost data packets and ACKs and help

reduce TCP timeouts for mobility-induced losses. Toward this end, I present two mech

anisms: early packet loss notification (EPLN) and best-effort ACK delivery (BEAD).

With EPLN, when a node detects a link failure, if it cannot salvage data packets and

the packets have not been salvaged, it sends a notification to the TCP sender. The notifi

cation includes the sequence numbers of all dropped packets for that connection. For the

lost packets that were salvaged by an intermediate node, the node sends a notification to

the intermediate node, which attempts to send a notification to the TCP sender using a

cached route. When the sender’s routing protocol receives a notification, it notifies TCP

about all lost packets. TCP disables its retransmission timer, records these lost packets,

and retransmits the lost packet with the lowest sequence number. When an ACK arrives,

TCP restores its retransmission timer and retransmits the remaining lost packets.

With BEAD, when a node detects a link failure, if it cannot salvage ACKs, it sends a

notification about the lost ACKs to the TCP receiver if the ACKs have not been salvaged,

or to the intermediate node that salvaged the ACKs. When forwarding a notification,

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a node attempts to retransmit an ACK with the highest sequence number among lost

ACKs to the sender using a cached route. If the intermediate node that salvaged the

ACKs cannot retransmit an ACK, it sends a notification to the receiver. If none of

the intermediate nodes is able to retransmit an ACK, the receiver’s routing protocol

retransmits an ACK with the highest sequence number if it has a route to the sender.

Since EPLN and BEAD extensively use cached routes, I evaluate the effectiveness

of the mechanisms using different caching strategies. I incorporate EPLN and BEAD

into DSR with path caches and into DSR with my distributed cache update algorithm.

Through detailed simulations, I compare the performance of TCP-ELFN; TCP-ELFN

with EPLN and BEAD; and TCP-ELFN with EPLN, BEAD, and my cache update algo

rithm. I show that, compared with TCP-ELFN, EPLN and BEAD significantly improve

TCP throughput under both caching strategies. For example, for 100-node networks,

TCP throughput is improved by up to 173% for DSR and up to 210% for DSR with

my cache update algorithm, both at node mean speed of 20 m/s. Moreover, EPLN and

BEAD considerably reduce TCP timeouts, by more than 33% for DSR and 44% for DSR

with my cache update algorithm for 100-node networks. In addition, enhanced with my

cache update algorithm, TCP-ELFN with EPLN and BEAD outperforms TCP-ELFN

with EPLN, BEAD, and path caches by up to 43% in throughput.

The rest of this chapter is organized as follows. In Section 5 .2 ,1 study how mobility

affects TCP. In Section 5 .3 ,1 describe EPLN and BEAD, and in Section 5.4, I present

an evaluation of EPLN and BEAD. Finally, I present my conclusions in Section 5.5.

5.2 Mobility, TCP, and ELFN

In this section, I study how mobility affects TCP through simulation of ELFN in a net

work with 50 nodes and one TCP connection. I used the same simulation environment

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCP connection (0, l) t Link failure 1

0) --------- 0) --------- 0) --------- (3 0 ^ 0)

Node 31 drops both packet
39 and all packets from 40 Link failure 2 / 39^
to 46 in the network V _y
interface queue.

Figure 5.1: An Example of How Mobility Affects TCP

as the one described in Chapter 4. The node speed was randomly chosen from 10 ± 1

m/s. I explore three issues: (1) how to set the retransmission timeout (RTO) and the

congestion window size after congestion control mechanisms are restored; (2) whether

to freeze TCP upon route failures or upon packet losses; and (3) the network layer is

unaware of lost data packets and ACKs.

5.2.1 How should RTO and cwnd be Set after Congestion Control

Mechanisms are Restored?

Node 0 starts a TCP connection to node 1 at 100 s. At time 101.607677 s, node 31

detects that the link from node 31 to node 1 is broken when transmitting the packet

with sequence number 39 using route 0-38-9-31-1, as shown in Figure 5.1. Node 31

salvages this packet and the packets from 40 to 46 in the network interface queue using

route 31-39-1. It then sends a R o u t e E r r o r to node 0, including the sender and the

receiver addresses, ports, and sequence number 39. This is an ELFN message. However,

the link from node 31 to node 39 is also broken, and therefore node 31 drops all packets.

At time 101.621079 s, node 0 receives the ROUTE ERROR; the routing protocol sends

an ICMP message to TCP. TCP disables its retransmission timer, starts a timer called a

thaw timer with timeout 2 s, and sets the sequence number of the probing packet to 39.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After TCP is frozen, it does not send any packet until the thaw timer times out. Thus, at

time 103.621079 s, node 0 sends the probing packet 39. At time 103.695992 s, node 0

receives the ACK for packet 39 and restores TCP’s retransmission timer.

I consider two choices for setting RTO and congestion window size, cwnd. One

choice is to use the default value 6 s for RTO and 2 for cwnd; the other choice is to keep

TCP’s state the same as it was when TCP was frozen. Both choices were discussed by

Holland and Vaidya [21], They observed that adjusting window size had little impact on

throughput, but changing RTO resulted in more reduction in throughput. They suspected

that the impact of RTO was most probably caused by the frequency at which routes

break and the proclivity of the Address Resolution Protocol (ARP) [46] to silently drop

packets. If a restored route breaks and results in a failed ARP query, the sender will

likely time out. They concluded that, given the length of timeout, using the default RTO

does not dramatically affect performance.

I attribute a different reason to the reduced throughput when default values are used.

In this example, the sequence number of the next packet to be sent, 47, is larger than

the highest sequence number of acknowledged packets, 39, plus the reset window size,

2. Therefore, TCP will not send any packet until an ACK arrives. However, the packets

with sequence numbers from 40 to 46 were dropped, and thus no ACK will arrive. At

time 109.695992 s, the retransmission timer expires and TCP retransmits packet 40.

Here, reducing cwnd causes TCP to enter an idle state; if the packets already sent are

lost, TCP has to wait for timeouts. Therefore, using default values for RTO and cwnd

degrades TCP throughput. Since TCP relies on RTO to recover from an idle state, it is

better to use a smaller RTO, such as the “old” value, which is 0.8 s in this example. I

will present an evaluation of the two choices in Section 6.3.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 When should TCP be Frozen?

In ELFN, TCP will be frozen either when a TCP sender initiates a route discovery, or

when a TCP sender receives an ELFN message indicating a link failure. A TCP sender

will receive a notice only when a data packet encounters a link failure for the first time. If

the packet encountering a link failure was salvaged before the occurrence of this failure,

then only the node salvaging the packet can receive a notice, since ELFN piggybacks

a notice on the ROUTE Error sent by DSR. For example, in Figure 5.1, after the link

from node 31 to node 39 is detected as broken, node 31 does not send a ROUTE ERROR

to node 0, since it is the source node of route 3 1 -3 9 -1 . Thus, node 0 will not know

about the link failure.

ELFN does not distinguish packet losses from link failures; it freezes TCP even if

packets are salvaged. At time 109.695992 s, TCP retransmits packet 40 using route 0 -

3 8 -9 -3 1 -3 9 -1 . However, the link from node 0 to node 38 is detected as broken at time

109.728763 s. TCP is frozen because no route is available in node 0’s cache. At time

109.738086 s, node 0 sends packet 40 using the discovered route 0 -2 2 -1 6 -1 . But this is

also a stale route, since the link from node 22 to node 16 has broken. Node 22 salvages

this packet using another route and sends a R o u t e E r r o r to node 0. Because TCP has

been frozen, no changes are made to TCP’s state.

At time 109.924568 s, node 0 receives the ACK for packet 40. TCP’s state is re

stored: RTO is set to 6 s and cwnd is set to 2. The sequence number of the next packet

to be sent, 41, is less than the highest sequence number of acknowledged packets, 40,

plus the reset window size, 2. Thus, TCP sends packets 41 and 42 using route 0-9-16-1,

since TCP is in slow-start phase. However, the link from node 9 to node 16 is broken.

Node 9 salvages the packets using another route and sends a ROUTE ERROR to node 0.

TCP is frozen although the packets have been salvaged. TCP remains frozen till the

ACK for packet 41 arrives.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As discussed in Section 5.1, if packets are salvaged, freezing TCP upon route failures

may decrease TCP throughput. On the other hand, if TCP is not frozen when packets are

salvaged, it will time out if the salvaged packets are dropped. I observed from simula

tions that freezing TCP upon route failures reduces TCP timeouts. Therefore, I believe

that this is a conservative but reliable approach because route failures are frequent. Thus,

I will use this option in simulations.

5.2.3 The network layer is unaware of Lost Data Packets and ACKs

As I have shown, ELFN notifies a TCP sender about a link failure only when a packet

encounters a link failure for the first time; a notification does not indicate whether the

packet is lost. Another problem exists at the network layer: upon route failures, a routing

protocol silently drops all the packets with the same next hop in the network interface

queue. Since TCP does not know about these losses, it has to time out. If an intermediate

node notifies a TCP sender about packet losses, the TCP sender will retransmit lost

packets earlier and thus avoid waiting for timeouts.

I discuss another example in which TCP times out because RTO and cwnd are set

to default values and because data packets are dropped silently. At time 120.140313 s,

node 16 attempts to transmit packet 409 using route 0-25-16-1 but detects that the link

from node 16 to node 1 is broken. It salvages this packet using route 16-34-1 and sends

a R o u t e E r r o r to node 0. TCP is frozen and the sequence number of the probing

packet is set to 409. At time 120.164540 s, node 0 receives the ACK for packet 408, and

thus TCP’s state is restored. The next packet to be sent is 412, larger than 408 plus the

reset window size. Therefore, TCP enters an idle state, although node 0 has routes to

reach node 1 and the window size before being reset allows TCP to send more packets.

At time 120.239832 s, node 16 detects that the link from node 16 to node 34 is broken

and drops packets 409 and 410. As a result, TCP times out at time 126.164540 s.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If T C P’s state is kept the same as it was when TCP was frozen, TCP will be able to

send packet 412. If this packet is delivered, a duplicate ACK with sequence number 408

will be returned because packet 409 was dropped. Three duplicate ACKs trigger TCP’s

fast retransmission; however, fast retransmission recovers only the first lost packet. TCP

still will time out if there are multiple losses. Therefore, it is necessary to let TCP know

about lost packets whether TCP’s state is set to default values or not.

Upon route failures, ACKs are also dropped silently; therefore, TCP senders will

time out and retransmit unacknowledged packets. Due to mobility, retransmitted data

packets and ACKs could be salvaged multiple times until they reach their destinations,

or they could be dropped, and thus TCP would time out and start another retransmission.

Since TCP relies on ACKs to ensure reliability and to trigger further transmissions, it is

important for a routing protocol to fast deliver ACKs.

5.3 Early Packet Loss Notification and Best-Effort ACK

Delivery

It is important for the network layer to be aware of lost data packets and ACKs and to

help reduce TCP timeouts for mobility-induced losses. To achieve this goal, I present

two mechanisms: early packet loss notification (EPLN) and best-effort ACK delivery

(BEAD). In this section, I describe the two mechanisms in detail with examples.

53.1 Overview

The key idea of EPLN and BEAD is that intermediate nodes notify TCP senders about

lost data packets and retransmit ACKs for lost ACKs by extensively using cached routes.

No route discovery is initiated at any intermediate node. It is simple to find a route by

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

initiating a route discovery, but such an approach is not efficient, because packet losses

are frequent and route discoveries introduce significant overhead.

I consider three types of packets that encounter route failures: data packets, ACKs,

and packet loss notifications. I summarize the operation of EPLN and BEAD as follows:

1. If data packets or ACKs are dropped and this is the first time they have encoun

tered a link failure, then the current node sends a notification to the TCP sender

for lost data packets or to the TCP receiver for lost ACKs, using the route obtained

by reversing the source route.

2. If data packets are dropped after being salvaged by an intermediate node, then the

current node notifies the intermediate node about lost packets. The intermediate

node sends a notification to the sender if it has a cached route.

3. If ACKs are dropped after being salvaged by an intermediate node, then the cur

rent node notifies the intermediate node about lost ACKs. That node first attempts

to retransmit an ACK with the highest sequence number among lost ACKs using

a cached route; if it cannot, it sends a notification about lost ACKs to the receiver.

4. When forwarding a notification about lost ACKs, a node attempts to retransmit

an ACK with the highest sequence number among lost ACKs to the sender using

a cached route. If it can do so, it marks the notification to indicate that an ACK

has been retransmitted. If none of the intermediate nodes is able to retransmit an

ACK, the routing protocol at the receiver retransmits an ACK if it has a cached

route to the sender.

5. If a notification is dropped due to a link failure, the node detecting the link failure

notifies the node that is the source of the notification. That source node will send

another notification to the sender or the receiver using a cached route.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, the network layer tries its best to let TCP senders know about lost data packets

and to retransmit ACKs for lost ACKs. The two feedback mechanisms are applicable to

any routing protocol, as they address general problems that occur at the network layer.

Route caches play an important role in both EPLN and BEAD, due to the extensive

use of cached routes. My prior work [58] has addressed the cache staleness issue; I

will use my distributed cache update algorithm as one caching strategy in the evaluation

of EPLN and BEAD. For DSR with path caches, EPLN and BEAD provide another

benefit: quick detection and eviction of stale routes.

5*3.2 Packet Loss Notifications

I define a data structure called drop l i s t to record dropped packets. Before a node drops

a data packet or an ACK, it records in its drop l is t the following information about the

packet: source address, source port, destination address, destination port, packet type

(data or ACK), sequence number, and the source route used in routing the packet. A

node uses the information in its droplist to construct packet loss notifications.

I define another structure called conn In fo to record in a notification the connection

information about lost packets originating from the same connection. The information

includes source address, source port, destination address, destination port, packet type,

and the sequence numbers of lost packets. When possible, I piggyback the information

about lost packets on a ROUTE ERROR sent by DSR; otherwise, a notification will be

sent as a Route Error. I extend the format of a Route Error to include an optional

field called conn lis t, which contains one or more conn In fo structures.

5.3.3 EPLN and BEAD

In this section, I describe EPLN and BEAD together and elaborate on each when neces

sary, since they have common operations at the node detecting a link failure and different

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operations at the node forwarding or receiving a notification.

At the node detecting a link failure

When a node detects a link failure, it attempts to salvage the data packet or ACK encoun

tering the broken link. If it cannot salvage the packet, it creates an entry in its drop lis t,

recording the information about the packet. It then checks the network interface queue

for the packets that have the same next hop in their routes. For the data packets or ACKs

to be dropped, the node records the information about the packets in the droplist.

If the node is the TCP sender of the packet encountering the broken link, it sends an

ICMP message to TCP including the sequence number of the packet. ELFN uses this

operation to freeze TCP. The node then tries to find a route either from its cache or by

initiating a route discovery. I focus on the operation at the network layer first and will

describe the responses of TCP to an ICMP message later.

If the node is not the source node of the packet, it will send a R o u t e E r r o r to the

source node. This source node is a TCP sender, or a TCP receiver, or an intermediate

node that salvaged the packet before this link failure. The node piggybacks on the

R o u t e e r r o r the information about the lost packets that have the same source node

as the packet encountering the broken link. It creates one entry in the conn lis t of the

R o u t e E r r o r for the lost packets originating from the same connection. The node

then sends the notification using the route obtained by reversing the source route. For

the lost packets that have different source nodes, the node sends one notification to each

source. If the packet encountering the broken link is a data packet and is salvaged, the

node also adds the T C P connection information to the R o u t e E r r o r , since I choose

to freeze T C P upon route failures as done in ELFN.

If the node is the source node of a lost packet but not the TCP sender or the TCP

receiver, then it is the intermediate node that salvaged the packet. The node attempts

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to send a notification to the TCP sender for lost data packets or to the TCP receiver for

lost ACKs using a cached route. I f no route can be found, the node will not process the

information about lost packets. An extension to this approach is to record all nodes that

salvaged a packet in the packet header, so that these nodes can relay a notification until

it reaches the TCP sender or the TCP receiver.

At the node forwarding a notification

When a node forwards a notification about lost ACKs, it checks whether it can retransmit

an ACK to the TCP sender using a cached route. If it finds a route, it sends an ACK with

the highest sequence number among lost ACKs to the TCP sender. The node then marks

a field called acksent as true in the corresponding entry of the connJist, indicating that

an ACK has been sent. Thus, other nodes forwarding the notification only attempt a

retransmission for the entries in which acksent is false.

If a retransmitted ACK is dropped due to a link failure, a ROUTE ERROR is sent to the

node that retransmitted the ACK. That node attempts to retransmit another ACK using a

cached route. If the node does not have a cached route to reach the TCP sender, it sends

a notification to the TCP receiver. If the notification to the TCP receiver encounters a

link failure and is dropped, the node detecting the link failure sends a ROUTE ERROR

to the source node of the notification, which will attempt to send another notification to

the TCP receiver using a cached route. This is Best-Ejfort ACK Delivery (BEAD).

I used the nested R o u t e E r r o r tech n iq u e o f D SR . W ith th is tech n iq u e , w h en a

R o u t e E r r o r encoun ters a link fa ilu re , th e no d e detec ting the b roken lin k sends a

ROUTE e r r o r to the source o f the p rev ious R o u t e E r r o r , includ ing the in fo rm atio n

abou t bo th b roken links. T h at source node w ill sen d ano ther ROUTE ERROR to the p re

viously in tended destination . I m odified th is technique: i f no cached rou te is availab le ,

an in term ediate node does n o t in itia te any ro u te d iscovery in o rder to send a no tification .

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is because my mechanisms generate more Route Erro rs than DSR, and route

discoveries introduce significant overhead.

At the node receiving a notification

The destination of a notification is a TCP sender, or a TCP receiver, or an intermediate

node that salvaged either data packets or ACKs. As shown in Figure 5.2, for each entry

in the connJist of the notification, the node does the following steps:

1. If the node is a TCP sender, it sends an ICMP message to TCP for each sequence

number, notifying TCP about each lost packet.

2. If the node is a TCP receiver and no ACK was retransmitted, the node checks

whether it has a cached route to the TCP sender. If it has a cached route, it sends

an ACK with the highest sequence number among lost ACKs to the TCP sender.

3. If the node is an intermediate node, it handles two cases: (1) If the lost packets

are ACKs and no ACK was retransmitted, the node first checks whether it has a

cached route to reach the TCP sender. If it has a cached route, it sends an ACK

with the highest sequence number to the TCP sender; otherwise, if it has a route

to the TCP receiver, it sends a notification to the TCP receiver. If the node has

no cached route to reach either of them, it will not process the information about

lost ACKs. (2) If the lost packets are data packets, the node checks whether it

has a cached route to reach the TCP sender. If it has a cached route, it sends a

notification to the TCP sender.

If the node is an intermediate node, it will send a notification either to a TCP sender

or to a TCP receiver only when the notification received is not a nested ROUTE ERROR,

indicated by a field called num^routejsrror shown in Figure 5.2. If the notification is a

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V a r i a b l e s :
ip h : I P h e a d e r ; tcph : TCP h e a d e r ; srh : S o u r c e R o u t e h e a d e r ;
p : t h e c u r r e n t p a c k e t ; new jp : a n e w p a c k e t ;
deliver J o -d e s t: w h e t h e r t o s e n d a n ACK t o t h e s e n d e r ;
num.route..error: t h e n u m b e r o f r o u t e e r r o r s i n p ;
i f has-.conn Jnfo t h e n

f o r e a c h e n t r y e i n t h e connJist do
i f e.src = netJd then

p.iph.saddr := e.src; p.iph.sport := e.sport ;
p.iph.daddr := c.dV ; p .ip h .d p o rt:= e.dport
if e.ptype = TCP then

f o r each seqjio i n e d o
new-p := p.copyQ ; new-p.tcph.seqno := seq jio ;
sendICMPtoTCP(new-p)

if e.ptype = ACK and e.ack^sent — FALSE then
new-p := p.copyQ ; new-.p.tcph.seqno : = max(seqjio G c) ;
new-p.srh.hasjconnJnfo := FALSE;
new-.p.src := n e tJ d ; new-p.dest p.iph.daddr
if ftndRoute(newp>.dest,new-p.route) then

sendOutPacketWithRoute (new-p) ;
else

deliverJojiest ;= FALSE; new-p := p.copyQ
if e.ptype —ACK and e.acksent = FALSE then

if findRoute{e.dst, new-p.route) then
n e w - .p .d e s te .d s t; deliver Jo-dest TRUE

elseif findRoute{e.src,new-p.route) then new-p.dest e.src
elseif e.ptype = TCP then

if find.Routeie.src,new-p.route) then new-p.dest := e.src
i f new-p.route ^ 0 then new-p.src := netJd

i f e.ptype = ACK a n d deliver J o jdest = TRUE t h e n
new-p.tcph.seqno : = max{seqjio £ e) ;
new-p.iph.saddr := e.src; n e w .ip h .sp o r t := e.sport ;
new .p . i p h .d a d d r e .d s t ; new-p.iph.dport := e.dport ;
new-p.srh.has-conn J n fo FALSE;
sendOutPacketWithRoute(new qp)

e l s e i f num-route.error = 1 t h e n
new-p.srh.e := e ; new-p.srh.has xonn J n fo TRUE ;
sendOutPacketWithRoute (new-p) ;

Figure 5.2: Pseudo Code Executed at the Node Receiving a Packet Loss Notification

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data packets (A, E)
Link failure 1

Notification 2 (C, A)

Notification 1 (F.

4
2

Data packets
are dropped.

Figure 5.3: An Example of Early Packet Loss Notification

nested R o u t e E r r o r , the in fo rm ation ab o u t lo st packets is p ig g y b ack ed on the R o u t e

E r r o r sen t by D SR . I w ill show an exam ple fo r th is case in the nex t section.

An example of EPLN is shown in Figure 5.3. Node A starts a TCP connection to node

E using route A -B -C -D -E . When node C detects that the link from node C to node D

is broken, it salvages the packet using route C-F-G -E. The information about the TCP

connection remains unchanged in the IP header of the packet, but node C becomes the

source node of the new route in the source route header.

Then node F detects that the link from node F to node G is broken and finds that it

cannot salvage the packet. Before dropping the packet, node F records the information

about the packet in its droplist. It then checks the network interface queue for data

packets or ACKs that have the same next hop in their routes. For simplicity, assume

that this packet is the only packet to be dropped. Otherwise, node F needs to send a

notification to each TCP sender, TCP receiver, or intermediate node that salvaged the

packets, but sends only one notification for the packets with the same source node.

Node F piggybacks the packet loss information on the ROUTE ERRO R sent to node C,

the intermediate node that salvaged the packet. When receiving the notification, node C

Examples

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACK
An ACK is

K j retransmitted

\ \ ACK (E,
Link failure 1

Link failure 2 / f Notification 2 (C,
H) (7) ‘ Notification 1 (I, C)

/ k) retransmitted by D.

1 \ \ 4
\ \ ACK (E, A)

Link failure 2 / / Notification 2 (C, E)

H) Cj y Notification 1 (I, C)
The ACK

is dropped.

Figure 5.4: An Example of Best-Effort ACK Delivery

finds that it is not the TCP sender of the packet. It checks its cache and finds a route to

the TCP sender; it then sends a notification to node A. If this notification encounters a

link failure, for instance, the link from node B to node A is detected as broken, node B

sends a ROUTE ERROR to node C, which is a nested R o u t e E r r o r . Node C attempts

to send another notification to node A using a cached route.

Next, I show an example of BEAD. As shown in Figure 5.4, node E sends an ACK

to node A using route E -D -C -B -A . Node C detects that the link from node C to node B

is broken and salvages the ACK using route C -l-H -A . Then node I detects that the link

from node I to node H is broken. It piggybacks the information about the lost ACK on

the R o u t e E r r o r sent to node C, the intermediate node that salvaged the ACK. When

node C receives the notification, it first checks whether it has a cached route to reach

the TCP sender, node A. Assume that node C does not have such a route, so it sends

a notification to the TCP receiver, node E. When node D forwards this notification, it

checks whether it has a cached route to reach the TCP sender and finds that it has a route

D -K -J-B -A . Thus, node D retransmits an ACK to node A. If node D does not have a

cached route to reach node A, node E will attempt to retransmit an ACK to node A using

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a cached route. If multiple ACKs from the same connection are dropped, an intermediate

node or a TCP receiver retransmits an ACK with the highest sequence number among

the lost ACKs recorded in a notification, without any delay.

At a TC P sender: cross-layer interactions

I have presented the operation designed at the network layer. In this section, I show

how the transport layer makes use of the information provided by the network layer to

achieve efficient adaptation to packet losses.

In BEAD, the routing protocol attempts to retransmit an ACK for lost ACKs, ex

ploiting cross-layer information awareness, without cross-layer information exchange.

Cross-layer interactions exist in EPLN at a TCP sender. I modified the operation of

ELFN at a TCP sender to make TCP respond to packet losses. Instead of notifying TCP

about the packet encountering a link failure, the network layer sends an ICMP message

to TCP for each lost packet. An ICMP message includes the sequence number of a lost

packet. However, it is insufficient to notify TCP only about a sequence number. Since

I choose to freeze TCP upon route failures, the network layer sends an ICMP message

to TCP even if the packet encountering a link failure is salvaged. If a packet is sal

vaged, TCP does not need to retransmit the packet; if a packet is dropped, TCP needs to

retransmit the packet. Thus, an ICMP message also indicates whether a packet is lost.

As shown in Figure 5.5, when TCP receives an ICMP message, it does the following

steps:

1. If the sequence number in the packet is less than or equal to the highest sequence

number of acknowledged packets, or larger than the sequence number that the

congestion window allows to send, then drop this packet.

2. If TCP is not frozen, then freeze TCP by disabling its retransmission timer. If the

thaw timer is idle, then start the timer with timeout value 2 s and set thawseqno

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCP-Reno recvQi
V a r i a b l e s :
tcph : TCP h e a d e r ; icmp : ICMP h e a d e r ; p: t h e c u r r e n t p a c k e t ;
thaw Jim er : t h a w t i m e r i n ELFN; tJhaw : t h e p r o b i n g i n t e r v a l ;
thaw seqno: s e q u e n c e n u m b e r o f t h e p r o b i n g p a c k e t ;
lostjpkt: l o s t p a c k e t s t h a t h a v e n o t b e e n r e t r a n s m i t t e d ;
numJost-pkt: t h e n u m b e r o f p a c k e t s i n lostjpkt;
tcp jn e lt : w h e t h e r T C P ' s s t a t e i s r e s t o r e d o r n o t ;
if p.ptype = ICMP then

if not (p.tcph.seqno > highest jack- and
p.tcph.seqno <= highest jack + windowQ) then

free (p) ;
return

if not frozenQ then
freeze ()

if thawJimer.status() = TIMER-IDLE then
thawJimer.resched(tJhaw) ;
thawjseqno := p.tcph.seqno
if p.icm p.pktdost = TRUE then /* n e w * /

out put {thawjseqno)
elseif p.tcph.seqno < thawjseqno then

thawjseqno := p.tcph.seqno
if p.icmp.pkt lo s t = TRUE then / *new /

output [thawjseqno)
elseif p.tcph.seqno = thawjseqno then / *new* /

if p.icmp. pkt lo s t = TRUE then
oh? put (thawjseqno)

elseif p.tcph.seqno > thawjseqno then / *new* /
if p.icmp.pkt lo s t = TRUE and p.tcph.seqno 0 lostjpkt then

lost-pkt [numlost -pkt) := p.tcph.seqno-,
num lost-pkt : = num lost-pkt + 1

free(p)
e l s e i f frozenQ t h e n m eltQ ; / * tcp jne lt i s s e t t o TR U E.*/
i f tcp jne lt - TRUE t h e n / *new * /

if num lost-pkt f 0 t h e n
f o r e a c h seqno € lostjpkt d o

i f segno > lastMck t h e n
output (seqno) ; num lost jpkt 0 ; tcp jn e lt : = FALSE

Figure 5.5: Pseudo Code Executed at TC P sender W hen Receiving an ICM P Message

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be the sequence number in the ICMP packet. If the original packet is lost, then

retransmit the packet, rather than wait for the timeout of the thaw timer as done in

ELFN.

3. If TCP is frozen and the sequence number is less than or equal to the thawjseqno,

then update the thawjseqno to be the sequence number in the ICMP packet. If the

original packet is lost, then retransmit the packet.

4. If TCP is frozen, the sequence number is larger than the thawjseqno, and the

original packet is lost, then record the lost packet in an array called lostjpkt, but do

not retransmit it now. TCP was frozen by a previous ICMP packet either because

of a link failure and the packet with the thaw_seqno was salvaged, or because of

a lost packet and TCP has retransmitted that packet. In either case, a packet is on

its way to the TCP receiver. Due to possible stale routes, it is better to wait for the

arrival of an ACK.

When an ACK arrives, TCP restores congestion control mechanisms and retransmits

other lost packets recorded in the lostjpkt. Thus, TCP adapts quickly to packet losses.

5.4 Performance Evaluation of EPLN and BEAD

5A1 Evaluation Methodology

I performed two sets of experiments. In the first set of experiments, I evaluated the

effects of two choices for setting RTO and cwnd on TCP performance. One choice

is to use the default value 6 s for RTO and 2 for cwnd; the other choice is to use the

values used before TCP is frozen. In the second set of experiments, I evaluated the

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

effectiveness of EPLN and BEAD under two caching strategies for DSR: path caches

and my distributed cache update algorithm, which I call DSR-Update. I used the basic

operation of ELFN: freezing TCP upon route failures, sending a probing packet every

time the thaw timer expires, and restoring TCP’s state when an ACK arrives.

I compared the performance of TCP enhanced with three combinations of the mech

anisms at the transport layer and the network layer: (1) TCP-ELFN with default RTO

6 s and cwnd 2, and DSR with path caches; (2)TCP-ELFN with RTO and cwnd set to

the values computed before TCP is frozen, and DSR with path caches with EPLN and

BEAD; (3) TCP-ELFN with RTO and cwnd set to the values computed before TCP is

frozen, and DSR with EPLN, BEAD, and DSR-Update. In addition, I evaluated TCP

performance for DSR under both promiscuous and non-promiscuous mode.

I studied the effects of traffic load on TCP enhanced with different mechanisms by

investigating scenarios with 1, 5, and 10 TCP connections. I did not use higher traffic

load in order to factor out the effect of congestion. I used node mean speed of 5 m/s, 10

m/s, 15 m/s, and 20 m/s. Node pause time was 0 s for all scenarios. Each simulation ran

for 900 s of simulated time. Each data point represents an average of 10 runs of different

randomly generated scenarios. The probing interval of ELFN was 2 s.

I used three metrics: (1) TCP Throughput: the amount of data transferred by TCP

divided by the duration of the TCP connection. For multiple TCP connections, it refers

to the aggregate throughput. (2) Average Number o f Slow-starts: the average number of

TCP slow-starts among all TCP connections. (3) Packet Overhead: the total number of

routing packets transmitted, including ROUTE ERRORS used by EPLN and B E A D . For

DSR-Update, this metric includes ROUTE ERRORS used for cache updates.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.2 Two Choices for Setting RTO and cwnd

Figure 5.6 and Figure 5.8 show TCP throughput, and Figure 5.7 and Figure 5.9 show

the average number of slow-starts for the first set of experiments. For the 50-node

scenarios with one TCP connection, using “old” values for RTO and cwnd improves

TCP throughput by up to 17% for DSR with path caches with promiscuous mode and

up to 21% for DSR with path caches without promiscuous mode, compared with using

default values. As discussed in Section 6.2, reducing congestion window size may cause

TCP to stop sending packets, because the sequence number of the next packet to be sent

could be larger than that congestion window allows to send. Thus, TCP has to rely on

retransmission timeout to recover from an idle state i f the packets already sent or ACKs

are lost. The smaller the RTO is, the faster TCP resumes transmission if no ACK arrives.

Using “old” values for RTO and cwnd reduces the average number of slow-starts

by up to 70% for DSR with path caches with and without promiscuous mode. This is

because using “old” window size reduces the occurrences of TCP entering an idle state

and hence reduces timeouts. DSR with promiscuous mode has fewer timeouts than DSR

without promiscuous mode, since promiscuous mode allows DSR to cache more routes,

which helps salvage packets.

As traffic load increases, the improvement in throughput decreases. As analyzed

in Section 5.2.1, when using default values, TCP spends more time in an idle state

only if data packets or ACKs are lost. If an ACK arrives soon, this choice has less

impact on throughput. The validity of cached routes plays an important role. As traffic

load increases, FIFO evicts stale routes faster; thus more data packets or ACKs can be

delivered. Thus, the improvement is not as high as that for low traffic load scenarios.

For the 100-node scenarios with one TCP connection, using “old” values improves

TCP throughput by up to 21% and 29% for DSR with path caches with and without

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3o.
M
3

400

350

300

250

200

150

ELFN w default RTO/cwnd
ELFN w old RTO/cwnd

ELFN w default RTO/cwnd (NP)
ELFN w old RTO/cwnd (NP)

100 -A ~~

50

0
10 15

(a) 50 nodes, 1 TCP connection

20

1200

1000
o,
s 800

Cu■C
60 600

400

200

5 2010 15

(b) 50 nodes, 5 TCP connections

1400

1200

j | 1000

800

600

400

200

10 15 20

(c) 50 nodes, 10 TCP connections

Figure 5.6: TCP Throughput vs. Mobility under Two Choices for Setting RTO and cwnd

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

oUt
£ 20

-A

£
ID

15 20105

o
55
0
5
1
z

><

(a) 50 nodes, 1 TCP connection

(b) 50 nodes, 5 TCP connections

40

35
- A -

30

25

20
15

10
5

0
2010 155

5 10 15

(c) 50 nodes, 10 T C P connections

Figure 5.7: Average Number of Slow-starts vs. Mobility under Two Choices for Setting

RTO and cwnd

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cu
*
3

-t
3O

0*UH

350

300

250

200

150

100

10 15

(a) 100 nodes, 1 TCP connection

20

1200

1000

800

Q,
_G00 600

400

200

15 20105

(b) 100 nodes, 5 TCP connections

1600

1400

-A

600

400

200

10 15 20
(c) 100 nodes, 10 TCP connections

Figure 5.8: TCP Throughput vs. Mobility under Two Choices for Setting RTO and cwnd

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£JOEo
<+-(0
1

><

£JO
CO
<4-o
S-H

&

><

35

30

 +...25

20

15

10

5

0

(b) 100 nodes, 5 TCP connections

10 15
(c) 100 nodes, 10 TCP connections

10 15 20

(a) 100 nodes, 1 TCP connection

30

5 10 15 20

20

15

10

20

Figure 5.9: Average Number of Slow-starts vs. Mobility under Two Choices for Setting

RTO and cwnd

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

promiscuous mode. Moreover, there is a large reduction in the average number of slow-

starts. For the 10-connection scenarios, TCP throughput decreases slightly when using

“old” RTO and cwnd values. I found that this choice causes more route discoveries than

using default values because TCP is more aggressive to send packets. The overhead in

troduced by route discoveries results in more MAC contention, which somewhat offsets

the improvement in throughput due to the fast recovery from the idle state. However,

using “old” values reduces timeouts, whether for higher traffic load or larger network

scenarios.

5.4.3 Evaluation Results of EPLN and BEAD

In this section, I present the results for the second set of experiments, in which I evalu

ated TCP performance for three combinations of mechanisms: TCP-ELFN, TCP-ELFN

with EPLN and BEAD, TCP-ELFN with EPLN, BEAD, and DSR-Update.

TCP Throughput

Figure 5.10 and Figure 5.11 show TCP throughput. For the 50-node scenarios with

1 TCP connection, when used with DSR with path caches under promiscuous mode,

EPLN and BEAD improve TCP throughput by up to 30% compared with TCP-ELFN.

When used with DSR-Update, these two mechanisms improve throughput by 81% over

TCP-ELFN at node mean speed of 20 m/s. Without promiscuous mode, EPLN and

BEAD achieve the similar improvement. For example, TCP-ELFN with EPLN, BEAD,

and DSR-Update outperforms TCP-ELFN by 63%; TCP-ELFN with EPLN and BEAD

performs 70% better than TCP-ELFN. EPLN and BEAD also provide significant im

provement over TCP-ELFN as traffic load increases. For example, for the 50-node sce

narios with 5 TCP connections, without promiscuous mode, EPLN and BEAD improve

TCP throughput by 24% with path caches and by 27% with DSR-Update.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the 100-node scenarios, EPLN and BEAD achieve higher improvement. For

example, under non-promiscuous mode, the maximum improvement is 173% for path

caches and is 210% for DSR-Update, both at node mean speed of 20 m/s. Under promis

cuous mode, the maximum improvement is 62%, the same for both caching strategies.

Such improvement demonstrates the effectiveness of my mechanisms. The higher im

provement in larger networks is due to this fact: as network size increases, nodes will

cache more routes and thus will deliver more packet loss notifications and retransmit

more ACKs for lost ACKs.

EPLN and BEAD with DSR-Update always outperform the two mechanisms with

path caches under non-promiscuous mode. Due to on-demand Route Maintenance,

a node is not notified when a cached route becomes stale until it uses that route to

send packets. Thus DSR has delayed awareness of mobility. FIFO has little control of

evicting which route at what time and therefore cannot quickly remove stale routes. In

contrast, my cache update algorithm proactively notifies all reachable nodes that have

cached a broken link to update their caches, thus enabling route caches to adapt fast to

topology changes. Making caches more up-to-date not only reduces route failures and

packet losses, but also allows EPLN and BEAD to use more valid routes, contributing

to the higher improvement in throughput. For example, EPLN and BEAD with DSR-

Update outperform the two mechanisms with path caches by up to 43% and 34% for the

50 and 100 node scenarios respectively.

Under promiscuous mode, EPLN and BEAD with DSR-Update outperform EPLN

and BAED with path caches for the single TCP connection scenarios, and perform al

most the same as the latter for the 5 and 10 TCP connection scenarios. I offer the fol

lowing explanation for this observation. DSR with path caches caches the routes a node

overhears in a secondary cache and the overheard routes learned from ROUTE REPLIES

in a primary cache, whereas DSR-Update caches all overheard routes in a secondary

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

500

300 •A.

200

100

10 15

(a) 50 nodes, 1 TCP connection

20

o.£)

bO
=3Ot-<JSH

(XUH

1000

900

800

700

600

500

400

300

ELFN
ELFN&EPLN&BEAD

ELFN&EPLN&BE AD&DSR-Update
ELFN (NP)

ELFN&EPLN&BEAD (NP)
ELFN&EPLN&BEAD&DSR-Update (NP)

...A—

-e -

5 10 15 20

(b) 50 nodes, 5 TCP connections

1300

1200
a .£>

1100

1000

900

800

700

600
10 15 20

(c) 50 nodes, 10 TCP connections

Figure 5.10: TCP Throughput vs. Mobility (mean speed (m/s))

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

450

400

350tflD,
§ 300

I 250 60
S 200

150a.oH 100

10 15

(a) 100 nodes, 1 TCP connection

20

1200

1000

800

600

400

200

5 15 2010
(b) 100 nodes, 5 TCP connections

o.
s
3O,

CUuH

1600

1400

1200

1000

800

600

400

200

0

- -

.
.... A .. -—-

X -
...' - x

- — -....... m

-

.-x
'“ "•-A -

10 15 20

(c) 100 nodes, 10 TCP connections

Figure 5.11: TCP Throughput vs. Mobility (mean speed (m/s))

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cache. As traffic load increases, nodes will overhear more routes. EPLN and BEAD

with path caches store more overheard routes and thus benefit more from this mode than

EPLN and BEAD with DSR-Update.

Average Number of TCP Slow-starts

Figure 5.12 and Figure 5.13 show average number of TCP slow-starts. EPLN and BEAD

reduce timeouts under both caching strategies and under both promiscuous and non-

promiscuous mode. For example, for the 50-node scenarios with one connection, under

promiscuous mode, EPLN and BEAD reduce timeouts by 60% with path caches and

90% with DSR-Update. Moreover, EPLN and BEAD with DSR-Update have less time

outs than EPLN and BEAD with path caches, giving reduction by 90% and 74% under

promiscuous and non-promiscuous mode respectively.

When EPLN and BEAD use DSR-Update as a caching strategy, TCP performs slow-

start and thus invokes congestion control mechanisms only twice during the 900 s sim

ulation. These results not only show that EPLN and BEAD reduce TCP timeouts for

mobility-induced losses, but also show that my cache update algorithm is very efficient

in dealing with route failures.

As traffic load increases, EPLN and BEAD reduce timeouts by more than 35% with

path caches and 40% with DSR-Update. As network size increases, EPLN and BEAD

reduce timeouts by more than 33% with path caches and 44% with DSR-Update. EPLN

actively delivers packet loss notifications and BEAD retransmits ACKs for lost ACKs in

a best-effort way. Thus, TCP either starts retransmissions earlier or continues to advance

congestion window without awareness of lost ACKs.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
c/3
tt-.0
u

1
3z

><

40

35

30

25

20
15

10
5

0

-F..........
...........

-

A M r ;. - : : -—X
-...-A

X-........................ -©-------------- -
" ' " O

BP-..... ,-r

5 10 15 20

(a) 50 nodes, 1 TCP connection

i
£o

55
o
3
E
3
Z

<

40

35

30

25

20
15

10
5

0

..
''...................... - - a AA

 -■-■■•— -■tr".. •+

X -........................... --......- - *- -X

5—---------0

P.I.FN & '

ELFN&EPLN&BEAD —e —
ELFN&EPLN&BEAD&DSR-Update — *—

ELFN (N P) +
ELFN&EPLN&BEAD (NP) - X—

ELFN&EPLN&BEAD&DSR-Update (NP) — ■— ,

5 10 15 20

(b) 50 nodes, 5 TCP connections

So
53
«+-.o
<3*§
s2

><

20

15

10 15

(c) 50 nodes* 10 TCP connections

20

Figure 5.12: Average Number of Slow-starts vs. Mobility (mean speed (m/s))

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£
o

GO

o

!32
CDW)
g><

£O00
t4-lo

32

><

5 10 15 20

(a) 100 nodes, 1 TCP connection

15

10

5 10 15 20

(b) 100 nodes, 5 TCP connections

o£

0)

10 15
(c) 100 nodes, 10 TC P connections

Figure 5.13: Average Number of Slow-starts vs. Mobility (mean speed (m/s))

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Packet Overhead

Figure 5.14 and Figure 5.15 show packet overhead. For the 50-node scenarios with

one connection, TCP-ELFN with EPLN and BEAD has a higher overhead than TCP-

ELFN under both caching strategies due to packet loss notifications. As traffic load

increases, the overhead of TCP-ELFN increases faster than that of TCP-ELFN with

EPLN and BEAD and is higher than the latter for the 10 connections at node speed of

20 m/s. For these scenarios, DSR with path caches initiates more route discoveries than

DSR with EPLN and BEAD. As mobility increases, routes break more frequently, and

therefore more route discoveries take place; as traffic load increases, more routes need

to be stored, and the path cache’s FIFO replacement speeds up cache turnover. FIFO

evicts many valid routes because of the small cache size.

When incorporated into DSR, EPLN and BEAD also use path caches, but DSR with

EPLN and BEAD has lower overhead than DSR without them for high traffic load and

high mobility scenarios. This is because EPLN and BEAD actively detect and evict stale

routes due to the extensive use of cached routes.

I confirm this analysis through the results for the 100-node scenarios shown in

Figure 5.15. For one TCP connection and without promiscuous mode, TCP-ELFN has

a lower overhead than EPLN and BEAD with DSR-Update under low mobility, but has

a higher overhead than the latter under high mobility. The higher overhead is due to

the small cache size, which cannot hold all useful routes and thus results in more route

discoveries, even under low traffic load. Under promiscuous mode, the overhead of

TCP-ELFN decreases because DSR uses a secondary cache to store more routes, which

helps reduce route discoveries. For the 100-node scenarios, the overhead of TCP-ELFN

increases under high mobility. For 10 TCP connections, TCP-ELFN has a higher over

head than TCP-ELFN with EPLN and BEAD under both caching strategies.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-o
§
1
a

-oa<u
CD>o

T3P3
CD

_C
CD>o
c5D*SOrjo<

20000

15000

10000

5000

A-"

0

10 15

(c) 50 nodes, 10 TCP connections

10 15 20

(a) 50 nodes, 1 TCP connection

80000 1>...... 1

70000

60000 ^ ----- ..
.A

1—X -
____ m—

50000 • .. -
. A -' ____ _~~Q

40000 ■ X " ' ____ &-------- -

30000
+--

• A id ------ ELFN &. ._
ELFN&EPLN&BEAD -—e —

20000 ELFN&EPLN&BEAD&DSR-Update -----^ —

ELFN (NP)H-----

10000 ELFN&EPLN&BEAD (NP) — x

0

ELFN&EPLN&BEAD&DSR-Update (NP) — SI—

5 10 15 20

(b) 50 nodes, 5 TCP connections

140000

120000

100000

80000 -X" '
-e-

60000 - - e-
40000

20000

20

Figure 5.14: Packet Overhead vs. Mobility (mean speed (m/s))

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■o
g
t
6
QJ
rtCL

>O
oj
uC3

CL

4>■€
f
a)
o
(2

35000

30000

25000

20000

15000

10000

5000

0
10 15 20

(a) 100 nodes, 1 TCP connection

300000

250000

200000

150000

100000

50000

2010 155

(b) 100 nodes, 5 TCP connections

900000

800000

700000

600000

500000

40000)

300000

200000

100000

10 15 20

(c) 100 nodes, 10 T C P connections

Figure 5.15: Packet Overhead vs. Mobility (mean speed (m/s))

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DSR-Update dynamically adjusts its cache size as needed: the cache size increases

as new routes are discovered and decreases as stale routes are removed. Thus, the cache

size adapts to mobility, traffic load, and network size. As shown in Figure 5.15 (c), under

non-promiscuous mode, EPLN and BEAD with DSR-Update have the lowest overhead.

Under promiscuous mode, EPLN and BEAD with DSR-Update have a higher overhead

than EPLN and BEAD with path caches because of cache update notifications. Under

promiscuous mode, EPLN and BEAD obtain the maximum reduction in overhead for

the 10 TCP connection scenarios: 71% with path caches and 62% with DSR-Update.

5*5 Conclusions

In this chapter, I presented a detailed study of how mobility affects TCP. I proposed

to make routing protocols aware of lost TCP packets and help reduce TCP timeouts for

mobility-induced losses. To achieve this goal, I presented two mechanisms: early packet

loss notification (EPLN) and best-effort ACK delivery (BEAD).

I made several observations through simulation of TCP-ELFN. First, I found that,

when congestion control mechanisms are restored, keeping TCP’s state the same as

it was when TCP was frozen improves TCP throughput when traffic load is not high,

and significantly reduces TCP timeouts compared with using default values. Second, I

found that there is a trade-off between freezing TCP upon route failures and upon packet

losses; freezing TCP upon route failures reduces TCP timeouts. Finally, I found that it

is insufficient to notify TCP only about link failures, because many packets are dropped

from the network interface queue without experiencing link failure detection. TCP will

time out because of these losses. Upon route failures, ACKs are also dropped silently;

therefore, TCP has to wait for timeouts.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EPLN and BEAD reduce TCP timeouts for mobility-induced losses by exploiting

cross-layer information awareness. With EPLN, intermediate nodes seek to notify TCP

senders about lost packets so that TCP can start retransmission earlier. With BEAD,

intermediate nodes or TCP receivers retransmit ACKs for lost ACKs in a best-effort way.

Both mechanisms extensively use cached routes, without initiating route discoveries at

any intermediate node. The two feedback mechanisms are applicable to any routing

protocol, as they address general problems that occur at the network layer.

I incorporated EPLN and BEAD into DSR with path caches and into DSR with my

cache update algorithm. I show that, compared with TCP-ELFN, EPLN and BEAD

significantly improve throughput and reduce timeouts. Moreover, EPLN and BEAD

with my algorithm outperform EPLN and BEAD with path caches, because proactive

cache updating is more efficient than FIFO in removing stale routes.

My results lead to the following conclusions:

• Cross-layer information awareness is key to making TCP efficient in the presence

of mobility. It is necessary for the network layer to notify TCP senders about

lost packets and to retransmit ACKs for lost ACKs, so that TCP reacts quickly to

frequent packet losses and is unaware of lost ACKs.

• It is important to make route caches adapt fast to topology changes, because the

validity of cached routes affects not only TCP performance but also the effec

tiveness of the mechanisms used to improve TCP performance, whether at the

network layer or cross-layer.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

The Impact of Caching Strategies on

the Scalability of On-Demand Routing

Protocols

In this chapter, I investigate the impact of caching strategies on the scalability of on-

demand routing protocols in the context of DSR. Prior work on the scalability of routing

protocols mainly focused on making routing protocols scale with network size. The

scalability of on-demand routing protocols with mobility has not been studied. I study

the scalability of DSR with mobility, also examining varying levels of traffic load and

network size. I consider three caching strategies proposed for DSR: path caches with

FIFO, link caches with adaptive timeout mechanisms, and cache tables with my dis

tributed cache update algorithm. Simulation results show that the distributed cache up

date algorithm makes DSR scale significantly better with mobility.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Introduction

Scalability is an important design goal of routing protocols. Prior work mainly focused

on making protocols scale with network size [26, 50, 3, 35, 11]. Moreover, most work

focused on the scalability of proactive routing protocols [26, 50, 49], and few work

studied the scalability of on-demand routing protocols. Aron and Gupta [3] investigated

the impact of error prevention and recovery on the scalability of DSR. Their analytical

study shows that some local error recovery mechanism is needed to deal with route

failures in order for DSR to scale with network size. Lee et al. [34] studied the scalability

of AODV (Ad hoc On-demand Distance Vector routing protocol) [44] with network size.

Besides the studies of the scalability of routing protocols, there are two important

theoretical results for the scalability of ad hoc networks. Gupta and Kumar [18] ana

lyzed the asymptotic capacity of static ad hoc networks. They showed that as the number

of nodes, n, increases, the maximum achievable per node throughput decreases approx

imately as 1 /y/n. However, they did not consider the effect of mobility. Grossglauser

and Tse [17] showed that per node throughput can increase dramatically when nodes are

mobile. However, this result was obtained under several idealistic assumptions; one of

the assumptions is that very long end-to-end delays are tolerable.

More recently, Santivanez et al. [49] proposed a theoretical framework for analyz

ing the scalability of routing protocols. They developed the first asymptotic expres

sions of total overhead that reflect the effect of traffic load and network size on a set of

protocols, including plain flooding (no routing), proactive routing protocols (Standard

Link State, or SLS), reactive routing protocols (DSR), hybrid routing protocols (Zone

Routing Protocol [19, 20], or ZRP), hierarchical routing protocols (Hierarchical Link

State [48], or HierLS), and limited dissemination (Hazy Sighted Link State [50], or

HSLS). For SLS, HierLS, and HSLS, the expressions of total overhead also reflect the

effect of the rate of topology changes. For DSR and ZRP, the authors only derived a

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lower bound of total overhead, without considering the effect of mobility. Moreover, the

result for DSR was obtained without the route cache option. Route caches are critical

for on-demand routing protocols, because such protocols use them to make routing de

cisions, and not using route caches introduces significant overhead. It has been shown

that caching strategies significantly affect the performance of DSR [38, 23, 39, 37, 58].

In this chapter, I study the impact of caching strategies on the scalability of on-

demand routing protocols with mobility, also examining varying levels of traffic load and

network size. It is essential for routing protocols to scale not only with network size but

also with mobility. If a routing protocol cannot scale with mobility, its performance will

degrade as mobility increases even for medium-scale networks. It is very challenging

for routing protocols to scale with mobility because of frequent topology changes. I

seek to answer two questions:

1. What factors limit the scalability of on-demand routing protocols with mobility?

2. How can such protocols be made to scale with mobility?

Route caches are the component that is most directly affected by mobility. Due to

mobility, cached routes easily become stale. To address the cache staleness issue, prior

work in DSR used heuristics with ad hoc parameters to predict the timeout of a link

or a route [23, 39, 37]. I designed a distributed cache update algorithm, described in

Chapter 3, to make route caches adapt quickly to topology changes without using ad

hoc parameters. I have shown that the algorithm outperforms DSR with path caches [6]

and with Link-MaxLife [23].

There are several definitions of scalability. Santivanez et al. [49] defined the scala

bility of a routing protocol as “the ability of a routing protocol to support the continuous

increase of network parameters without degrading network performance.” Network pa

rameters refer to factors such as traffic load, network size, mobility rate. Arpacioglu et

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

al. [4] provided four definitions of scalability: absolute scalability, optimal scalability,

relative scalability, and weak scalability. A protocol is termed absolutely scalable with

respect to a given (environment, network parameter p , metric m) triple if the efficiency of

the network does not vanish as the parameter tends to infinity. Metric m refers to factors

such as 1/throughput, latency, overhead. A protocol is termed as optimally scalable with

respect to a given triple if no other protocol is more scalable with respect to the same

triple. This definition characterizes the best achievable scaling properties. Protocol A

is termed to be more scalable than protocol B with respect to a given triple, if as p ap

proaches infinity, the limit of m(A)lm(B) is zero. If the limit is a positive constant, then

protocol A and protocol B are termed equally scalable. Since a network parameter may

not grow arbitrarily large in ad hoc networks, the authors also defined weak scalability.

Protocol A is termed more weakly scalable than protocol B with respect to a given triple,

if the growth rate of m(A) is slower than m(B) within a range of the network parameter.

According to the above definition of relative scalability, a protocol may be more

scalable than another with respect to one metric, but less scalable with respect to an

other metric. Moreover, two protocols are termed as equally scalable if their throughput

decreases or latency increases at the same rate, although one protocol may have higher

throughput or lower latency than another. I believe that it is necessary to use both per

formance and overhead in scalability comparison, because the growth rate of overhead

itself cannot reflect how well a protocol performs. Thus, I give a new definition of rel

ative scalability, in which I use multiple metrics and the absolute value for throughput

and latency. As traffic load, network size, or mobility increases, if protocol A not only

has a slower overhead growth rate but also has better performance than protocol B, then

A is more scalable than B. Performance refers to throughput and latency.

I perform the study in the context of DSR through extensive simulations. I consider

three caching strategies: path caches with FIFO, link caches with Link-MaxLife, and

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cache tables with my cache update algorithm. To evaluate the scalability of DSR with

mobility, I perform two sets of experiments: fix node mean speed as 10 m/s and change

pause time, the period during which a node remains static; and fix pause time as 0 s

and change node mean speed. Most prior work chose node speed randomly between

0 m/s and 20 m/s. This choice results in node mean speed of 4 m/s due to the use of

zero minimum speed [54], I used more challenging mobility scenarios than those used

in previous studies: node mean speed varies from 5 m/s to 20 m/s.

The results and findings can be summarized as follows:

• Fixed cache size for path caches limits the scalability of DSR with mobility. I also

found that DSR with path caches performs worse under high traffic load and large

networks. As traffic load, network size, or mobility increases, more routes need to

be stored, but fixed cache size cannot hold all discovered routes and thus results

in significant overhead due to route re-discoveries. Therefore, it is necessary to

make the cache size adaptive.

• Adaptive timeout mechanisms expire valid links and keep stale ones because

topology changes are unpredictable. Removing valid routes results in overhead

due to route re-discoveries; using stale routes not only increases overhead but also

degrades performance. Both problems limit the scalability of DSR with mobility.

• The distributed cache update algorithm makes DSR scale significantly better with

mobility because of fast and efficient cache updating. I conclude that making route

caches adapt quickly and efficiently to topology changes is key to the scalability

of on-demand routing protocols with mobility.

The contributions of this work are threefold. First, I give a new definition of relative

scalability. This work is the first that uses both performance and overhead in scalability

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comparison. Second, I identify the factors that limit the scalability of on-demand routing

protocols with mobility. Third, I show how to make such protocols scale with mobility.

The organization of this chapter is as follows. In Section 6 .2 ,1 analyze the impact of

caching strategies on the scalability of DSR. In Section 6.3 ,1 present simulation results.

Finally, in Section 6 .5 ,1 present my conclusions.

6.2 The Impact of Caching Strategies on the Scalability

of DSR

In this section, I first review the adverse effects of stale routes. I then analyze the impact

of caching strategies on the scalability of DSR with mobility at different levels of traffic

load and network sizes.

6.2.1 The Adverse Effects of Stale Routes

As discussed in Chapter 3, stale routes have three adverse effects:

• Causing packet losses if packets cannot be salvaged by intermediate nodes.

• Increasing latency, since the MAC layer goes through multiple retransmissions

before concluding a link failure.

® Increasing routing overhead, since the node detecting a link failure needs to send

a R o u t e E r r o r to the source node.

As traffic load, network size, or mobility increases, these effects will become more

significant. As mobility increases, more routes will become stale; as traffic load in

creases, stale routes will affect more traffic sources; as network size increases, more

nodes will cache stale routes. Stale routes degrade performance and increase overhead;

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

therefore, they limit the scalability of on-demand routing protocols, since I compare the

scalability of two protocols by both performance and overhead.

6.2.2 Path Caches with FIFO

Two factors in path caches limit the scalability of DSR. First, FIFO cannot quickly re

move stale routes. Second, cache size is fixed and small. Small caches help remove stale

routes, but also remove valid ones. As traffic load, network size, or mobility increases,

a small cache will cause route re-discoveries, because more routes need to be stored but

a small cache cannot hold all useful routes. If cache size is large and there is no fast

cache updating mechanism, more stale routes will stay in caches. It was shown that path

caches with unlimited size perform much worse than caches with limited size, due to

the large amount of Route Errors caused by the use of stale routes [23].

It is necessary to make cache size adaptive so as to scale with traffic load, net

work size, and mobility. My insight can be generalized: if an ad hoc parameter limits

the scalability of a routing protocol, it is necessary to make the parameter adaptive.

Predetermined choices of ad hoc parameters for certain scenarios may not work well for

others, and scenarios in the real world are different from those used in simulations. It is

important to make routing protocols to be adaptive in the real world.

6.2.3 Adaptive Timeout Mechanisms

Two factors in adaptive timeout mechanisms limit the scalability of DSR with mobility.

First, heuristics cannot accurately estimate timeouts because topology changes are un

predictable. Second, such mechanisms use ad hoc parameters. As a result, valid links

will be removed if timeouts are set too short, and stale links will be kept in caches if

timeouts are set too long. Removing valid links causes route re-discoveries; keeping

stale links not only incurs overhead but also degrades performance.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I give two examples of Link-MaxLife. Link-MaxLife predicts the stability of nodes

based on observed link usages and breakages, and computes the timeout of a link using

stability of endpoints. Suppose that node A learns that the link from node B to node C)

is broken. Node A decreases the stability metric for B and C, not knowing which of the

two nodes is unstable. For any link with node B as an endpoint, if the stability metric of

node B is less than that of the other endpoint, node A decreases the lifetime of that link

to be the stability metric of node B. Similarly, node A decreases the lifetime of the links

with node C as an endpoint. However, the breakage of a link does not imply that both

endpoints are unstable. If either node B or node C is stable, node A will expire some

valid links. On the other hand, the usage of a link does not imply that both endpoints

are stable. For example, when a link was last used, two endpoints were close to each

other; when the link is used, one endpoint is moving away from the other endpoint. The

link is unstable, but Link-MaxLife will increase the stability metric for both endpoints

and therefore produce wrong timeout estimates. As mobility increases, links break more

frequently; wrong timeout estimates will have more adverse effect on scalability.

6.2.4 Cache Tables with Distributed Cache Updating

Making route caches quickly and accurately reflect topology changes is critical to the

scalability of on-demand protocols with mobility. Any mechanism aiming to keep

route caches up-to-date needs to operate efficiently, without incurring much overhead.

Proactive protocols do not scale well because topology updates are periodically prop

agated throughout the network. Thus, the challenge to scalability is that as network

parameters increase, a protocol should provide satisfactory performance while main

taining a slow growth rate of overhead.

My cache update algorithm addresses the problems of path caches and adaptive time

out mechanisms. First, a cache table has no capacity limit and thus allows DSR to store

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all discovered routes; the cache size decreases as stale routes are removed. The adaptive

cache size enables DSR to scale with dynamic network parameters. Second, the algo

rithm enables DSR to adapt quickly to topology changes, thus reducing packet losses,

delivery latency, and routing overhead. These benefits will become more significant as

traffic load, network size, or mobility increases.

The algorithm has the following desirable properties with respect to scalability. First,

cache update overhead is low, since the algorithm notifies only the nodes that have

cached a broken link. Second, the algorithm is distributed and thus is scalable with

network size. Finally, the algorithm does not use any ad hoc parameters and thus is

adaptive to topology changes.

6.3 Simulation Methodology

I evaluated DSR with three caching strategies under promiscuous and non-promiscuous

mode. Promiscuous mode affects both performance and overhead, and thus it affects

scalability. Although Link-MaxLife was not designed to operate without promiscuous

mode, factoring out the effect of this mode allows me to accurately evaluate the impact

of caching strategies on scalability. When DSR runs in non-promiscuous mode, I did not

use G r a t u i t o u s R o u t e R e p l y since it relies on this mode. For DSR with my cache

update algorithm and without promiscuous mode, I did not use G r a t u i t o u s R o u t e

E r r o r . When promiscuous mode is used, I used all optimizations for the three caching

strategies.

I used the ns-2 [12] network simulator with the Monarch Project’s wireless and mo

bile extensions [6, 47]. The network interface uses the IEEE 802.11 DCF MAC pro

tocol [25]. The mobility model is the random waypoint model [6]. I used this model

because it is the most widely used mobility model in ad hoc network simulations. I

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chose node speed randomly from v±0.1v, for different values of v. For path caches and

Link-MaxLife, I used the parameters recommended by Johnson et al. [31].

I performed two sets of experiments to evaluate the scalability of DSR with mobility.

In the first set of experiments, I chose node speed randomly from 10 ± 1 m/s and used

pause times of 0, 30, 60, 120, 300, 600 and 900 s. I also evaluated the effect of traffic

load on the performance of DSR with different caching strategies. I used CBR traffic

with 4 packets per second and packet size of 64 bytes [6]. I used 20 and 30 flows and

did not use higher traffic load in order to avoid network congestion. In the second set of

experiments, I used pause time 0 s and node mean speeds of 5 m/s, 10 m/s, 15 m/s and

20 m/s. Varying node mean speed presents more challenging mobility scenarios than

varying pause time. In this set of experiments, I also studied the effect of network size

on the performance of DSR by using 50, 100, and 150 node networks. I do not provide

results for larger networks because I was not able to get results for 200-node networks

since trace files exceed the file size limit.

I used three field configurations: a 1500 m x 500 m field with 50 nodes, a 2200 m

x 600 m field with 100 nodes [45], and a 2200 m x 1000 m field with 150 nodes. Each

data point represents an average of 10 runs of randomly generated scenarios.

I used five metrics: (1) Packet Delivery Ratio: the ratio of the number of data packets

received by the destination to the number of data packets sent by the source; (2) Packet

Delivery Latency: the delay from when a packet is sent by the source until it is received

by the destination; (3) Percentage o f Good Replies Sent from Caches: the percentage of

R o u te REPLIES sent by intermediate nodes that do not contain broken links; (4) Packet

Overhead: the total number of routing packets transmitted (both sent and forwarded);

and (5) Normalized Routing Overhead: the ratio of the number of routing packets trans

mitted to the number of data packets received. For DSR-Update, packet overhead and

normalized routing overhead include ROUTE ERRORS for cache updates.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Simulation Results

6.4.1 Varying Node Pause Time

Figure 6.1 shows packet delivery ratio. DSR-Update outperforms DSR under both

promiscuous and non-promiscuous mode. DSR-Update also outperforms Link-MaxLife

under non-promiscuous mode. As mobility increases, DSR-Update has a slower de

crease in packet delivery ratio than DSR with path caches and Link-MaxLife, especially

under non-promiscuous mode. This is because DSR-Update removes stale routes more

quickly than FIFO and predicting timeouts. I verify this claim through cache perfor

mance. As shown in Figure 6.2, DSR-Update provides better cache correctness than

DSR with path caches and Link-MaxLife. Under non-promiscuous mode, DSR with

path caches has worse cache performance than Link-MaxLife because predicting time

outs is more effective than FIFO. However, under promiscuous mode, DSR with path

caches has better cache performance, since Link-MaxLife keeps more overheard stale

links in the topology graph.

DSR-Update achieves higher improvement for higher traffic load scenarios. For

example, it provides the maximum of improvement, 57%, over DSR and Link-MaxLife

for 100n-30f. As traffic load increases, stale routes adversely affect more traffic sources,

since each flow has to detect link failures on-demand. DSR-Update prevents more traffic

sources from using stale routes and thus reduces more packet losses.

Figure 6.3 and Figure 6.4 show packet delivery latency. DSR-Update has lower la

tency than DSR with path caches under both promiscuous and non-promiscuous mode.

Moreover, the reduction in latency increases as traffic load and mobility increases, be

cause fast cache updating reduces link failure detections by multiple flows.

DSR-Update has lower latency than Link-MaxLife for 100n-20f. Although link

caches help reduce latency due to fewer route discoveries, Link-MaxLife has higher

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

.9 0.8
ffSPi
te 0.6
>
"S
0 0.4

(2 0.2

0
0 30 60 120 300 600 900

(a) 100 nodes, 20 flows

1

o 0.8

&
£ 0.6

Ij
0 0.4
.So
(2 0.2

0
0 30 60 120 300 600 900

(b) 100 nodes, 30 flows

Figure 6.1: Packet Delivery Ratio vs. Mobility (Pause Time (s))

DSR -•-+-...
DSR-Update --$---

DSR-LinkMaxlife -.... X -

DSR (NP) ■.... A

DSR-Update (NP)
DSR-LinkMaxlife (NP) --— 0 -—

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 '------- '----- DSR
DSR-Update

DSR-LinkMaxlife
DSR (NP)

DSR-Update (NP)
DSR-LinkMaxlife (gP)

p
20 Li---,— .— — u ----------------.i--------------------- u

0 30 60 120 300 600 900
(a) 100 nodes, 20 flows

100

 -4—
A -

40

60 120 300 600 9000 30
(b) 100 nodes, 30 flows

Figure 6.2: Percentage of Good Replies Sent from Caches vs. Mobility (Pause Time (s))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.6

0.5>»0
1 0.4
>3
S' 0.3_>
13
Q 0.2
13

0.1Pk

0

§
3
&0)>;3<uQ
uMo<3Ph

DSR (NP) - *...
DSR-Update (NP) —

DSR-LinkMaxlife (NP) -—G--■

30 60 120 300 600 900
(a) 100 nodes, 20 flows

1.2
DSR (NP) -

DSR-Update (NP) — ■—=
gSR-LinkMaxlife (NP) e—•-

1

0.8

0.6

0.4

0.2

0
60 120 300 600 9000 30

(b) 100 nodes, 30 flows

Figure 6.3: Packet Delivery Latency vs. Mobility (Pause Time (s))

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>>aca

2?

13
Q
13Macd

P**oc
3
&>a>>;=!
&
4)

O

0.2
DSR

DSR-Update
DSR-LinkMaxlife0.15

0.1

0.05

30 60 120 300 600 9000
(a) 100 nodes, 20 flows

0.7
DSR

DSR-Update
DSR-LinkMaxlife

0.6

0.5

0.4

0.3

0.2

0.1

0
60 120 300 600 9000 30

(b) 100 nodes, 30 flows

Figure 6.4: Packet Delivery Latency vs. Mobility (Pause Time (s))

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TD
u
<U>o
uJxiCJaPh

t>AioC3Ps

400000
DSR

DSR-Update
DSR-LinkMaxlife

DSR (NP)
SR-Update (NP)

ife (NP)

3 5 0 0 0 0

3 0 0 0 0 0

250000

200000

150000

100000

50000

30 60 120 300 600 900
(a) 100 nodes, 20 flows

600000

500000
A..

4 0 0 0 0 0

300000

200000

100000

30 60 120 300 600 9000
(b) 100 nodes, 30 flows

Figure 6.5: Packet Overhead vs. Mobility (Pause Time (s))

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T3c3<D
-C
<D>otsj.s
3oPi-a<D
S I

o&

T3c3a>xsV-0)>O

30Pi"O<D
_ N

"cd
1
z

I ' 1 DSR+....
A- DSR-Update — ♦—

DSR-LinkMaxlife-
- DSR (NP)^....
- ____ _ A DSR-Update (NP) — _

JSR-LinkMaxlife (NP) —

X a
, 0

'X '.......
......-X - —

-— X - ..~..- x -

30 60 120 300 600
(a) 100 nodes, 20 flows

900

16

14 ‘ A

12
10
8
6
4

2
-x-..

0
120 300 600 90030 600

(b) 100 nodes, 30 flows

Figure 6.6 : Normalized Routing Overhead vs. Mobility (Pause Time (s))

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

latency because packets are salvaged multiple times due to stale links. For 100n-30f,

DSR-Update has higher latency than Link-MaxLife, since the latency due to route dis

coveries sometimes dominates.

Routing overhead is an important measure of scalability. Figure 6.5 shows packet

overhead, and Figure 6.6 shows normalized routing overhead. As mobility increases, a

scalable protocol should have a slow overhead growth rate. DSR-Update has a slower

overhead growth rate than both DSR with path caches and Link-Maxlife under non-

promiscuous mode. Under promiscuous mode, DSR-Update has a similar growth rate

in overhead as DSR with path caches and Link-Maxlife. Moreover, DSR-Update has a

lower overhead than DSR with path caches under non-promiscuous mode. For example,

for 100n-30f at pause time 0 s, DSR-Update reduces packet overhead by up to 30% and

normalized overhead by up to 60%. Such reduction is partly due to reduced ROUTE

E r r o r s caused by stale routes, but is mainly due to fewer route discoveries. DSR with

path caches initiates a large number of route discoveries due to the small cache size. I

will discuss more about this observation in the next section.

6.4.2 Varying Node Mean Speed

In this section, I present the results of the second set of experiments. In these experi

ments, I fixed node pause time as 0 s and changed node mean speed from 5 m/s to 20

m/s. Mobility rate here is much higher than that in previous studies.

Figure 6.7 shows packet delivery ratio. I first analyze the results for non-promiscuous

mode. DSR-Update outperforms both DSR with path caches and Link-MaxLife, espe

cially under high mobility. For example, DSR-Update provides 200% improvement for

100n-20f and 477% for 150n-20f, both at node mean speed of 20 m/s. Moreover, as mo

bility increases, the delivery ratio of DSR-Update decreases slowly, whereas the delivery

ratio of DSR with path caches and Link-MaxLife degrades quickly.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 ■a03<&
fc*<D_>
'<3Q
13
1Ph

£*o>
13D
UMoC3
o<

1

0.9

0.8

0.7

0.6

0.5

0.4

DSR
DSR-Update

DSR-LinkMaxlife
DSR (NP)

DSR-Update (NP)
DSR-LinkMaxlife (NP)

...+...

....x-—
■ - A

...o—-
10 15

(a) 50 nodes, 20 flows

(b) 100 nodes, 20 flows

20

P 0.6

0.4

0.2

15 20105

1

0.8
"X,

0.6

0.4

0.2
—

0
2015105

(c) 150 nodes, 20 flows

Figure 6.7: Packet Delivery Ratio vs. Mobility (Mean Speed (m/s))

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S3<DOQ

a<DP4

oa)
If
G

<0Pl

90
85
80
75
70
65
60
55
50
45
40

G<D00

Cl<Ded
■aooO
H-cOuW)5G
8
8a.

DSR
DSR-Update

DSR-LinkMaxlife
DSR (NP)

""DSR-Update (NP)
1-LinkMajdtfe (NP)

 -x-..
■-A.....

--Q -—-

10 15
(a) 50 nodes, 20 flows

20

80

70

60

50
A-

40

30

20
10
0

15 205 10
(b) 100 nodes, 20 flows

 A,..
::;-x.

20

(c) 150 nodes, 20 flows

Figure 6.8: Percentage of Good Replies Sent from Caches vs. Mobility (Mean Speed

(m/s»

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Under promiscuous mode, DSR-Update outperforms DSR with path caches, and

the improvement increases as network size and mobility increase. For 50 and 100

node networks, the improvement is not as high as that under non-promiscuous mode.

DSR-Update stores overhead routes only in a secondary cache, whereas DSR with path

caches stores such routes in both primary and secondary caches; therefore, DSR with

path caches benefits more from promiscuous mode than DSR-Update. DSR-Update,

however, provides higher improvement for 150 node networks, as shown Figure 6.7

(c). DSR with path cache’s performance degrades quickly, because the small cache size

cannot meet higher storage requirements and hence more route discoveries took place.

DSR-Update performs worse than Link-MaxLife under low mobility but has slower de

crease rate than Link-Maxlife under high mobility.

As mobility increases, the cache performance of DSR-Update degrades slowly. In

contrast, the cache performance of Link-MaxLife degrades quickly under non-promiscuous

mode because links break more frequently under high mobility, but Link-MaxLife cannot

learn as much link failure information as it can under promiscuous mode. DSR-Update

has better cache correctness than both DSR with path caches and Link-MaxLife for 50

and 100 node networks, as shown in Figure 6 .8. For 150-node networks, DSR with

path caches has better cache performance than DSR-Update and Link-MaxLife. This is

because as network size increases, the small cache size causes faster cache turnover.

Figure 6.9 and Figure 6.10 show packet delivery latency under non-promiscuous and

promiscuous modes. DSR-Update has lower latency than both DSR with path caches

and Link-MaxLife. As shown in the first set of experiments, the reduction in latency

increases as traffic load and mobility increase. Such advantages become more signifi

cant under more challenging mobility scenarios, such as at node mean speed of 20 m/s,

and for larger networks, such as 150-node networks. Therefore, fast cache updating is

important for the scalability of on-demand routing protocols.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c

£•<u
"5
Q
13
o

Oh

0.18

0.16
0.14
0.12

0.1
0.08

0.06
0.04

0.02
0

DSR (NP) a....
DSR-Update (NP) —

. DSR-LinkMaxlife (NP)

5 10 15
(a) 50 nodes, 20 flows

20

1.4
DSR (NP)

DSR-Update (NP) — ■-
DSR-LinkMaxlife (NP) —

0.6

0.4

0.2

15 205 10
(b) 100 nodes, 20 flows

DSR (NP) a....
DSR-Update (NP) — ■—

DSR-LinkMaxlife (NP) > -y '

1.4

...A..b
■ A

0.6

0.4

0.2

5 15 2010
(c) 150 nodes, 20 flows

Figure 6.9: Packet Delivery Latency vs. Mobility (Mean Speed (m/s))

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.12 DSR +■
DSR-Update — *-
-LinkMaxiife -x-0.1

0.08
,-X"

0.06

0.04

0.02

0 . 5

0 . 4 5

0 . 4

G
a j 0 . 3 5

H -l 0 . 3

i -<L> 0 . 2 5

”33 0 . 2

o
0 . 1 5

4>

o 0 . 1

O h 0 . 0 5

0

5 10 15
(a) 50 nodes, 20 flows

DSR +....
DSR-Update — ♦—

DSR-LinkMaxlife * —

20

&

5 10 15
(b) 100 nodes, 20 flows

20

5>n 0.6

0.4 ,.x"

0.2 DSR +-
DSR-Update — ♦-

DSR-LinkMaxlife —-x-

5 15 2010
(c) 100 nodes, 20 flows

Figure 6.10: Packet Delivery Latency vs. Mobility (Mean Speed (m/s))

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

’•Os
■s<0

3oC3CL(

160000

140000

120000

100000

80000

60000

40000

20000

0

DSR
DSR-Update
-LinkMaxiife

DSR-Update
' DSR-LinkMaxlife

x -~ -

10 15
(a) 50 nodes, 20 flows

20

T3S3
<5>O

o

800000

700000

600000

500000

400000

300000

200000

100000 —x
0

205 10 15
(b) 100 nodes, 20 flows

<D■s
§u
Oh

1.8e+06
1.6e+06
1.4e+06
1.2e+06

le+06
800000
600000
400000
200000

10 15
(c) 150 nodes, 20 flows

Figure 6.11: Packet Overhead vs. Mobility (Mean Speed (m/s))

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■3
■s
&
>0
5G

1O
&

■8
N

O
Z

3

2.5

2

1.5

1

0.5

0

' DSR
DSR-Update — ♦—

DSR-LinkMaxlife .. A, .

DSR (NP)^....
DSR-Update (NP) — m —

J DDSR-LinkMaxlife (NP)

______ -X -

-
X

^
Q

-
^

1

10 15
(a) 50 nodes, 20 flows

20

T3
2
1
o
60
.s
3o
Pi
T3<U

O
Z

90
80
70
60
50
40
30
20
10
0

5 15 2010
(b) 100 nodes, 20 flows

>c
S-.

50
%
3OOS

T3

a•3

10 15
(c) 150 nodes, 20 flows

Figure 6.12: Normalized Routing Overhead vs. Mobility (Mean Speed (m/s))

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.11 shows packet overhead, and Figure 6.12 shows normalized routing over

head. For 50-node networks, DSR has a similar overhead as DSR-Update. For 100-node

networks, DSR with path caches has a higher overhead than DSR-Update under promis

cuous mode and higher overhead under non-promiscuous mode and high mobility. As

network size increases to 150 nodes, DSR has a higher overhead under promiscuous

mode. The overhead in DSR with path caches increases quickly as mobility and net

work size increase because of the small cache size. The primary cache of DSR has

a capacity limit of 30 entries, and the secondary cache has a capacity limit of 34 en

tries; the secondary cache is used under promiscuous mode. These choices of cache

size are suitable for 50-node networks, but unsuitable for 100-node or larger networks.

As network size increases, more routes will be discovered; as mobility increases, routes

break more frequently and thus more route discoveries take place. Small caches cannot

hold all useful routes and thus cause a large number of route discoveries, as shown in

Figure 6.13.

Link-MaxLife cannot accurately predict timeouts and thus keeps many stale links.

The inaccurate prediction causes another problem: under non-promiscuous mode, Link-

MaxLife expires many valid links under high mobility. Removing valid links results in

overhead due to route re-discoveries, as shown in Figure 6.13.

In contrast, under non-promiscuous mode, DSR-Update has the lowest overhead

under high mobility and for larger networks. Moreover, DSR-Update has the slowest

overhead growth rate, because a cache table allows DSR to store all discovered routes,

and the cache update algorithm quickly removes stale routes.

I measured the average cache size of DSR-Update, with the size sampled when a

route is added or at least one route is deleted. The results are shown in Figure 6.14.

The cache table size adapts well to traffic load, network size, and mobility. The average

cache size under non-promiscuous mode for 100n-20f is almost the same as that under

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c<uCO
a
<0

-2
3o

4500

4000

3500
3000

2500

2000
1500
1000
500

0

r------------------- DSR :-lr+!:;
DSR-Update — ♦—

DSR-LinkMaxlife - ..
DSR(NP) V

DSR-Update (NP)
DSR-LinkMaxlife (NP)" -

10 15
(a) 50 nodes, 20 flows

20

a
&o
3

S’as
33o
aS

20000

15000

10000

5000

0
15 205 10

(b) 100 nodes, 20 flows

eUco
3
%3
8“as
3
3Oas

90000
80000
70000
60000
50000
40000
30000
20000
10000

5 10 15
(c) 150 nodes, 20 flows

Figure 6.13: Route Requests Sent vs. Mobility (Mean Speed (m/s))

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>
<

100n-20f
100n-30f

100n-20f (NP)
100n-30f (NP)

%-
A

30 60 120 300
Pause Time (s)

600 900

cowxsCJ
UV00
4>
><

40

35

30

25

20
15

10
5

0

50n-20f ®
100n-20f
150n-20f ■

50n-20f (NP) o
100n-20f (NP) —
150n-20f

10 15
Mean Speed (m/s)

20

Figure 6.14: Average Cache Size of DSR-Update

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

promiscuous mode for 150n-20f; both are 20 under high mobility. These results further

demonstrate that the capacity limit of 30 entries used in the primary cache is too small

for 100-node or larger networks. The average cache size under non-promiscuous mode

for 150n-20f is 30, showing that storage requirements increase quickly as network size

increases. Therefore, it is necessary to make cache size adaptive for on-demand routing

protocols to scale with dynamic network characteristics.

6.5 Conclusions

It is important for ad hoc network routing protocols to be scalable not only with network

size but also with mobility. Prior work mainly focused on making routing protocols

scale with network size. In this chapter, I studied the impact of caching strategies on the

scalability of on-demand routing protocols with mobility, also examining varying levels

of traffic load and network size. I performed the study in the context of DSR through

extensive simulations. I considered three caching strategies proposed for DSR: path

caches with FIFO, Link-MaxLife, and cache tables with my cache update algorithm.

My results and findings are summarized as follows:

• Fixed cache size limits the scalability of DSR with mobility. I also found that

DSR performs worse under higher traffic load and larger networks. As traffic

load, network size, or mobility increases, DSR initiates a large number of route

discoveries because more routes need to be stored, but small caches cannot hold

all useful routes. To be scalable, a routing protocol must maintain a slow growth

rate of overhead as mobility increases. Therefore, it is necessary to make the

cache size adaptive.

• Adaptive timeout mechanisms can expire valid links and keep stale ones due to

unpredictable topology changes. Removing valid routes results in overhead due

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to route re-discoveries; using stale routes not only increases overhead but also

degrades performance. As mobility increases, links break more frequently; there

fore, inaccurate timeout prediction will have more adverse effect on scalability.

• The distributed cache update algorithm makes DSR scale significantly better with

mobility, because the cache table size adapts to mobility and the algorithm quickly

removes stale routes.

All on-demand routing protocols use route caches. Route caches are the component

that is most directly affected by mobility. As I have shown, stale routes limit the scala

bility of on-demand routing protocols with mobility. Mobility makes the scalability of

on-demand routing protocols with network size and traffic load more difficult. Thus,

it is important to make route caches quickly and accurately reflect topology changes.

Moreover, a cache update mechanism should introduce as little overhead as possible.

Therefore, I conclude that making route caches adapt quickly and efficiently to topol

ogy changes is key to the scalability of on-demand routing protocols with mobility.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

Mobility presents a fundamental challenge to routing and transport protocols in mobile

ad hoc networks. In my thesis work, I have addressed the challenges mobility presents to

on-demand routing protocols and to TCP. In this chapter, I summarize the contributions

of my thesis and discuss future work.

7.1 Thesis Contributions

The first problem I addressed is the cache staleness issue of on-demand routing proto

cols. Due to mobility, cached routes easily become stale. Prior work addressing the

cache staleness issue mainly used adaptive timeout mechanisms. However, heuristics

with ad hoc parameters cannot accurately estimate timeouts because topology changes

are unpredictable. To make route caches quickly adapt to topology changes, I proposed

to proactively disseminate the broken link information to the nodes that have that link

in their caches. I defined a new cache structure called a cache table and designed a

distributed cache update algorithm. Each node maintains in its cache table the infor

mation necessary for cache updates. When a link failure is detected by some node, the

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm notifies in a distributed manner all reachable nodes that have cached that link.

This algorithm is the first work that proactively updates route caches in on-demand ad

hoc network routing in an adaptive manner. Moreover, the algorithm does not use any

ad hoc parameters, thus making route caches fully adaptive to topology changes. I show

that my algorithm outperforms DSR with path caches and with the Link-MaxLife link

cache [23]. My solution is applicable to other on-demand routing protocols. I conclude

that proactive cache updating is key to the adaptation of on-demand routing protocols to

mobility.

The second problem I addressed is TCP performance in mobile ad hoc networks.

TCP performance degrades significantly due to frequent route failures [21,13, 51]. The

first factor that adversely affects TCP is stale routes, which can cause TCP to experience

repeated timeouts. Most attempts to improve TCP performance focused on transport

layer mechanisms. I proposed a new approach to improve TCP performance at the

network layer: reducing route failures by making route caches quickly adapt to topology

changes. I investigated the impact of my cache update algorithm on TCP performance

without any modification to TCP. I show that this algorithm significantly improves TCP

throughput and reduces normalized routing overhead. I conclude that it is important to

make route caches reflect topology changes quickly so that the adverse effect of mobility

on TCP is reduced.

Making route caches more up-to-date reduces route failures; however, TCP still does

not perform well because of frequent data and ACK losses. My solution is to exploit

cross-layer information awareness. I proposed to make routing protocols aware of lost

TCP packets and help reduce TCP timeouts for mobility-induced losses. To this end, I

designed two mechanisms: early packet loss notification (EPLN) and best-effort ACK

delivery (BEAD). EPLN seeks to notify TCP senders about packet losses so that TCP

retransmits lost packets earlier. For lost ACKs, BEAD attempts to retransmit ACKs

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

either at intermediate nodes or at TCP receivers so that TCP is unaware of lost ACKs.

Both mechanisms extensively use cached routes, without initiating route discoveries at

any intermediate node. The two feedback mechanisms can be adapted to other routing

protocols, as they address general problems that occur at the network layer. I evaluated

TCP-ELFN enhanced with EPLN and BEAD using two caching strategies for DSR, path

caches [6 , 23] and my cache update algorithm. I show that TCP-ELFN with EPLN and

BEAD significantly outperforms TCP-ELFN [21] alone under both caching strategies.

I conclude that cross-layer information awareness is key to making TCP efficient in the

presence of mobility.

The third problem I addressed is the scalability of on-demand routing protocols with

respect to mobility. Scalability is an important design goal of routing protocols. Prior

work mainly focused on making routing protocols scale with network size. It is es

sential for routing protocols to scale not only with network size but also with mobility.

However, the issue of scalability with mobility has not been studied. I studied the impact

of caching strategies on the scalability of on-demand routing protocols with mobility. I

performed my study in the context of DSR through extensive simulations. I considered

three caching strategies proposed for DSR: path caches with FIFO replacement policy,

link caches with adaptive timeout mechanisms, and cache tables with my distributed

cache update algorithm. Simulation results show that the cache update algorithm makes

DSR scale significantly better with mobility. I conclude that making route caches adapt

quickly and efficiently to topology changes is key to the scalability of on-demand rout

ing protocols with mobility.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12 Future Work

Route caches in on-demand routing protocols are as important as routing tables in stan

dard IP routing in the Internet. Due to mobility, it is much more difficult to keep route

caches up-to-date than to maintain routing tables in the Internet. I have presented a

novel approach that achieves fast, accurate, and efficient cache updating. Two direc

tions can be explored in future work. First, optimizations can be incorporated into my

cache update algorithm. For example, the downstream nodes that have cached a broken

link sometimes may not be reachable. If there is a way to notify such nodes without ini

tiating route discoveries, then protocol performance will be further improved. Second,

my solution is applicable to other on-demand routing protocols. It is interesting to re

place adaptive timeout mechanisms used in other on-demand routing protocols with

distributed cache updating.

Two future directions can be explored with respect to improving TCP performance.

First, the network layer is a critical layer in the protocol stack. My distributed cache

update algorithm makes the network layer more mobility-aware. I also show that the

network layer should be aware of the transport layer information, provide feedback

about lost data, and provide reliability by retransmitting ACKs. More work to improve

TCP performance can be done at the network layer, such as providing feedback about

congestion. Second, a general solution to frequent packet losses is to send packet loss

notifications and to retransmit ACKs for lost ACKs. It is interesting to apply my solution

to other routing protocols.

Finally, it is challenging for routing protocols to be scalable with traffic load, net

work size, and mobility. My work contributes to the understanding of the scalability

of on-demand routing protocols. My insight can be generalized and applied to other

on-demand routing protocols. For example, if an ad hoc parameter limits the scalability

of a routing protocol, then it is necessary to make the parameter adaptive.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC 2581.

h t t p : / /www. f a q s . o r g / r f c s / r f c 2 5 8 1 . h tm l, April 1999.

[2] V. Anantharaman and R. Sivakumar. A microscopic analysis of TCP performance

over wireless ad-hoc networks. Presented in 2nd ACM SIGMETRICS (Poster

Paper), 2002.

[3] I. Aron and S. Gupta. On the scalability of on-demand routing protocols for mobile

ad hoc networks: an analytical study. Journal o f Interconnection Networks, 2(1):5—

29,2001.

[4] O. Arpacioglu, T. Small, and Z. Hass. Notes on scalability of wireless ad hoc net

works, IETF Internet Draft, h t t p : / /www. f l a r i o n . c o m / a n s - r e s e a r c h /

D r a f t s / d r a f t - i r t f - a n s - s c a l a b i l i t y - d e f i n . i t i o n - 0 1 . t x t / ,

December 2003.

[5] B. Bellur and R. Ogier. A reliable, efficient topology broadcast protocol for dy

namic networks. In Proc. 18th IEEE INFOCOM, 1999.

[6] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva. A performance com

parison of multi-hop wireless ad hoc network routing protocols. In Proc. 4th ACM

MobiCom, pp. 85-97,1998.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[7] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A feedback based

scheme for improving TCP performance in ad-hoc wireless networks. In Proc.

18th IEEE ICDCS, pp. 472-479, 1998.

[8] S. Corson and I. Macker. Mobile Ad hoc Networking (MANET): routing protocol

performance issues and evaluation considerations, RFC 2501. h t t p : / /www.

f a q s . o r g / r f c s / r f c 2 5 0 1 . h t m l , January 1999.

[9] D. Comer. Internetworking with TCP/IP: principles, protocols, and architectures,

Volume 1. Prentice Hall, 2000.

[10] T. Dyer and R. Bopanna. A comparision of TCP performance over three routing

protocols for mobile ad hoc networks. In Proc. 2nd ACM MobiHoc, pp. 56-66,

2001.

[11] J. Eriksson, M. Faloutsos, and S. Krishnamurthy. Scalable ad hoc routing: the case

for dynamic addressing. In Proc. 23rd IEEE INFOCOM, 2004.

[12] K. Fall and E. Varadhan. ns notes and documentation. The VINT Project, UC

Berkeley, LBL, USC/ISI, and Xerox PARC, 1997.

[13] Z. Fu, X. Meng, and S. Lu. How bad TCP can perform in mobile ad hoc networks.

In IEEE ISCC, 2002.

[14] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The impact of multihop

wireless channel on TCP throughput and loss. In Proc. 22nd IEEE INFOCOM,

2003.

[15] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid

ance. In IEEE/ACM Transactions on Networking, 1(4):397-413,1993.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[16] M. Gerla, K. Tang, and R. Bagrodia. TCP performance in wireless multi-hop

networks. In Proc. 2nd IEEE WMCSA, 1999.

[17] M. GrossgSauser and D. Tse. Mobility increases the capacity of wireless ad hoc

networks. In Proc. 20th IEEE INFOCOM, 2001.

[18] P. Gupta and P. Kumar. The capacity of wireless networks. IEEE Transactions on

Information Theory, 46(2):388-404, March 2000.

[19] Z. Haas and M. Pearlman. The performance of query control schemes for the Zone

Routing Protocol. In Proc. 9th ACM SIGCOMM, 1998.

[20] Z. Haas, M. Pearlman, and P. Samar. The Zone Routing Protocol (ZRP) for ad hoc

networks. IETF Internet Draft, h t t p : / /www. i e t f . o r g / p r o c e e d i n g s /

0 2 n o v / I - D / d r a f t - i e t f - m a n e t - z o n e - z r p - 04 . t x t , July 2002.

[21] G. Hollan and N. Vaidya. Analysis of TCP performance over mobile ad hoc net

works. In Proc. 5th ACM MobiCom, pp. 219-230, 1999.

[22] G. Hollan and N. Vaidya. Impact of routing and link layers on TCP performance

in mobile ad hoc networks. In Proc. IEEE WCNC, 1999.

[23] Y.-C. Hu and D. Johnson. Caching strategies in on-demand routing protocols for

wireless ad hoc networks. Proc 6th ACM MobiCom, pp. 231-242, 2000.

[24] Y.-C. Hu and D. B. Johnson. Ensuring cache freshness in on-demand ad hoc net

work routing protocols. In Proc. 2nd POMC, pp. 25-30, 2002.

[25] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE

Std 802.11-1997. The IEEE, New York, New York, 1997.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[26] A. Iwata, C. Chiang, G. Pei, M. Gerla, and T. Chen. Scalable routing strategies for

ad hoc wireless networks. IEEE Journal on Selected Areas in Communications,

17(8): 1369-1379, August 1999.

[27] V. Jacobson. Congestion avoidance and control. Computer communication review,

18(4):314-329, August 1988.

[28] P. Jacquet, P. Muhlethaler, A. Qayyum, A. Lanouiti, L. Viennot, and T. Clausen.

Optimized link state routing protocol (OLSR). IETF Internet Draft, h t t p :

/ / h i p e r c o m . i n r i a . f r / o l s r / d r a f t - i e t f - m a n e t - o l s r - 1 0 . t x t ,

May 2003.

[29] D. Johnson. Routing in ad hoc networks of mobile hosts. In Proc. 1st IEEE

WMCSA, pp. 158-163, 1994.

[30] D. Johnson and D. Maltz. Dynamic Source Routing in ad hoc wireless networks,

Chapter 5, pp. 153-181. Kluwer Academic Publishers, 1996.

[31] D. Johnson, D. Maltz, and Y.-C. Hu. The Dynamic Source Routing for

mobile ad hoc networks, IETF Internet Draft, h t t p : / / w w w . i e t f . o r g /

i n t e r n e t - d r a f t s / d r a f t - i e t f - m a n e t - d s r - 1 0 . t x t , July 2004.

[32] J. Jubin and J. Tomuw. The DARPA packet radio network protocols. Proceedings

o f IEEE, 75(1):21—32, 1987.

[33] Y.-B. Ko and N. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks.

Wireless Networks, 6(4):307-321, 2000.

[34] S.-J. Lee, E. Royer, and C. Perkins. Scalability study of the ad hoc on-demand

distance vector routing protocol. International Journal o f Network Management,

13(2):97—114, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ietf.org/

[35] J. Li, I. Jannotti, D. Couto, D. Karger, and R. Morris. A scalable location service

for geographic ad hoc routing. In Proc. 6th ACM MobiCom, 2000.

[36] J. Liu and S. Singh. ATCP: TCP for mobile ad hoc networks. IEEE Journal on

Selected Areas in Communication, 19(7): 1300-1315, 2001.

[37] W. Lou and Y. Fang. Predictive caching strategy for on-demand routing protocols

in wireless ad hoc networks. Wireless Networks, 8(6):671-679, 2002.

[38] D. Maltz, J. Brooch, J. Jetcheva, and D. Johnson. The effects of on-demand be

havior in routing protocols for multi-hop wireless ad hoc networks. IEEE Journal

on Selected Areas in Communication, 17(8).T439-1453, August 1999.

[39] M. Marina and S. Das. Performance of routing caching strategies in Dynamic

Source Routing. In Proc. 2nd WNMC, pp. 425-432, 2001.

[40] J. Monks, P. Sinha, and V. Bharghavan. Limitations of TCP-ELFN for ad hoc net

works. In Proc. 5th Workshop on Mobile and Multimedia Communication, 2000.

[41] V. Park and M. Corson. A highly adaptive distributed routing algorithm for mobile

wireless networks. In Proc. 16th IEEE INFOCOM, pp. 1405-1413,1997.

[42] C. Perkins and P. Bhagwat. Highly dynamic Destination-Sequenced Distance-

Vector routing (DSDV) for mobile computers. In Proc. 5th ACM SIGCOMM,

24(4):234-244, 1994.

[43] C. Perkins, E. Royer, and S. Das. Ad hoc On-demand Distance Vector (AODV)

routing. RFC 3561. h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 5 6 1 . t x t , July

2003.

[44] C. Perkins and E. Royer. Ad hoc on-demand distance vector routing. In Proc. 2nd

IEEE WMCSA, pp. 90-100, 1999.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ietf.org/rfc/rfc3561.txt

[45] C. Perkins, E. Royer, S. Das, and M. Marina. Performance comparison of two on-

demand routing protocols for ad hoc networks. IEEE Personal Communications

Magazine special issue on Ad hoc Networking, pp. 16-28, February 2001.

[46] D. Plummer. Ethernet Address Resolution Protocol: Or converting network pro

tocol addresses to 48.bit Ethernet address for transmission on Ethernet hardware.

RFC 826. h t t p : / /www. f a q s . o r g / r f c s / r f c8 2 6 . htm l,N ovem ber 1982.

[47] Monarch Project. Mobile networking architectures, h t t p : / / w w w .m onarch ,

c s . r i c e . e d u / .

[48] S. Ramanathan and M. Steenstrup. Hierarchically-organized, multihop mobile net

works for multimedia support. ACM/Baltzer Mobile Networks and Applications,

3(1): pp. 101-119,1998.

[49] C. Santivanez, B. McDonald, I. Stavrakakis, and R. Ramanathan. On the scalability

of ad hoc routing protocols. In Proc. 21st IEEE INFOCOM, 2002.

[50] C. Santivanez, R. Ramanathan, and I. Stavrakakis. Making link-state routing scale

for ad hoc networks. In Proc. 1st ACM MobiHoc, 2001.

[51] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar. ATP: A reliable

transport protocol for ad-hoc networks. In Proc. 4th ACM MobiHoc, pp. 64—75,

2003.

[52] F. Wang and Y. Zhang. Improving TCP performance over mobile ad-hoc networks

with out-of-order detection and response. In Proc. 3rd ACM MobiHoc, pp. 217-

225, 2002.

[53] K. Xu, M. Gerla, L. Qi, and Y. Shu. Enhancing TCP fairness in ad hoc wireless

networks using neighborhood RED. In Proc. 9th ACM MobiCom, pp. 16-28,2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.monarch

[54] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In Proc.

22nd IEEE INFOCOM, 2003.

[55] X. Yu. Improving TCP performance over mobile ad hoc networks by exploiting

cross-layer information awareness. In Proc. 10th ACM MobiCom, pp. 231-244,

Sept. 2004.

[56] X. Yu and D. Johnson. The impact of caching strategies on the scalability of on-

demand routing protocols. Submitted fo r Publication.

[57] X. Yu and Z. Kedem. Reducing the effect of mobility on TCP by making route

caches quickly adapt to topology changes. In Proc. 40th IEEE ICC, June 2004.

[58] X. Yu and Z. Kedem. A distributed adaptive cache update algorithm for the

Dynamic Source Routing protocol. In Proc. 24th IEEE INFOCOM, March 2005.

(An earlier version appears as NYU Computer Science TR2003-842, July 2003.)

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

