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Abstract

Building agents with general skills that can be applied in a wide range of settings has been a

long-standing problem in machine learning. The most popular framework for training agents to

make sequential decisions in order to maximize reward in a given environment is Reinforcement

Learning (RL). Over the last decade, deep reinforcement learning, where RL agents are parameter-

ized by neural networks, has achieved impressive results on a number of tasks, from games such

as Atari [Mnih et al. 2013], Go [Silver et al. 2016], StarCraft [Vinyals et al. 2019], or Dota [Berner

et al. 2019a], to continuous control tasks with applications in robotics [Lillicrap et al. 2015; Gu

et al. 2017].

However, current RL agents are prone to over�tting and struggle to generalize when even

minor perturbations are applied to the training environment [Rajeswaran et al. 2017b; Zhang et al.

2018a,d]. This hinders progress on real-world applications such as autonomous vehicles or home

robots, where agents need to deal with a large variety of scenarios. In this thesis, we introduce

several methods for improving the generalization and adaptation of deep reinforcement learning

agents. We start by studying the problem of zero-shot generalization to new instances of a task

after training on a limited number of environments. In this setting, agents are trained directly

from partial observations of the environment in the form of images. We �rst propose an approach

for regularizing the policy and value function of a RL agent and automatically �nding an e�ective

type of data augmentation for a given task. In addition, we demonstrate that a naive application

of data augmentation in RL can hurt performance in practice and is not theoretically sound for a
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certain class of algorithms. We also identify that there is an asymmetry between the information

needed to represent the optimal policy and the true value function, which leads to over�tting when

using standard deep RL algorithms. As a step towards solving this problem, we propose a method

which decouples the optimization of the policy and value, and constrains the representation to

be invariant to the task instance. Next, we focus on the problem of learning general exploration

strategies for environments with sparse rewards where the layout changes with each episode. We

demonstrate that prior exploration methods designed for �xed environments fall short in this

setting. To address this limitation, we formulate a new type of intrinsic reward which encourages

agents to impact their environments. Then, we discuss a novel approach for fast adaptation to

new dynamics. We show that our method, which leverages self-supervised techniques to learn

policy and environment embeddings, enables adaptation within a single episode on a number of

continuous control tasks. Finally, we investigate how agents can learn more �exible strategies for

interacting with di�erent opponents and collaborators.
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1 | Introduction

Humans are capable of employing strategies learned in one context to solve problems in

many other circumstances. In contrast, current reinforcement learning methods struggle to

generalize to new scenarios, often needing hundreds of thousands of diverse environments or task

instances [Cobbe et al. 2019a]. In this thesis, we aim to develop reinforcement learning algorithms

which generalize across a wider range of settings including completely new ones which have not

been used during training.

Over the past decade, deep learning methods have revolutionized many areas of machine

learning, such as computer vision [Ciresan et al. 2011; Ciregan et al. 2012; Krizhevsky et al. 2012]

speech recognition [Hinton et al. 2012], natural language processing [Bahdanau et al. 2014; Cho

et al. 2014; Mikolov et al. 2013; Sutskever et al. 2014; Devlin et al. 2018; Brown et al. 2020], and

reinforcement learning. Deep reinforcement learning (RL), a combination of deep learning and

reinforcement learning, is one of the most popular frameworks for developing agents that can

solve complex tasks which require sequential decision making. RL agents learn to act in new

environments through trial and error, in an attempt to maximize their total reward. Recently,

RL algorithms have demonstrated impressive results on a number of di�erent tasks, such as

achieving superhuman performance on classical Atari games [Mnih et al. 2013], defeating the

world champion at Go [Silver et al. 2017, 2018], achieving professional level in popular video

games such as Dota [Berner et al. 2019b] or Starcraft [Vinyals et al. 2019], and mastering certain

continuous control tasks [Lillicrap et al. 2015]. However, most success stories in single-agent RL
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evaluate agents on the same environment as the one used for training. Thus, generalization to

new scenarios remains a major challenge in deep reinforcement learning. Current methods fail to

generalize to unseen environments even when trained on similar settings [Farebrother et al. 2018;

Packer et al. 2018b; Zhang et al. 2018b; Cobbe et al. 2018; Gamrian and Goldberg 2019; Cobbe et al.

2019b; Song et al. 2020]. This indicates that standard RL agents memorize speci�c trajectories

rather than learning transferable skills.

Throughout this thesis, we will refer to the general problem that needs to be solved as the task

(e.g. �nd a goal inside a maze) and to the particular instantiation of this task as the environment

(e.g. maze layout, colors, textures, locations of the objects, environment dynamics etc.). The

environment can be singleton or procedurally generated. Singleton environments are those in

which the agent has to solve the same task in the same environment in every episode, i.e.., the

environment does not change between episodes. In procedurally generated environments, the

agent needs to solve the same task, but in every episode the environment is constructed di�erently

(e.g. resulting in a di�erent maze layout), making it unlikely for an agent to ever visit the same

state twice. Thus, agents in such environments have to learn policies that generalize well across a

very large state space.

This thesis aims to improve the generalization and adaptation of deep reinforcement learning

agents through advancements in four research areas:

1. zero-shot generalization to new instances of the same task when learning directly from

images;

2. exploration of procedurally generated environments with sparse rewards;

3. fast adaptation to new environment dynamics within a single episode;

4. strategic interaction with di�erent opponents and collaborators.

Generalization in Reinforcement Learning. In order to enable real-world applications

of deep reinforcement learning, agents need to generalize to new scenarios since the world is
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constantly changing and it is unfeasible to train on all possible variations an agent might encounter

at test time. In reinforcement learning, there are multiple facets of generalization. For example, an

agent may need to generalize to new states (e.g. layouts), observations (e.g. visual appearance

such as colors or patterns), dynamics (e.g. weather or road conditions), or reward functions (e.g.

other tasks). In the �rst two chapters, we focus on zero-shot generalization to new instances of a

task which implies generalization to di�erent states, observations, and dynamics, with the reward

function being the same across all environments (including training and test ones). We propose

two approaches which improve generalization in this setting. The �rst one uses data augmentation

to regularize the policy and value function of an RL agent. We show that a naive application of data

augmentation [Cobbe et al. 2018; Ye et al. 2020; Laskin et al. 2020] is not theoretically sound for a

certain class of algorithms and can decrease performance in practice. We also identify a particular

problem with popular deep RL methods which use a shared network to learn both the policy

and the value function. More information is needed to learn the optimal policy than accurately

estimate the value function, which leads to over�tting. To alleviate this problem, we propose the

use of separate networks for training the policy and value function, as well as an auxiliary loss to

avoid capturing instance-speci�c features which are not necessary for representing the optimal

policy. At the time of release, both of our proposed approaches achieved state-of-the-art results

on a challenging benchmark of procedurally generated games [Cobbe et al. 2019a]

Exploration in Procedurally Generated Environments. Procedurally generated environ-

ments are only now starting to become more widely used as testbeds for RL algorithms. Hence,

until now, most exploration methods have been designed for and evaluated on singleton en-

vironments. Here, we discuss how these methods have signi�cant limitations in procedurally

generated environments even if they are very e�ective on challenging singleton environments

such as Montezuma’s Revenge [Bellemare et al. 2013; Burda et al. 2019b]. We also introduce a new

type of intrinsic reward which is better suited for training in environments where each episode

is di�erent and the reward is very sparse. We demonstrate superior performance on a set of
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challenging tasks in partially observed and procedurally generated gridworlds [Chevalier-Boisvert

et al. 2018]. Exploration of procedurally generated environments is an important problem with

consequences for real-world applications. For example, a rescue robot might have to explore new

environments when deployed. The test environments might share some similarities with the

training environments, but are nevertheless di�erent and cannot be precisely anticipated. In such

cases, possessing general exploration strategies (which are e�ective in a wide variety of settings)

is crucial.

Adaptation to New Dynamics. Similarly, the ability to quickly adapt to new environment

dynamics is an essential property for an intelligent agent acting in the real-world, whether it

acts in the virtual or physical space. For example, a self-driving car needs di�erent policies for

controlling the vehicle when it rains, snows, or is sunny and dry. In this thesis, we propose a

new framework for fast adaptation to new dynamics. Our approach learns a value in a space of

policies and dynamics, which is then used at test time to �nd an e�ective behavior for the given

environment. Our method proves to be at least as good as popular meta-learning techniques [Finn

et al. 2017] on a series of continuous control tasks [Todorov et al. 2012a].

Interactingwith Other Agents. Many applications of interest (such as conversational agents

or virtual assistants) require agents to interact with others in the environment and adapt their

behavior to others’ hidden intentions. We study this setting and propose a new method for

modeling other agents and inferring their goals. This information is used by the acting agent

to adapt its policy accordingly in order to maximize reward. Designing agents which can take

into account others’ preferences (without the need for explicitly specifying them in the form of

instructions) could lead to more �exible and useful agents, thus unlocking important applications

such as virtual assistants.

This thesis is organized as follows. Chapter 2 provides a summary of reinforcement learning

in single-agent singleton environments, single-agent procedurally generated environments, and

multi-agent settings. Chapters 3 and 4 study the problem of zero-shot generalization to new
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instances of a task, and introduce two approaches which alleviate over�tting in RL. Chapter 5

proposes a new intrinsic reward for e�cient exploration of procedurally generated environments

with sparse rewards. Chapter 6 discusses a new framework for fast adaptation to new environment

dynamics, while Chapter 7 proposes a new method for adapting the agent’s policy depending

on the behavior of other agents. Finally, in Chapter 8, we summarize our �ndings and discuss

avenues for future research.

1.1 List of Contributions

• Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, Rob Fergus

Automatic Data Augmentation for Generalization in Reinforcement Learning. NeurIPS, 2021.
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• Roberta Raileanu, Rob Fergus

Decoupling Value and Policy for Generalization in Reinforcement Learning. ICML, 2021.

Code: https://github.com/rraileanu/idaac

• Roberta Raileanu, Tim Rocktäschel

Rewarding Impact-Driven Exploration for Procedurally-Generated Environments. ICLR,

2020.

Code: https://github.com/facebookresearch/impact-driven-exploration

• Roberta Raileanu, Max Goldstein, Arthur Szlam, Rob Fergus
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Code: https://github.com/rraileanu/policy-dynamics-value-functions
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2 | Background

In this chapter, we brie�y review single-agent and multi-agent reinforcement learning, as well

as how the formulation changes when training and testing on procedurally generated environ-

ments. The purpose of this section is to give a brief introduction of the class of problems and

techniques used throughout the thesis. Each chapter includes more detailed de�nitions for the

corresponding problem setting, thus being self-contained.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning that concerns learning policies

that optimize cumulative rewards based on interactions with learning environments. A common

framework for this optimization problem is the discounted in�nite horizon Markov Decision

Processes (MDPs) [Bellman 1957]. MDPs can be described as a tuple (S,A,P,R, W), where S is

the state space; A is the action space; P is the transition function (or dynamics) such that for any

BC ∈ S, BC+1 ∈ S, 0C ∈ A,P(BC+1 |BC , 0C ) represents the probability of transitioning to state BC+1 from

state BC by taking action 0C ; R is a reward function such that a reward BC at time step C is computed

as R(BC , 0C ); and W ∈ [0, 1] is a discount factor.

A deterministic and stationary policy c : S → A speci�es a decision-making strategy in

which the agent chooses actions based on the current state, i.e., 0C = c (BC ). More generally, the

agent may also choose actions according to a stochastic policy c : S → Δ(A), i.e., 0C ∼ c (BC ).
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The goal of the agent is to choose a policy c to maximize the expected discounted sum of

rewards, also called the expected return or value:

E

[ ∞∑
C=0

W C R(BC , 0C ) | c, B0
]

The expectation is with respect to the randomness of the trajectory, that is, the randomness in

state transitions and the stochasticity of c .

Given an MDP, for any state B and policy c , we de�ne the value function + c : S → R as:

+ c (B) = E
[ ∞∑
C=0

W C R(BC , 0C ) | 0C ∼ c (BC ), BC+1 ∼ P(BC , 0C ), B0 = B
]
,

which is the value obtained by following policy c starting at state B .

Similarly, we de�ne the state-action value function or Q function as &c : S × A → R as:

&c (B, 0) = E

[ ∞∑
C=0

W C R(BC , 0C ) | 0C ∼ c (BC ), BC+1 ∼ P(BC , 0C ), B0 = B, 00 = 0

]
.

We can also de�ne the advantage function �c (B, 0) in the following way:

�c (B, 0) = &c (B, 0) −+ c (B).

The advantage measures how much more return can be expected by taking action 0 in state B and

then following policy c relative to following policy c starting in state B .

Finally, the optimal policy is de�ned as:

c★(·|B) = argmaxc E0∼c (·|B)
[
&c (B, 0)

]
.

There are two large classes of solutions to the problem of �nding the optimal policy for a given

MDP, namely policy gradient methods and value based methods. In this thesis, we mostly focus
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on policy gradient approaches, so the following paragraphs will describe the core ideas behind

this type of algorithms.

Policy gradient methods aim to model and optimizing the policy directly. The policy is

usually parameterized by some function with learnable parameters \ , c\ (0 |B). Various algorithms

can be applied to optimize \ so that c\ (0 |B) maximizes the following objective function:

� (\ ) =
∑
B∈S

3c (B) + c (B) =
∑
B∈S

3c (B)
∑
0∈A

c\ (0 |B) &c (B, 0),

where 3c (B) is the stationary distribution of Markov chain for c\ (on-policy state distribution

under c ), i.e., 3c (B) = limC→∞P(BC = B |B0, c\ ). For simplicity, the parameter \ is omitted for the

policy c\ when the policy is present in the subscript of other functions.

Using gradient ascent, we can move \ toward the direction suggested by the gradient ∇\ � (\ )

to �nd the parameters \ which lead to the highest return when acting according to policy c\ .

The gradient can be written as:

∇\ � (\ ) = ∇\
∑
B∈S

.c (B)
∑
0∈A

c\ (0 |B)&c (B, 0)

∝
∑
B∈S

3c (B)
∑
0∈A

&c (B, 0)∇\c\ (0 |B)

=
∑
B∈S

3c (B)
∑
0∈A

c\ (0 |B)&c (B, 0)
∇\c\ (0 |B)
c\ (0 |B)

= Ec

[
&c (B, 0)∇\ lnc\ (0 |B)

]
,

where Ec refers to EB∼3c ,0∼c\ when both the action and state distribution follow the policy c\ . The

expected return can be estimated with Monte-Carlo methods by collecting trajectories from the

environment using the current policy.

The above derivation of the gradient is called the policy gradient theorem, which lays the

theoretical foundation for policy gradient algorithms. This vanilla policy gradient update has no
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bias but high variance. Many following algorithms were proposed to reduce the variance while

keeping the bias unchanged.

Schulman et al. [2015b] uni�es policy gradient methods under a general formulation,

∇\ � (\ ) = E
[ ∞∑
C=0

kC∇\ logc\ (0C |BC )
]
, (2.1)

wherekC may be one of the following: (i)
∑∞
C=0 AC : total reward of the trajectory; (ii)

∑∞
C ′=C AC ′: reward

following action 0C ; (iii)
∑∞
C ′=C AC ′ − 1 (BC ): baselined version of the previous formula; (iv) &c (B, 0):

state-action value function (v) �c (B, 0): advantage function; (vi) AC ++ c (BC+1) −+ c (BC ): temporal

di�erence (TD) residual.

Two main components in policy gradient are the policy model and the value function. It makes

a lot of sense to learn the value function in addition to the policy, since knowing the value function

can assist the policy update, such as by reducing gradient variance in vanilla policy gradients, and

that is exactly what the Actor-Critic method does.

Actor-critic methods consist of two models, which may optionally share parameters:

1. Critic updates the value function parameters q and depending on the algorithm it could be

state-action value function &q (0 |B) or value function +q (B).

2. Actor updates the policy parameters \ for c\ (0 |B), in the direction suggested by the critic.

Proximal Policy Optimization (PPO) [Schulman et al. 2017] is an actor-critic RL algorithm

that learns a policy c\ and a value function +\ with the goal of �nding an optimal policy for a

given MDP. PPO alternates between sampling data through interaction with the environment

and optimizing an objective function using stochastic gradient ascent. At each iteration, PPO

maximizes the following objective:

�PPO = �c − U1�+ + U2(c\ , (2.2)

10



where U1, U2 are weights for the di�erent loss terms, (c\ is the entropy bonus for aiding exploration,

�+ is the value function loss de�ned as

�+ =

(
+\ (B) −+ target

C

)2
.

The policy objective term �c is based on the policy gradient objective which can be estimated

using importance sampling in o�-policy settings (i.e. when the policy used for collecting data is

di�erent from the policy we want to optimize):

�%� (\ ) =
∑
0∈A

c\ (0 |B)�̂\old (B, 0) = E0∼c\old

[
c\ (0 |B)
c\old (0 |B)

�̂\old (B, 0)
]
, (2.3)

where �̂(·) is an estimate of the advantage function, \>;3 are the policy parameters before the

update, c\>;3 is the behavior policy used to collect trajectories (i.e. that generates the training

distribution of states and actions), and c\ is the policy we want to optimize (i.e. that generates the

true distribution of states and actions).

This objective can also be written as

�%� (\ ) = E0∼c\old

[
A (\ )�̂\old (B, 0)

]
, (2.4)

where

A\ =
c\ (0 |B)
c\old (0 |B)

is the importance weight for estimating the advantage function.

PPO is inspired by TRPO [Schulman et al. 2015a], which constrains the update so that the

policy does not change too much in one step. This signi�cantly improves training stability and

leads to better results than vanilla policy gradient algorithms. TRPO achieves this by minimizing

the KL divergence between the old (i.e. before an update) and the new (i.e. after an update) policy.
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PPO implements the constraint in a simpler way by using a clipped surrogate objective instead of

the more complicated TRPO objective. More speci�cally, PPO imposes the constraint by forcing

A (\ ) to stay within a small interval around 1, precisely [1 − n, 1 + n], where n is a hyperparameter.

The policy objective term from equation (2.2) becomes

�c = Ec

[
min

(
A\�̂, clip (A\ , 1 − n, 1 + n) �̂

)]
,

where �̂ = �̂\old (B, 0) for brevity. The function clip(A (\ ), 1 − n, 1 + n) clips the ratio to be no more

than 1 + n and no less than 1 − n . The objective function of PPO takes the minimum one between

the original value and the clipped version so that agents are discouraged from increasing the

policy update to extremes for better rewards.

In some of the chapters, we consider the Partially Observable Markov Decision Process

(POMDP) which is a combination of an MDP to model system dynamics with a hidden Markov

model that connects unobservant system states to observations. The agent can perform actions

which a�ect the system or (i.e. underlying state of the environment) with the goal to maximize a

reward that depends on the sequence of system states and actions taken by the agent. However,

the agent cannot directly observe the system state, but at each point in time, the agent makes

observations that depend on the state. The agent uses these observations to form a belief of the

underlying state of the POMDP.

Formally, a POMDP can be described by a tuple = (S,A,O,P,R,Z, W), where S is the state

space,A is the action space, P(B′|B, 0) is the state transition probability function, R : ( ×�→ R is

the reward function, O is the observation space,Z(> |B′, 0) is the observation transition probability

function, and W is the discount factor. At each time step, the environment is in some state B ∈ S.

The agent chooses an action 0 ∈ A, which causes the environment to transition to state B′ ∈ S

with probability P(B′|B, 0). At the same time, the agent receives an observation > ∈ Z(> |B′, 0)

which depends on the current state and previous action taken by the agent. Finally the agent
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receives a reward R(s, a). Then, the process repeats. As before, the goal is to select actions so that

the expected return is maximized.

2.2 Procedurally Generated Environments

For a long time, it was common to evaluate reinforcement learning agents on the same

environment as the one used for training. This setting already posed multiple challenges for RL

methods at the time, from credit assignment to exploration in sparse reward environments and

learning from high-dimensional observations such as images (where it is important to have useful

representations of the inputs in order to generalize across di�erent states). Popular benchmarks

such as the Arcade Learning Environment (ALE) [Bellemare et al. 2013], MuJoCo [Todorov

et al. 2012b], or DeepMind Control Suite (DMC) [Tassa et al. 2018b], which consist of singleton

environments (where the environment does not change throughout training or testing), have led

to signi�cant algorithmic progress in all areas mentioned above [Mnih et al. 2013; Schulman et al.

2015a; Lillicrap et al. 2015; Mnih et al. 2016a; Schulman et al. 2017; Espeholt et al. 2018a; Burda

et al. 2019a; Eco�et et al. 2019].

However, RL agents trained on such singleton environments are prone to over�tting to a speci�c

environment and often struggle to generalize to even slightly di�erent settings [Rajeswaran et al.

2017b; Zhang et al. 2018a,d]. This is problematic for real-world applications such as autonomous

vehicles or home robots, where agents need to deal with a very large variety of scenarios. In

addition, the world is constantly changing, so agents will need to generalize or quickly adapt to new

circumstances at test time. Procedurally generated environments are a promising path towards

developing more �exible agents and testing the generalization abilities of various RL methods.

Here, the game state is generated programmatically in every episode, making it extremely unlikely

for an agent to visit the exact state more than once during its lifetime. Recently, a number of such

environments have been released, such as DeepMind Lab [Beattie et al. 2016], Sokoban [Racanière
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et al. 2017], Malmö [Johnson et al. 2016], CraftAssist [Jernite et al. 2019], MiniGrid [Chevalier-

Boisvert et al. 2018], Sonic [Nichol et al. 2018a], CoinRun [Cobbe et al. 2019c], Obstacle Tower

[Juliani et al. 2019a], Capture the Flag [Jaderberg et al. 2019], Procgen [Cobbe et al. 2019a], or

The NetHack Learning Environment (NLE) [Kuttler et al. 2020]. Training agents on procedurally

generated environments is becoming increasingly more common [Raileanu and Rocktäschel 2020;

Zhang et al. 2020d; Campero et al. 2020; Laskin et al. 2020; Raileanu et al. 2020; Jiang et al. 2020;

Mazoure et al. 2020; Cobbe et al. 2020; Wang et al. 2020; Raileanu and Fergus 2021; Mazoure et al.

2021]. Moreover, these types of environments provide a systematic way for probing generalization

by holding out a number of the generated environments for testing, similar to the standard practice

in supervised learning.

When training on procedurally generated environments, we consider a distribution @(<)

of POMDPs < ∈ M, with < de�ned by the tuple < = (S<,A,O<,P<,R<,Z<, W), where S<

is the state space, O< is the observation space, A is the action space, P< (B′|B, 0) is the state

transition probability distribution,Z< (> |B′, 0) is the observation probability distribution, R< (B, 0)

is the reward function, and W is the discount factor. During training, we restrict access to a �xed

set of POMDPs, Mtrain = {<1, . . . ,<=}, where <8 ∼ @, ∀ 8 = 1, =. The goal is to �nd a policy

c\ which maximizes the expected discounted reward over the entire distribution of POMDPs,

� (c\ ) = E@,c,P<
[ ∑∞

C=0 W
C∇< (BC , 0C )

]
.

In practice, each POMDP< is determined by a seed or integer which is used to generate the

corresponding environment. When we want to evaluate zero-shot generalization to new POMDPs

from the same family, we can train agents on a �xed set of = POMDPs (generated using seeds

from 1 to n), and test them on the full distribution of levels (generated using any computer integer

seed).
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2.3 Multi-Agent Reinforcement Learning

In Chapter 7, we study the problem of adapting an agent’s policy depending on the behavior

of other agents in order to e�ectively cooperate or compete with them. Thus, here we formalize

the multi-agent setting, emphasizing how it di�ers from the single-agent framework.

In multi-agent reinforcement learning (MARL), multiple agents take actions in the environment,

each of them aiming to maximize their individual return. This can be formalized as a stochastic

game [Shapley 1953],� , de�ned by a tuple� = (S,U,O,P,R,Z, W, =), in which= agents identi�ed

by 0 ∈ A ≡ {1, . . . , =} choose sequential actions. As in the single-agent setting, the environment

has a true state B ∈ ( . At each time step, each agent takes an action D0 ∈ U, forming a joint action

u ∈ U ≡ U= which induces a transition in the environment according to the transition function

P(B′|B,u) : S ×U×S → R. HereU is the action space, the reward function speci�es a reward for

each agent, R(B,u, 0) : S × U × A → R and, as before, W ∈ [0, 1] is a discount factor. We denote

joint quantities over agents in bold, e.g., u, and joint quantities over agents other than a given

agent 0 with the superscript 0, e.g., u0 .
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3 | Automatic Augmentation for

Generalization in Reinforcement

Learning

Deep reinforcement learning (RL) agents often fail to generalize beyond their training envi-

ronments. To alleviate this problem, recent work has proposed the use of data augmentation.

However, di�erent tasks tend to bene�t from di�erent types of augmentations and selecting the

right one typically requires expert knowledge. In this chapter, we introduce three approaches

for automatically �nding an e�ective augmentation for any RL task. These are combined with

two new regularization terms for the policy and value function, required to make the use of data

augmentation theoretically sound for actor-critic algorithms. Relative to other approaches, our

agent learns policies and representations which are more robust to changes in the environment

that are irrelevant for solving the task, such as the background. At the time of releasing this work,

our method achieved a new state-of-the-art on the Procgen benchmark [Cobbe et al. 2019a] and

outperformed popular RL algorithms on DeepMind Control tasks with distractors [Zhang et al.

2020b].
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3.1 Introduction

Generalization to new environments remains a major challenge in deep reinforcement learning

(RL). Current methods fail to generalize to unseen environments even when trained on similar

settings [Farebrother et al. 2018; Packer et al. 2018b; Zhang et al. 2018b; Cobbe et al. 2018; Gamrian

and Goldberg 2019; Cobbe et al. 2019b; Song et al. 2020]. This indicates that standard RL agents

memorize speci�c trajectories rather than learning transferable skills. Several strategies have been

proposed to alleviate this problem, such as the use of regularization [Farebrother et al. 2018; Zhang

et al. 2018b; Cobbe et al. 2018; Igl et al. 2019], data augmentation [Cobbe et al. 2018; Lee et al. 2020;

Ye et al. 2020; Kostrikov et al. 2020; Laskin et al. 2020], or representation learning [Zhang et al.

2020a,c; Mazoure et al. 2020; Stooke et al. 2020; Agarwal et al. 2021]. In this work, we focus on

the use of data augmentation in RL. We identify key di�erences between supervised learning and

reinforcement learning which need to be taken into account when using data augmentation in RL.

More speci�cally, we show that a naive application of data augmentation can lead to both

theoretical and practical problems with standard RL algorithms, such as unprincipled objective

estimates and poor performance. As a solution, we propose Data-regularized Actor-Critic or

DrAC, a new algorithm that enables the use of data augmentation with actor-critic algorithms in

a theoretically sound way. Speci�cally, we introduce two regularization terms which constrain

the agent’s policy and value function to be invariant to various state transformations. Empirically,

this approach allows the agent to learn useful behaviors (outperforming strong RL baselines) in

settings in which a naive use of data augmentation completely fails or converges to a sub-optimal

policy. While we use Proximal Policy Optimization (PPO, Schulman et al. [2017]) to describe

and validate our approach, the method can be easily integrated with any actor-critic algorithm

with a discrete stochastic policy such as A3C [Mnih et al. 2013], SAC [Haarnoja et al. 2018], or

IMPALA [Espeholt et al. 2018a].

The current use of data augmentation in RL either relies on expert knowledge to pick an
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Figure 3.1: Overview of UCB-DrAC. A UCB bandit selects an image transformation (e.g. random-conv)
and applies it to the observations. The augmented and original observations are passed to a regularized
actor-critic agent (i.e. DrAC) which uses them to learn a policy and value function which are invariant to
this transformation.

appropriate augmentation [Cobbe et al. 2018; Lee et al. 2020; Kostrikov et al. 2020] or separately

evaluates a large number of transformations to �nd the best one [Ye et al. 2020; Laskin et al. 2020].

In this chapter, we propose three methods for automatically �nding a useful augmentation for a

given RL task. The �rst two learn to select the best augmentation from a �xed set, using either

a variant of the upper con�dence bound algorithm (UCB, Auer [2002]) or meta-learning (RL2,

Wang et al. [2016b]). We refer to these methods as UCB-DrAC and RL2-DrAC, respectively. The

third method, Meta-DrAC, directly meta-learns the weights of a convolutional network, without

access to prede�ned transformations (MAML, Finn et al. [2017]). Figure 3.1 gives an overview of

UCB-DrAC.

We evaluate these approaches on the Procgen generalization benchmark [Cobbe et al. 2019b]

which consists of 16 procedurally generated environments with visual observations. Our results

show that UCB-DrAC is the most e�ective among these at �nding a good augmentation, and is

comparable or better than using DrAC with the best augmentation from a given set. UCB-DrAC

also outperforms baselines speci�cally designed to improve generalization in RL [Igl et al. 2019;

Lee et al. 2020; Laskin et al. 2020] on both train and test. In addition, we show that our agent

learns policies and representations that are more invariant to changes in the environment which

do not alter the reward or transition function (i.e. they are inconsequential for control), such as

the background theme.

To summarize, our work makes the following contributions: (i) we introduce a principled way

of using data augmentation with actor-critic algorithms, (ii) we propose a practical approach for
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automatically selecting an e�ective augmentation in RL settings, (iii) we show that the use of

data augmentation leads to policies and representations that better capture task invariances, and

(iv) we demonstrate state-of-the-art results on the Procgen benchmark and outperform popular

RL methods on four DeepMind Control tasks with natural and synthetic distractors.

3.2 Related Work

Generalization inDeepRL.A recent body of work has pointed out the problem of over�tting

in deep RL [Rajeswaran et al. 2017a; Machado et al. 2018c; Justesen et al. 2018a; Packer et al. 2018b;

Zhang et al. 2018b,e; Nichol et al. 2018b; Cobbe et al. 2018, 2019b; Juliani et al. 2019b; Raileanu

and Rocktäschel 2020; Kuttler et al. 2020; Grigsby and Qi 2020]. A promising approach to prevent

over�tting is to apply regularization techniques originally developed for supervised learning such

as dropout [Srivastava et al. 2014; Igl et al. 2019] or batch normalization [Io�e and Szegedy 2015;

Farebrother et al. 2018; Igl et al. 2019]. For example, Igl et al. [2019] use selective noise injection with

a variational information bottleneck, while Lee et al. [2020] regularize the agent’s representation

with respect to random convolutional transformations. The use of state abstractions has also

been proposed for improving generalization in RL [Zhang et al. 2020a,c; Agarwal et al. 2021].

Similarly, Roy and Konidaris [2020] and Sonar et al. [2020] learn domain-invariant policies via

feature alignment, while Stooke et al. [2020] decouple representation from policy learning. Igl et al.

[2020] reduce non-stationarity using policy distillation, while Mazoure et al. [2020] maximize the

mutual information between the agent’s representation of successive time steps. Jiang et al. [2020]

improve e�ciency and generalization by sampling levels according to their learning potential,

while Wang et al. [2020] use mixtures of observations to impose linearity constraints between

the agent’s inputs and the outputs. More similar to our work, Cobbe et al. [2018], Ye et al. [2020]

and Laskin et al. [2020] add augmented observations to the training bu�er of an RL agent. However,

as we show here, naively applying data augmentation in RL can lead to both theoretical and
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practical issues. Our algorithmic contributions alleviate these problems while still bene�tting

from the regularization e�ect of data augmentation.

DataAugmentation has been extensively used in computer vision for both supervised [LeCun

et al. 1989; Becker and Hinton 1992; LeCun et al. 1998; Simard et al. 2003; Cireşan et al. 2011;

Ciresan et al. 2011; Krizhevsky et al. 2012] and self-supervised [Dosovitskiy et al. 2016; Misra

and van der Maaten 2019] learning. More recent work uses data augmentation for contrastive

learning, leading to state-of-the-art results on downstream tasks [Ye et al. 2019; Héna� et al. 2019;

He et al. 2019; Chen et al. 2020]. Domain randomization can also be considered a type of data

augmentation, which has proven useful for transferring RL policies from simulation to the real

world [Tobin et al. 2017]. However, it requires access to a physics simulator, which is not always

available. Recently, a few papers propose the use of data augmentation in RL [Cobbe et al. 2018;

Lee et al. 2020; Srinivas et al. 2020; Kostrikov et al. 2020; Laskin et al. 2020], but all of them use a

�xed (set of) augmentation(s) rather than automatically �nding the most e�ective one. The most

similar work to ours is that of Kostrikov et al. [2020], who propose to regularize the Q-function in

Soft Actor-Critic (SAC) [Haarnoja et al. 2018] using random shifts of the input image. Our work

di�ers from theirs in that it automatically selects an augmentation from a given set, regularizes

both the actor and the critic, and focuses on the problem of generalization rather than sample

e�ciency. While there is a body of work on the automatic use of data augmentation [Cubuk

et al. 2019a,b; Fang et al. 2019; Shi et al. 2019; Li et al. 2020], these approaches were designed for

supervised learning and, as we explain here, cannot be applied to RL without further algorithmic

changes.

3.3 Background

We consider the problem setting described in Section 2 where the goal is to �nd the optimal

policy for a faimly of POMDPs.
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In practice, we use the Procgen benchmark which contains 16 procedurally generated games.

Each game corresponds to a distribution of POMDPs @(<), and each level of a game corresponds

to a POMDP sampled from that game’s distribution< ∼ @. The POMDP< is determined by the

seed (i.e. integer) used to generate the corresponding level. Following the setup from Cobbe et al.

[2019b], agents are trained on a �xed set of = = 200 levels (generated using seeds from 1 to 200)

and tested on the full distribution of levels (generated using any computer integer seed).

3.3.1 Naive Data Augmentation in Reinforcement Learning

Image augmentation has been successfully applied in computer vision for improving general-

ization on object classi�cation tasks [Simard et al. 2003; Cireşan et al. 2011; Ciregan et al. 2012;

Krizhevsky et al. 2012]. As noted by Kostrikov et al. [2020], those tasks are invariant to certain

image transformations such as rotations or �ips, which is not always the case in RL. For example,

if your observation is �ipped, the corresponding reward will be reversed for the left and right

actions and will not provide an accurate signal to the agent. While data augmentation has been

previously used in RL settings without other algorithmic changes [Cobbe et al. 2018; Ye et al. 2020;

Laskin et al. 2020], we argue that this approach is not theoretically sound.

We consider that the policy is learned using an actor-critic algorithm such as PPO [Schulman

et al. 2017], which was described in Section 2. If transformations are naively applied to observations

in PPO’s bu�er, as done in Laskin et al. [2020], the PPO objective changes and equation (2.3) is

replaced by

�PG(\ ) = E0∼c\old

[
c\ (0 |5 (B))
c\old (0 |B)

�̂\old (B, 0)
]
, (3.1)

where 5 : S ×H → S is the image transformation. However, the right hand side of the above

equation is not a sound estimate of the left hand side because c\ (0 |5 (B)) ≠ c\ (0 |B), since nothing

constrains c\ (0 |5 (B)) to be close to c\ (0 |B). Note that in the on-policy case when \ = \>;3 , the

ratio used to estimate the advantage should be equal to one, which is not necessarily the case
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when using equation (3.1). In fact, one can de�ne certain transformations 5 (·) that result in an

arbitrarily large ratio c\ (0 |5 (B))/c\>;3 (0 |B).

Figure 3.8 (from Page 34) shows examples where a naive use of data augmentation prevents

PPO from learning a good policy in practice, suggesting that this is not just a theoretical concern. In

the following section, we propose an algorithmic change that enables the use of data augmentation

with actor-critic algorithms in a principled way.

3.4 Approach

3.4.1 Policy and Value Function Regularization

Inspired by the recent work of Kostrikov et al. [2020], we propose two novel regularization

terms for the policy and value functions that enable the proper use of data augmentation for

actor-critic algorithms. Our algorithmic contribution di�ers from that of Kostrikov et al. [2020] in

that it constrains both the actor and the critic, as opposed to only regularizing the Q-function.

This allows our method to be used with a di�erent (and arguably larger) class of RL algorithms,

namely those that learn a policy and a value function.

Following Kostrikov et al. [2020], we de�ne an optimality-invariant state transformation

5 : S × H → S as a mapping that preserves both the agent’s policy c and its value function

+ such that + (B) = + (5 (B, a)) and c (0 |B) = c (0 |5 (B, a)), ∀B ∈ S, a ∈ H , where a are the

parameters of 5 (·), drawn from the set of all possible parametersH .

To ensure that the policy and value functions are invariant to such transformation of the input

state, we propose an additional loss term for regularizing the policy,

�c =  ! [c\ (0 |B) | c\ (0 |5 (B, a))] , (3.2)
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as well as an extra loss term for regularizing the value function,

�+ =
(
+q (B) −+q (5 (B, a))

)2
. (3.3)

Thus, our data-regularized actor-criticmethod, orDrAC, maximizes the following objective:

�DrAC = �PPO − UA (�c +�+ ), (3.4)

where UA is the weight of the regularization term (see Algorithm 1).

The use of �c and �+ ensures that the agent’s policy and value function are invariant to the

transformations induced by various augmentations. Particular transformations can be used to

impose certain inductive biases relevant for the task (e.g. invariance with respect to colors or

translations). In addition, �c and �+ can be added to the objective of any actor-critic algorithm

with a discrete stochastic policy (e.g. A3C, TRPO, ACER, SAC, or IMPALA) without any other

changes.

Note that when using DrAC, as opposed to the method proposed by Laskin et al. [2020], we

still use the correct importance sampling estimate of the left hand side objective in equation (2.3)

(instead of a wrong estimate as in equation (3.1)). This is because the transformed observations

5 (B) are only used to compute the regularization losses �c and �+ , and thus are not used for

the main PPO objective. Without these extra terms, the only way to use data augmentation is

as explained in Section 3.3.1, which leads to inaccurate estimates of the PPO objective. Hence,

DrAC bene�ts from the regularizing e�ect of using data augmentation, while mitigating adverse

consequences on the RL objective. Hence, DrAC bene�ts from the regularizing e�ect of using data

augmentation, while mitigating adverse consequences on the RL objective.
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Algorithm 1 DrAC: Data-regularized Actor-Critic applied to PPO
Black: unmodi�ed actor-critic algorithm.
Cyan: image transformation.
Red: policy regularization.
Blue: value function regularization.

1: Hyperparameters: image transformation 5 , regularization loss coe�cient UA , minibatch size
M, replay bu�er size T, number of updates K.

2: for : = 1, . . . ,  do
3: Collect a new set of transitions D = {(B8, 08, A8, B8+1)})8=1 using c\ .
4: for 9 = 1, . . . , ∗ )

"
do

5: {(B8, 08, A8, B8+1)}"8=1 ∼ D ⊲ Sample a minibatch of transitions
6: for 8 = 1, . . . , " do
7: a8 ∼ H ⊲ Sample the augmentation parameters
8: ĉ8 ← cq (·|B8) ⊲ Compute the policy targets
9: +̂8 ← +q (B8) ⊲ Compute the value function targets

10: end for
11: �c (\ ) = 1

"

∑"
8=1  ! [ĉ8 | c\ (·|5 (B8, a8))] ⊲ Regularize the policy

12: �+ (q) = 1
"

∑"
8=1

(
+̂8 −+q (5 (B8, a8))

)2
⊲ Regularize the value function

13: �DrAC(\, q) = �PPO(\, q) − UA (�c (\ ) +�+ (q)) ⊲ Compute the total loss function
14: \ ←\ �DrAC ⊲ Update the policy
15: q ←q �DrAC ⊲ Update the value function
16: end for
17: end for
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3.4.2 Automatic Data Augmentation

Since di�erent tasks bene�t from di�erent types of transformations, we would like to design a

method that can automatically �nd an e�ective transformation for any given task. Such a technique

would signi�cantly reduce the computational requirements for applying data augmentation in

RL. In this section, we describe three approaches for doing this. In all of them, the augmentation

learner is trained at the same time as the agent learns to solve the task using DrAC. Hence, the

distribution of rewards varies signi�cantly as the agent improves, making the problem highly

nonstationary.

Upper Con�dence Bound. The problem of selecting a data augmentation from a given set

can be formulated as a multi-armed bandit problem, where the action space is the set of available

transformations F = {5 1, . . . , 5 =}. A popular algorithm for such settings is the upper con�dence

bound or UCB [Auer 2002], which selects actions according to the following policy:

5C = argmax5 ∈F

[
&C (5 ) + 2

√
log(C)
#C (5 )

]
, (3.5)

where 5C is the transformation selected at time step C , #C (5 ) is the number of times transformation

5 has been selected before time step C and 2 is UCB’s exploration coe�cient. Before the t-th DrAC

update, we use equation (3.5) to select an augmentation 5 . Then, we use equation (3.4) to update

the agent’s policy and value function. We also update the counter: #C (5 ) = #C−1(5 ) + 1. Next,

we collect rollouts with the new policy and update the Q-function: &C (5 ) = 1
 

∑C
8=C− R(58 = 5 ),

which is computed as a sliding window average of the past  episodes after using augmentation 5

to train the agent. We refer to this approach as UCB-DrAC (Algorithm 2). Note that UCB-DrAC’s

estimation of & (5 ) di�ers from that of a typical UCB algorithm which uses rewards from the

entire history. However, the choice of estimating & (5 ) using only more recent rewards is crucial

due to the nonstationarity of the problem.
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Algorithm 2 UCB-DrAC

1: Hyperparameters: Set of image transformations F = {5 1, . . . , 5 =}, exploration coe�cient c,
window for estimating the Q-functions W, number of updates K, initial policy parameters c\ ,
initial value function +q .

2: # (5 ) = 1, ∀ 5 ∈ F ⊲ Initialize the number of times each augmentation was selected
3: & (5 ) = 0, ∀ 5 ∈ F ⊲ Initialize the Q-functions for all augmentations
4: '(5 ) = FIFO(, ), ∀ 5 ∈ F ⊲ Initialize the lists of returns for all augmentations
5: for : = 1, . . . ,  do

6: 5: = argmax5 ∈F

[
& (5 ) + 2

√
log(:)
# (5 )

]
⊲ Use UCB to select an augmentation

7: Update the policy and value function according to Algorithm 1 with 5 = 5: and  = 1:
8: \ ←\ �DrAC ⊲ Update the policy
9: q ←q �DrAC ⊲ Update the value function

10: Compute the mean return obtained by the new policy A: .
11: Add A: to the '(5:) list using the �rst-in-�rst-out rule.
12: & (5:) ← 1

|'(5: ) |
∑
A∈'(5: ) A

13: # (5:) ← # (5:) + 1
14: end for

Meta-Learning the Selection of an Augmentation. Alternatively, the problem of selecting

a data augmentation from a given set can be formulated as a meta-learning problem. Here, we

consider a meta-learner like the one proposed by Wang et al. [2016b]. Before each DrAC update, the

meta-learner selects an augmentation, which is then used to update the agent using equation (3.4).

We then collect rollouts using the new policy and update the meta-learner using the mean return

of these trajectories. We refer to this approach as RL2-DrAC.

Meta-Learning the Weights of an Augmentation. Another approach for automatically

�nding an appropriate augmentation is to directly learn the weights of a certain transformation

rather than selecting an augmentation from a given set. In this work, we focus on meta-learning

the weights of a convolutional network which can be applied to the observations to obtain a

perturbed image. We meta-learn the weights of this network using an approach similar to the

one proposed by Finn et al. [2017]. For each agent update, we also perform a meta-update of the

transformation function by splitting DrAC’s bu�er into meta-train and meta-test sets. We refer to

this approach as Meta-DrAC.
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3.5 Experiments

In this section, we evaluate our methods on four DeepMind Control environments with

natural and synthetic distractors and the full Procgen benchmark [Cobbe et al. 2019b]

which consists of 16 procedurally generated games (see Figure 3.2). Procgen has a number of

attributes that make it a good testbed for generalization in RL: (i) it has a diverse set of games

in a similar spirit with the ALE benchmark [Bellemare et al. 2013], (ii) each of these games has

procedurally generated levels which present agents with meaningful generalization challenges,

(iii) agents have to learn motor control directly from images, and (iv) it has a clear protocol for

testing generalization.

Figure 3.2: Screenshots of multiple procedurally-generated levels from 15 Procgen environments: StarPilot,
CaveFlyer, Dodgeball, FruitBot, Chaser, Miner, Jumper, Leaper, Maze, BigFish, Heist, Climber, Plunder,
Ninja, BossFight (from le� to right, top to bo�om).

All environments use a discrete 15 dimensional action space and produce 64 × 64 × 3 RGB
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observations. We use Procgen’s easy setup, so for each game, agents are trained on 200 levels and

tested on the full distribution of levels. We use PPO as a base for all our methods.

Data Augmentation. In our experiments, we use a set of eight transformations: crop,

grayscale, cutout, cutout-color, �ip, rotate, random convolution and color-jitter [Krizhevsky et al.

2012; DeVries and Taylor 2017]. We use RAD’s [Laskin et al. 2020] implementation of these

transformations, except for crop, in which we pad the image with 12 (boundary) pixels on each

side and select random crops of 64 × 64. We found this implementation of crop to be signi�cantly

better on Procgen, and thus it can be considered an empirical upper bound of RAD in this case. For

simplicity, we will refer to our implementation as RAD. DrAC uses the same set of transformations

as RAD, but is trained with additional regularization losses for the actor and the critic, as described

in Section 3.4.1.

Automatic Selection of Data Augmentation. We compare three di�erent approaches for

automatically �nding an e�ective transformation: UCB-DrAC which uses UCB [Auer 2002]

to select an augmentation from a given set, RL2-DrAC which uses RL2 [Wang et al. 2020] to

do the same, and Meta-DrAC which uses MAML [Finn et al. 2017] to meta-learn the weights

of a convolutional network. Meta-DrAC is implemented using the higher library [Grefenstette

et al. 2019]. Note that we do not expect these approaches to be better than DrAC with the best

augmentation. In fact, DrAC with the best augmentation can be considered to be an upper bound

for these automatic approaches since it uses the best augmentation during the entire training

process.

Ablations. DrC and DrA are ablations to DrAC that use only the value or only the policy

regularization terms, respectively. DrC can be thought of an analogue of DrQ [Kostrikov et al. 2020]

applied to PPO rather than SAC.Rand-DrAC uses a uniform distribution to select an augmentation

each time. Crop-DrAC uses crop for all games (which is the most e�ective augmentation on half

of the Procgen games). UCB-RAD combines UCB with RAD (i.e. it does not use the regularization

terms).

28



Baselines. We also compare with Rand-FM [Lee et al. 2020], IBAC-SNI [Igl et al. 2019],

Mixreg [Wang et al. 2016b], and PLR [Jiang et al. 2020], four methods speci�cally designed for

improving generalization in RL and previously tested on Procgen environments. Rand-FM uses a

random convolutional networks to regularize the learned representations, while IBAC-SNI uses

an information bottleneck with selective noise injection. Mixreg uses mixtures of observations to

impose linearity constraints between the agent’s inputs and the outputs, while PLR samples levels

according to their learning potential.

Evaluation Metrics. At the end of training, for each method and each game, we compute

the average score over 100 episodes and 10 di�erent seeds. The scores are then normalized using

the corresponding PPO score on the same game. We aggregate the normalized scores over all 16

Procgen games and report the resulting mean, median, and standard deviation (Table 3.1).

3.5.1 Generalization Performance on Procgen

Table 3.1 shows train and test performance on Procgen. UCB-DrAC signi�cantly outperforms

PPO, Rand-FM, IBAC-SNI, PLR, and Mixreg. As shown in Jiang et al. [2020], combining PLR with

UCB-DrAC achieves a new state-of-the-art on Procgen leading to a 76% gain over PPO. Regularizing

the policy and value function leads to improvements over merely using data augmentation, and

thus the performance of DrAC is better than that of RAD (both using the best augmentation

for each game). In addition, we demonstrate the importance of regularizing both the policy and

the value function rather than either one of them by showing that DrAC is superior to both

DrA and DrC. Our experiments show that the most e�ective way of automatically �nding an

augmentation is UCB-DrAC. As expected, meta-learning the weights of a CNN using Meta-DrAC

performs reasonably well on the games in which the random convolution augmentation helps. But

overall, Meta-DrAC and RL2-DrAC are worse than UCB-DrAC. In addition, UCB is generally more

stable, easier to implement, and requires less �ne-tuning compared to meta-learning algorithms.

See Figures 3.3 and 3.4 for a comparison of these methods on each Procgen game. Moreover,
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Table 3.1: Train and test performance for the Procgen benchmark (aggregated over all 16 tasks, 10 seeds).
(a) compares PPO with four baselines specifically designed to improve generalization in RL and shows that
they do not significantly help. (b) compares using the best augmentation from our set with and without
regularization, corresponding to DrAC and RAD respectively, and shows that regularization improves
performance on both train and test. (c) compares di�erent approaches for automatically finding an
augmentation for each task, namely using UCB or RL2 for selecting the best transformation from a given
set, or meta-learning the weights of a convolutional network (Meta-DrAC). (d) shows additional ablations:
DrA regularizes only the actor, DrC regularizes only the critic, Rand-DrAC selects an augmentation using a
uniform distribution, Crop-DrAC uses image crops for all tasks, and UCB-RAD is an ablation that does
not use the regularization losses. UCB-DrAC performs best on both train and test, and achieves a return
comparable with or be�er than DrAC (which uses the best augmentation).

PPO-Normalized Return (%)
Train Test

Method Median Mean Std Median Mean Std

(a)
PPO 100.0 100.0 7.2 100.0 100.0 8.5
Rand-FM 93.4 87.6 8.9 91.6 78.0 9.0
IBAC-SNI 91.9 103.4 8.5 86.2 102.9 8.6
Mixreg 95.8 104.2 3.1 105.9 114.6 3.3
PLR 101.5 106.7 5.6 107.1 128.3 5.8

(b) DrAC (Best) (Ours) 114.0 119.6 9.4 118.5 138.1 10.5
RAD (Best) 103.7 109.1 9.6 114.2 131.3 9.4

(c)
UCB-DrAC (Ours) 102.3 118.9 8.8 118.5 139.7 8.4
RL2-DrAC 96.3 95.0 8.8 99.1 105.3 7.1
Meta-DrAC 101.3 100.1 8.5 101.7 101.2 7.3

(b)

DrA (Best) 102.6 117.7 11.1 110.8 126.6 9.0
DrC (Best) 103.3 108.2 10.8 110.6 115.4 8.5
Rand-DrAC 100.4 99.5 8.4 102.4 103.4 7.0
Crop-DrAC 97.4 112.8 9.8 114.0 132.7 11.0
UCB-RAD 100.4 104.8 8.4 103.0 125.9 9.5

automatically selecting the augmentation from a given set using UCB-DrAC performs similarly

well or even better than a method that uses the best augmentation for each task throughout the

entire training process. UCB-DrAC also achieves higher returns than an ablation that uses a

uniform distribution to select an augmentation each time, Rand-DrAC. Nevertheless, UCB-DrAC

is better than Crop-DrAC, which uses crop for all the games (which is the best augmentation for 8

out of all 16 Procgen games).
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Figure 3.3: Train performance of various approaches that automatically select an augmentation, namely
UCB-DrAC, RL2-DrAC, and Meta-DrAC. The mean and standard deviation are computed using 10 runs.
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3.5.2 DeepMind Control with Distractors

In this section, we evaluate our approach on the DeepMind Control Suite from pixels (DMC,

Tassa et al. [2018a]). We use four tasks, namely Cartpole Balance, Finger Spin, Walker Walk, and

Cheetah Run, in two settings with di�erent types of backgrounds, namely the simple distractors

and the natural videos from the Kinetics dataset [Kay et al. 2017], as introduced in Zhang et al.

[2020b]. See Figure 3.5 for a few examples of these environments.

Figure 3.5: DMC environment examples. Top row: default backgrounds without any distractors. Middle
row: simple distractor backgrounds with ideal gas videos. Bo�om row: natural distractor backgrounds
with Kinetics videos. Tasks from le� to right: Finger Spin, Cheetah Run, Walker Walk.

Note that in the simple and natural settings, the background is sampled from a list of videos

at the beginning of each episode, which creates spurious correlations between the backgrounds

and the rewards. As shown in Figures 3.6 and 3.7, in the simple and natural distractor settings,

UCB-DrAC outperforms PPO and RAD on all these environments.
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Figure 3.6: Average return on DMC tasks with simple (i.e. synthetic) distractor backgrounds with mean
and standard deviation computed over 5 seeds. UCB-DrAC outperforms PPO and RAD with the best
augmentations.
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Figure 3.7: Average return on DMC tasks with natural video backgrounds with mean and standard
deviation computed over 5 seeds. UCB-DrAC outperforms PPO and RAD with the best augmentations.

3.5.3 Regularization Effect

In Section 3.3.1, we argued that additional regularization terms are needed in order to make

the use of data augmentation in RL theoretically sound. However, one might wonder if this

problem actually appears in practice. Thus, we empirically investigate the e�ect of regularizing

the policy and value function. For this purpose, we compare the performance of RAD and DrAC

with grayscale and random convolution augmentations on Chaser, Miner, and StarPilot.
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Figure 3.8: Comparison between RAD and DrAC with the same augmentations, grayscale and random
convolution, on the test environments of Chaser (le�), Miner (center), and StarPilot (right). While DrAC’s
performance is comparable or be�er than PPO’s, not using the regularization terms, i.e. using RAD,
significantly hurts performance relative to PPO. This is because, in contrast to DrAC, RAD does not use a
principled (importance sampling) estimate of PPO’s objective.

Figure 3.8 shows that not regularizing the policy and value function with respect to the

transformations used can lead to drastically worse performance than vanilla RL methods, further
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emphasizing the importance of these loss terms. In contrast, using the regularization terms as

part of the RL objective (as DrAC does) results in an agent that is comparable or, in some cases,

signi�cantly better than PPO.

3.5.4 Automatic Augmentation

Our experiments indicate there is not a single augmentation that works best across all Procgen

games. Moreover, our intuitions regarding the best transformation for each game might be

misleading. For example, at a �rst sight, Ninja appears to be somewhat similar to Jumper, but the

augmentation that performs best on Ninja is color-jitter, while for Jumper is random-conv. In

contrast, Miner seems like a di�erent type of game than Climber or Ninja, but they all have the

same best performing augmentation, namely color-jitter. These observations further underline

the need for a method that can automatically �nd the right augmentation for each task.
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Figure 3.9: Cumulative number of times UCB selects each augmentation over the course of training for
Ninja (a) and Dodgeball (c). Train and test performance for PPO, DrAC with the best augmentation for each
game (color-ji�er and crop, respectively), and UCB-DrAC for Ninja (b) and Dodgeball (d). UCB-DrAC finds
the most e�ective augmentation from the given set and reaches the performance of DrAC. Our methods
improve both train and test performance.

3.5.5 Robustness Analysis

To further investigate the generalizing ability of these agents, we analyze whether the learned

policies and state representations are invariant to changes in the observations which are irrelevant

for solving the task.
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Table 3.2: JSD and Cycle-Consistency (%) (aggregated across all Procgen tasks) for PPO, RAD and UCB-
DrAC, measured between observations that vary only in their background themes (i.e. colors and pa�erns
that do not interact with the agent). UCB-DrAC learns more robust policies and representations that are
more invariant to changes in the observation that are irrelevant for the task.

Cycle-Consistency (%)
JSD 2-way 3-way

Method Mean Median Mean Median Mean Median
PPO 0.25 0.23 20.50 18.70 12.70 5.60
RAD 0.19 0.18 24.40 22.20 15.90 8.50

UCB-DrAC 0.16 0.15 27.70 24.80 17.30 10.30

Table 3.1 along with Figure 3.4 compare di�erent approaches for automatically �nding an

augmentation, showing that UCB-DrAC performs best and reaches the asymptotic performance

obtained when the most e�ective transformation for each game is used throughout the entire

training process. Figure 3.9 illustrates an example of UCB’s policy during training on Ninja and

Dodgeball, showing that it converges to always selecting the most e�ective augmentation, namely

color-jitter for Ninja and crop for Dodgeball.

We �rst measure the Jensen-Shannon divergence (JSD) between the agent’s policy for an

observation from a training level and a modi�ed version of that observation with a di�erent

background theme (i.e. color and pattern). Note that the JSD also represents a lower bound for

the joint empirical risk across train and test [Ilse et al. 2020]. The background theme is randomly

selected from the set of backgrounds available for all other Procgen environments, except for the

one of the original training level. Note that the modi�ed observation has the same semantics as

the original one (with respect to the reward function), so the agent should have the same policy

in both cases. Moreover, many of the backgrounds are not uniform and can contain items such

as trees or planets which can be easily misled for objects the agent can interact with. As seen in

Table 3.2, UCB-DrAC has a lower JSD than PPO, indicating that it learns a policy that is more

robust to changes in the background.

To quantitatively evaluate the quality of the learned representation, we use the cycle-consistency
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metric proposed by Aytar et al. [2018] and also used by Lee et al. [2020]. Table 3.2 reports the

percentage of input observations in the seen environment that are cycle-consistent with trajecto-

ries in modi�ed unseen environments, which have a di�erent background but the same layout.

UCB-DrAC has higher cycle-consistency than PPO, suggesting that it learns representations that

better capture relevant task invariances.

3.6 Conclusion

In this chapter, we introduced UCB-DrAC, a method for automatically �nding an e�ective

data augmentation for RL tasks. This approach enables the principled use of data augmentation

with actor-critic algorithms by regularizing the policy and value functions with respect to state

transformations. As shown here, UCB-DrAC avoids the theoretical and empirical pitfalls typical in

naive applications of data augmentation in RL. Our approach improves training performance by

19% and test performance by 40% on the Procgen benchmark, thus setting a new state-of-the-art

at the time of release. In addition, the learned policies and representations are more invariant

to spurious correlations between observations and rewards. One promising avenue for future

research is to use a more expressive function class for meta-learning the transformations in order

to capture a wider range of inductive biases.

Our work was the �rst to show the bene�ts of automatically selecting a type of data augmenta-

tion for improving generalization in reinforcement learning. We were also the �rst to demonstrate

strong results on the entire Procgen benchmark, and thus UCB-DrAC has been widely used as a

baseline in future papers [Jiang et al. 2020; Fan and Li 2021; Raileanu and Fergus 2021]. Since the

release of our work, other types of data augmentation have demonstrated generalization gains in

RL, such as the use of soft augmentations to decouple representation from policy learning [Hansen

et al. 2019], the use of convex combinations of the input observations [Wang et al. 2020], or the

distillation from an expert with weak augmentations to a student with strong augmentations [Fan
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et al. 2021]. Data augmentation has also been used in o�ine reinforcement learning for improving

generalization to new environment dynamics [Ball et al. 2021]. To learn more general policies

which are less sensitive to task-irrelevant features, Fan and Li [2021] proposed to use multi-view

information bottlenecks, while Agarwal et al. [2021] proposed to learn representations which

capture the behavioral similarity among states. A number of works have shown that combining

data augmentation with other complementary approaches, such as automatic curricula [Jiang

et al. 2020] or state abstractions [Agarwal et al. 2021], can lead to additional improvements. In

particular, our method UCB-DrAC combined with Prioritized Level Replay [Jiang et al. 2020]

improves test performance on the hard setting of Procgen by 87% relative to PPO. Finally, Ko and

Ok [2021] have studied the e�ect of when data augmentation is being used during the training

process and showed that the optimal timing can depend on the task and augmentation used.
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4 | Decoupling Value and Policy for

Generalization in Reinforcement

Learning

In the previous chapter, we discussed how standard deep reinforcement learning agents can be

brittle to changes in their observation which shouldn’t a�ect their behavior, such as di�erent colors

or backgrounds. We also showed that constraining the policy and value function to be invariant

to certain transformations can result in more robust agents. In this chapter, we study a di�erent

problem with standard deep reinforcement learning methods which can lead to over�tting. When

training RL agents, particularly from high-dimensional observations such as images, it is common

practice to use a shared representation for the policy and value function. However, we argue

that more information is needed to accurately estimate the true value function than to learn the

optimal policy. Consequently, the use of a shared representation for the policy and value function

can lead to over�tting. To alleviate this problem, in this chapter we introduce two approaches

which are combined to create IDAAC: Invariant Decoupled Advantage Actor-Critic. First, IDAAC

decouples the optimization of the policy and value function, using separate networks to model

them. Second, it introduces an auxiliary loss which encourages the representation to be invariant

to task-irrelevant properties of the environment. IDAAC shows good generalization to unseen

environments, achieving a new state-of-the-art on the Procgen benchmark and outperforming
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popular methods on DeepMind Control tasks with distractors.

4.1 Introduction

Here we consider the problem of generalizing to unseen instances (or levels) of procedurally

generated environments, after training on a relatively small number of such instances. While the

high-level goal is the same, the background, dynamics, layouts, as well as the locations, shapes,

and colors of various entities, di�er across instances.

In this work, we identify a new factor that leads to over�tting in such settings, namely the

use of a shared representation for the policy and value function. We point out that accurately

estimating the value function requires instance-speci�c features in addition to the information

needed to learn the optimal policy. When training a common network for the policy and value

function (as is currently standard practice in pixel-based RL), the need for capturing level-speci�c

features in order to estimate the value function can result in a policy that does not generalize well

to new task instances.

Figure 4.1: Policy-Value Asymmetry. Two Ninja levels with initial observations that are semantically
identical but visually di�erent. Level 1 (first three frames from the le� with black background) is much
shorter than Level 2 (last six frames with blue background). Both the true and the estimated values (by
a PPO agent trained on 200 levels) of the initial observation are higher for Level 1 than for Level 2 i.e.
+1(B0) > +2(B0) and +̂1(B0) > +̂2(B0). Thus, to accurately predict the value function, the representations
must capture level-specific features (such as the backgrounds), which are irrelevant for finding the optimal
policy. Consequently, using a common representation for both the policy and value function can lead
to overfi�ing to spurious correlations and poor generalization to unseen levels. In contrast to the value,
the true advantage of the initial states and noop action has the same values for the two levels, and the
advantages predicted by the agent also have very similar values.
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4.1.1 Policy-Value Representation Asymmetry

To illustrate this phenomenon, which we call the policy-value representation asymmetry,

consider the example in Figure 4.1 which shows two di�erent levels from the Procgen game

Ninja [Cobbe et al. 2019b]. The �rst observations of the two levels are semantically identical and

could be represented using the same features (describing the locations of the agent, the bombs,

and the platform, while disregarding the background patterns and wall colors). An optimal agent

should take the same action in both levels, namely that of moving to the right to further explore

the level and move closer to the goal (which is always to its right in this game). However, these two

observations have di�erent values. Note that Level 1 is much shorter than Level 2, and the levels

look quite di�erent from each other after the initial part. A standard RL agent (e.g. PPO [Schulman

et al. 2017]) completes the levels in 24 and 50 steps, respectively. The true value of the initial

observation is the expected return (i.e. sum of discounted rewards) received during the episode.

In this game, the agent receives a reward of 10 when it reaches the goal and 0 otherwise. Hence,

the true value is higher for Level 1 than for Level 2 since the reward is discounted only for 24

steps rather than 50. In order to accurately estimate the value of an observation (which is part

of the objective function for many popular RL methods), the agent must memorize the number

of remaining steps in that particular level (which for the initial observation is equivalent to the

episode’s length). To do this, the agent must use instance-speci�c features such as the background

(which can vary across a level so that each observation within a level has a slightly di�erent

background pattern). For the case shown in Figure 4.1, the agent can learn to associate a black

background with a higher value than a blue background. But this is only a spurious correlation

since the background has no causal e�ect on the state’s value, unlike the agent’s position relative

to items it can interact with. If an agent uses a shared representation for learning the policy and

value function, capturing such spurious correlations can result in policies that do not generalize

well to new instances, similar to what happens in supervised learning [Arjovsky et al. 2019].
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Furthermore, if the environment is partially observed, an agent should have no way of pre-

dicting its expected return in a new level. At the same time, the agent could still select the

optimal action if it has learned good state representations (i.e. that capture the minimal set

of features needed to act in the environment in order to solve the task). Thus, in partially ob-

served procedurally generated environments, accurately predicting the value function can require

instance-speci�c features which are not necessary for learning the optimal policy.

To address the policy-value representation asymmetry, we propose Invariant Decoupled

Advantage Actor-Critic or IDAAC for short, which makes two algorithmic contributions. First,

IDAAC decouples the policy and value optimization by using two separate networks to learn

each of them. The policy network has two heads, one for the policy and one for the generalized

advantage function. The value network is needed to compute the advantage, which is used both

for the policy-gradient objective and as a target for the advantage predictions. Second, IDAAC uses

an auxiliary loss which constrains the policy representation to be invariant to the task instance.

To summarize, our work makes the following contributions: (i) identi�es that using a shared

representation for the policy and value function can lead to over�tting in RL; (ii) proposes a new

approach that uses separate networks for the policy and value function while still learning e�ective

behaviors; (iii) introduces an auxiliary loss for encouraging representations to be invariant to the

task instance, and (iv) demonstrates state-of-the-art generalization on the Procgen benchmark

and outperforms popular RL methods on DeepMind Control tasks with distractors.

4.2 Related Work

Generalization inDeepRL. See Section 3.2 for a discussion of the literature on generalization

in deep RL. Since the release of that work, other approaches have been proposed. For example, Chen

[2020] use surprise minimization, Bengio et al. [2020] study the link between generalization and

interference in TD-learning, while Bertrán et al. [2020] prove that agents trained with o�-policy
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actor-critic methods over�t to their training instances, which is consistent with our empirical

results. However, none of these works focus on the asymmetry between the optimal policy and

value representation.

Decoupling the Policy and Value Function. While the current standard practice in deep

RL from pixels is to share parameters between the policy and value function in order to learn

good representations and reduce computational complexity [Mnih et al. 2016a; Silver et al. 2017;

Schulman et al. 2017], a few papers have explored the idea of decoupling the two for improving

sample e�ciency [Barth-Maron et al. 2018; Pinto et al. 2018; Yarats et al. 2019; Andrychowicz

et al. 2020; Cobbe et al. 2020]. In contrast with prior work, our work focuses on generalization to

unseen environments and is the �rst one to point out that using shared features for the policy and

value functions can lead to over�tting to spurious correlations. Most similar to our work, Cobbe

et al. [2020] aim to alleviate the interference between policy and value optimization, but there

are some key di�erences between their approach and ours. In particular, our method does not

require an auxiliary learning phase for distilling the value function while constraining the policy,

it does not use gradients from the value function to update the policy parameters, and it uses two

auxiliary losses for training the policy network, one based on the advantage function and one that

enforces invariance with respect to the environment instance. Prior work has also explored the

idea of predicting the advantage in the context of Q-learning [Wang et al. 2016c], but this setting

does not pose the same challenges since it does not learn policies directly.

4.3 Background

We use the setup from the previous chapter, as described in Section 3.3.
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4.4 Approach

We use the setup from the previous chapter, as described in Section 3.3.

Policy Network Value Network

DAAC

Policy Encoder Discriminator

IDAAC

Figure 4.2: Overview of DAAC (le�) and IDAAC (right). DAAC uses two separate networks, one for
learning the policy and advantage, and one for learning the value. The value estimates are used to compute
the advantage targets. IDAAC adds an additional regularizer to the DAAC policy encoder to ensure that it
does not contain episode-specific information. The encoder is trained adversarially with a discriminator so
that it cannot classify which observation from a given pair (B8 , B 9 ) was first in a trajectory.

We start by describing our �rst contribution, namely the Decoupled Advantage Actor-Critic

(DAAC) algorithm, which uses separate networks for learning the policy and value function

(Figure 4.2 (left), Section 4.4.2). Then, we extend this method by adding an auxiliary loss to

constrain the policy representation to be invariant to the environment instance, which yields the

Invariant Decoupled Advantage Actor-Critic (IDAAC) algorithm (Figure 4.2 (right), Section 4.4.3).

4.4.1 Decoupling the Policy and Value Function

To address the problem of over�tting due to the coupling of the policy and value function, we

propose a new actor-critic algorithm that uses separate networks for learning the policy and value

function, as well as two auxiliary losses. A naive solution to the problem of parameter sharing

between the policy and value function would be to simply train two separate networks. However,

this approach is insu�cient for learning e�ective behaviors because the policy network relies on

gradients from the value function to learn useful features for the training environments. As shown
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by Cobbe et al. [2020], using separate networks for optimizing the policy and value function leads

to drastically worse training performance than using a shared network, with no sign of progress

on many of the tasks (see Figure 8 in their paper). Since such approaches cannot even learn useful

behaviors for the training environments, they are no better on the test environments. These

results indicate that without gradients from the value to update the policy network, the agent

struggles to learn good behaviors. This is consistent with the fact that the gradients from the

policy objective are notoriously sparse and high-variance, making training di�cult, especially for

high-dimensional state spaces (e.g. when learning from images). In contrast, the value loss can

provide denser and less noisy gradients, leading to more e�cient training. Given this observation,

it is natural to investigate whether other auxiliary losses can provide similarly useful gradients

for training the policy network, while also alleviating the problem of over�tting to spurious

correlations.

4.4.2 Using the Advantage instead of the Value Function

As an alternative to the value function, we propose to predict the generalized advantage

estimate (GAE) or advantage for short. As illustrated in Section 4.5.5, the advantage is less prone to

over�tting to certain types of environment idiosyncrasies. Intuitively, the advantage is a measure

of the expected additional return which can be obtained by taking a particular action relative to

following the current policy. Because the advantage is a relative measure of an action’s value while

the value is an absolute measure of a state’s value, the advantage can be expected to vary less with

the number of remaining steps in the episode. Thus, the advantage is less likely to over�t to such

instance-speci�c features. To learn generalizable representations, we need to �t a metric invariant

to cosmetic changes in the observation which do not modify the underlying state. As shown in

Figure 4.1, semantically identical yet visually distinct observations can have very di�erent values

but the same advantages (for a given action). This indicates that the advantage might be a good

candidate to replace the value as an auxiliary loss for training the policy network.
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In order to predict the advantage, we need an estimate of the value function which we obtain

by simply training a separate network to output the expected return for a given state. Thus, our

method consists of two separate networks, the value network parameterized by q which is trained

to predict the value function, and the policy network parameterized by \ which is trained to learn

a policy that maximizes the expected return and also to predict the advantage function.

The policy network of DAAC is trained to maximize the following objective:

�DAAC(\ ) = �c (\ ) + UsSc (\ ) − Ua!A(\ ), (4.1)

where �c (\ ) is the policy gradient objective, (c (\ ) is an entropy bonus to encourage exploration,

!A(\ ) is the advantage loss, while Us and Ua are their corresponding weights determining each

term’s contribution to the total objective.

The policy objective term is the same as the one used by PPO (see Section 2):

�c (\ ) = ÊC
[
min

(
AC (\ )�̂C , clip (AC (\ ), 1 − n, 1 + n) �̂C

)]
,

where AC (\ ) = c\ (0C |BC )
c\>;3

(0C |BC ) and �̂C is the advantage function at time step C .

The advantage function loss term is de�ned as:

!A(\ ) = ÊC
[(
�\ (BC , 0C ) − �̂C

)2
]
,

where �̂C is the corresponding generalized advantage estimate at time step C , �̂C =
∑)
:=C
(W_):−CX: ,

with XC = AC + W+q (BC+1) −+q (BC ) which is computed using the estimates from the value network.

The value network of DAAC is trained to minimize the following loss:

!V(q) = ÊC
[(
+q (BC ) − +̂C

)2
]
,
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where +̂C is the total discounted reward obtained during the corresponding episode after step C ,

+̂C =
∑)
:=C
W:−CA: .

During training, we alternate between �c epochs for training the policy network and �+

epochs for training the value network every #c policy updates. See Algorithm 3 for a more

detailed description of DAAC.

Algorithm 3 DAAC: Decoupled Advantage Actor-Critic
1: Hyperparameters: Total number of updates N, replay bu�er size T, number of epochs per

policy update �c , number of epochs per value update �+ , frequency of value updates #c ,
weight for the advantage loss U0 , initial policy parameters \ , initial value parameters q .

2: for = = 1, . . . , # do
3: Collect D = {(BC , 0C , AC , BC+1)})C=1 using c (\ ).
4: Compute the value and advantage targets +̂C and �̂C for all states BC
5: for 8 = 1, . . . , �c do

6: !A(\ ) = ÊC
[(
�\ (BC , 0C ) − �̂C

)2
]

⊲ Compute the Advantage Loss

7: �DAAC(\ ) = �c (\ ) + UsSc (\ ) − Ua!A(\ ) ⊲ Compute the Policy Loss
8: \ ←\ �DAAC ⊲ Update the Policy Network
9: end for

10: if = % #c = 0 then
11: for 9 = 1, . . . , �+ do

12: !V(q) = ÊC
[(
+q (BC ) − +̂C

)2
]

⊲ Compute the Value Loss

13: q ←q !V ⊲ Update the Value Network
14: end for
15: end if
16: end for

As our experiments show, predicting the advantage rather than the value provides useful

gradients for the policy network so it can learn e�ective behaviors on the training environments,

thus overcoming the challenges encountered by prior attempts at learning separate policy and

value networks [Cobbe et al. 2020]. In addition, it mitigates the problem of over�tting caused by

the use of value gradients to update the policy network, thus also achieving better performance

on test environments.
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4.4.3 Learning Instance-Invariant Features

From a generalization perspective, a good state representation is characterized by one that

captures the minimum set of features necessary to learn the optimal policy and ignores instance-

speci�c features which might lead to over�tting. As emphasized in Figure 4.1, due to the diversity

of procedurally generated environments, the observations may contain information indicative of

the number of remaining steps in the corresponding level. Since di�erent levels have di�erent

lengths, capturing such information given only a partial view of the environment translates into

capturing information speci�c to that level. Because such features over�t to the idiosyncrasies

of the training environments, they can results in suboptimal policies on unseen instances of the

same task.

Hence, one way of constraining the learned representations to be agnostic to the environment

instance is to discourage them from carrying information about the number of remaining steps in

the level. This can be formalized using an adversarial framework so that a discriminator cannot

tell which observation from a given pair came �rst within an episode, based solely on their

learned features. Similar ideas have been proposed for learning disentangled representations of

videos [Denton and Birodkar 2017].

Let �\ be an encoder that takes as input an observation B and outputs a feature vector 5 . This

encoder is the same as the one used by the policy network so it is also parameterized by \ . Let �

be a discriminator parameterized by k that takes as input two features 58 and 5 9 (in this order),

corresponding to two observations from the same trajectory B8 and B 9 , and outputs a number

between 0 and 1 which represents the probability that observation B8 came before observation B 9 .

The discriminator is trained using a cross-entropy loss that aims to predict which observation

48



was �rst in the trajectory:

!D(k ) = − log
[
Dk

(
E\ (B8), E\ (B 9 )

) ]
− log

[
1 − Dk

(
E\ (B8), E\ (B 9 )

) ]
.

(4.2)

Note that only the discriminator’s parameters are updated by minimizing the loss in eq. 4.2, while

the encoder’s parameters remain �xed during this optimization.

The other half of the adversarial framework imposes a loss function on the encoder that tries

to maximize the uncertainty (i.e. entropy) of the discriminator regarding which observation was

�rst in the episode:

!E(\ ) = −
1
2

log
[
Dk

(
E\ (B8), E\ (B 9 )

) ]
− 1

2
log

[
1 − Dk

(
E\ (B8), E\ (B 9 )

) ]
.

(4.3)

Similar to the above, only the encoder’s parameters are updated by minimizing the loss in

eq. 4.3, while the discriminator’s parameters remain �xed during this optimization.

Thus, the policy network is encouraged to learn state representations so that the discriminator

cannot identify whether a state came before or after another state. In so doing, the learned

representations cannot carry information about the number of remaining steps in the environment,

yielding features which are less instance-dependent and thus more likely to generalize outside the

training distribution. Note that this adversarial loss is only used for training the policy network

and not the value network.

To train the policy network, we maximize the following objective which combines the DAAC

objective from eq. 4.1 with the above adversarial loss, resulting in IDAAC’s objective:

�IDAAC(\ ) = �DAAC(\ ) − U8!E(\ ), (4.4)
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where U8 is the weight of the adversarial loss relative to the policy objective. Similar to DAAC, a

separate value network is trained. See Algorithm 4 for a more detailed description of IDAAC.

Algorithm 4 IDAAC: Invariant Decoupled Advantage Actor-Critic
1: Hyperparameters: Total number of updates N, replay bu�er size T, number of epochs per

policy update �c , number of epochs per value update �+ , frequency of value updates #c ,
weight for the invariance loss U8 , initial policy parameters \ , initial value parameters q .

2: for = = 1, . . . , # do
3: Collect D = {(BC , 0C , AC , BC+1)})C=1 using c (\ ).
4: Compute the value and advantage targets +̂C and �̂C for all states BC
5: for 8 = 1, . . . , �c do

6: !A(\ ) = ÊC
[(
�\ (BC , 0C ) − �̂C

)2
]

⊲ Compute the Advantage Loss

7: !E(\ ) = −1
2 log

[
Dk

(
E\ (B8), E\ (B 9 )

) ]
− 1

2 log
[
1 − Dk

(
E\ (B8), E\ (B 9 )

) ]
⊲ Compute the

Encoder Loss
8: �IDAAC(\, q,k ) = �c (\ ) + UsSc (\ ) − Ua!A(\ ) − U8!E(\ ) ⊲ Compute the Policy Loss
9: !D(k ) = −log

[
Dk

(
E\ (B8), E\ (B 9 )

) ]
− log

[
1 − Dk

(
E\ (B8), E\ (B 9 )

) ]
⊲ Compute the

Discriminator Loss
10: \ ←\ �IDAAC ⊲ Update the Policy Network
11: k ←k !D ⊲ Update the Discriminator
12: end for
13: if = % #c = 0 then
14: for 9 = 1, . . . , �+ do

15: !V(q) = ÊC
[(
+q (BC ) − +̂C

)2
]

⊲ Compute the Value Loss

16: q ←q !V ⊲ Update the Value Network
17: end for
18: end if
19: end for

We expect this inductive bias to be mostly useful in Markovian environments which do not

require memory to solve the task and the optimal action can be determined given only the current

observation (even if these are only partial views of the environment). In environments which

require memory to be solved, we expect that it might be desirable for the representations to

contain information regarding the order of the observations.
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4.5 Experiments

In this section, we evaluate our methods on two distinct environments: (i) three DeepMind

Control suite tasks with synthetic and natural background distrators [Zhang et al. 2020b] and (ii)

the full Procgen benchmark [Cobbe et al. 2019b] which consists of 16 procedurally generated games.

Procgen in particular has a number of attributes that make it a good testbed for generalization

in RL: (i) it has a diverse set of games in a similar spirit with the ALE benchmark [Bellemare

et al. 2013]; (ii) each of these games has procedurally generated levels which present agents with

meaningful generalization challenges; (iii) agents have to learn motor control directly from images,

and (iv) it has a clear protocol for testing generalization, the focus of our investigation.

All Procgen environments use a discrete 15 dimensional action space and produce 64 × 64 × 3

RGB observations. We use Procgen’s easy setup, so for each game, agents are trained on 200 levels

and tested on the full distribution of levels.

4.5.1 Generalization Performance on Procgen

We compare DAAC and IDAAC with seven other RL algorithms: PPO [Schulman et al. 2017],

UCB-DrAC [Raileanu et al. 2020], PLR [Jiang et al. 2020], Mixreg [Wang et al. 2020], IBAC-

SNI [Igl et al. 2019], Rand-FM [Lee et al. 2020], and PPG [Cobbe et al. 2020]. UCB-DrAC

is the previous state-of-the-art on Procgen and uses data augmentation to learn policy and

value functions invariant to various input transformations PLR is a newer approach that uses an

automatic curriculum based on the learning potential of each level and achieves strong results on

Procgen. Rand-FM uses a random convolutional network to regularize the learned representations,

IBAC-SNI uses an information bottleneck with selective noise injection, while Mixreg uses mixtures

of observations to impose linearity constraints between the agent’s inputs and outputs. All three

were designed to improve generalization in RL and evaluated on Procgen games. Finally, PPG is

the only method we are aware of that learns good policies while decoupling the optimization of
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the policy and value function. However, PPG was designed to improve sample e�ciency rather

than generalization and the method was evaluated only on Procgen’s training distribution of

environments.

Table 4.1: PPO-Normalized Procgen scores on train and test levels a�er training on 25M environment
steps. Our approaches, DAAC and IDAAC, establish a new state-of-the-art on the test distribution of
environments from the Procgen benchmark, while also showing strong training performance. The mean
and standard deviation are computed using 10 runs with di�erent seeds.

Score RAND-FM IBAC-SNI Mixreg PLR UCB-DrAC PPG DAAC (Ours) IDAAC (Ours)

Train 87.6 ± 8.9 103.4 ± 8.5 104.2 ± 3.1 106.7 ± 5.6 118.9 ± 8.0 144.5 ± 5.7 131.0 ± 6.1 132.2 ± 5.9

Test 78.0 ± 9.0 102.9 ± 8.6 114.6 ± 3.3 128.3 ± 5.8 139.7 ± 8.3 152.2 ± 5.8 162.3 ± 6.2 163.7 ± 6.1
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Figure 4.3: Train and Test Performance for IDAAC, DAAC, PPG, UCB-DrAC, and PPO, on eight
diverse Procgen games. IDAAC and DAAC display state-of-the-art performance on the test levels,
beating leading approaches (PPG and UCB-DrAC), as well a PPO baseline. Furthermore, IDAAC and DAAC
exhibit a smaller generalization gap than other methods. The mean and standard deviation are computed
over 10 runs with di�erent seeds.

Table 4.1 shows the train and test performance of all methods, aggregated across all Procgen

games. DAAC and IDAAC outperform all the baselines on both train and test. Figure 4.3 shows

the train and test performance on eight of the Procgen games. We show comparisons with a

vanilla RL algorithm PPO, the previous state-of-the-art UCB-DrAC and our strongest baseline
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PPG. Both of our approaches, DAAC and IDAAC, show superior results on the test levels, relative

to the other methods. In addition, IDAAC and DAAC achieve better or comparable performance

on the training levels for most of these games. While DAAC already shows notable gains over the

baselines, IDAAC further improves upon it, thus emphasizing the bene�ts of combining our two

contributions. Figures 4.4 and 4.5 show the train and test performance, respectively, for IDAAC,

DAAC, PPG, UCB-DrAC, and PPO on all Procgen games.
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Figure 4.4: Train Performance of IDAAC, DAAC, PPG, UCB-DrAC, and PPO on all Procgen games.
IDAAC outperforms the other methods on most games and is significantly be�er than PPO. The mean and
standard deviation are computed over 10 runs with di�erent seeds.
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Figure 4.5: Test Performance of IDAAC, DAAC, PPG, UCB-DrAC, and PPO on all Procgen games. IDAAC
outperforms the other methods on most games and is significantly be�er than PPO. The mean and standard
deviation are computed over 10 runs with di�erent seeds.
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4.5.2 Ablations

We also performed a number of ablations to emphasize the importance of each component

used by our method. First, Decoupled Value Actor-Critic or DVAC is an ablation to DAAC that

learns to predict the value rather than the advantage for training the policy network. This ablation

helps disentangle the e�ect of predicting the advantage function from the e�ect of using a separate

value network and performing multiple updates for the value than for the policy. In principle, this

decoupling could result in a more accurate estimate of the value function, which can in turn lead

to more e�ective policy optimization. Second, Advantage Actor-Critic or AAC is a modi�cation

to PPO that includes an extra head for predicting the advantage function (in a single network).

The role of this ablation is to understand the importance of not backpropagating gradients from

the value into the policy network, even while using gradients from the advantage.
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Figure 4.6: Train and Test Performance for PPO, DAAC, and two of its ablations, DVAC and AAC,
on four Procgen games. DAAC outperforms all the ablations on both train and test, emphasizing the
importance of each component. The mean and standard deviation are computed over 5 runs with di�erent
seeds.

Figure 4.6 shows the train and test performance of DAAC, DVAC, AAC, and PPO on four

Procgen games. DAAC outperforms all the ablations on both train and test environments, em-

phasizing the importance of each component. In particular, the fact that AAC’s generalization

ability is worse than that of DAAC suggests that predicting the advantage function in addition

to also predicting the value function (as part of training the policy network) does not solve the

problem of over�tting. Hence, using the value loss to update the policy parameters still hurts
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generalization even when the advantage is also used to train the network. In addition, the fact

that DVAC has worse test performance than DAAC indicates that DAAC’s gains are not merely

due to having access to a more accurate value function or to the reduced interference between

optimizing the policy and value.

These results are consistent with our claim that using gradients from the value to update the

policy can lead to representations that over�t to spurious correlations in the training environments.

In contrast, using gradients from the advantage to train the policy network leads to agents that

generalize better to new environments.

4.5.3 DeepMind Control with Distractors

In this section, we evaluate our methods on the DeepMind Control Suite from pixels (DMC,

Tassa et al. [2018a]). We use three tasks, namely Cartpole Balance, Cartpole Swingup, and Ball In

Cup. For each task, we study two settings with di�erent types of backgrounds, namely synthetic

distractors and natural videos from the Kinetics dataset [Kay et al. 2017], as introduced in Zhang

et al. [2020b]. Note that in the synthetic and natural settings, the background is sampled from

a list of videos at the beginning of each episode, which creates spurious correlations between

backgrounds and rewards. As shown in Figure 4.7, DAAC and IDAAC signi�cantly outperform

PPO, UCB-DrAC, and PPG on all these environments.
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Figure 4.7: Average return on two DMC tasks, Cartpole Balance and Cartpole Swingup with
natural and synthetic video backgrounds. Our DAAC and IDAAC approaches outperform PPO, PPG,
and UCB-DrAC. The mean and standard deviation are computed over 10 runs with di�erent seeds.
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For our DMC experiments, we followed the protocol proposed in Zhang et al. [2020b] to modify

the tasks so that they contain natural and synthetic distractors in the background. For each DMC

task, we split the generated environments (each with a di�erent background video) into training

(80%) and testing (20%). The results shown here correspond to the average return on the test

environments, over the course of training. Note that this setting is slightly di�erent from the

one used in Raileanu et al. [2020] which shows results on all the generated environments, just

like Zhang et al. [2020b].

4.5.4 Value Loss and Generalization

When using actor-critic policy-gradient algorithms, a more accurate estimate of the value

function leads to lower variance gradients and thus better policy optimization on a given envi-

ronment [Sutton et al. 1999]. While an accurate value function improves sample e�ciency and

training performance, it can also lead to over�tting when the policy and value share the same

representation. To validate this claim, we looked at the correlation between value loss and test

performance. More speci�cally, we trained 6 PPO agents on varying numbers of Procgen levels,

namely 200, 500, 1000, 2000, 5000, and 10000. As expected, models trained on a larger number of

levels generalize better to unseen levels as illustrated in Figure 4.8. However, agents trained on

more levels have a higher value loss at the end of training than agents trained on fewer levels, so the

value loss is positively correlated with generalization ability. This observation is consistent with our

claim that using a shared network for the policy and value function can lead to over�tting. Our

hypothesis was that, when using a common network for the policy and value function, accurately

predicting the values implies that the learned representation relies on spurious correlation, which

would likely lead to poor generalization at test time. Similarly, an agent with good generalization

suggests that its representation relies on the features needed to learn an optimal policy for the

entire family of environments, which are insu�cient for accurately predicting the value function

(as explained in Section 4.1.1). See Figures 4.9, 4.10, and 4.11 for the relationship between value
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loss, test score, and the number of training levels for all Procgen games.
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Figure 4.8: PPO agents trained on varying numbers of levels: 200, 500, 1000, 2000, 5000, and
10000 for Plunder (le�) and Maze (right). For each game, from le� to right we show the test score,
value loss, and correlation between value loss and test score a�er 25M training steps. Both the test score
and the value loss increase with the number of training levels used. These results indicate there is a positive
correlation between value loss and generalization when using a shared network for the policy and value
function.
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Figure 4.9: Correlation of the value loss and test score for PPO agents trained on varying num-
bers of levels: 200, 500, 1000, 2000, 5000, and 10000. Surprisingly, the value loss is positively correlated
with the test score for most games, suggesting that models with larger value loss generalize be�er.
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Figure 4.10: Test score for PPO agents trained on varying numbers of levels: 200, 500, 1000, 2000,
5000, and 10000. For most games, the test score increases with the number of training levels, suggesting
that models trained on more levels generalize be�er to unseen levels, as expected.
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Figure 4.11: Value loss for PPO agents trained on varying numbers of levels: 200, 500, 1000, 2000,
5000, and 10000. For most games, the value loss increases with the number of training levels used,
suggesting that models trained on more levels (and thus with be�er generalization) have higher value loss.
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4.5.5 Advantage vs. Value During an Episode

In Section 4.1, we claim that in procedurally generated environments with partial observability,

in order to accurately estimate the value function, the agent needs to memorize the number of

remaining steps in the level. As Figure 4.1 shows, a standard RL agent predicts very di�erent

values for the initial states of two levels even if the observations are semantically identical. This

suggests that the agent must have memorized the length of each level since the partial observation

at the beginning of a level does not contain enough information to accurately predict the expected

return.

Table 4.2: The trade-o� between generalization and value accuracy illustrated on a single Ninja
level. A PPO agent trained on 200 levels (blue) has high value accuracy but low generalization performance,
and its value predictions have a near linear dependency on the episode step. This linear relationship further
supports the claim that the agent memorizes level-specific features which are needed to predict the value
function given only partial observations. In contrast, a PPO agent trained on 10k levels (red) with good
generalization but low value accuracy does not display this linear trend. When sharing parameters for
the policy and value function, there is a trade-o� between fi�ing the value and learning general policies.
By decoupling the policy and value, our model DAAC can achieve both high value accuracy and good
generalization performance. To train the policy, DAAC uses gradients from predicting the advantage
(green), which does not display the linear trend, thus is less prone to overfi�ing. DAAC’s value estimate
(orange) still shows a linear trend but, in contrast to PPO, this does not negatively a�ect the policy since
DAAC uses separate networks to learn the policy and value.

PPO-200 PPO-10k DAAC-200

Test Score: 5.9
Value Loss: 0.2

Test Score: 8.8
Value Loss: 0.3

Test Score: 7.3
Value Loss: 0.2

We further investigate this issue by exploring the predicted value’s dependency on the episode

step. Instead of just comparing the initial states as in Figure 4.1, we plot the value predicted by

the agent over the course of an entire trajectory in one of the Ninja levels (see Table 4.2). Since

the agent is rewarded only if it reaches the goal at the end of the episode, the true value increases
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linearly with the episode step over the course of the agent’s trajectory. As seen in Table 4.2, the

estimated value of a PPO agent trained on 200 levels also has a quasi-linear dependence on the

episode step, suggesting that the agent must know how many remaining steps are in the game at

any point during this episode. However, the episode step cannot be inferred solely from partial

observations since the training levels contain observations with the same semantics but di�erent

values, as illustrated in Figure 4.1. In order to accurately predict the values of such observations,

the agent must learn representations that capture level-speci�c features (such as the backgrounds)

which would allow it to di�erentiate between semantically similar observations with di�erent

values. Since PPO uses a common representation for the policy and value function, this can lead

to policies that over�t to the particularities of the training environments. Note that a PPO agent

trained on 10k levels does not show the same linear trend between the value and episode step.

This implies that there is a trade-o� between generalization and value accuracy for models that

use a shared network to learn the policy and value.
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Figure 4.12: Examples illustrating the timestep-dependence of the value function for a single
CoinRun level. The dark and light blue curves show the value as a function of episode step for PPG and
PPO, respectively, each trained on 200 levels. Note the near linear relationship, indicating overfi�ing to the
training levels. By contrast, a PPO model (red) trained on 10k levels (thus exhibiting far less overfi�ing)
does not show this relationship. Our DAAC model trained on 200 levels (green) also lacks this adverse
dependence in the advantage prediction which is used for training the policy network, thus is able to
generalize be�er than the PPO model trained on the same amount of data (see Fig. 4.3). Nevertheless,
DAAC’s value estimate still have a linear trend (orange) but, in contrast to PPO and PPG, this does not
negatively a�ect the policy since we use separate networks for learning the policy and value.

By decoupling the policy and value, our model DAAC can achieve both high value accuracy

and good generalization performance. Note that the advantage estimated by DAAC (trained on 200

levels) shows no clear dependence on the environment step, thus being less prone to over�tting.
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Figure 4.13: Examples illustrating the timestep-dependence of the value function for a single
Climber level. The dark and light blue curves show the value as a function of episode step for PPG and
PPO, respectively, each trained on 200 levels. Note the near linear relationship, indicating overfi�ing to the
training levels. By contrast, a PPO model (red) trained on 10k levels (thus exhibiting far less overfi�ing)
does not show this relationship. Our DAAC model trained on 200 levels (green) also lacks this adverse
dependence in the advantage prediction which is used for training the policy network, thus is able to
generalize be�er than the PPO model trained on the same amount of data (see Fig. 4.3). Nevertheless,
DAAC’s value estimate still have a linear trend (orange) but, in contrast to PPO and PPG, this does not
negatively a�ect the policy since we use separate networks for learning the policy and value.
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Figure 4.14: Examples illustrating the timestep-dependence of the value function for a single
Jumper level. The dark and light blue curves show the value as a function of episode step for PPG and
PPO, respectively, each trained on 200 levels. Note the near linear relationship, indicating overfi�ing to the
training levels. By contrast, a PPO model (red) trained on 10k levels (thus exhibiting far less overfi�ing)
does not show this relationship. Our DAAC model trained on 200 levels (green) also lacks this adverse
dependence in the advantage prediction which is used for training the policy network, thus is able to
generalize be�er than the PPO model trained on the same amount of data (see Fig. 4.3). Nevertheless,
DAAC’s value estimate still have a linear trend (orange) but, in contrast to PPO and PPG, this does not
negatively a�ect the policy since we use separate networks for learning the policy and value.

Nevertheless, DAAC’s value estimate still shows a linear trend but, in contrast to PPO, this does

not negatively a�ect the policy since DAAC uses separate networks for the policy and value. This

analysis indicates that using advantages rather than values to update the policy network leads to

better generalization performance while also being able to accurately predict the value function.

See Figures 4.12, 4.13, and 4.14 for similar results on CoinRun, Climber, and Jumper, as well as

comparisons with PPG which displays a similar trend as PPO trained on 200 levels.
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4.5.6 Value Variance

In this section, we look at the variance in the predicted values for the initial observation, across

all training levels. In partially-observed procedurally generated environments, there should be

no way of telling how di�cult or long a level is (and thus how much reward is expected) from

the initial observation alone since the end of the level cannot be seen. Thus, we would expect a

model with strong generalization to predict similar values for the initial observation irrespective

of the environment instance. If this is not the case and the model uses a common representation

for the policy and value function, the policy is likely to over�t to the training environments.

As Figure 4.15 shows, the variance decreases with the number of levels used for training. This

is consistent with our observation that models with better generalization predict more similar

values for observations that are semantically di�erent such as the initial observation. In contrast,

models trained on a low number of levels, memorize the value of the initial observation for each

level, leading to poor generalization in new environments. Note that we chose to illustrate this

phenomenon on three of the Procgen games (i.e. Climber, Jumper, and Ninja) where it is more

apparent due to their partial-observability and substantial level diversity (in terms of length).

Figure 4.15: Standard deviation of the predicted values for the initial observations from 200
levels, as a function of the number of training levels. From le� to right: Climber, Jumper, and Ninja.
The 200 levels used to compute the standard deviation were part of the training set for all the agents. Note
that, in general, the variance of the value decreases with the number of training levels. This is consistent
with our claim that when sharing parameters for the policy and value, models which generalize be�er
predict close values for observations that are semantically similar (e.g. the initial observation) since they
learn representations which are less prone to overfi�ing to level-specific features.
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4.5.7 Robustness to Spurious Correlations

In this section, we investigate how robust the learned features, policies, and predicted values

or advantages, are to spurious correlations. To answer this question, we measure how much the

features, policies, and predictions vary when the background of an observation changes. Note

that the change in background does not change the underlying state of the environment but only

its visual aspect. Hence, a change in background should not modify the agent’s policy or learned

representation. For this experiment, we collect a bu�er of 1000 observations from 20 training levels,

using a PPO agent trained on 200 levels. Then, we create 10 extra versions of each observation

by changing the background. We then measure the L1-norm and L2-norm between the learned

representation (i.e. �nal vector before the policy’s softmax layer) of the original observation and

each of its other versions. We also compute the di�erence in predicted outputs (i.e. values for

PPO and PPG or advantages for DAAC and IDAAC) and the Jensen-Shannon Divergence (JSD)

between the policies. For all these metrics, we �rst take the mean for all 10 backgrounds to obtain

a single point for each observation, and then we report the mean and standard deviation across all

1000 observations, resulting in an average statistic of how much these metrics change as a result

of varying the background.

Figure 4.16 shows the results for Ninja, comparing IDAAC, DAAC, PPG, as well as PPO trained

on 200 and 10k levels. In particular, the results show that both our methods learn representations

which are more robust to changes in the background than PPO and PPG (assuming all methods

are trained on the same number of levels i.e. 200). Overall, the di�erences due to background

changes in the auxiliary outputs of the policy networks for DAAC and IDAAC (i.e. the predicted

advantages) are smaller than those of PPO and PPG (i.e. the predicted values). These results

indicate that DAAC and IDAAC are more robust than PPO and PPG to visual features which are

irrelevant for control.

We do not observe a signi�cant di�erence across the JSDs of the di�erent methods. However,
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in the case of Procgen, the JSD isn’t a perfect measure of the semantic di�erence between two

policies because some of the actions have the same e�ect on the environment (e.g. in Ninja, there

are two actions that move the agent to the right) and thus are interchangeable. Two policies could

have a large JSD while being semantically similar, thus rendering the policy robustness analysis

inconclusive.

In some cases, PPO-10k exhibits better robustness to di�erent backgrounds than DAAC and

IDAAC by exhibiting a lower feature norm and value or advantage di�erence. However, PPO-10k

is a PPO model trained on 10000 levels of a game, while DAAC and IDAAC are trained only on

200 levels. For most Procgen games, training on 10k levels is enough to generalize to the test

distribution so PPO-10k is expected to generalize better than methods trained on 200 levels. In

this work, we are interested in generalizing to unseen levels from a small number of training

levels, so PPO-10k is used as an upper-bound rather than a baseline since a direct comparison

wouldn’t be fair. Hence, it is not surprising that some of these robustness metrics are better for

PPO-10k than DAAC and IDAAC.
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Figure 4.16: Variations in the learned features, policies, and values or advantages when changing
the background in Ninja. From le� to right we report the L1 and L2-norm for the features, the value or
advantage di�erence, and the Jensen-Shannon Divergence for the policy. We compare PPO trained on 200
and 10k levels with PPG, DAAC, and IDAAC. Our models are more robust to changes in the background
(which does not a�ect the state). The means and standard deviations were computed over 10 di�erent
backgrounds.
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Figure 4.17: Variations in the learned features, policies, and values or advantages when changing
the background in Jumper. From le� to right we report the L1 and L2-norm for the features, the value or
advantage di�erence, and the Jensen-Shannon Divergence for the policy. We compare PPO trained on 200
and 10k levels with PPG, DAAC, and IDAAC. Our models are more robust to changes in the background
(which does not a�ect the state). The means and standard deviations were computed over 10 di�erent
backgrounds.
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Figure 4.18: Variations in the learned features, policies, and values or advantages when changing
the background in Climber. From le� to right we report the L1 and L2-norm for the features, the value
or advantage di�erence, and the Jensen-Shannon Divergence for the policy. We compare PPO trained on
200 and 10k levels with PPG, DAAC, and IDAAC. Our models are more robust to changes in the background
(which does not a�ect the state). The means and standard deviations were computed over 10 di�erent
backgrounds.
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4.6 Conclusion

In this chapter, we identi�ed a new problem with standard deep reinforcement learning

algorithms which causes over�tting, namely the asymmetry between the policy and value rep-

resentation. To alleviate this problem, we proposed IDAAC, which decouples the optimization

of the policy and value function while still learning e�ective behaviors. IDAAC also introduces

an auxiliary loss which constrains the policy representation to be invariant with respect to the

environment instance. IDAAC achieves a new state-of-the-art on the Procgen benchmark and

outperforms strong RL algorithms on DeepMind Control tasks with distractors. In contrast to

other popular methods, our approach can both achieve good generalization while also learning

accurate value estimates. Moreover, IDAAC learns representations and predictions which are

more robust to cosmetic changes in the observations that do not change the underlying state of

the environment. Since this work was published, other papers have cited and used our approach

as a baseline [Miao et al. 2021; Mazoure et al. 2021].

One limitation of our work is the focus on learning representations which are invariant to

the number of remaining steps in the episode. While this inductive bias will not be helpful for

all problems, the settings where we can expect most gains are Markovian environments with

partial observability, a set of goal states, and episode length variations (e.g. navigation of di�erent

layouts). A promising avenue for future work is to investigate other auxiliary losses in order to

e�ciently learn more general behaviors. One desirable property of such auxiliary losses is to

capture the minimal set of features needed to act in the environment. While our experiments

show that predicting the advantage function improves generalization, we currently lack a �rm

theoretical argument for this. The advantage could act as a regularizer, being less prone to

memorizing the remaining episode length, or it could be better correlated with the underlying

state of the environment rather than its visual appearance. Investigating these hypotheses could

further improve our understanding of what leads to better representations and what we are still
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missing. Finally, the solution we propose here is only a �rst step towards solving the policy-value

representation asymmetry and we hope many other ideas will be explored in future work.
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5 | Impact-Driven Exploration in

Procedurally Generated

Environments

In the previous two chapters, we studied the problem of zero-shot generalization to new

instances of a task, in the context of image-based deep reinforcement learning. In this chapter,

we will investigate the problem of learning general exploration strategies which work across

a wide range of task instances. Exploration in sparse reward environments remains one of

the key challenges of model-free reinforcement learning. Instead of solely relying on extrinsic

rewards provided by the environment, many state-of-the-art methods use intrinsic rewards to

encourage exploration. In this chapter, we show that existing methods fall short in procedurally

generated environments where an agent needs to solve many di�erent instances of the same

task, so it is unlikely to visit a state more than once. We propose a new type of intrinsic reward

which encourages the agent to take actions that lead to signi�cant changes in its learned state

representation. We evaluate our method on multiple challenging procedurally generated tasks

in MiniGrid, as well as on tasks with high-dimensional observations used in prior work. Our

experiments demonstrate that this approach is more sample e�cient than existing exploration

methods, particularly for procedurally generated MiniGrid environments. Furthermore, we analyze

the learned behavior as well as the intrinsic reward received by our agent. In contrast to previous
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methods, our intrinsic reward does not diminish during the course of training and it rewards the

agent substantially more for interacting with objects that it can control.

5.1 Introduction

RL agents learn to act in new environments through trial and error, in an attempt to maximize

their cumulative reward. However, many environments of interest, particularly those closer to

real-world problems, do not provide a steady stream of rewards for agents to learn from. In such

settings, agents require many episodes to come across any reward, often rendering standard RL

methods inapplicable.

Inspired by human learning, the use of intrinsic motivation has been proposed to encourage

agents to learn about their environments even when extrinsic feedback is rarely provided [Schmid-

huber 1991b, 2010; Oudeyer et al. 2007; Oudeyer and Kaplan 2009]. This type of exploration bonus

emboldens the agent to visit new states [Bellemare et al. 2016; Burda et al. 2019b; Eco�et et al.

2019] or to improve its knowledge and forward prediction of the world dynamics [Pathak et al.

2017; Burda et al. 2019a], and can be highly e�ective for learning in hard exploration games such

as Montezuma's Revenge [Mnih et al. 2016b]. However, most hard exploration environments used

in previous work have either a limited state space or an easy way to measure similarity between

states [Eco�et et al. 2019] and generally use the same “singleton” environment for training and

evaluation [Mnih et al. 2016b; Burda et al. 2019a]. Deep RL agents trained in this way are prone to

over�tting to a speci�c environment and often struggle to generalize to even slightly di�erent

settings [Rajeswaran et al. 2017b; Zhang et al. 2018a,d]. As a �rst step towards addressing this

problem, a number of procedurally generated environments have been recently released, for

example DeepMind Lab [Beattie et al. 2016], Sokoban [Racanière et al. 2017], Malmö [Johnson

et al. 2016], CraftAssist [Jernite et al. 2019], Sonic [Nichol et al. 2018a], CoinRun [Cobbe et al.

2019c], Obstacle Tower [Juliani et al. 2019a], or Capture the Flag [Jaderberg et al. 2019].
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In this chapter, we investigate exploration in procedurally generated sparse reward environ-

ments. We demonstrate that many popular exploration methods, which are state-of-the-art in

challenging singleton environments, fall short in procedurally generated ones as they (i) make

strong assumptions about the environment (deterministic or resettable to previous states) [Eco�et

et al. 2019; Aytar et al. 2018], (ii) make strong assumptions about the state space (small number

of di�erent states or easy to determine if two states are similar) [Eco�et et al. 2019; Burda et al.

2019b; Bellemare et al. 2016; Ostrovski et al. 2017; Machado et al. 2018a], or (iii) provide intrinsic

rewards that can diminish quickly during training [Pathak et al. 2017; Burda et al. 2019a].

To overcome these limitations, we propose Rewarding Impact-Driven Exploration (RIDE),

a novel intrinsic reward for exploration in RL that encourages the agent to take actions which

result in impactful changes to its representation of the environment state (see Figure 5.1 for an

illustration). We compare against state-of-the-art intrinsic reward methods on singleton environ-

ments with high-dimensional observations (i.e. visual inputs), as well as on hard-exploration tasks

in procedurally generated gridworld environments. Our experiments show that RIDE outper-

forms state-of-the-art exploration methods, particularly in procedurally generated environments.

Furthermore, we present a qualitative analysis demonstrating that RIDE, in contrast to prior

work, does not su�er from diminishing intrinsic rewards during training and encourages agents

substantially more to interact with objects that they can control (relative to other state-action

pairs).

5.2 Related Work

The problem of exploration in reinforcement learning has been extensively studied. Exploration

methods encourage RL agents to visit novel states in various ways, for example by rewarding

surprise [Schmidhuber 1991b,a, 2010, 2006; Achiam and Sastry 2017], information gain [Little and

Sommer 2013; Still and Precup 2012; Houthooft et al. 2016], curiosity [Pathak et al. 2017; Burda
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Figure 5.1: RIDE rewards the agent for actions that have an impact on the state representation ('���),
which is learned using both a forward (!5 F) and an inverse dynamics (!8=E) model.

et al. 2019b], empowerment [Klyubin et al. 2005; Rezende and Mohamed 2015; Gregor et al. 2017],

diversity [Eysenbach et al. 2019], feature control [Jaderberg et al. 2017; Dilokthanakul et al. 2019],

or decision states [Goyal et al. 2019; Modhe et al. 2019]. Another class of exploration methods

apply the Thompson sampling heurisitc [Osband et al. 2016; Ostrovski et al. 2017; O’Donoghue

et al. 2018; Tang et al. 2017]. Osband et al. [2016] use a family of randomized Q-functions trained

on bootstrapped data to select actions, while Fortunato et al. [2018] add noise in parameter space

to encourage exploration. Here, we focus on intrinsic motivation methods, which are widely-used

and have proven e�ective for various hard-exploration tasks [Mnih et al. 2016b; Pathak et al. 2017;

Bellemare et al. 2016; Burda et al. 2019b].

Intrinsic motivation can be useful in guiding the exploration of RL agents, particularly in

environments where the extrinsic feedback is sparse or missing altogether [Oudeyer et al. 2007,

2008; Oudeyer and Kaplan 2009; Schmidhuber 1991b, 2010]. The most popular and e�ective kinds

of intrinsic motivation can be split into two broad classes: count-based methods that encourage

the agent to visit novel states and curiosity-based methods that encourage the agent to learn about

the environment dynamics.

Count-Based Exploration. Strehl and Littman [2008] proposed the use of state visitation

counts as an exploration bonus in tabular settings. More recently, such methods were extended

74



to high-dimensional state spaces [Bellemare et al. 2016; Ostrovski et al. 2017; Martin et al. 2017;

Tang et al. 2017; Machado et al. 2018a]. Bellemare et al. [2016] use a Context-Tree Switching (CTS)

density model to derive a state pseudo-count, while Ostrovski et al. [2017] use PixelCNN as a

state density estimator. Burda et al. [2019b] employ the prediction error of a random network

as exploration bonus with the aim of rewarding novel states more than previously seen ones.

However, one can expect count-based exploration methods to be less e�ective in procedurally

generated environments with sparse reward. In these settings, the agent is likely to characterize

two states as being di�erent even when they only di�er by features that are irrelevant for the task

(e.g. the texture of the walls). If the agent considers most states to be “novel”, the feedback signal

will not be distinctive or varied enough to guide the agent.

Curiosity-Driven Exploration. Curiosity-based bonuses encourage the agent to explore the

environment to learn about its dynamics. Curiosity can be formulated as the error or uncertainty

in predicting the consequences of the agent's actions [Stadie et al. 2015; Pathak et al. 2017; Burda

et al. 2019b]. For example, Pathak et al. [2017] learn a latent representation of the state and design

an intrinsic reward based on the error of predicting the next state in the learned latent space.

While we use a similar mechanism for learning state embeddings, our exploration bonus is very

di�erent and builds upon the di�erence between the latent representations of two consecutive

states. As we will see in the following sections, one problem with their approach is that the

intrinsic reward can vanish during training, leaving the agent with no incentive to further explore

the environment and reducing its feedback to extrinsic reward only.

Generalization in Deep RL. Most of the existing exploration methods that have achieved

impressive results on di�cult tasks [Eco�et et al. 2019; Pathak et al. 2017; Burda et al. 2019b;

Bellemare et al. 2016; Choi et al. 2019; Aytar et al. 2018], have been trained and tested on the same

environment and thus do not generalize to new instances. Several recent papers [Rajeswaran et al.

2017b; Zhang et al. 2018a,d; Machado et al. 2018b; Foley et al. 2018] demonstrate that deep RL is

susceptible to severe over�tting. As a result, a number of benchmarks have been recently released
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for testing generalization in RL [Beattie et al. 2016; Cobbe et al. 2019c; Packer et al. 2018a; Justesen

et al. 2018b; Leike et al. 2017; Nichol et al. 2018a; Juliani et al. 2019a]. Here, we make another step

towards developing exploration methods that can generalize to unseen scenarios by evaluating

them on procedurally generated environments. We opted for MiniGrid [Chevalier-Boisvert et al.

2018] because it is fast to run, provides a standard set of tasks with varied di�culty levels, focuses

on single-agent, and does not use visual inputs, thereby allowing us to better isolate the exploration

problem.

More closely related to our work are the papers of Marino et al. [2019] and Zhang et al. [2019].

Marino et al. [2019] use a reward that encourages changing the values of the non-proprioceptive

features for training low-level policies on locomotion tasks. Their work assumes that the agent has

access to a decomposition of the observation state into internal and external parts, an assumption

which may not hold in many cases and may not be trivial to obtain even if it exists. Zhang et al.

[2019] use the di�erence between the successor features of consecutive states as intrinsic reward.

In this framework, a state is characterized through the features of all its successor states. While

both of these papers use �xed (i.e. not learned) state representations to de�ne the intrinsic reward,

we use forward and inverse dynamics models to learn a state representation constrained to only

capture elements in the environment that can be in�uenced by the agent. Lesort et al. [2018]

emphasize the bene�ts of using a learned state representation for control as opposed to a �xed one

(which may not contain information relevant for acting in the environment). In the case of Zhang

et al. [2019], constructing a temporally extended state representation for aiding exploration is not

trivial. Such a feature space may add extra noise to the intrinsic reward due to the uncertainty of

future states. This is particularly problematic when the environment is highly stochastic or the

agent often encounters novel states (as it is the case in procedurally generated environments).
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5.3 Background

We use the standard formalism of a single agent in a POMDP as de�ned in Section 3.3 and

used in the previous two chapters. Along with the extrinsic reward A4C , the agent also receives

some intrinsic reward A 8C , which can be computed for any (BC , 0C , BC+1) tuple. Consequently, the

agent tries to maximize the weighted sum of the intrinsic and extrinsic reward: AC = A4C + l8AA 8C
where l8A is a hyperparameter to weight the importance of both rewards.

We built upon the work of Pathak et al. [2017] who note that some parts of the observation may

have no in�uence on the agent's state. Thus, Pathak et al. propose learning a state representation

that disregards those parts of the observation and instead only models (i) the elements that the

agent can control, as well as (ii) those that can a�ect the agent, even if the agent cannot have an

e�ect on them. Concretely, Pathak et al. learn a state representations q (B) = 54<1 (B; \4<1) of a

state B using an inverse and a forward dynamics model (see Figure 5.1). The forward dynamics

model is a neural network parametrized by \ 5 F that takes as inputs q (BC ) and 0C , predicts the next

state representation: q̂ (BC+1) = 55 F (qC , 0C ; \ 5 F ), and it is trained to minimize !5 F (\ 5 F , \4<1) =

‖q̂ (BC+1) − q (BC+1)‖22. The inverse dynamics model is also a neural network parameterized by \8=E

that takes as inputs q (BC ) and q (BC+1), predicts the agent's action: 0̂C = 58=E (qC , qC+1; \8=E ), and it

is trained to minimize !8=E (\8=E , \4<1) = �A>BB�=CA>?~ (0̂C , 0C ) when the action space is discrete.

Pathak et al.'s curiosity-based intrinsic reward is proportional to the squared Euclidean distance

between the actual embedding of the next state q (BC+1) and the one predicted by the forward

model q̂ (BC+1).

5.4 Approach

Our main contribution is a novel intrinsic reward based on the change in the state represen-

tation produced by the agent's action. The proposed method encourages the agent to try out
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actions that have a signi�cant impact on the environment. We demonstrate that this approach

can promote e�ective exploration strategies when the feedback from the environment is sparse.

We train a forward and an inverse dynamics model to learn a latent state representation q (B)

as proposed by Pathak et al. [2017]. However, instead of using the Euclidean distance between the

predicted next state representation and the actual next state representation as intrinsic reward

('2DA in Figure 5.1), we de�ne impact-driven reward as the Euclidean distance between consecutive

state representations ('��� in Figure 5.1). Compared to curiosity-driven exploration, impact-driven

exploration rewards the agent for very di�erent state-actions, leading to distinct agent behaviors

which we analyze in Section 5.5.5.

Stanton and Clune [2018] categorize exploration into: across-training and intra-life and argue

they are complementary. Popular methods such as count-based exploration [Bellemare et al. 2016]

encourage agents to visit novel states in relation to all prior training episodes (i.e. across-training

novelty), but they do not consider whether an agent visits novel states within some episode (i.e.

intra-life novelty). As we will see, RIDE combines both types of exploration.

Formally, RIDE is computed as the !2-norm ‖q (BC+1) − q (BC )‖2 of the di�erence in the learned

state representation between consecutive states. However, to ensure that the agent does not go

back and forth between a sequence of states (with a large di�erence in their embeddings) in order

to gain intrinsic reward, we discount RIDE by episodic state visitation counts. Concretely, we

divide the impact-driven reward by
√
#4? (BC+1), where #4? (BC+1) is the number of times that state

has been visited during the current episode, which is initialized to 1 in the beginning of the episode.

In high-dimensional regimes, one can use episodic pseudo-counts instead [Bellemare et al. 2016;

Ostrovski et al. 2017]. Thus, the overall intrinsic reward provided by RIDE is calculated as:

'��� (BC , 0C ) ≡ A 8C (BC , 0C ) =
‖q (BC+1) − q (BC )‖2√

#4? (BC+1)

where q (BC+1) and q (BC ) are the learned representations of consecutive states, resulting from the
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agent transitioning to state BC+1 after taking action 0C in state BC . The state is projected into a latent

space using a neural network with parameters \4<1 .

The overall optimization problem that is solved for training the agent is

min
\c ,\8=E,\ 5 F ,\4<1

[
lc!'! (\c ) + l 5 F!5 F (\ 5 F , \4<1) + l8=E!8=E (\8=E , \4<1)

]
where \c are the parameters of the policy and value network (0C ∼ c (BC ;\c )), andlc , l8=E andl 5 F

are scalars that weigh the relative importance of the reinforcement learning (RL) loss to that of the

inverse and forward dynamics losses which are used for learning the intrinsic reward signal. Note

that we never update the parameters of the inverse (\8=E ), forward (\ 5 F ), or embedding networks

(\4<1) using the signal from the intrinsic or extrinsic reward (i.e. the RL loss); we only use these

learned state embeddings for constructing the exploration bonus and never as part of the agent's

policy (Figure 5.1 highlights that the policy learns its own internal representation of the state

kC , which is only used for control and never for computing the intrinsic reward). Otherwise, the

agent can arti�cially maximize its intrinsic reward by constructing state representations with

large distances among themselves, without grounding them in environment observations.

Note that there is no incentive for the learned state representations to encode features of the

environment that cannot be in�uenced by the agent's actions. Thus, our agent will not receive

rewards for reaching states that are inherently unpredictable, making exploration robust with

respect to distractor objects or other inconsequential sources of variation in the environment. As

we will later show, RIDE is robust to the well-known noisy-TV problem in which an agent, that is

rewarded for errors in the prediction of its forward model (such as the one proposed in Pathak

et al. [2017]), gets attracted to local sources of entropy in the environment. Furthermore, the

di�erence of consecutive state representations is unlikely to go to zero during learning as they are

representations of actual states visited by the agent and constrained by the forward and inverse

model. This is in contrast to Pathak et al. [2017] and Burda et al. [2019b] where the intrinsic
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reward goes to zero as soon as the forward model becomes su�ciently accurate or the agent's

policy only explores well known parts of the state space.

5.5 Experiments

We evaluate RIDE on procedurally generated environments from MiniGrid, as well as on two

existing singleton environments with high-dimensional observations used in prior work, and

compare it against both standard RL and three commonly used intrinsic reward methods for

exploration. For all our experiments, we show the mean and standard deviation of the average

return across 5 di�erent seeds for each model. The average return is computed as the rolling mean

over the past 100 episodes.

At the time of writing this chapter, MiniGrid was one of the only platforms with procedurally

generated environments which were fast enough to enable research progress in a timely fashion.

The Procgen benchmark was released after the publishing of this paper. In addition, MiniGrid is

better suited for understanding the behavior of various algorithms in sparse environments since it

allows one to systematically increase the exploration di�culty. In contrast, changing the reward

sparsity cannot be easily done in Procgen.

5.5.1 Environments

The �rst set of environments are procedurally generated grid-worlds in MiniGrid [Chevalier-

Boisvert et al. 2018]. We consider three types of hard exploration tasks: MultiRoomNXSY, KeyCor-

ridorS3R3, and ObstructedMaze2Dlh.

In MiniGrid, the world is a partially observable grid of size # ×# . Each tile in the grid contains

at most one of the following objects: wall, door, key, ball, box and goal. The agent can take one of

seven actions: turn left or right, move forward, pick up or drop an object, toggle or done.

For the sole purpose of comparing in a fair way to the curiosity-driven exploration work by
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Figure 5.2: Rendering of a procedurally generated environment from MiniGrid's MultiRoomN12S10 task.

Pathak et al. [2017], we ran a one-o� experiment on their Mario (singleton) environment [Kauten

2018]. We train our model with and without extrinsic reward on the �rst level of the game. The

last (singleton) environment we evaluate on is VizDoom [Kempka et al. 2016].

5.5.2 Baselines

For all our experiments, we use IMPALA [Espeholt et al. 2018b] following the implementation

of Küttler et al. [2019] as the base RL algorithm, and RMSProp [Tieleman and Hinton 2012] for

optimization. All models use the same basic RL algorithm and network architecture for the policy

and value functions, di�ering only in how intrinsic rewards are de�ned. In our experiments

we compare with the following baselines: Count: Count-Based Exploration by Bellemare et al.

[2016] which uses state visitation counts to give higher rewards for new or rarely seen states.

RND: Random Network Distillation Exploration by Burda et al. [2019b] which uses the prediction

error of a random network as exploration bonus with the aim of rewarding novel states more

than previously encountered ones. ICM: Intrinsic Curiosity Module by Pathak et al. [2017] (see

Section 5.3). IMPALA: Standard RL approach by Espeholt et al. [2018b] that uses only extrinsic

reward and encourages random exploration by entropy regularization of the policy.

We present the results of RIDE in comparison to popular exploration methods, as well as

an analysis of the learned policies and properties of the intrinsic reward generated by di�erent
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methods.

5.5.3 MiniGrid Results

Figure 5.3 summarizes our results on various hard MiniGrid tasks. Note that the standard RL

approach IMPALA (purple) is not able to learn in any of the environments since the extrinsic

reward is too sparse. Furthermore, our results reveal that RIDE is more sample e�cient compared

to all the other exploration methods across all MiniGrid tasks considered here. While other

exploration bonuses seem e�ective on easier tasks and are able to learn optimal policies where

IMPALA fails, the gap between our approach and the others is increasing with the di�culty of

the task. Furthermore, RIDE manages to solve some very challenging tasks on which the other

methods fail to get any reward even after training on over 100M frames (Figure 5.3).

Figure 5.3: Performance of RIDE, Count, RND, ICM and IMPALA on a variety of hard exploration problems
in MiniGrid. Note RIDE is the only one that can solve the hardest tasks.

In addition to existing MiniGrid tasks, we also tested the model’s ability to deal with stochas-

ticity in the environment by adding a “noisy TV” in the MiniGridN7S4 task, resulting in the
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new MiniGirdN7S4NoisyTV task (left-center plot in the top row of Figure 5.3). The noisy TV is

implemented as a ball that changes its color to a randomly picked one whenever the agent takes a

particular action. As expected, the performance of ICM drops as the agent becomes attracted to

the ball while obtaining intrinsic rewarded for not being able to predict the next color. The Count

model also needs more time to train, likely caused by the increasing number of rare and novel

states (due to the changing color of the ball).

5.5.4 Ablations

In this section, we aim to better understand the e�ect of using episodic discounting as part of

the intrinsic reward, as well as that of using entropy regularization as part of the IMPALA loss.

Figure 5.4 compares the performance of our model on di�erent MiniGrid tasks with that

of three ablations. The �rst one only uses episodic state counts as exploration bonus without

multiplying it by the impact-driven intrinsic reward (OnlyEpisodicCounts), the second one only

uses the impact-driven exploration bonus without multiplying it by the episodic state count

term (NoEpisodicCounts), while the third one is the NoEpisodicCounts model without the entropy

regularization term in the IMPALA loss (NoEntropyNoEpisodicCounts).

OnlyEpisodicCounts does not solve any of the tasks. NoEntropyNoEpisodicCounts either con-

verges to a suboptimal policy or completely fails. In contrast, NoEpisodicCounts can solve the easier

tasks but it requires more interactions than RIDE and fails to learn on the hardest domain. During

training, NoEpisodicCounts can get stuck cycling between two states (with a large distance in the

embedding states) but due to entropy regularization, it can sometimes escape such local optima

(unlike NoEntropyNoEpisodicCounts) if it �nds extrinsic reward. However, when the reward is too

sparse, NoEpisodicCounts is insu�cient while RIDE still succeeds, indicating the e�ectiveness of

augmenting the impact-driven intrinsic reward with the episodic count term.

Figure 5.5 shows the average number of states visited during an episode of MultiRoomN12S10,

measured at di�erent training stages for our full RIDE model and the NoEpisodicCounts ablation.
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Figure 5.4: Comparison between the performance of RIDE and three ablations: OnlyEpisodicCounts,
NoEpisodicCounts, and NoEntropyNoEpisodicCounts.

While the NoEpisodicCounts ablation always visits a low number of di�erent states each episode

(≤ 10), RIDE visits an increasing number of states throughout training (converging to ∼ 100 for an

optimal policy). Hence, it can be inferred that NoEpisodicCounts revisits some of the states. This

claim can be further veri�ed by visualizing the agents’ behaviors. After training, NoEpisodicCounts

goes back and forth between two states, while RIDE visits each state once on its path to the goal.

Consistent with our intuition, discounting the intrinsic reward by the episodic state-count term

does help to avoid this failure mode.
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Figure 5.5: Average number of states visited during an episode of MultiRoomN12S10, measured at di�erent
training stages for our full RIDE model (blue) and the NoEpisodicCounts ablation (orange).

5.5.5 Analysis of the Intrinsic Reward

To better understand the e�ectiveness of di�erent exploration methods, we investigate the

intrinsic reward an agent receives for certain trajectories in the environment.

Figure 5.6 shows a heatmap of the intrinsic reward received by RND, ICM, and RIDE on a

sampled environment after having been trained on procedurally generated environments from the

MultiRoomN7S4 task. While all three methods can solve this task, the intrinsic rewards received

are di�erent. Speci�cally, the RIDE agent is rewarded in a much more structured manner for

opening doors, entering new rooms and turning at decision points. Table 5.1 provides quantitative

numbers for this phenomenon. We record the intrinsic rewards received for each type of action,

averaged over 100 episodes. We found that RIDE is putting more emphasis on actions interacting

with the door than for moving forward or turning left or right, while the other methods reward

actions more uniformly.

In order to understand how various interactions with objects are rewarded by the di�erent

exploration methods, we also looked at the intrinsic reward in the ObstructedMaze2Dlh environ-

ment which contains multiple objects . However, the rooms are connected by locked doors and
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RND ICM RIDE

Figure 5.6: Intrinsic reward heatmaps for RND, ICM, and RIDE (from le� to right) for opening doors (green),
moving forward (blue), or turning le� or right (red) on a random environment from the MultiRoomN7S4
task. A is the agent's starting position, G is the goal position and D are doors that have to be opened on
the way.

Open Door Turn Left / Right Move Forward

Model Mean Std Mean Std Mean Std
RIDE 0.0490 0.0019 0.0071 0.0034 0.0181 0.0116
RND 0.0032 0.0018 0.0031 0.0028 0.0026 0.0017
ICM 0.0055 0.0003 0.0052 0.0003 0.0056 0.0003

Table 5.1: Mean intrinsic reward per action over 100 episodes on a random maze in MultiRoomN7S4.

the keys for unlocking the doors are hidden inside boxes. The agent does not know in which room

the ball is located and it needs the color of the key to match that of the door in order to open it.

Moreover, the agent cannot hold more than one object so it needs to drop one in order to pick up

another.

Figure 5.7 and Table 5.2 indicate that RIDE rewards the agent signi�cantly for interacting with

various objects (e.g. opening the box, picking up the key, opening the door, dropping the key,

picking up the ball) relative to other actions such as moving forward or turning left and right. In
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Figure 5.7: Intrinsic reward heatmaps for RND (le�) and RIDE (right) for interacting with objects (i.e.
open doors, pick up / drop keys or balls) (green), moving forward (blue), or turning le� or right (red) on a
random map from ObstructedMaze2Dlh. A is the agent's starting position, K are the keys hidden inside
boxes (that need to be opened in order to see their colors), D are colored doors that can only be opened by
keys with the same color, and B is the ball that the agent needs to pick up in order to win the game. A�er
passing through the door the agent also needs to drop the key in order to be able to pick up the ball since
it can only hold one object at a time.

Open Door Pick Ball Pick Key Drop Key Other

Model Mean Std Mean Std Mean Std Mean Std Mean Std
RIDE 0.0005 0.0002 0.0004 0.0001 0.0004 0.00001 0.0004 0.00007 0.0003 0.00001
RND 0.0034 0.0015 0.0027 0.0006 0.0026 0.0060 0.0030 0.0010 0.0025 0.0006

Table 5.2: Mean intrinsic reward per action computed over 100 episodes on a random map from Obstruct-
edMaze2Dlh.
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contrast, RND again rewards all actions much more uniformly and often times, within an episode,

it rewards the interactions with objects less than the ones for moving around inside the maze.

5.5.6 Singleton versus Procedurally Generated Environments

It is important to understand and quantify how much harder it is to train existing deep RL

exploration methods on tasks in procedurally generated environments compared to a singleton

environment.

Figure 5.8: Training on a singleton instance of ObstructedMaze2Dlh.

To investigate this dependency, we trained the models on a singleton environment of the the

ObstructedMaze2Dlh task so that at the beginning of every episode, the agent is spawned in exactly

the same maze with all objects located in the same positions. In this setting, we see that Count,

RND, and IMPALA are also able to solve the task (see Figure 5.8 and compare with the center-right

plot in the bottom row of Figure 5.3 for procedurally generated environments of the same task). As

expected, this emphasizes that training an agent in procedurally generated environments creates

signi�cant challenges over training on a singleton environment for the same task. Moreover, it
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highlights the importance of training on a variety of environments to avoid over�tting to the

idiosyncrasies of a particular environment.

5.5.7 No Extrinsic Reward

To analyze the way di�erent methods explore environments without depending on the chance

of running into extrinsic reward (which can dramatically change the agent's policy), we analyze

agents that are trained without any extrinsic reward on both singleton and procedurally generated

environments.

Count RND ICM Random RIDE

Figure 5.9: State visitation heatmaps for Count, RND, ICM, Random, and RIDE models (from le� to right)
trained for 50m frames without any extrinsic reward on a singleton maze (top row) and on procedurally
generated mazes (bo�om row) in MultiRoomN10S6.

The top row of Figure 5.9 shows state visitation heatmaps for all the models in a singleton

environment on the MultiRoomN10S6 task, after training all of them for 50M frames with intrinsic

reward only. The agents are allowed to take 200 steps in every episode. The �gure indicates that

all models have e�ective exploration strategies when trained on a singleton maze, the 10th, 9th
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and 6th rooms are reached by RIDE, Count/RND, and ICM, respectively. The Random policy fully

explores the �rst room but does not get to the second room within the time limit.

When trained on procedurally generated mazes, existing models are exploring much less

e�ciently as can be seen in the bottom row of Figure 5.9. Here, Count, RND, and ICM only make

it to the 4th, 3rd and 2nd rooms respectively within an episode, while RIDE is able to explore all

rooms. This further supports that RIDE learns a state representation that allows generalization

across di�erent mazes and is not as distracted by less important details that change from one

procedurally generated environment to another.

5.5.8 Mario and Vizdoom

In order to compare to Pathak et al. [2017], we evaluate RIDE on the �rst level of the Mario

environment. Our results (see Figure 5.10 a and b) suggest that this environment may not be as

challenging as previously believed, given that all the methods evaluated here, including vanilla

IMPALA, can learn similarly good policies after training on only 1m frames even without any

intrinsic reward (left �gure). Note that we are able to reproduce the results mentioned in the

original ICM paper [Pathak et al. 2017]. However, when training with both intrinsic and extrinsic

reward (center �gure), the curiosity-based exploration bonus (ICM) hurts learning, converging

later and to a lower value than the other methods evaluated here.

Figure 5.10: Performance on Mario with intrinsic reward only (a), with intrinsic and extrinsic reward (b),
and VizDoom (c). Note that IMPALA is trained with extrinsic reward only in all cases.
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For VizDoom (see Figure 5.10 c) we observe that RIDE performs as well as ICM, while all the

other baselines fail to learn e�ective policies given the same amount of training. Note that our

ICM implementation can reproduce the results in the original paper on this task, achieving a 100%

success rate after training on approximately 60m frames [Pathak et al. 2017].

5.6 Conclusion

In this chapter, we presented Rewarding Impact-Driven Exploration (RIDE), an intrinsic

reward bonus that encourages agents to explore actions that substantially change the state of the

environment, as measured in a learned latent space. RIDE has a number of desirable properties:

it attracts agents to states where they can a�ect the environment, it provides a signal to agents

even after training for a long time, and it is conceptually simple as well as compatible with other

intrinsic or extrinsic rewards and any deep RL algorithm.

Our approach is particularly e�ective in procedurally generated sparse reward environments

where it signi�cantly outperforms IMPALA [Espeholt et al. 2018b], as well as some of the most

popular exploration methods such as Count [Bellemare et al. 2016], RND [Burda et al. 2019b], and

ICM [Pathak et al. 2017]. Furthermore, RIDE explores procedurally generated environments more

e�ciently than other exploration methods.

However, there are still many ways to improve upon RIDE. For example, one can make use

of symbolic information to measure or characterize the agent's impact, consider longer-term

e�ects of the agent's actions, or promote diversity among the kinds of changes the agent makes to

the environment. Another interesting avenue for future research is to develop algorithms that

can distinguish between desirable and undesirable types of impact the agent can have in the

environment, thus constraining the agent to act safely and avoid distractions (i.e. actions that lead

to large changes in the environment but that are not useful for a given task). The di�erent kinds

of impact might correspond to distinctive skills or low-level policies that a hierarchical controller
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could use to learn more complex policies or better exploration strategies.

Our work was the �rst to study how the problem of exploration changes when considering a

wide range of task instances rather than a single one. During our investigation, we discovered

that some of the state-of-the-art methods in singleton environments have signi�cant limitations

in procedurally generated ones. Since our work was published, RIDE has become a common

baseline for papers studying exploration in procedurally generated environnments [Song and

Kushnir 2020; Zhang et al. 2020d; Campero et al. 2020; Fang et al. 2020]. Other researchers have

extended our method and proposed alternative approaches, thus making further progress in this

area. For example, Song and Kushnir [2020] use the same impact-driven exploration bonus as

introduced in this chapter, but learn the state representations via a contrastive loss instead of

forward and inverse losses. Inspired by our episodic visitation counts, Zhang et al. [2020d] use a

regulated di�erence of inverse visitation counts to encourage exploration beyond the boundary of

the already visited regions.
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6 | Fast Adaptation to New

Environments via Policy-Dynamics

Value Functions

Standard RL algorithms assume �xed environment dynamics and require a signi�cant amount

of interaction to adapt to new environments. In this chapter, we introduce Policy-Dynamics

Value Functions (PD-VF), a novel approach for rapidly adapting to dynamics di�erent from those

previously seen in training. PD-VF explicitly estimates the cumulative reward in a space of policies

and environments. An ensemble of conventional RL policies is used to gather experience on

training environments, from which embeddings of both policies and environments can be learned.

Then, a value function conditioned on both embeddings is trained. At test time, a few actions are

su�cient to infer the environment embedding, enabling a policy to be selected by maximizing the

learned value function (which requires no additional environment interaction). We show that our

method can rapidly adapt to new dynamics on a set of MuJoCo domains.

6.1 Introduction

Recent studies have pointed out that RL agents trained and tested on the same environment

tend to over�t to that environment’s idiosyncracies and are unable to generalize to even small

93



perturbations [Whiteson et al. 2011; Rajeswaran et al. 2017b; Zhang et al. 2018d,a; Henderson

et al. 2018; Cobbe et al. 2019d; Raileanu and Rocktäschel 2020; Song et al. 2020]. It is often the

case that besides the test environments being di�erent from the train environments, they will

also have costly interactions, scarce or unavailable feedback, and irreversible consequences. For

example, a self-driving car might have to adjust its behavior depending on weather conditions, or

a prosthetic control system might have to adapt to a new human. In these cases it is crucial for RL

agents to �nd and execute appropriate policies as quickly as possible.

Our approach is inspired by Sutton et al. [2011] who introduced the notion of general value

functions (GVFs), which can be used to gather knowledge about the world in the form of predictions.

A GVF estimates the expected return of an arbitrary policy on a certain task (as de�ned by a

reward function, a termination function and a terminal-reward function). Similarly, in this work,

we aim to learn a value function conditioned on elements of a space of policies and tasks, but here,

a “task” is speci�ed by the transition function of the MDP instead of the reward function.

More speci�cally, we propose PD-VF, a novel framework for rapid adaptation to new envi-

ronment dynamics. PD-VF consists of four phases: (i) a reinforcement learning phase in which

individual policies are learned for each environment in our training set using standard RL algo-

rithms, (ii) a self-supervised phase in which trajectories generated by these policies are used to learn

embeddings for both policies and environments, (iii) a supervised training phase in which a neural

network is used to learn the value function of a certain policy acting in some environment. The

network takes as inputs the initial state of the environment, as well as the corresponding policy

and environment embeddings (as learned in the previous phase) and is trained with supervision of

the cumulative reward obtained during an episode, and �nally (iv) an evaluation phase in which,

given a new environment, its dynamics embedding is inferred using the �rst few steps of an

episode. Then, a policy is selected by �nding the policy embedding that maximizes the learned

value function. The selected policy is used to act in the environment until the episode ends.

Our framework uses self-supervised interactions with the environment to learn an embedding
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space of both dynamics and policies. By learning a value function in the policy-dynamics space,

PD-VF can discover useful patterns in the complex relation between a family of environment

dynamics, various behaviors, and the expected return. The value function is designed to model

non-optimal policies along with optimal policies in given environments so that it can understand

how changes in dynamics relate to changes in the return of di�erent policies. PD-VF uses the

learned space of dynamics to rapidly embed a new environment in that space using only a few

interactions. At test time, PD-VF can evaluate or rank policies (from a certain family) on unseen

environments without the need of full rollouts (i.e. it does not require full trajectories or rewards

to update the policy). We evaluate our method on a set of continuous control tasks (with varying

dynamics) in MuJoCo [Todorov et al. 2012a]. The dynamics of each task instance are determined by

physical parameters such as wind direction or limb length and can be sampled from a continuous

or discrete distribution. Performance is evaluated on a single episode at test time to emphasize

rapid adaptation. We show that PD-VF outperforms other meta-learning and transfer learning

approaches on new environments with unseen dynamics.

6.2 Related Work

Our work draws inspiration from multiple research areas such as transfer learning [Taylor

and Stone 2009; Higgins et al. 2017], skill and task embedding [Devin et al. 2016; Zhang et al.

2018c; Hausman et al. 2018; Petangoda et al. 2019], and general value functions [Precup et al. 2001;

Sutton et al. 2011; White et al. 2012].

Multi-Task and Transfer Learning. Taylor and Stone [2009] presents an overview of

transfer learning methods in RL. A popular approach for transfer in RL is multi-task learning

[Taylor and Stone 2009; Teh et al. 2017], a paradigm in which an agent is trained on a family

of related tasks. By simultaneously learning about di�erent tasks, the agent can exploit their

common structure, which can lead to faster learning and better generalization to unseen tasks
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from the same family [Taylor and Stone 2009; Lazaric 2012; Ammar et al. 2012, 2014; Parisotto et al.

2015; Borsa et al. 2016; Gupta et al. 2017; Andreas et al. 2017; Oh et al. 2017; Hessel et al. 2019]. A

large body of work has been inspired by the Horde architecture [Sutton et al. 2011], which consists

of a number of RL agents with di�erent policies and goals. Each agent is tasked with estimating

the value function of a particular policy on a given task, thus collectively representing knowledge

about the world. Building on these ideas, other methods leverage the shared dynamics of the tasks

[Barreto et al. 2017; Zhang et al. 2017; Madjiheurem and Toni 2019] or the similarity among value

functions and the associated optimal policies [Schaul et al. 2015; Borsa et al. 2018; Hansen et al.

2019; Siriwardhana et al. 2019]. These approaches assume the same underlying transition function

for all tasks. In contrast, we focus on transferring knowledge across tasks with di�erent dynamics.

Meta-Learning and Robust Transfer. A popular approach for fast adaptation to new envi-

ronments is meta reinforcement learning (meta RL) [Cully et al. 2015; Finn et al. 2017; Wang et al.

2017; Duan et al. 2016; Xu et al. 2018; Houthooft et al. 2018; Sæmundsson et al. 2018; Nagabandi

et al. 2018; Humplik et al. 2019; Rakelly et al. 2019]. Meta RL methods have been designed to work

well with dense reward and recent work has shown that they struggle to learn from a limited

number of interactions and optimization steps at test time [Yang et al. 2019]. In contrast, our

framework is capable of rapid adaptation to new environment dynamics and does not require

dense reward or a large number of interactions to �nd a good policy. Moreover, PD-VF does not

update the model parameters at test time, which makes it less computationally expensive than

meta RL. Another common approach for transfer across dynamics is model-based RL, which uses

Gaussian processes (GPs) or Bayesian neural networks (BNNs) to estimate the transition function

[Doshi-Velez and Konidaris 2013; Killian et al. 2017]. However, such methods require �ctional

rollouts to train a policy from scratch at test time, which makes them computationally expensive

and limits their applicability for real-world tasks. Yao et al. [2018] uses a fully-trained BNN to

further optimize latent variables during a single test episode, but requires an optimal policy for

each training instance, which makes it harder to scale. Robust transfer methods either require a
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large number of interactions at test time [Rajeswaran et al. 2017b] or assume that the distribution

over hidden variables is known or controllable [Paul et al. 2018]. An alternative approach was

proposed by Pinto et al. [2017] who use an adversary to perturb the system, achieving robust

transfer across physical parameters such as friction or mass.

Skill and Task Embeddings. A large body of work proposes the use of learned skill and task

embeddings for transfer in RL [Da Silva et al. 2012; Sahni et al. 2017; Oh et al. 2017; Gupta et al. 2017;

Hausman et al. 2018; He et al. 2018]. For example, Hausman et al. [2018] use approximate variational

inference to learn a latent space of skills. Similarly, Arnekvist et al. [2018] learn a stochastic

embedding of optimal Q-functions for various skills and train a universal policy conditioned on

this embedding. In both Hausman et al. [2018] and Arnekvist et al. [2018], adaptation to a new task

is done in the latent space with no further updates to the policy network. Co-Reyes et al. [2018]

learn a latent space of low-level skills that can be controlled by a higher-level policy, in the context

of hierarchical reinforcement learning. This embedding is learned using a variational autoencoder

[Kingma and Welling 2013] to encode state trajectories and decode states and actions. Zintgraf

et al. [2018] use a meta-learning approach to learn a deterministic task embedding. Wang et al.

[2017] and Duan et al. [2017] learn embeddings of expert demonstrations to aid imitation learning

using variational and deterministic methods, respectively. More recently, Perez et al. [2018] learn

dynamic models with auxiliary latent variables and use them for model-predictive control. Zhang

et al. [2018c] use separate dynamics and reward modules to learn a task embedding. They show

that conditioning a policy on this embedding helps transfer to changes in transition or reward

function. While the above approaches might learn embeddings of skills or tasks, none of them

leverage both the latent space of policies and that of the environments for estimating the expected

return and using it to select an e�ective policy at test time.

More similar to our work is that of Yang et al. [2019], who also focus on fast adaptation to new

environment dynamics and evaluate performance on a single episode at test time. Yang et al. [2019]

train an inference model and a probe to estimate the underlying latent variables of the dynamics,
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which are then used as input to a universal control policy. While similar in scope, our approach is

signi�cantly di�erent from that of Yang et al. [2019]. Importantly, Yang et al. [2019] does not learn

a latent space of policies and instead trains a universal policy on all the environments. Learning a

value function in a space of policies and dynamics allows the function approximator to capture

relations among dynamics, behaviors (both optimal as well as non-optimal), and rewards that a

universal policy cannot learn. Moreover, the learned structure can aid transfer to new dynamics.

6.3 Background

In this work, we aim to design an approach that can quickly �nd a good policy in an en-

vironment with new and unknown dynamics, after being trained on a family of environments

with related dynamics. The problem can be formalized as a family of Markov decision processes

(MDPs) de�ned by (S,A,P,R, W), where (S,A,R, W) are the corresponding state space, action

space, reward function, and discount factor. Each instance of the family is a stationary MDP with

transition function P3 (B′|B, 0) ∈ P. Each P3 has a hidden parameter 3 that is sampled once from a

distribution D and held constant for that instance (i.e. episode). P3 can be continuous or discrete

in 3 . By design, the latent variable 3 that de�nes the MDP’s dynamics cannot be observed from

individual states. The dynamics distribution D is partitioned into two disjoint sets DCA08= and

DC4BC . These are used to generate a set of training and test environments, each having di�erent

transition functions, drawn from their respective distributions.

6.4 Approach

We present Policy-Dynamics Value Functions (PD-VF), a novel framework for rapid adaptation

across such MDPs with di�erent dynamics. PD-VF is an extension of a value function that not

only conditions on a state, but also on a policy and a transition function.
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A conventional value function+ : S → R is de�ned as the expected future return from state B

of policy c :

+ (B) = E [�C |(C = B] = E
[

)∑
:=C+1

W:A: |(C = B
]
.

Formally, we de�ne a policy-dynamics value function or PD-VF as a function, : S×Π×T → R

with two auxiliary inputs representing the policy c and the dynamics 3 :

, (B, c, 3) = E [�C |(C = B, �C ∼ c, (C+1 ∼ T3] .

Our model is learned on the training environments in three stages: (i) a reinforcement learning

phase, (ii) a self-supervised phase and (iii) a supervised phase. The resulting PD-VF model is

evaluated on test environments, where it only experiences a single episode in each. This evaluation

setting probes PD-VF’s ability to very quickly adapt to previously unseen dynamics.

6.4.1 Reinforcement Learning Phase

The �rst phase of training uses standard model-free RL algorithms to acquire experience in the

training environments. An ensemble of # policies are trained, each with a di�erent random seed

on one of the training environments. For each policy, we save a number of checkpoints at di�erent

stages throughout training. Then, we collect trajectories using each of these checkpoints in each

of our training environments. This results in experience from a diverse set of policies (some

good, some bad) across environments with di�erent dynamics. Importantly, this dataset contains

the behaviors of policies in environments they haven’t been trained on. In the next section, we

describe how the collected trajectories are used to learn policy and dynamics embeddings.
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6.4.2 Self-Supervised Learning Phase

The goal of this phase is to learn an embedding space of the dynamics that captures variations

in the transition function, as well as an embedding space of the policies that captures variations

in the agent behavior. The space of dynamics is learned using an encoder �3 parameterised as a

Figure 6.1: In the self-supervised learning phase, a pair of autoencoders is trained using transitions
generated by a diverse set of policies in a set of environments with di�erent dynamics. By exploiting the
Markov property of the environment, distinct latent embeddings of the dynamics I3 and policy Ic are
produced.

Transformer [Vaswani et al. 2017], and a decoder �3 parameterised as a feed-forward network.

The encoder takes as input a set of transitions {(BC , 0C , BC+1)} from the �rst #3 steps in each episode

and outputs a vector embedding for the dynamics I3 . The decoder takes as inputs the state BC ,

action 0C and dynamics embedding I3 , and predicts the next state B̂C+1. The parameters \3 and q3

of the encoder and decoder are trained to minimize the ℓ2 error of B̂C+1 and BC+1. Formally,

I3 = �3 ({(BC , 0C , BC+1)}; \3)

B̂C+1 = �3 (BC , 0C , I3 ; q3).
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This arrangement exploits the inductive bias that, conditioned on 3 , the environment is Markovian.

By using no positional encoding in the Transformer, the input transitions lack any temporal

ordering, thus preserving the Markov property. The decoder receives no historical information

(since it is unnecessary in a Markovian setting), so it is forced to embed information about the

dynamics into I3 to make good predictions. Because the input set contains the actions in each

triple, the encoder has no incentive to encode policy information into I3 . This modeling choice

encourages I3 to only contain information about the dynamics, rather than the policy used to

generate the transitions.

Similarly, the space of policies is learned using an encoder �c parameterised as a Transformer

and a decoder �c parameterised as a feed-forward network. The encoder takes as input a set

(again using the Markov property as an inductive bias) of state-action pairs {(BC , 0C )} from a full

episode and outputs a vector embedding for the policy I3 . The decoder takes as inputs the state

BC and the policy embedding Ic to predict the action taken by the policy 0̂C . Since the policy

encoder does not have direct access to full environment transitions, Ic is constrained to capture

information about the policy without elements of the dynamics. The parameters \c and qc of the

encoder and decoder are trained to minimize the ℓ2 error of 0̂C and 0C . Formally,

Ic = �c ({(BC , 0C )}; \c )

0̂C = �c (BC , Ic ; qc ).

Both the policy and the dynamics embeddings are normalized to have unit ℓ2-norm.

See Figure 6.1 for an overview of the self-supervised learning phase.

6.4.3 Supervised Learning Phase

In this phase, the goal is to train an estimator, of the expected return �̂ for a space of policies

and dynamics. More speci�cally,, is a function approximator conditioned on the learned policy
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Figure 6.2: In the supervised learning phase, a parametric value function, is trained to predict the
expected return� for an entire space of policies and dynamics. W takes as inputs the initial state B0, policy
embedding Ic , and dynamics embedding I3 (estimated from a small set of transitions). We train, in a
supervised fashion, using Monte-Carlo estimates of the expected return � for policy c in environment
with dynamics T3 . At test time, Ic is optimized to maximize �̂ (red dashed arrow), resulting in I∗c which is
then decoded to an actual policy via �c .

and dynamics embeddings, Ic and I3 .

A central idea of our PD-VF framework is that, provides a scoring function over the policy

embedding space. It thus provides a mechanism to allow on-the-�y optimization of Ic with respect

to the estimated return �̂ , without the need for any environment interaction, given an estimate

(or embedding) of the environment’s dynamics. This is key to PD-VF’s ability to rapidly �nd an

e�ective policy in a new environment, only requiring enough environment interaction to give a

reliable estimate of the dynamics embedding I3 (just a few steps in practice). We choose, to

have a quadratic form to permit easy optimization with respect to Ic :

�̂ =, (B0, Ic , I3) = I)c �(B0, I3 ;k ) Ic .

The matrix �(B0, I3 ;k ) is a function of the initial environment state B0 as well as the dynamics
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embedding I3 . Note that � only needs to model the initial state B0 rather than an arbitrary state

B since the optimization w.r.t Ic occurs only once, at the start of an episode. Since � must be

Hermitian positive-de�nite, a feed-forward network with parametersk is �rst used to obtain a

lower triangular matrix !(B0, I3 ;k ). Then � is constructed from !!) .

Optimizing the policy embedding Ic : The optimization of the policy embedding Ic has a

closed-form solution which is achieved by performing a singular value decomposition, � = *(+) ,

and taking the top singular vector of this decomposition I∗c . Unit ℓ2 normalization is then applied

to I∗c . We refer to this vector I∗c as the optimal policy embedding (OPE) of the PD-VF.

Learningk – Initial stage: We collect training data for the PD-VF in the following manner. First,

we randomly select a policy and an environment from our training set (described in Section 6.4.1).

Second, we generate full trajectories of that policy in the selected environment and cache the

average return obtained across all episodes. This gives us a Monte-Carlo estimate for the expected

return of the corresponding policy in that particular environment. Then, we use the �rst #3 steps

of that trajectory to infer the dynamics embedding. Similarly, we use the full trajectory to infer

the policy embedding (via �c , not the above optimization procedure). After collecting this data

into a bu�er, we train the estimator, in a supervised fashion by predicting the expected return

� given an initial state B0, a policy embedding Ic and a dynamics embedding I3 .

Learning k – Data Aggregation for the Value Function: For the method to work well, it is

important that the learned value function, makes accurate predictions for the entire policy space,

and especially for the OPE I∗c (which correspond to the policies selected to act in the environment).

One way to ensure that these estimates are accurate is by adding the OPEs to the training data.

After initial training of the PD-VF on the original dataset of policy and dynamics embeddings, we

use an iterative algorithm that alternates between collecting a new dataset of OPEs and training

the PD-VF on the aggregated data (including the original data as well as data added from all

previous iterations). We use early stopping to select the best value function (i.e. the one with the

lowest loss) to be used at test time.
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Learning k – Data Aggregation for the Policy Decoder: Similarly, the policy decoder may

poorly estimate an agent’s actions in states not seen during training. Thus, we iteratively train

the policy decoder using a combination of the original set of states as well as new states generated

by the policy embeddings that maximize the current value function. More speci�cally, we use the

current OPEs (corresponding to the policies that PD-VF thinks are best) as inputs to the policy

decoder to generate actions and interact with the environment. Then, we add the states visited

by this policy to the data. The policy decoder is trained using the aggregated collection of states

which includes both the states visited by the original collection of policies as well as the states

visited by the current OPEs selected by the PD-VF.

See Figure 6.2 for an overview of the supervised learning phase.

6.4.4 Evaluation Phase

At test time, we want to �nd a policy that performs well on a single episode of an environment

with unseen dynamics. This proceeds as follows: (i) the agent uses one of the pretrained RL

policies to act for #3 steps; (ii) the generated transitions are then used to infer the dynamics

embedding I3 ; (iii) once an estimate of the dynamics is obtained, the matrix �(B0, I3 ; k ) can be

computed; (iv) we employ the closed-form optimization described above to compute the optimal

policy embedding I∗c ; (v) the policy decoder, conditioned on the I∗c embedding, is then used to

take actions in the environment until the end of the episode. Note that only a small number

of interactions with a new environment is needed in order to adapt, the policy selection being

performed internally within the PD-VF model. Performance is evaluated on a single trajectory of

each environment instance.
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(a) Spaceship (b) Swimmer (c) Ant-wind

(d) Dynamics (e) Ant-legs-v1 (f) Ant-legs-v2

Figure 6.3: (a) - (c) illustrate the continuous control domains used for testing adaptation to unseen
environment dynamics. In Spaceship, Swimmer, and Ant-wind, the train and test distribution of the
dynamics is continuous as illustrated in (d). (e) and (f) show two instances of the Ant-legs task in which
limb lengths sampled from a discrete distribution determine the dynamics.

6.5 Experiments

6.5.1 Experimental Setup

We evaluate PD-VF on four continuous control domains, and compare it with an upper bound,

four baselines, and four ablations. For each domain, we create a number of environments with

di�erent dynamics. Then, we split the set of environments into training and test subsets, so that

at test time, the agent has to �nd a policy that behaves well on unseen dynamics. For all our
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Figure 6.4: Test Performance. Average return on test environments with unseen dynamics in Swimmer
(top-le�), Spaceship (top-right), Ant-wind (bo�om-le�), and Ant-legs (bo�om-right) obtained by PD-VF,
the upper bound PPOenv, and baselines '!2, MAML, PPOdyn, and PPOall. PD-VF outperforms these
baselines on most test environments and, in some cases, it is comparable with PPOenv (which was trained
directly on the test environments).

experiments, we show the mean and standard deviation of the average return (over 100 episodes)

across 5 di�erent seeds of each model. The dynamics embeddings are inferred using at most

#3 = 4 interactions with the environment.

6.5.2 Environments

Spaceship is a new continuous control domain designed by us. The task consists of moving a

spaceship with a unit point charge from one end of a 2D room through a door at the other end.

The action space consists of a �xed-magnitude force vector that is applied at each timestep. The

room contains two �xed electric charges that de�ect / attract the ship as it moves through the

environment (see Figure 6.3(a)). The polarity and magnitude of these charges are parameterised

by 3 and determine the environment dynamics. The distribution of dynamics D is chosen to be
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circular and centered (see Figure 6.3(d)). Samples 3 are drawn at intervals of c/10, each forming a

di�erent environment instance with charge con�guration (cos(3), sin(3)). The 5 samples in the

range [ 342c, . . . , 2c] are held out as evaluation environments, the rest being used for training.
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Figure 6.5: Test Performance. Average return in Swimmer (top-le�), Spaceship (top-right), Ant-wind
(bo�om-le�), and Ant-legs (bo�om-right) obtained by PD-VF, NoDaggerPolicy, NoDaggerValue, Kmeans,
and NN. PD-VF is be�er than these ablations overall.

Swimmer is a family of environments with varying dynamics based on MuJoCo’s Swimmer-v3

domain [Todorov et al. 2012a]. The goal is to control a three-link robot in a viscuous �uid to swim

forward as fast as possible (Figure 6.3(b)). The dynamics are determined by a 2D current within

the �uid, whose direction changes between environments (but has �xed magnitude). The current

direction is determined by an angle 3 , which is sampled in the same manner as for Spaceship

above, i.e. train on 3/4 of all possible directions and hold out the other 1/4 for evaluation.

Ant-wind is a family of environments based on MuJoCo’s Ant-v3 domain in which the goal is

to make a four-legged creature walk forward as fast as possible (Figure 6.3(c)). The environment

dynamics are determined by the direction of a wind 3 , which is sampled from a continuous
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distribution in the same way as for Swimmer.

Ant-legs is a second task based on MuJoCo’s Ant-v3 domain, in which the dynamics are

sampled from a discrete distribution. The training environments are generated by �xing three

ankle lengths (short, medium, and long) and generating all possible permutations for the four

legs. The length of the ant leg is �xed to medium across all training environments. Symmetries

in the training environments are removed by considering ants with the same number of short,

medium, or long legs to be the same and choosing one ant from each equivalency class. There

are four test environments with both the leg and ankle lengths being either short or long. Note

that the test environments are signi�cantly di�erent from all the training ones, thus making

Ant-legs a challenging setting for our method. Figures 6.3(e) and 6.3(f) show two instances of this

environment.

6.5.3 Baselines

We use PPO [Schulman et al. 2017] as the base RL algorithm for all the baselines and for the

reinforcement learning phase of training the PD-VF (Sec. 6.4.1). We use Adam [Kingma and Ba

2015] for optimization. All models use the same network architecture for the policy and value

functions. For a given environment, all methods use the same number of steps #3 (at the beginning

of each episode) to infer the embedding of the environment dynamics. Then, they each use a

single policy network to act in the environment until the end of the episode. We report the

cumulative reward obtained by each method throughout an episodes (in which they �rst infer the

environment dynamics which determines the policy used for acting until the end of the episode).

We compare with the following baselines:

trains a PPO policy for each environment in our set. This is used as an upper bound for the

other models.

is the meta-learning algorithm from Finn et al. [2017]. generally requires some amount of

training on the test environments, so to make it more comparable to our method and the other
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Figure 6.6: Train Performance. Average return on train environments in Swimmer (top-le�), Spaceship
(top-right), Ant-wind (bo�om-le�), and Ant-legs (bo�om-right) obtained by PD-VF, the upper bound
PPOenv, and baselines '!2, MAML, PPOdyn, and PPOall. PD-VF outperforms the baselines and ablations
on most test environments and, in some cases, it is comparable with PPOenv (which was trained directly on
the test environments). While other methods also perform reasonably well on the training environments,
they generalize poorly to new environments with unseen dynamics.

baselines, we allow one gradient step using a trajectory of length #3 (i.e. the same length as the

one used by PD-VF to infer the embedding of the environment dynamics). Thus, has an advantage

over PD-VF which does not make any parameter updates at test time.

RL2 is the meta-learning algorithm from Wang et al. [2016a] and Duan et al. [2016], which

uses a recurrent policy that takes as input the previous action and reward.

trains (using PPO) a single policy network conditioned on the dynamics embedding. At test

time, it �rst infers the dynamics embedding and then conditions the pretrained policy network on

that vector. This is a close implementation of the approach in Yang et al. [2019]1.

trains a single PPO policy on all the training environments and uses it on the test environments

without any additional �ne-tuning.
1An exact match was not feasible as code for Yang et al. [2019] was not available.
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We also compare PD-VF with four ablations:

�nds the environment that is closest (in Euclidean metric) to the test environment’s embedding

and uses the policy trained on that environment to act. This ablation aims to tease out the e�ect

of using both the learned space of policies and that of dynamics to adapt to new environments,

from that of only using the learned dynamics space.

clusters the environment embeddings (using trajectories collected in Section 6.4.1) into  

clusters. Then, for each cluster, we train a new PPO policy on all the environments assigned to

that cluster. At test time, we �nd the closest cluster for the given environment embedding and use

the policy corresponding to that cluster to act in the environment.

trains a PD-VF without using dataset aggregation for the value function (see Section 6.4.3).

uses PD-VF without using dataset aggregation for the policy decoder (see Section 6.4.3).

6.5.4 Adaptation to New Environment Dynamics

As seen in Figures 6.4 and 6.5, PD-VF outperforms all other methods on test environments

with new dynamics. In some cases (particularly on Spaceship and Swimmer), our approach

is comparable to the PPOenv upper bound which was directly trained on the respective test

environment (in contrast, PD-VF has never interacted with that environment before). While

the strength of PD-VF lies in quickly adapting to new dynamics, its performance on training

environments is still comparable to that of the other baselines, as shown in Figure 6.6. This result

is not surprising since current state-of-the-art RL algorithms such as PPO can generally learn

good policies for the environments they are trained on, given enough interactions, updates, and

the right hyperparamters. However, as predicted, standard model-free RL methods such as the

baseline PPOall do not generalize well to environments with dynamics di�erent from the ones

experiences during training. Even meta-learning approaches like MAML or '!2 struggle to adapt

when they are allowed to use only a short trajectory for updating the policy at test time, as is the

case here.
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But most importantly, PD-VF also outperforms the approaches that use the dynamics embed-

ding such as NN, Kmeans, and PPOdyn. This supports our claim that learning a value function for

an entire space of policies (rather than for a single optimal policy as standard RL methods do)

can be bene�cial for adapting to unseen dynamics. By simultaneously estimating the return of a

collection of policies in a family of environments with di�erent but related dynamics, PD-VF can

learn how variations in dynamics relate to di�erences in the performance of various policies. This

allows the model to rank di�erent policies and understand that sub-optimal behaviors in certain

environments might be optimal in others. Thus, at least in theory, PD-VF has the ability to �nd

policies that are better than the ones seen during training. Our empirical results indicate that this

might also hold true in practice. Overall, PD-VF proves to be more robust to changes in dynamics

relative to the other methods, especially in completely new environments.

6.5.5 Analysis of Learned Embeddings

The performance of PD-VF relies on learning useful policy and dynamics embeddings that

capture variations in agent behaviors and transition functions, respectively. In this section, we

analyze the learned embeddings.

Figure 6.7 shows a t-SNE plot of the learned policy embeddings for Spaceship, Swimmer,

and Ant (from left to right). The top and bottom rows color the embeddings by the policy and

environment that generated the corresponding trajectory, respectively. Environments 1 - 15 are

used for training, while 16 - 20 are used for evaluation. Trajectories produced by the same policy

have similar embeddings, while those generated in the same environment are not necessarily

close in this embedding space. This shows that the policy embedding preserves information about

the policy while disregarding elements of the environment (that generated the corresponding

embedded trajectory).

Similarly, Figure 6.8 shows a t-SNE plot of the learned dynamics embeddings on the three

continuous control domains used for evaluating our method. The top row colors each point by the
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Figure 6.7: t-SNE plots of the learned policy embeddings Ic for Spaceship, Swimmer, and Ant-wind (from
le� to right). The points are colored by the policy (top) and environment (bo�om) used to generate the
trajectory of the corresponding policy embedding.

corresponding environment used to generate the trajectory (from which the embedding is inferred),

while the bottom row colors each point by the corresponding policy. The latent space captures

the continuous nature (i.e. smoothness) of the distribution used to generate the environment

dynamics. For example, in Figure ??, one can see the wind direction corresponding to a particular

environment, indicating that the learned embedding space uncovers the one-dimensional (1D)

manifold structure of the true dynamics distribution. Even if, during training, the dynamics model

never sees trajectories through the test environments, it is still able to embed them within the 1D

manifold, thus preserving smoothness in the latent space.

Importantly, this analysis shows that the learned policy and dynamics embeddings are generally

disentangled (i.e. information about the dynamics is not contained in the policy space and vice

versa). This is notable as we want the dynamics space to mostly capture information about the
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Figure 6.8: t-SNE plots of the learned environment embeddings I3 for Spaceship, Swimmer, and Ant-wind
(from le� to right). The points are colored by the environment (top) and policy (bo�om) used to generate
the trajectory of the corresponding dynamics embedding.

transition function and similarly, we want the policy space to capture variation in the agent

behavior. The only exception is the dynamics space of Ant-wind, which contains information

about both the environment and the policy. This is because in this environment, the policy is

dominated by the force applied to the body of the ant, whose goal is to move forward (while

incurring a penalty proportional to the applied force). Thus, depending on the wind direction in

the training environment, the agent learns to apply a force of a certain magnitude, a characteristic

captured in the embedding space. When evaluated on environments with di�erent dynamics, that

policy will still apply a similar force. Our experiments indicate that even if the dynamics space is

not fully disentangled (yet it contains information about the environment), the PD-VF is still able

to make e�ective use of the embeddings to �nd good policies for unseen environments and even

outperform other state-of-the-art RL methods.
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6.6 Conclusion

In this chapter, we propose policy-dynamics value functions (PD-VF), a novel framework

for fast adaptation to new environment dynamics. The key idea is to learn a value function

conditioned on both a policy and a dynamics embedding which are learned in a self-supervised

way. At test time, the environment embedding can be inferred from only a few interactions, which

allows the selection of a policy that maximizes the learned value function. PD-VF has a number

of desirable properties: it leverages the structure in both the policy and the dynamics space to

estimate the expected return, it only needs a small number of steps to adapt to unseen dynamics,

it does not update any parameters at test time, and it does not require dense reward or long

rollouts to �nd an e�ective policy in a new environment. Empirical results on a set of continuous

control domains show that PD-VF outperforms other methods on unseen dynamics, while being

competitive on training environments.

PD-VF opens up many promising directions for future research. First of all, the formulation

can be extended to estimate the value function not only for a family of policies and environment

dynamics, but also for a family of reward functions. Another avenue for future research is to

use a more general class of function approximators (such as neural networks) to parameterise

the value estimator instead of a quadratic form. The PD-VF framework can, in principle, also be

used to evaluate a family of policies and environments on other metrics of interest besides the

expected return, such as, for example, reward variance, agent prosociality, deviation from expert

behavior, and so on. Another interesting direction is to integrate additional constraints (or prior

knowledge) to the optimization problem (e.g. maximize expected return while only using policies

in a certain region of the policy space). As noted by Precup et al. [2001], Sutton et al. [2011], and

White et al. [2012], learning about multiple policies in parallel via general value functions can

be useful for lifelong learning. Similarly, PD-VF can be a useful tool for an agent to continually

gather knowledge about various policies and dynamics in the world. Finally, PD-VF can also be
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applied to multi-agent settings for adapting to di�erent opponents or teammates whose behaviors

determine the environment dynamics.

Since this work was published, researchers have proposed alternative methods for quickly

adapting to changes in the environment’s dynamics. For example, Totaro and Jonsson [2021] use

Kalman �ltering to deal with nonstationarity, Lee and Chung [2021] train RL agents on imaginary

tasks generated from mixtures of learned latent dynamics for fast adaptation to new dynamics,

while Yang et al. [2020] train robots in an adversarial fashion for improving robustness to joint

damage. In a review of continual reinforcement learning, Khetarpal et al. [2020] mention that

context detection, which can be framed as learning task and policy embeddings as we propose here,

is a promising approach for learning about task relatedness and making progress on continual

RL.
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7 | Modeling Others using Oneself in

Multi-Agent Reinforcement

Learning

In the previous chapters, we studied how a single reinforcement learning agent can learn

policies which are e�ective in a wide range of settings and can zero-shot generalize or quickly

adapt to new task instances. In this chapter, we consider the multi-agent RL setting with imperfect

information in which each agent is trying to maximize its own utility. The reward function

depends on the hidden state (or goal) of both agents, so the agents must infer the other players’

hidden goals from their observed behavior in order to solve the tasks. Our aim is to learn policies

which generalize to opponents or collaborators with di�erent goals. Here, we propose a new

approach for learning in these domains: Self Other-Modeling (SOM), in which an agent uses

its own policy to predict the other agent’s actions and update its belief of their hidden state in

an online manner. We evaluate this approach on three di�erent tasks and show that the agents

are able to learn better policies using their estimate of the other players’ hidden states, in both

cooperative and adversarial settings.
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7.1 Introduction

Reasoning about other agents’ intentions and being able to predict their behavior is important

in multi-agent systems, in which the agents might have a diverse, and sometimes competing, set of

goals. This remains a challenging problem due to the inherent non-stationarity of such domains.

In this chapter, we introduce a new approach for estimating the other agents’ unknown goals

from their behavior and using those estimates to choose actions.

We demonstrate that in the proposed tasks, using an explicit model of the other player in

the game leads to better performance than simply considering the other agent to be part of the

environment.

We frame the problem as a (not-necessarily zero-sum) two-player stochastic game [Shapley

1953], otherwise known as a two-player Markov game, in which the agents have full visibility of the

environment, but no explicit knowledge about other agents’ goals and there is no communication

channel. The reward received by each agent at the end of an episode depends on the goals of both

agents, so the optimal policy of each agent must take into account both of their goals.

Research in cognitive science suggests that humans maintain models of other people they

interact with, which capture their goals, beliefs, or preferences gopnik1992child, premack1978does.

In some cases, humans use their own mental process to simulate others’ behavior by adopting

their perspective [Gordon 1986; Gallese and Goldman 1998]. This allows them to understand

others’ intentions or motives and act accordingly in social settings. Inspired by these studies, the

key idea of our approach is that as a �rst approximation, to understand what the other player in

the game is doing, an agent should ask itself “what would be my goal if I had acted as the other

player had?". We instantiate this idea by parametrizing the agent’s action and value functions

with a (multi-layer recurrent) neural network that takes the state and a goal as an input. As the

agent plays the game, it infers the other agent’s unknown goal by directly optimizing over the

goal (using its own action function) to maximize the likelihood of the other’s actions.
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7.2 Related Work

Opponent modeling has been extensively studied in games of imperfect information. However,

most previous approaches focus on developing models with domain-speci�c probabilistic priors or

strategy parametrizations. In contrast, our work proposes a more general framework for opponent

modeling. Davidson [1999] uses an MLP to predict opponent actions given a game history, but

the agents cannot adapt to their opponents’ behavior in an online manner. Lockett et al. [2007]

designs a neural network architecture to identify the opponent type by learning a mixture of

weights over a given set of cardinal opponents. However, the game does not unfold within the

reinforcement learning framework.

A large body of work in deep multi-agent RL focuses on partially visible, fully cooperative

settings [Foerster et al. 2016a,b; Omidsha�ei et al. 2017] and emergent communication [Lazaridou

et al. 2016; Foerster et al. 2016a; Sukhbaatar et al. 2016; Das et al. 2017; Mordatch and Abbeel

2017] Our setting is di�erent since we do not allow any communication among the agents, so the

players have to indirectly reason about their opponents’ intentions from their observed behavior.

In contrast, Leibo et al. [2017] considers semi-cooperative multi-agent environments in which the

agents develop cooperative and competitive strategies depending on the task type and reward

structure. Similarly, Lowe et al. [2017] proposes a centralized actor-critic architecture for e�cient

training in settings with such mixed strategies. Lerer and Peysakhovich [2017] design RL agents

that are able to maintain cooperation in complex social dilemmas by generalizing a well-known

game theoretic strategy called tit-for-tat [Axelrod 2006] to multi-agent Markov games. Recent

work in cognitive science attempts to understand human decision-making by using a hierarchical

model of social agency that infers the intentions of other human agents in order to decide whether

to play a cooperative or competitive strategy [Kleiman-Weiner et al. 2016]. However, none of

these papers design algorithms that explicitly model other arti�cial agents in the environment or

estimate their intentions, with the purpose of improve their decision making.
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The �eld of inverse reinforcement learning (IRL) [Russell 1998; Ng et al. 2000; Abbeel and Ng

2004], is also related to the problem considered here. IRL’s aim is to infer the reward function

of an agent by observing its behavior, which is assumed to be nearly optimal. In contrast, our

approach uses the observed actions of the other player to directly infer its goal in an online

manner, which is then used by the agent when acting in the environment. This avoids the need

for collecting o�ine samples of the other’s (state, action) pairs in order to estimate its reward

function and then use this to learn a separate policy that maximizes that utility. The more recent

papers by Had�eld-Menell et al. [2016, 2017] are also concerned with the problem of inferring

others’ intentions, but their focus is on human-robot interaction and value alignment. Motivated

by similar goals, chandrasekaran2017takes consider the problem of building a theory of AI’s mind,

in order to improve human-AI interaction and the interpretability of AI systems. For this purpose,

they show that people can be trained to predict the responses of a Visual Question Answering

model, using a small number of examples.

The closest work to ours is Foerster et al. [2017] and He et al. [2016]. Foerster et al. [2017]

designs RL agents that take into account the learning of other agents in the environment when

updating their own policies. This enables the agents to discover self-interested yet collaborative

strategies such as tit-for-that in the iterated prisoner’s dilemma. While our work does not explicitly

attempt to shape the learning of other agents, it has the advantage that the agents can update their

beliefs during an episode and change their strategies in an online manner to gain more reward.

Our setting is also di�erent in that it considers that each agent has some hidden information

needed by their the other player in order to maximize its return.

Our work is very much in line with He et al. [2016], where the authors build a general frame-

work for modeling other agents in the reinforcement learning setting. He et al. [2016] proposes

a model that jointly learns a policy and the behavior of opponents by encoding observations

of the opponent into a DQN. Their Mixture of Experts architecture is able to discover di�erent

opponent strategy patterns in two purely adversarial tasks. One di�erence between our work
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and He et al. [2016]’s is that we do not aim to infer other agents’ strategies, but rather focus on

explicitly estimating their goals in the environment. Moreover, rather than using a hand designed

featurization of the other agent’s actions, in this work, the agent learns its model of the other

end-to-end, based on its own model. Another di�erence is that in this work, the agent runs an

optimization to infer the other agent’s hidden state, instead of inferring the other agent’s hidden

state via a feed-forward network. In the experiments below, we show that SOM outperforms an

adaptation of the method of He et al. [2016] to our setting.

7.3 Background

A Markov game for two agents is de�ned by a set of states S describing the possible con�gu-

rations of all agents, a set of actions A1,A2 and a set of observations O1,O2 for each agents, and

a transition function % : S × A1 × A2 → S which gives the probability distribution on the next

state as a function of current state and actions. Each agent i chooses actions by sampling from

a stochastic policy c\8 : S × A8 → [0, 1]. Each agent has a reward function which depends on

agent’s state and action: A8 : S × A8 → R. Each agent i tries to maximize its own total expected

return '8 =
∑)
C=0 W

CA C8 , where W is a discount factor and T is the time horizon. In this work, we

consider both cooperative, as well as adversarial settings.

7.4 Approach

We now describe Self Other-Modeling (SOM), a new approach for inferring the other agents’

goals in an online fashion during an episode and using these estimates to choose actions. To

decide an action and to estimate the value of a state, we use a neural network 5 that takes as input

its own goal IB4; 5 , an estimate of the other player’s goal Ĩ>Cℎ4A , and the observation state from its

own perspective BB4; 5 , and outputs a probability distribution over actions c and a value estimate

120



+ , such that for each agent i playing the game we have:


c 8

+ 8

 = 5 8 (B8
B4; 5

, I8
B4; 5

, Ĩ8
>Cℎ4A

; \ 8) .

Here \ 8 are agent 8’s parameters for 5 , which has one softmax output for the policy, one linear

output for the value function, and all the non-output layers shared. The actions are sampled from

the policy c . The observation state B8
B4; 5

explicitly contains the location of the acting agent (the

one whose action is decided by 5 8 ), as well as the location of the other agent.

Because an agent computes both its own actions and values, as well as estimates of the other

agent’s, each agent has two networks (omitting the agent index 8 for brevity):

5B4; 5 (BB4; 5 , IB4; 5 , Ĩ>Cℎ4A ; \B4; 5 ) (7.1)

and

5>Cℎ4A (B>Cℎ4A , Ĩ>Cℎ4A , IB4; 5 ; \B4; 5 ) . (7.2)

The two networks are used in di�erent ways: 5B4; 5 is used for computing the agent’s own actions

and values, and operates in a feed-forward manner. The agent uses 5>Cℎ4A to infer the other agent’s

goal via an optimization over Ĩ>Cℎ4A given the other agent’s observed actions.

We propose that each agent models the behavior of the other player using its own policy,

so that the parameters of 5>Cℎ4A are the same as the parameters of 5B4; 5 . However, note that the

two networks di�er in their relative placement of the inputs IB4; 5 and Ĩ>Cℎ4A . Additionally, since

the environment is fully observed, the observation state of the two agents di�ers only by the

speci�cation of the agent’s identity on the map (i.e. each agent will be able to distinguish between

its own location and the other’s location). Hence, in acting mode, the network 5B4; 5 will take as

input BB4; 5 and in inference mode, the network 5>Cℎ4A will take as input B>Cℎ4A .

At each step of the game, the agent needs to infer Ĩ>Cℎ4A in order to input its estimate into (7.1)
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Algorithm 5 SOM training for one episode
1: procedure Self Other-Modeling
2: for k := 1, num_players do
3: Ĩ:

>Cℎ4A
← 1

=6>0;B
1=6>0;B

4: end for
5: game.reset()
6: for step := 1, episode_length do
7: 8 ← 60<4.64C_02C8=6_064=C ()
8: 9 ← 60<4.64C_=>=_02C8=6_064=C ()
9: B8

B4; 5
← 60<4.64C_BC0C4 ()

10: B
9

>Cℎ4A
← 60<4.64C_BC0C4 ()

11: Ĩ
$�,8

>Cℎ4A
= >=4_ℎ>C [0A6<0G (Ĩ8

>Cℎ4A
)]

12: c 8
B4; 5

,+ 8
B4; 5
← 5 8

B4; 5
(B8
B4; 5

, I8
B4; 5

, Ĩ
$�,8

>Cℎ4A
;\ 8
B4; 5
)

13: 08
B4; 5
∼ c 8

B4; 5

14: 60<4.02C8>=(08
B4; 5
)

15: for k : = 1, num_inference_steps do
16: Ĩ

�,9

>Cℎ4A
= 6D<14;_B> 5 C<0G (Ĩ 9

>Cℎ4A
)

17: c̃
9

>Cℎ4A
← 5

9

>Cℎ4A
(B 9
>Cℎ4A

, Ĩ
�,9

>Cℎ4A
, I
9

B4; 5
;\ 9
B4; 5
)

18: ;>BB = 2A>BB_4=CA>?~_;>BB (c̃ 9
>Cℎ4A

, 08
B4; 5
)

19: ;>BB.102:F0A3 ()
20: D?30C4 (Ĩ 9

>Cℎ4A
)

21: end for
22: end for
23: for k := 1, num_players do
24: ?>;82~.D?30C4 (\:

B4; 5
)

25: end for
26: end procedure
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and choose its action. For this purpose, at each step, the agent observes the other taking an action

and, at the next step, the agent uses the previously observed action of the other as supervision, in

order to back-propagate through (7.2) and optimize over Ĩ>Cℎ4A . Figure 7.1 illustrates this technique.

The number of steps taken by the optimizer in this inference procedure is a hyperparameter

that can be varied depending on the game. Hence, the estimate of the other agent’s goal Ĩ>Cℎ4A

is updated multiple times at each step during the game. The parameters \B4; 5 are updated at the

end of each episode using Asynchronous Advantage Actor-Critic (A3C) [Mnih et al. 2016b] with

reward signal obtained by the self agent.

Algorithm 5 represents the pseudo-code for training SOM agents for one episode. Since the

goals are discrete in all the tasks considered here, the agent’s goal ĨB4; 5 is encoded as a one-hot

vector of dimension equal to the total number of possible goals in the game. The embedding of the

other player’s goal Ĩ>Cℎ4A has the same dimension. In order to estimate the gradients going through

Ĩ>Cℎ4A , which is a discrete variable and thus non-di�erentiable, we replace it with a di�erentiable

sample from the Gumbel-Softmax distribution [Jang et al. 2016; Maddison et al. 2016], Ĩ�
>Cℎ4A

. This

reparametrization trick was shown to e�ciently produce low-variance biased gradients. After

optimizing Ĩ>Cℎ4A at each step using this method, Ĩ>Cℎ4A usually deviates from a one-hot vector. At

the next step, 5B4; 5 takes as input the one-hot vector Ĩ$�
>Cℎ4A

corresponding to the argmax of the

previously updated Ĩ>Cℎ4A .

The agents’ policies are parametrized by long short-term memory (LSTM) cells [Hochreiter

and Schmidhuber 1997] with two fully-connected linear layers, and exponential linear unit (ELU)

[Clevert et al. 2015] activations. The weights of the networks are initialized with semi-orthogonal

matrices, as described in [Saxe et al. 2013] and zero bias.

Due to the recurrence of 5>Cℎ4A , special care must be taken when the number of inference steps

is > 1. Under this setting, at each step in the game, we save the recurrent state of 5>Cℎ4A before

the �rst forward pass in inference mode, and initialize the recurrent state to this value for every

inference step. This procedure ensures 5>Cℎ4A is unrolled the same number of steps during both
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Figure 7.1: Our Self Other-Model (SOM) architecture for a given agent.

acting and inference mode.

7.5 Experiments

In this section, we evaluate our model SOM on three tasks:

• The coin game, in Section 7.5.2, which is a fully co-operative task where the agents’ roles

are symmetric.

• The recipe game, in Section 7.5.3, which is adversarial, but with symmetric roles.

• The door game, in Section 7.5.4, which is fully cooperative but has asymmetric roles for the

two players.

We compare SOM to three other baselines and to a model that has access to the ground truth of the

other agent’s goal. All the tasks considered are created in the Mazebase grid-world environment

[Sukhbaatar et al. 2015].
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7.5.1 Baselines

True-Other-Goal (TOG): We provide an upper bound on the performance of our model

given by a policy network which takes the other agent’s true goal as input, I>Cℎ4A , as well as the

state features BB4; 5 and its own goal IB4; 5 . Since this model has direct access to the true goal of the

other agent, it does not need a separate network to model the behavior of the other agent. The

architecture of TOG is the same as the one of SOM’s policy network, 5B4; 5 .

No-Other-Model (NOM): The �rst baseline we use only takes as inputs the observation state

BB4; 5 and its own goal IB4; 5 . NOM has the same architecture as the one used for SOM’s policy

network, 5B4; 5 . This baseline has no explicit model of the other agent or estimate of its goal.

Integrated-Policy-Predictor (IPP): Starting with the architecture and inputs of NOM,

we construct a stronger baseline, IPP, which has an additional �nal linear layer that outputs a

probability distribution over the next action of the other agent. Besides the A3C loss used to train

the policy of this network, we also add a cross-entropy loss to train the prediction of the other

agent’s action, using observations of its behavior.

Separate-Policy-Predictor (SPP): He et al. [2016] propose an opponent modeling framework

based on DQN. In their approach, a neural network (separate from the learned Q-network) is

trained to predict the opponent’s actions, given hand crafted state information speci�c to the

opponent. An intermediate hidden representation from this network is given as input to the the

Q-network.

We adapt the model of He et al. [2016] to our setting. In particular, we use A3C instead of DQN

and we do not use the task-speci�c features used to represent the hidden state of the opponent.

The resulting model, SPP, consists of two separate networks, a policy network for deciding

the agent’s actions, and an opponent network for predicting the other’s actions. The opponent

network takes as input the state of the world B and its own goal IB4; 5 , and outputs a probability

distribution for the action taken by the other agent at the next step, as well as its hidden state
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(given by the network’s recurrence). As in IPP, we train the opponent policy predictor with a

cross-entropy loss using the true actions of the other agent. At each step, the hidden state output

by this network is taken as input by the agent’s policy network, along with the observation state

and its own goal. Both the policy network and the opponent policy predictor are LSTMs with the

same architecture as SOM.

In contrast to SOM, SPP does not explicitly infer the other agent’s goal. Rather, it builds an

implicit model of the opponent by predicting the agent’s actions at each time step. In SOM, an

inferred goal is given as additional input to the policy network. The analog of the inferred goal in

SPP is the hidden representation obtained from the opponent policy predictor which is given as

an additional input to the policy network.

Training Details. In all our experiments, we train the agents’ policies using A3C [Mnih et al.

2016b] with an entropy coe�cient of 0.01, a value loss coe�cient of 0.5, and a discount factor of

0.99. The parameters of the agents’ policies are optimized using Adam [Kingma and Ba 2015] with

V1 = 0.9, V2 = 0.999, n = 1 × 10−8, and weight decay 0. SGD with a learning rate of 0.1 was used

for inferring the other agent’s goal, Ĩ>Cℎ4A .

The hidden layer dimension of the policy network was 64 for the Coin and Recipe Games and

128 for the Door Game. We use a learning rate of 1 × 10−4 for all the games and models.

The observation state B is represented by few-hot vectors indicating the locations of all the

objects in the environment, as well as the locations of the self and the other. The dimension of

this input state is 1 × =5 40CDA4B , where the number of features is 384, 192, and 900 for the Coin,

Recipe, and Door games, respectively.

For each experiment, we trained the models using 5 di�erent random seeds. All the results

shown are for 10 optimization updates of Ĩ>Cℎ4A at each step in the game, unless mentioned

otherwise.
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Figure 7.2: Coin Strategy: Average number of collected coins per episode corresponding to the color of
the Self (blue), Other (red), or Neither (green) by the agents using TOG (le�), SOM (center-le�), NOM
(center), IPP (center-right), and SPP (right). The optimal strategy is to pick up as many Self as Other coins
on average, across a number of episodes, and no Neither coins. Being able to collect more Other than
Neither coins indicates that the agent is able to accurately infer the other agent’s color early enough
during some of the episodes and uses this information to collect more Other, instead of Neither coins,
which increases its reward. The TOG model learns to collect just as many Self as Other coins, while all
the baselines only learn to collect more Self coins, but cannot distinguish between the Other and Neither
coins. SOM learns to collect significantly more Other coins than Neither. This shows that SOM converges
to a closer-to-optimal strategy using its guess of the other’s goal.

7.5.2 Coin Game.

First, we evaluate the model on a fully cooperative task, in which the agents can gain more

reward when using both of their goals rather than only their own goal. So it is in the best interest

of each agent to estimate the other player’s goal and use that information when taking actions.

The game, shown in the left diagram of Figure 7.4, takes place on a 8×8 grid containing 12 coins of

3 di�erent colors (4 coins of each color). At the beginning of each episode, the agents are randomly

assigned one of the three colors. The action space consists of: go up, down, left, right, or pass.

Once an agent steps on a coin, that coin disappears from the grid. The game ends after 20 steps

(i.e. each agent takes 10 steps). The reward received by both agents at the end of the game

' = (=B4; 5
�B4; 5
+ =>Cℎ4A�B4; 5

)2 + (=B4; 5
�>Cℎ4A

+ =>Cℎ4A�>Cℎ4A
)2

− (=B4; 5
�=48Cℎ4A

+ =>Cℎ4A�=48Cℎ4A
)2,
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where =>Cℎ4A
�B4; 5

is the number of coins of the self’s goal-color, which were collected by the other

agents, and =B4; 5
�=48Cℎ4A

is the number of coins corresponding to neither of the agents’ goals, collected

by the self. For the example in Figure 7.4, agent 1 has �B4; 5 = orange and �>Cℎ4A = cyan, while

agent 2’s �B4; 5 is cyan and �>Cℎ4A is orange. �=48Cℎ4A is red for both agents.

The role of the penalty for collecting coins that do not correspond to any of the agents’ goals is

to avoid convergence to a brute force policy in which the agents can gain a non-negligible amount

of reward by collecting all the coins in their proximity, without any regard to their color.
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Figure 7.3: Coin Performance: Average reward obtained on the Coin game by SOM (green), TOG (blue),
NOM (red), IPP (magenta), and SPP (orange). SOM performs be�er than all the baselines.

To maximize its return, each agent needs to collect coins of its own or its collaborator’s color,

but not those of the remaining color. Thus, when both agents are able to infer their collaborators’

goals with high accuracy and as early as possible in the game, they can use that information to

maximize their shared utility.

Figure 7.3 shows the mean and standard deviation of the reward across 5 runs with di�erent

random seeds obtained by SOM. Our model clearly outperforms all the baselines on this task. We
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also show the empirical upper bound on the reward using the model which takes as input the true

color assigned to the other agent.

Figure 7.2 analyzes the strategies of the di�erent models by looking at the proportion of

coins of each type collected by the agents. The optimal strategy is for each agent to maximize

=
B4; 5

�B4; 5
+ =B4; 5

�>Cℎ4A
and =B4; 5

�=48Cℎ4A
= 0. Due to the randomness in the initial conditions (in particular, the

locations of coins in the environment), this amounts to each agent collecting an equal number of

coins of its own color and coins of the other’s color on average, across a large number of episodes

(i.e. =̄B4; 5
�B4; 5

= =̄
B4; 5

�>Cℎ4A
).

Indeed, this is the strategy learned by the model with perfect information of the other agent’s

goal (TOG). SOM also learns to collect signi�cantly more Other than Neither coins (although not

as many as Self coins), indicating its ability to distinguish between the two types, at least during

some of the episodes. This means that SOM can accurately infer the other agent’s goal early

enough during the episode and use that information to collect more Other Coins, thus gaining

more reward than if it were only using its own goal to direct its actions.

In contrast, the agents trained with the three baseline models collect signi�cantly more Self

coins, and as many Other as Neither coins on average. This shows that they learn to use their own

goal for gaining reward, but they are unable to use the hidden goal of the other agent for further

increasing their reward. Even if IPP and SPP are able to predict the actions of the other player

with an accuracy of about 50%, they do not learn to distinguish between the coins that would

increase (Other) and those that would decrease (Neither) their reward. This shows the weaknesses

of using an implicit model of the other agent to maximize reward on certain tasks.

7.5.3 Recipe Game.

Agents in adversarial scenarios can also bene�t from having a model of their opponents, which

would enable them to exploit the weaknesses of certain players. With this motivation in mind, we

evaluate our model on a game in which the agents have to craft certain compositional recipes,
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Figure 7.4: Illustration of the Coin (le�), Recipe (center), and Door (right) games Above each ones we
show the agents’ goals (not visible to one another).
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each containing multiple items found in the environment. The agents are given as input the names

of their goal-recipes, without the corresponding components needed to make it. The resources in

the environment are scarce, so only one of the agents can craft its recipe within one episode.
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Figure 7.5: Recipe Performance: Average fraction of success in the Recipe game by SOM-NOM (le�),
SOM-IPP (center-le�), SOM-SPP (center-center), SOM-TOG (center-right), NOM-AcrPredSep (right). The
plots show the performance of SOM with 5 optimization updates of Ĩ>Cℎ4A at each step in the game.

As illustrated in Figure 7.4 (center), there are 4 types of items: {sun, star, moon, lightning} and

4 recipes: {sun, sun, star}; {star, star, moon}; {moon, moon, lightning}; {lightning, lightning, sun}.

The game is played in a 4 × 6 grid, which contains 8 items in total, 2 of each type.

At the beginning of each episode, we randomly assign a recipe to one of the agents, and then

we randomly pick a recipe for the other agent so that it has overlapping items with the recipe

of the �rst agent. This ensures that the agents are competing for resources within each episode.

At the end of the episode, each agent receives a reward of +1 for crafting its own recipe and a

penalty of -0.1 for each item it picked up not needed for making its recipe.

We designed the layout of the grid so that neither agent has an initial advantage by being closer

to the scarce resource. At the beginning of each episode, one of the agents starts on the left-most

column of the grid, while the other one starts on the right-most column, at the same y-coordinate.

Their initial y-coordinate as well as which agent starts on the left/right is randomized. Similarly,

one item of each of the 4 di�erent types is placed at random in the grid formed by the second and

third columns of the maze, from left to right. The rest of the items are placed in the forth and �fth

columns, so that the symmetry with respect to the vertical axis is preserved (i.e. items of the same

type are placed at the same y-coordinate, and symmetric x-coordinates).
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Agents have six actions to choose from: pass, go up, down, left, right, or pick (for picking an

item, which then disappears from the grid). The �rst agent to take an action is randomized. The

game ends after 50 steps.

We pretrain all the baselines on a version of the game which does not have overlapping recipes,

in order to ensure that all the models learn to pick up the corresponding items, given a recipe as

goal. All of the models learn to craft their assigned recipes ∼ 90% of the time on this simpler task.

Then, we continue training the models on the adversarial task in which their recipes overlap in

each episode. SOM is initialized with a pretrained NOM network.

Figure 7.5 shows the winning fraction for di�erent pairs played against each other in the

Recipe game. For the �rst 100k episodes, the models are not being trained. We can see that SOM

signi�cantly outperfroms NOM, IPP, and SPP, winning ∼ 75 − 80% of the time, while the baselines

can only win ∼ 15 − 20% of the games. SPP ties against NOM, and TOG outperforms SOM by

a large margin. We also played the same types of agents against each other and they all win

∼ 40 − 50% of the games.

7.5.4 Door Game.

In this section, we show that on a collaborative task with asymmetric roles and multiple

possible partners, the agents can learn to �gure out what role they should be playing in each game

based on their partners actions.

In the Door game, two agents are located in a 5 × 9 grid, with 5 goals behind 5 doors on the

left wall, and 5 switches on the right wall of the grid. The game starts with the two players in

random squares on the grid, except for the ones occupied by the goals, doors, or switches, we

illustrated in Figure 7.4. Agents can take any of the �ve actions: go up, down, left, right or pass.

An action is invalid if it moves the player outside of the border or to a square occupied by a block

or closed door. Both agents receive +3 reward when either one of them steps on its goal and they

are penalized -0.1 for each step they take. The game ends when one of them gets to its goal or
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Figure 7.6: Door Performance: Average fraction of success on the Door game by SOM (green), TOG
(blue), NOM (red), IPP (magenta), and SPP (orange). On average, SOM performs be�er than all the
baselines.

after 22 steps. All the goals are behind doors which are open only as long as one of the agents sits

on the corresponding switch for that door.

At the beginning of an episode, each of the two players is randomly selected from a pool of 5

agents and receives as input a random number from 1 to 5 corresponding to its goal. Each of the

5 agents has its own policy which gets updated at the end of each episode they play. Note that

the agents’ identities are not visible (i.e. there is no indication in the state features that speci�es

the id’s of the agents playing during a given episode). This restriction is important in order to

ensure that the agents cannot gain advantage by specializing into the two roles needed to win

(i.e. goal-goer and switch-puller) and identifying the specialization of the other player by simply

observing its unique id.

The agents need to cooperate in order to receive reward. In contrast to our previous tasks, the

two players must take di�erent roles. In fact, the player who sits on the switch should ignore its
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own goal and instead infer the other’s goal, while the player who goes to its goal does not need to

infer the other’s goal, but only use its own. In order to sit on the correct switch, an agent has to

infer the other player’s goal from their observed actions. The only way in which an agent can use

its own policy to model the other player is if each agent learns to play both roles of the game, i.e.

go to its own goal and also open its collaborator’s door by sitting on the corresponding switch.

Indeed, we see that the agents learn to play both roles and they are able to use their own policies

to infer the other player’s goals when needed.

Fig 7.6 shows the mean and standard deviation of the winning fraction obtained by one of the

agents on the Door game. While our model is still able to outperform the three baselines, the gap

between the performance of our model and that of IPP or SPP (an approximate version of [He

et al. 2016]) is smaller than in the previous tasks. However, this is a more di�cult task for our

model since it needs the agents to learn performing both roles before e�ectively use its own policy

to infer the other agent’s goal. Nevertheless, we see that SOM training allows the agents to play

both roles in an asymmetric cooperative game, and to infer the goal and role of the other player.

7.5.5 Analyzing the goal inference

In this section we further analyze the ability of the SOM models to infer other’s intended goals.

Figure 7.7 shows the fraction of episodes in which the goal of the other agent is correctly

inferred. We consider that the goal is correctly inferred only when the estimate of the other’s

goal remains accurate until the end of the game, so that we avoid counting the episodes in which

the agent might infer the correct goal by chance at some intermediate step in the game. In all

the games, the SOM agent learns to infer the other player’s goal with a mean accuracy ranging

from ∼ 60 − 80%. Comparing the second plot in Figure 7.2 with the left plot in Figure 7.7, one can

observe that the SOM agent starts distinguishing Other from Neither coins after approximately

2M training epochs, which coincides with the time when the mean accuracy of the inferred goal

converges to ∼ 75%. The Door Game (right) presents higher variance since the agents learn to use
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Figure 7.7: Inference Accuracy during Training: The mean fraction of episodes in which the agent
correctly infers the other’s goal for the Coin (le�), Recipe (center), and Door (right) games, as a function of
training epoch. The estimate of the other’s goal is considered correct if it remains accurate during all the
following steps in the game.

and infer the other’s goal at di�erent stages during training.

Figure 7.8 shows the cumulative distribution of the step at which the goal of the other player is

correctly inferred (and remains the same until the end of the game). The cumulative distribution

is computed over the episodes in which the goal is correctly inferred before the end of the game.

In the Coin (blue) and Recipe (red) games, 80% of the times the agent correctly infers the goal of

the other, it does so in the �rst �ve steps. The distribution for the Door (green) game indicates

that the agent needs more steps on average to correctly infer the goal. This explains in part why

the SOM agent only slightly outperforms the SPP baseline. If the agent does not infer the other’s

goal early enough in the episode, it cannot e�ciently use it to maximize its reward.

Figure 7.9 shows how the performance of the agent varies with the number of optimization

updates performed on Ĩ>Cℎ4A at each step in the game. As expected, the agent’s reward (blue)

generally increases with the number of inference steps, as does the fraction of episodes in which

the goal is correctly inferred. One should note that increasing the number of inference steps from

10 to 20 only translates into less than 0.45% performance gain, while increasing it from 1 to 5

translates into a performance gain of 6.9% on the Coin game, suggesting that there is a certain
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Figure 7.8: Inference Step Distribution: Cumulative distribution of the step C8=5 at which the goal of
the other player is correctly inferred (i.e. ĨC

>Cℎ4A
= I>Cℎ4A ,∀C ≥ C8=5 ) for the Coin (le�), Recipe (center) and

Door (right) games. We define this step so that Ĩ>Cℎ4A = I>Cℎ4A for all the remaining steps in the game. The
distribution is computed over the subset of runs in which the goal is correctly inferred before the end of
the game (∼ 70 − 80% of all runs). A total of 1000 runs with trained SOM models were used to compute
this distribution.

threshold above which increasing the number of inference steps will not signi�cantly improve

performance.

7.6 Conclusion

In this chapter, we introduced a new approach for inferring other agents’ hidden states from

their behavior and using those estimates to choose actions. We demonstrated that the agents

are able to estimate the other players’ hidden goals in both cooperative and competitive settings,

which enables them to converge to better policies and gain higher rewards. In the proposed tasks,

using an explicit model of the other player led to better performance than simply considering

the other agent to be part of the environment. One limitation of SOM is that it requires a longer

training time than the other baselines, since we backpropagate through the network at each

step. However, their online nature is essential in adapting to the behavior of other agents in the

environment.
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Figure 7.9: Performance Variation with Number of Inference Steps: Average reward (blue) and
average fraction of episodes in which the goal of the other agent is correctly inferred (red) obtained by
the SOM agent as a function of the number of inference steps used for estimating the other’s goal for the
Coin (le�), Recipe (center), and Door (right) games. The error bars represent 1 standard deviation.

Some of the main advantages of our method are its simplicity and �exibility. This method

does not require any extra parameters to model the other agents in the environment, can be

trained with any reinforcement learning algorithm, and can be easily integrated with any policy

parametrization or network architecture. The SOM concept can be adapted to settings with more

than two players, since the agent can use its own policy to model the behavior of any number of

agents and infer their goals. Moreover, it can be easily generalized to many di�erent environments

and tasks.

Some interesting directions for future work are to evaluate this method on more complex

environments with more than two players, mixed strategies, a more diverse set of agent types

(e.g. agents with di�erent action spaces, reward functions, roles or strategies), and to model

deviations from the assumption that the other player is just like the self. Other important avenues

for future research are to design models that can adapt to non-stationary strategies of others in

the environment, handle tasks with hierarchical goals, and perform well when playing with new

agents at test time.

Finally, many research areas could bene�t from having a model of other agents that allows
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reasoning about their intentions and predicting their behavior. Such models might be useful in

human-robot or teacher-student interactions [Dragan et al. 2013; Fisac et al. 2017], as well as for

value alignment problems [Had�eld-Menell et al. 2016]. Additionally, these methods could be

useful for model-based reinforcement learning in multi-agent settings, since the accuracy of the

forward model strongly depends on the ability of predicting others’ behavior.

Concurrent with our work, Rabinowitz et al. [2018] proposed a theory of mind neural network,

which uses meta-learning to build models of agents. In contrast with our work, Rabinowitz et al.

[2018] do not evaluate their approach on settings where agents are simultaneously learning how

to maximize their individual rewards. Instead, they aim to model the behaviors of pretrained

agents from the perspective of a static observer which does not take actions in the environment.

Since our work was published, others have been building on it and proposing alternative methods

for modeling other agents. For example, Tacchetti et al. [2018] use relational forward models to

predict agent’s future behavior in multi-agent environments, Jaques et al. [2019] reward agents

for having causal in�uence on other agents’ actions to improve coordination and cooperation in

Multi-Agent Reinforcement Learning (MARL), while Lee et al. [2021] show that joint attention

improves multi-agent coordination and social learning. Recently, Fuchs et al. [2021] use an intrinsic

reward enabled by theory of mind which incentivizes agents to share strategically relevant private

knowledge with their teammates. The authors show promising results on the partially observable

card game Hanabi [Bard et al. 2020].
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8 | Conclusion

This thesis explores di�erent ways of designing deep reinforcement learning agents which

can solve a task in a wide range of settings. In particular, we studied the following problems:

(i) zero-shot generalization to new instances of a task with unseen states, (ii) exploration in proce-

durally generated environments, (iii) fast adaptation to new dynamics, and (iv) strategic interaction

with other agents having various goals.. For each of these, we introduced a novel algorithm or

technique that improves upon the previous state-of-the-art on some popular benchmarks.

In chapters 3 and 4, we investigate the problem of generalizing to new instances of a task after

training on a relatively small number of such instances. This implies generalizing to completely

new underlying states, high-dimensional observations, and sometimes dynamics.

In chapter 3, we introduce Data-regularized Actor Critic or DrAC, an approach which encour-

ages the policy and value function of an image-based deep reinforcement learning agent to be

invariant to various transformations of the observation. The use of data augmentation in RL is

di�erent from its use in supervised or self-supervised learning due to the nonstationarity of the

data (i.e. both inputs and targets). We demonstrate that using data augmentation in a naive way (i.e.

same as in supervised or self-supervised learning) as part of an agent’s bu�er is not theoretically

sound for certain RL algorithms. Regularizing the policy and value function as DrAC does avoids

this pitfall, resulting in a more principled way of using data augmentation in RL. Since each RL

task can bene�t from a di�erent type of invariance, we also propose a method for automatically

selecting the most e�ective type of data augmentation from a given set, which is based on the
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upper con�dence bound algorithm or UCB [Auer 2002]. Combining these two ideas results in

UCB-DrAC, which achieved state-of-the-art test performance on challenging procedurally gener-

ated tasks with image-based observations and discrete action spaces. An interesting extension of

our work would be to assume that it is best to use multiple types of augmentations simultaneously

(rather than a single one) to maximally improve generalization on a certain task. One limitation

of our work is that it does not consider the timing of when the regularization is applied during

the process of training the agent to solve the task. Since our paper was released, follow-up work

has already studied this problem and concluded that the optimal timing depends on the type

of task and augmentation considered [Ko and Ok 2021]. Furthermore, our method selects an

augmentation from a �xed set, but a promising future direction is to explore meta-learning the

parameters of a transformation using a more expressive function class such as a neural network.

This has the potential of �nding the best inductive biases for each task directly from data, without

the need to rely on expert knowledge or human priors.

In chapter 4, we discuss a di�erent problem that appears when we want to generalize to

new instances of a task, particularly in partially observed environments with varying degrees

of di�culty. In this setting, more information is needed to estimate the value function than to

learn the optimal policy. When using a shared network to represent both the policy and the value

function, as is common practice in deep RL from pixels, this leads to over�tting. To alleviate this

problem, we propose Invariant Decoupled Advantage Actor-Critic or IDAAC, which predicts the

advantage instead of the value as an auxiliary task to train the policy network and encourages

the representations to be invariant to the level (i.e. task instance). At the time of publication,

our approach achieved a new state-of-the-art on the a popular benchmark with procedurally

generated games where the agent is trained directly from images. The solution we propose here is

only a �rst step towards solving the policy-value representation asymmetry and we hope many

other ideas will be explored in future work. A promising avenue for future work is to investigate

other auxiliary losses in order to e�ciently learn even more general behaviors. One desirable
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property of such auxiliary losses is to capture the minimal set of features needed to act in the

environment. Further investigating why using the advantage instead of the value, particularly

from a theoretical perspective, could improve our understanding of what is needed to learn good

representations and could open up new research directions.

In chapter 5, we study the problem of exploration in procedurally generated environments

where it is unlikely that the agent visits a state more than once. In this setting, the agent needs

good generalization abilities to solve the task, especially when the reward is sparse. We show

that popular exploration methods (which are very e�ective in singleton environments) fail when

trained in procedurally generated environments where the agent needs to solve many di�erent

instances of the same task. We propose Rewarding Impact-Driven Exploration or RIDE, a new type

of intrinsic reward which encourages the agent to take actions that lead to signi�cant changes in

its learned state representation. RIDE achieved a new state-of-the-art on challenging gridworld

tasks at the time of publication. We also show that this intrinsic reward leads to learning dynamics

and behavior which are better suited for solving tasks in procedurally generated environments.

One limitation of our work is that it does not di�erentiate between desirable and undesirable types

of impact the agent might have on the environment (since in our case, there were no possible

negative consequences). Developing algorithms which can distinguish between di�erent types of

impact could lead to safer and more e�cient agents. Other interesting avenues for future research

are: using symbolic information to characterize the type of impact an agent can have, considering

longer-term e�ects of the agent’s actions, using counterfactuals to compare the consequences of

various actions, or promoting diversity among the di�erent types of changes which can be made

in the environment.

In chapter 6, we look at the problem of quickly adapting to new environment dynamics

within a single episode. To make progress on this problem, we introduce the Policy-Dynamics

Value Function or PD-VF and demonstrate that it achieves strong results on a few continuous

control tasks. PD-VF explicitly estimates the cumulative reward in a latent space of policies and
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environments. At test time, only a few actions are needed to infer the environment dynamics

and �nd a policy which maximizes the learned value function. Our work uses a quadratic form

to parameterize the PD-VF, but a more general class of function approximators (such as neural

networks) could also be used in principle. In addition, our formulation can be extended to model

not only the space of behaviors and dynamics, but also the space of reward functions or other

agents’ strategies. The PD-VF framework can also be used to evaluate a family of policies and

environments on other metrics which might be useful for decision making, such as reward variance,

agent prosociality, or deviation from expert behavior. Another interesting direction for future

work is to integrate additional constraints or prior knowledge to the optimization problem. Finally,

PD-VF can be a useful tool for an agent to continually integrate knowledge about di�erent skills

and dynamics in a lifelong learning setting.

In chapter 7, we consider the multi-agent RL setting with imperfect information in which

each agent is trying to maximize its own utility. The agents’ goals are uniformly sampled from a

given set at the beginning of each episode. Thus, the agent must learn policies which can adapt

to di�erent types of opponents or cooperators. We propose Self Other-Modeling or SOM, a new

approach in which an agent learns a policy conditioned on its own goal and its current guess of

the other agent’s goal. Each agent uses its own policy to predict the other’s actions and update

its belief of the other’s goal. In both cooperative and adversarial settings, SOM achieves better

results than other methods. Our approach is simple and �exible, and does not require any extra

parameters to model the other agent. Since the agent uses its own policy to model others, SOM

can be easily adapted to settings with more than two players. However, the assumption that others

would behave just like you given a certain goal does not always hold. Modeling deviations from

this assumption is an important direction for future work. Another limitation of our method is

that it does not currently handle the case in which the other agents have new goals at test time.

Other important avenues for future research are to design models that can adapt to nonstationary

strategies of others, handle tasks with hierarchical goals, and perform well when playing with
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new agents at test time.

Despite rapid progress in recent years, current deep reinforcement learning agents still struggle

to generalize or quickly adapt to new scenarios. This thesis makes a few steps towards design-

ing more general and adaptive agents, but the problem is far from being solved. One of the

main challenges is learning state representations which generalize beyond the training environ-

ments. While some of the methods proposed for improving generalization in supervised and

self-supervised learning can help in RL as well, as emphasized here, a naive transfer of ideas can

hurt performance in some cases. Thus, one needs to be careful when adapting ideas developed

for di�erent problem settings and domains in order to take into account the speci�c properties

of RL such as its sequential nature and nonstationary distribution of data. In addition, many

di�erent facets of generalization need to be addressed in RL. In this thesis, we considered the

problem of generalization with respect to the state space, observation space, transition function,

and other agents. However, more research is needed to design agents that can simultaneously

generalize across all these dimensions. While here we introduce a few approaches for improving

generalization to new instances of the same task, it is also important to develop methods that are

able to constantly expand their knowledge and capabilities by e�ciently learning new skills. To

make progress on these problems, advances in both algorithms and environments are needed. In

particular, more complex, diverse, and open-ended environments where agents are constantly

faced with new challenges could inspire breakthroughs in never-ending learning.
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