
Improving Sample Efficiency in Off-policy and Offline Deep

Reinforcement Learning

by

Yanqiu Wu

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 2022

Keith W. Ross

© Yanqiu Wu

all rights reserved, 2022

Acknowledgements

First, I would like to thank my advisor Professor Keith Ross for guiding and supporting me

throughout my Ph.D. program. I deeply enjoyed working with Keith over all these years. His

creativity, his passion and rigor to education and research has encouraged me when I was as-

sailed by self-doubt and shaped me into the researcher I am now. Without Keith’s support and

encouragement, I would not be able to achieve what I have accomplished today and find the right

path of my research work.

I also want to express special thanks to Professor Kyunghyun Cho and Professor Gus Xia

for providing valuable feedback for my Ph.D. depth qualification exam presentation and thesis

proposal presentation. I highly appreciate their advice for the entire process. I am also grateful

for all the other members of my dissertation committee, Professor He He and Professor Azza

Abouzied, for sparing their time and sharing their valuable feedback on my thesis.

I have had the great fortune to work with many wonderful people during my Ph.D. program

and research internships. I will try my best to name a few: Yiming Zhang, Che (Watcher) Wang,

Quan Vuong, Xinyue Chen, Zijian Zhou, Zheng Wang, Ren Yi, Qing Deng, Qingyang Li, Tony

Qin, Ruofan Wu and LeiLei Shi.

As a member of NYU community, I am thankful to the staff members who have helped me in

many ways. Thank you Santiago Pizzini, Eric Mao, Xiaoyun (Vivien) Du, Fangqi (Maggie) Mao,

Lin Hong and many others for all your hard work to keep the smooth operations of the graduate

program and being so supportive and thoughtful during my research time at NYU Shanghai.

iii

Thank you Zhiguo Qi for maintaining the NYU Shanghai HPC center and helping me out of

many last minute crises and technical difficulties on the computing clusters.

Thank you Xuanyang for always being supportive and bringing laughter and joy in my life

when I stress out.

Finally, I want to thank my parents for their unconditional support and love. Thank you for

always taking my education as priority. This journey would not be possible without their support

and sacrifices. I am forever grateful to my parents for their encouragement.

iv

Abstract

Reinforcement Learning (RL) is an area of Machine Learning, where agents are trained through

trial and error to make a sequence of decisions in some given environment to achieve a goal.

Traditional reinforcement learning methodology suffers from the curse of dimensionality. For-

tunately, with the help of deep learning, Deep Reinforcement Learning (DRL) can overcome the

issue and can often find high performing policies for applications with large state and action

spaces. Over the past few years, DRL has achieved major breakthroughs in complex tasks, such

as outperforming human players in video games [Mnih et al. 2013; Vinyals et al. 2019], defeat-

ing the human world champion in Go [Silver et al. 2016, 2018] and autonomous robotics control

[Lillicrap et al. 2019; Haarnoja et al. 2018a].

Despite the recent breakthroughs, sample efficiency remains an important issue in deep rein-

forcement learning. In some complex tasks, where data collection is very expensive and agents

require relatively few interactions with the environment for training, sample efficiency is of cen-

tral concern formaking DRL practical for applications. This thesis addresses the sample efficiency

problem in the context of off-policy and offline Deep Reinforcement Learning. We develop train-

ing algorithms which not only lead to high asymptotic performing policies, but are also highly

sample efficient in both on-line and offline settings. We demonstrate the performance of our

methods in simulated robotic locomotion environments.

In the first part of this thesis, we develop a streamlined off-policy algorithm that utilizes an

output normalization scheme and non-uniform sampling. We identify the squashing exploration

v

problem and show how maximum entropy DRL [Haarnoja et al. 2018a,b] helps to resolve it.

Based on our observation, we develop an alternative output normalization scheme for maximum

entropy algorithms. We show that this normalization scheme can then be combined with non-

uniform sampling, resulting in high performing policies. Next, we develop a simple off-policy

algorithm that takes advantage of a high update-to-data (UTD) ratio and Q-ensembles. Our algo-

rithm demonstrates superior sample efficiency at the early-stage training and also achieve high

asymptotic performance at the late-stage training. We employ Q-ensembles and keep several

lowest values for updating to address the overestimation bias. Finally, we consider offline deep

reinforcement learning. We introduce the novel notion of “upper envelope of the data” and then

develop an Imitation-Learning based algorithm based on the notion. Our algorithm is computa-

tionally much faster and achieves state-of-the art performance.

vi

Contents

Acknowledgments iii

Abstract v

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Sample Efficiency . 2

1.2 Why Off-policy . 2

1.3 Why Offline . 3

1.4 Thesis Outline . 3

2 Preliminaries 5

2.1 Markov Decision Processes . 5

2.2 MuJoCo Benchmark . 7

2.3 Q-learning . 7

2.3.1 Overestimation Bias . 10

2.4 Extrapolation Error . 12

2.4.1 Policy Regularization . 14

vii

2.4.2 Critic Penalty . 15

3 Streamlined Off-policy Algorithms 16

3.1 Introduction . 16

3.2 Squashing Exploration Problem . 18

3.2.1 Bounded Action Spaces . 18

3.2.2 Contribution of the Entropy Maximization 19

3.3 Methods . 21

3.3.1 Output Normalization . 21

3.3.2 Inverting Gradients . 22

3.3.3 Non-uniform Sampling . 23

3.4 Experiments . 28

3.4.1 Results on MuJoCo . 28

3.4.2 Experimental Results for ERE . 28

3.4.3 Ablation Study . 29

3.4.4 Implementation Details . 33

3.5 Related Work . 36

3.6 Conclusion . 37

4 Aggressive Q-learning with Ensembles 38

4.1 Introduction . 38

4.2 Related Work . 40

4.3 Aggressive Q-learning with Ensemble . 42

4.3.1 Architecture . 42

4.3.2 Theoretical Analysis . 44

4.4 Experiments . 49

4.4.1 Results on MuJoCo . 49

viii

4.4.2 Results on DeepMind Control Suite . 53

4.4.3 Ablation Study . 56

4.4.4 Implementation Details . 60

4.5 Conclusion . 64

5 Best-Action Imitation Learning 65

5.1 Introduction . 65

5.2 BAIL . 66

5.2.1 Upper Envelope of the Data . 67

5.2.2 Action Selection . 72

5.2.3 Augmented and Oracle Returns . 74

5.3 Experiments . 75

5.3.1 Data Batch Description . 75

5.3.2 Main Results . 76

5.3.3 Ablation Study . 80

5.3.4 Implementation Details . 82

5.4 Conclusion . 86

6 Conclusion and Future Directions 89

6.1 Conclusions . 89

6.2 Future directions . 90

A Appendix 92

A.1 Supplementary Material for Chapter 5 . 92

A.1.1 Supplementary Figures . 92

Bibliography 98

ix

List of Figures

2.1 The MuJoCo Environments . 9

3.1 SAC performance with and without entropy maximization 20

3.2 𝜇𝑘 and 𝑎𝑘 values from SAC and SAC without entropy maximization. See section

3.2 for a discussion. 21

3.3 Comparison between uniform and ERE sampling 26

3.4 Streamlined Off-Policy (SOP) versus SAC, SOP_IG and TD3 29

3.5 (a) to (e) show the performance of SAC baseline, SOP+ERE, SAC+ERE, and SOP_IG+ERE.

. 30

3.6 Ablation Study for SOP . 31

3.7 Entropy value comparison between SOP, SAC, and SAC without entropy maxi-

mization . 31

3.8 Streamlined Off-Policy (SOP), with ERE and PER sampling schemes 32

4.1 AQE versus TQC, REDQ and SAC. AQE is the only algorithm that beats SAC in

all five environments during all stages of training, and it typically beats SAC by

a wide margin. 50

4.2 Performance for AQE and TQC using same hyper-parameters across the five en-

vironments. AQE uses 𝐾 = 16 and TQC uses atoms = 2 per critic. 53

x

4.3 AQE versus TQC, REDQ and SAC in DeepMind Control Suite benchmark. AQE

and TQC use same hyperparameters across the nine environments. 54

4.4 AQE ablation results for Ant. The top row shows the effect of the ensemble size

𝑁 . The second row shows the effect of keep number parameter 𝐾 . The third row

compares AQE to some variants. 57

4.5 Performance, average and std of normalized Q bias for AQE with different values

of 𝐾 . 60

4.6 Performance for AQE with different combinations of number of Q networks and

number of heads. 60

4.7 Performance of REDQ with N=10 and heads = 2 as compared with REDQ and AQE. 61

4.8 Performance, average and std of normalized Q bias for AQE, SAC-5 and TQC-5.

All of the algorithms in this experiment use UTD = 5. 62

5.1 Upper Envelopes trained on batches from different MuJoCo environments. 71

5.2 Learning curves using DDPG training batches with 𝜎 = 0.5. 77

5.3 Augmented Returns versus Oracle Performance. All learning curves are for the

Hopper-v2 environment. The x-axis ranges from 50 to 100 epochs since this com-

parison involves only BAIL. The results show that the augmentation heuristic

typically achieves oracle-level performance. 81

5.4 Ablation study for data selection. The figure compares BAIL with the algorithm

that simply chooses the state-action pairs with the highest returns (without using

an upper envelope). The learning curves show that the upper envelope is critical

components of BAIL. 82

xi

5.5 Ablation study using standard regression instead of an upper envelope. The figure

compares BAIL with the more naive scheme of using standard regression in place

of an upper envelope. The learning curves show that the upper envelope is a

critical component of BAIL. 83

5.6 Our results when we apply BEAR to the authors’ dataset. This figure matches

Figure 3 in Kumar et al. [2019a]. 85

A.1 Performance of batch DRL algorithms on DDPG training batches with 𝜎 = 0.5.

The policy networks for all algorithms are trained for 100 epochs except BAIL,

which is trained for 50 epochs after training the upper envelope for 50 epochs. . . 92

A.2 Performance of batch DRL algorithms on DDPG training batches with 𝜎 = 0.1.

The policy networks for all algorithms are trained for 100 epochs except BAIL,

which is trained for 50 epochs after training the upper envelope for 50 epochs. . . 93

A.3 Performance of batch DRL algorithms on SAC training batches. The policy net-

works for all algorithms are trained for 100 epochs except BAIL, which is trained

for 50 epochs after training the upper envelope for 50 epochs. 93

A.4 Performance of batch DRL algorithms on SAC mediocre execution batches with

𝜎 = 0. The policy networks for all algorithms are trained for 100 epochs except

BAIL, which is trained for 50 epochs after training the upper envelope for 50 epochs. 94

A.5 Performance of batch DRL algorithms on SAC mediocre execution batches with

𝜎 = 𝜎 (𝑠). The policy networks for all algorithms are trained for 100 epochs except

BAIL, which is trained for 50 epochs after training the upper envelope for 50 epochs. 94

A.6 Performance of batch DRL algorithms on SAC optimal execution batches with

𝜎 = 0. The policy networks for all algorithms are trained for 100 epochs except

BAIL, which is trained for 50 epochs after training the upper envelope for 50 epochs. 95

xii

A.7 Performance of batch DRL algorithms on SAC optimal execution batches with

𝜎 = 𝜎 (𝑠). The policy networks for all algorithms are trained for 100 epochs except

BAIL, which is trained for 50 epochs after training the upper envelope for 50 epochs. 95

A.8 Performance of batch DRL algorithms with the Humanoid-v2 environment. All

batches are obtained with SAC. 96

A.9 Typical Upper Envelopes for BAIL. For each figure, states are ordered from lowest

𝑉 (𝑠𝑖) upper envelope value to highest. Thus the upper envelope curve is mono-

tonically increasing. Each curve is trained with one million returns, shown with

the orange dots. Note that the upper envelope lies above most data points but not

all data points. 97

xiii

List of Tables

2.1 The MuJoCo environments. Information is taken from the Gym official website.

The dimensions of the state and action space are listed in the last two columns. . 8

3.1 SOP Hyperparameters . 34

4.1 Sample efficiency comparison of SAC, TQC, REDQ and AQE. The numbers show

the amount of data collected when the specified performance level is reached

(roughly corresponding to 90% of SAC’s final performance). The last three columns

show how many times AQE is more sample efficient than SAC, TQC and REDQ

in reaching that performance level. 51

4.2 Early-stage performance comparison of SAC, TQC, REDQ and AQE. The numbers

show the performance achieved when the specific amount of data is collected. On

average, AQE performs 2.9 times better than SAC, 1.6 times better than TQC and

1.1 times better than REDQ. 51

4.3 Late-stage performance comparison of SAC, TQC, REDQ and AQE. The numbers

show the performance achievedwhen the specific amount of data is collected. The

last three columns show the ratio of AQE performance compared to SAC, TQC

and REDQ performance. On average, during late-stage training, AQE performs

1.26 times better than SAC, 1.06 times better than TQC and 1.22 times better than

REDQ. 52

xiv

https://www.gymlibrary.ml/environments/MuJoCo/

4.4 Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE

and TQC using the same hyperparameters across the environments. On average,

AQE performs 2.71 times better than SAC, 1.59 times better than TQC and 1.02

times better than REDQ. 52

4.5 Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE

and TQC using the same hyperparameters across the environments. On average,

AQE performs 16% better than SAC, 9% better than TQC and 11% times better

than REDQ. 54

4.6 Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE

and TQC using the same hyperparameters across the DMC environments. On

average, AQE performs 13.71 times better than SAC, 7.59 times better than TQC

and 1.02 times better than REDQ. 55

4.7 Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE

and TQC using the same hyperparameters across the DMC environments. On

average, AQE performs 1.37 times better than SAC, 1.08 times better than TQC

and 1.03 times better than REDQ. 55

4.8 Sample efficiency comparison of SAC, TQC, REDQ and AQE. The numbers show

the amount of data collected when the specified performance level is reached

(roughly corresponding to 90% of SAC’s final performance). The last three columns

show how many times AQE is more sample efficient than SAC, TQC and REDQ

in reaching that performance level. 56

4.9 Hyperparameter values. 63

4.10 Environment-dependent hyper-parameters for TQC and AQE. 63

5.1 Performance of five Batch DRL algorithms for 22 different training datasets. . . . 78

5.2 Performance of Five Batch DRL Algorithms for 40 different execution datasets. . . 87

xv

5.3 BAIL hyper-parameters . 88

xvi

1 | Introduction

Building fully autonomous high-performing sequential decision-making agents through trial and

error is one of the major difficulties in artificial intelligence [Russell and Norvig 2010; Arulku-

maran et al. 2017]. Such intelligent agents have applications in many areas including robotics,

natural languages, autonomous driving, etc. Reinforcement Learning (RL) provides a mathemat-

ical framework for this learning from experience criteria. It builds on the theory of Markov Deci-

sion Processes (MDPs) [Sutton and Barto 2018]. Despite themoderate success on low-dimensional

state and action spaces problems, traditional tabular reinforcement learning fails to scale to prob-

lems with high-dimensional state and actions spaces due to the curse of dimensionality [Bellman

1957].

With the help of deep learning [Goodfellow et al. 2016b], a modern sub-field of Deep Re-

inforcement Learning (DRL) has risen. Parameterized policies and value functions are approxi-

mated by deep neural networks, which allows the reinforcement learning algorithms to overcome

the curse of dimensionality, generalizing to large continuous state and action spaces.

Over the past few years, deep reinforcement learning has achieved major breakthroughs in

complex tasks. Agents have learned to play Atari games, outperforming human players [Mnih

et al. 2013; Vinyals et al. 2019; Mnih et al. 2016; Bellemare et al. 2016; Wang et al. 2016]. Al-

phaGo defeats the human world champions in Go [Silver et al. 2018]. In continuous and high-

dimensional robotic locomotion simulations, DRL agents havemade great strides in various tasks.

However, sample efficiency remains an important bottleneck for the feasibility of real world ap-

1

plications of DRL. Interacting with the real world is often fragile, slow or costly, which makes

DRL training in the real world expensive both in terms of money and time [Dulac-Arnold et al.

2019]. Because progress in sample efficiency will translate to future real world applications, re-

search on improving sample efficiency in DRL is an important topic. In this thesis, we attempt to

address the sample-efficiency issue in the context of off-policy and offline DRL.

1.1 Sample Efficiency

As proposed by Dulac-Arnold et al. [2019] and Hernandez and Brown [2020], to measure algo-

rithmic progress, we measure progress in sample efficiency by comparing the number of samples

needed for policy to reach a certain performance level over time and define the sample efficiency

of an algorithm for a given task and performance level as:

𝐽 eff. = min |D𝑖 | s.t. 𝑅(Train(D𝑖)) > 𝑅min (1.1)

where |D𝑖 | is the number of samples needed to train to the given performance level on the task

andwhere𝑅min is the desired performance level. In practice, an alternative approach is to compare

the performance of different algorithms for a fixed amount of samples.

1.2 Why Off-policy

Off-policy deep reinforcement learning is opposed to on-policymethods. In off-policy algorithms,

the policy that the agent is attempting to evaluate or improve, whichwe refer to as target policy, is

different from the behavioral policy that is used to collect data. This means, off-policy algorithm

agents can learn from data generated by a different given policy (such as past experience), while

this is impossible for on-policy algorithms. By definition, with the ability to reuse past experience,

one of the major advantages of off-policy algorithms is that they are in general more sample-

2

efficient than on-policy methods [Haarnoja et al. 2018b; Chen et al. 2021], as shown in recent

works. Therefore, this thesis focuses on improving sample efficiency and performance in off-

policy algorithms instead of on-policy algorithms.

1.3 Why Offline

Similar to off-policy algorithms, in the offline setting (also called batch RL), agents utilize previ-

ously collected data; however, no additional online data collection is allowed [Ernst et al. 2005a;

Fu et al. 2020]. In other words, the offline agent no longer has the ability to interact with the

environment using the behaviour policy. Thus, offline RL is also commonly referred as “fully

off-policy” RL [Levine et al. 2020]. This problem formulation closely resembles the standard su-

pervised learning problem statement. Progress in sample efficiency under this formulation helps

to turn fixed datasets intomore powerful decisionmaking policies, which is necessary for training

in wide range of safety-critical systemswhere a partially trained policy cannot be deployed online

to collect data. Moreover, a batch RL algorithm can also be deployed as part of a growing-batch

algorithm [Lange et al. 2012], where the batch algorithm seeks a high-performing exploitation

policy using the data in an experience replay buffer, combines this policy with exploration to add

fresh data to the buffer, and then repeats the whole process. Hence, offline DRL is also within the

scope of this thesis.

1.4 Thesis Outline

The broader impact of this work is to bring RL closer to more practical applications with positive

societal impacts. In the real world, higher sample efficiency usually translates to time saved, lower

costs and lower resource consumption. In this thesis, we develop training algorithms which not

only lead to high asymptotically performing policies, but are also highly sample efficient in both

3

off-policy and offline settings.

Chapter 2 gives necessary background knowledge for this thesis, which includes the basic

definition of Markov Decision Processes (MDPs), a brief introduction to the MuJoCo benchmark

environments, basic knowledge of the Q-learning training scheme which is of fundamental im-

portance for off-policy DRL, and an introduction to one of the biggest challenges in offline DRL,

extrapolation error.

In Chapter 3, we develop a steamlined off-policy algorithm that improves sample efficiency

and achieves state-of-the art performance for the MuJoCo benchmark. We first identify the

squashing exploration problem. We then discuss how maximum entropy reinforcement learn-

ing helps to address this issue. Based on our observation, we develop an alternative and simpler

output normalization scheme that can match the sample efficiency and asymptotic performance

of maximum entropy DRL algorithms. We further improve sample efficiency and performance for

the MuJoCo benchmark by combining our output normalization with a non-uniform sampling

scheme.

Chapter 4 develops a simple model-free off-policy algorithm that takes advantages of a high

update-to-data (UTD) ratio and Q-ensembles which demonstrates superior sample efficiency in

early-stage training and also achieve high asymptotic performance in late state training. To

address the overestimation bias while using a high UTD ratio during training, we employ Q-

ensembles and keep several lowest values for updating. Our theoretical and experimental results

show that the estimation bias can be controlled using the framework.

In Chapter 5, we consider offline deep reinforcement learning, where extrapolation error is

one of the major challenges. We first introduce the novel notion of “upper envelope of the data”.

We then develop our Imitation-Learning based algorithm based on the notion. Our algorithm is

computationally much faster and achieves state-of-the art performance.

Conclusions and future research directions are discussed in Chapter 6.

4

2 | Preliminaries

In this chapter, we will present the necessary preliminaries and notations employed in this the-

sis. We divide the chapter into four sections. The first section presents the basic definitions of

Markov Decision Processes. Section 2.2 gives a brief introduction on the MuJoCo benchmark

environments. Section 2.3 introduces Q-learning, which is of fundamental importance in off-

policy deep reinforcement learning algorithms. Finally, in the last section 2.4, we present the

most crucial problem in offline reinforcement learning, namely, extrapolation error.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are a mathematically idealized form of the reinforcement

learning problem for which precise theoretical analysis can be made. Consider a Markov De-

cision Process [Sutton and Barto 2018] (S,A, 𝑟 , 𝑝, 𝜌,𝛾), where S and A are continuous multi-

dimensional state and action spaces. The transition probability is denoted by 𝑝 : S × A × S →

[0, 1] where 𝑝 (𝑠′|𝑠, 𝑎) is the probability of transitioning into the next state 𝑠′ by taking action 𝑎 in

state 𝑠 . The bounded reward function 𝑟 (𝑠, 𝑎) maps state action pairs into the reward received by

the agent by taking action 𝑎 while in state 𝑠 . 𝜌 is the initial state distribution and 𝛾 is the discount

factor.

Let 𝜋 = 𝜋 (𝑎 |𝑠), 𝑠 ∈ S, 𝑎 ∈ A denote the policy. The policy maps from the state space S

to a probability distribution over the action space A. We further denote 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . .)

5

as a sample trajectory following policy 𝜋 , i.e. 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡), and 𝑠𝑡+1 ∼ 𝑝 (·|𝑠𝑡 , 𝑎𝑡). Based on the

environment and a policy 𝜋 , we can describe the data collection phase of a reinforcement learning

agent as follows: at time 𝑡 , the agent is currently in state 𝑠𝑡 , takes action 𝑎 according to the policy

𝜋 , receives reward 𝑟 (𝑠, 𝑎) and then transit to the next state 𝑠𝑡+1 at time 𝑡 +1 according to 𝑝 (·|𝑠𝑡 , 𝑎𝑡).

The expected discounted return for policy 𝜋 beginning in state 𝑠 is given by:

𝑉𝜋 (𝑠) = E𝜋 [
∞∑︁
𝑡=0

𝛾 𝑡𝑟 (𝑠𝑡 , 𝑎𝑡) |𝑠0 = 𝑠] (2.1)

The action value function, which is the expected discounted return starting in state 𝑠 and initially

taking action 𝑎 but then following policy 𝜋 , is defined as:

𝑄𝜋 (𝑠, 𝑎) = E𝜋 [
∞∑︁
𝑡=0

𝛾 𝑡𝑟 (𝑠𝑡 , 𝑎𝑡) |𝑠0 = 𝑠, 𝑎0 = 𝑎] (2.2)

We denote 𝜋∗ for optimal policies. The corresponding state value function, called the optimal

state value function 𝑉 ∗(𝑠), is defined as:

𝑉 ∗(𝑠) � max
𝜋
𝑉𝜋 (𝑠) (2.3)

The corresponding optimal action value function, denoted 𝑄∗, is given as:

𝑄∗(𝑠, 𝑎) � max
𝜋
𝑄𝜋 (𝑠, 𝑎) (2.4)

Standard MDP and RL problem formulations seek to maximize the state value function𝑉𝜋 (𝑠)

over all policies 𝜋 . For finite state and action spaces, and under suitable conditions for continu-

ous state and action spaces, there exists an optimal policy that is deterministic [Puterman 2014;

Bertsekas and Tsitsiklis 1996]. In RL with an unknown environment, exploration is required to

learn a suitable policy.

6

In Deep Reinforcement Learning with continuous action spaces, typically the policy 𝜋 is mod-

eled by a parameterized policy network which takes as input a state 𝑠 and outputs a value 𝜇 (𝑠;𝜃),

where 𝜃 represents the current parameters of the policy network [Schulman et al. 2015, 2017;

Vuong et al. 2018; Lillicrap et al. 2019; Fujimoto et al. 2018b]. During training, typically additive

random noise is added for exploration, so that the actual action taken when in state 𝑠 takes the

form 𝑎 = 𝜇 (𝑠;𝜃) + 𝜖 where 𝜖 is a 𝐾-dimensional (𝐾 represents the action dimension) Gaussian

random vector with each component having zero mean and variance 𝜎 . During testing, 𝜖 is set

to zero.

2.2 MuJoCo Benchmark

For most experiments in this thesis, we will be using theMuJoCo physical simulator implemented

using OpenAI gym [Todorov et al. 2012; Brockman et al. 2016]. MuJoCo stands for Multi-Joint dy-

namics with Contact. It is a physics engine for faciliatating research and development in robotics,

biomechanics, graphics and animation, and other areas where fast and accurate simulation is

needed [Brockman et al. 2016]. The detailed description of each MuJoCo environment is shown

in table 2.1. We only consider the five most challenging tasks Ant, HalfCheetah, Hopper, Hu-

manoid and Walker2d in this thesis.

In figure 2.1, we show renderings of all the MuJoCo Environments. All of these environments

are stochastic in terms of their initial state, with a Gaussian noise added to a fixed initial state in

order to add stochasticity [Brockman et al. 2016].

2.3 Q-learning

In this section, we introduce the Q-learning training scheme which is fundamental for many of

the training algorithms developed in this thesis.

7

Table 2.1: The MuJoCo environments. Information is taken from the Gym official website. The dimen-
sions of the state and action space are listed in the last two columns.

Environment Goal State Space Action Space

Ant Make a 3D four-legged robot walk 27 8

HalfCheetah Make a 2D cheetah robot run 17 6

Hopper Make a 2D robot hop 11 3

Humanoid Make a 3D two-legged robot walk 376 17

HumanoidStandup Make a 3D two-legged robot standup 376 17

InvertedDoublePendulum Balance a pole on a pole on a cart 11 1

InvertedPendulum Balance a pole on a cart 4 1

Reacher Make a 2D robot reach to 11 2a randomly located target

Swimmer Make a 2D robot swim 8 2

Walker2d Make a 2D robot walk 17 6

The objective of a reinforcement learning agent is to find the best action given its current

state. To achieve this, if the optimal action value function 𝑄∗(𝑠, 𝑎) is known, then in any given

state 𝑠 , the optimal action 𝑎∗ can be found by solving

𝑎∗ = arg max
𝑎
𝑄∗(𝑠, 𝑎) (2.5)

Although the optimal action value function 𝑄∗(𝑠, 𝑎) is generally unknown, based on Sutton

[1988] and Watkins [1989], the action value function can be learned using temporal difference

(TD) learning. Temporal Difference is an update rule based on the Bellman equation [Bellman

1957], which provides a fundamental relationship between the value of a state action pair (𝑠𝑡 , 𝑎𝑡)

and the value of the subsequent state action pair (𝑠𝑡+1, 𝑎𝑡+1). It is given as:

𝑄∗(𝑠𝑡 , 𝑎𝑡) = E𝑠𝑡+1∼𝑝 [𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 max
𝑎𝑡+1

𝑄∗(𝑠𝑡+1, 𝑎𝑡+1)] (2.6)

8

https://www.gymlibrary.ml/environments/MuJoCo/

where 𝑠𝑡+1 ∼ 𝑝 represents that the next state, 𝑠𝑡+1, is sampled by the environment from a distri-

bution 𝑝 (·|𝑠𝑡 , 𝑎𝑡).

In a large state space, Q-learning algorithms aim to learn an approximator for 𝑄∗(𝑠, 𝑎). Ba-

sically, we estimate 𝑄∗(𝑠, 𝑎) values using a differentiable function approximator 𝑄𝜙 (𝑠, 𝑎) with

parameters 𝜙 . Starting from the Bellman equation, the mean-squared Bellman error (MSBE) was

proposed [Mnih et al. 2015; Lillicrap et al. 2019] for learning the parameters 𝜙 . It can measure

(a) Ant (b) HalfCheetah (c) Hopper

(d) Humanoid (e) HumanoidStandup (f) InvertedDoublePendulum

(g) InvertedPendulum (h) Reacher (i) Swimmer (j)Walker2d

Figure 2.1: The MuJoCo Environments

9

how closely 𝑄𝜙 comes to satisfying the Bellman equation for a set D of transitions:

𝐿(𝜙,D) = E
(𝑠𝑡 ,𝑎𝑡 ,𝑟 ,𝑠𝑡+1,𝑑)∼D


(
𝑄𝜙 (𝑠𝑡 , 𝑎𝑡) −

(
𝑟 + 𝛾 (1 − 𝑑)max

𝑎𝑡+1
𝑄𝜙 (𝑠𝑡+1, 𝑎𝑡+1)

))2 (2.7)

where 𝑑 indicates whether 𝑠𝑡+1 is a terminal state or not. That is, when 𝑠𝑡+1 is a terminal state,

the agent gets no additional rewards after the current state 𝑠𝑡 . When minimizing this MSBE

loss function, to make the training more stable, Q-learning algorithms such as Deep Q-learning

(DQN) [Mnih et al. 2015] and Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al. 2019],

introduced a target action value network 𝑄𝜙 ′ to maintain a fixed target over multiple updates:

𝑦 = 𝑟 + 𝛾 (1 − 𝑑)max
𝑎𝑡+1

𝑄𝜙 ′ (𝑠𝑡+1, 𝑎𝑡+1) (2.8)

Actions 𝑎𝑡+1 that maximize the 𝑄𝜙 ′ are selected from a target policy network 𝜇 (𝑠;𝜃 ′) where the

policy network 𝜃 is simply learned by:

𝜃 ← arg max
𝜃
E𝑠∼D,𝑎∼𝜇𝜃 [𝑄𝜙 (𝑠, 𝑎)] (2.9)

The parameters of a target network are either updated periodically to match the parameters

of the current network, or updated by polyak averaging with some weight 𝜌 : 𝜙′← 𝜌𝜙 + (1−𝜌)𝜙′.

2.3.1 Overestimation Bias

For the MSBE update rule introduced in the previous section, the action value function is updated

with a greedy target 𝑦 = 𝑟 + 𝛾 (1 − 𝑑)max𝑎𝑡+1 𝑄𝜙 ′ (𝑠𝑡+1, 𝑎𝑡+1). However, in discrete action spaces,

if the target is susceptible to error 𝜖 , then the maximum over the value along with its error will

generally be greater than the true maximum. In other words, the overestimation bias occurs

since the target max𝑎𝑡+1 𝑄𝜙 ′ (𝑠𝑡+1, 𝑎𝑡+1) is used in the Q-learning update. More concretely, 𝑄𝜙 is

10

an approximation, it is possible that the state action value approximation is higher than the true

value for one or more of the actions for the given state. Then taking the maximum over these

estimated values is likely to be skewed towards an overestimate [Fujimoto et al. 2018b; Lan et al.

2020a].

For example, even unbiased Q-function estimates𝑄𝜙 (𝑠𝑡+1, 𝑎𝑡+1) for all actions 𝑎𝑡+1 vary due to

stochasticity: 𝑄𝜙 (𝑠𝑡+1, 𝑎𝑡+1) = 𝑄∗(𝑠𝑡+1, 𝑎𝑡+1) +𝜖𝑎𝑡+1 which for some actions, 𝜖𝑎𝑡+1 is positive. Hence,

we have E[max𝑎𝑡+1 𝑄𝜙 (𝑠𝑡+1, 𝑎𝑡+1)] ≥ max𝑎𝑡+1 E[𝑄𝜙 (𝑠𝑡+1, 𝑎𝑡+1)] = max𝑎𝑡+1 𝑄∗(𝑠𝑡+1, 𝑎𝑡+1) [Lan et al.

2020a]. As a result, even initially zero-mean error can cause value updates to result in a consis-

tent overestimation bias, which will then be propagated through the Bellman equation. It is also

proved in Fujimoto et al. [2018b] that in actor-critic methods, the value estimate in deterministic

policy gradients will also be an overestimation under some basic assumptions. This overestima-

tion issue is problematic as the errors induced by function approximation are unavoidable.

To address the overestimation problem, Fujimoto et al. [2018b] proposed Clipped Double Q-

learning, which is a clipped variant of Double Q-learning [Hasselt 2010; Hasselt et al. 2016].

Clipped Double Q-learning has two action value functions𝑄𝜙1, 𝑄𝜙2 and correspondingly two tar-

get action value functions𝑄𝜙 ′1, 𝑄𝜙 ′2 . The minimum between the two estimates is taken to calculate

the target update:

𝑦 = 𝑟 + 𝛾 (1 − 𝑑)min
𝑖=1,2

𝑄𝜙 ′
𝑖
(𝑠𝑡+1, 𝑎𝑡+1) 𝑎𝑡+1 = 𝜇 (𝑠𝑡+1;𝜃) (2.10)

Both action value functions use the same target to update. This update rule may induce an un-

derestimation bias, but underestimation is better than overestimation bias, as the value of under-

estimated actions will not be explicitly propagated through the Bellman equation.

Another technique proposed by Fujimoto et al. [2018b] which is helpful with overestimation

bias is called Target Policy Smoothing Regularization. When using a deterministic policy net-

work, if the action value function incorrectly estimates a sharp peak for some actions, the policy

11

will quickly exploit that error peak resulting in brittle and incorrect behaviors. In practice, target

policy smoothing regularization adds a small amount of random noise to the target policy and

averages over mini-batches to approximate the Q-function target:

𝑦 = 𝑟 + 𝛾 (1 − 𝑑)min
𝑖=1,2

𝑄𝜙 ′
𝑖
(𝑠𝑡+1, 𝑎𝑡+1)

𝑎𝑡+1 = 𝜇 (𝑠𝑡+1;𝜃) + 𝜖, 𝜖 ∼ clip(N (0, 𝜎),−𝑐, 𝑐)
(2.11)

The added noise is clipped to keep the target close to the original action. In summary, target

policy smoothing smooths out the action value function over similar actions to avoid exploitation

of incorrect peak for some actions.

2.4 Extrapolation Error

In offline reinforcement learning, the agent has no access to the environment and is unable to

collect data during training. The goal is to train agents to learn from a fixed batch of data, which

has already been generated by some other policy interacting with the environment. Standard

off-policy deep reinforcement learning algorithms, such as DQN and DDPG [Mnih et al. 2015;

Lillicrap et al. 2019], are incapable of learning in this fixed batch setting due to errors introduced

by extrapolation.

Extrapolation error [Fujimoto et al. 2018a; Kumar et al. 2019b] is an error in off-policy value

learning which is introduced by the mismatch between the dataset and true state-action visita-

tion data of the policies used during training. The action value estimate 𝑄𝜙 (𝑠𝑡 , 𝑎𝑡) is affected by

extrapolation error during the value update where the target policy 𝜇 (𝑠𝑡+1;𝜃) selects an unfamil-

iar action at the next state 𝑠𝑡+1 in the boostrap value estimate, such that (𝑠𝑡+1, 𝑎𝑡+1) is unlikely

contained in the dataset.

Extrapolation error occurs due to three related factors. The first related factor is that we

have absent data. That is, if any state action pair (𝑠, 𝑎) is unavailable or not seen in the dataset,

12

then error is introduced as some function of the amount of similar data and approximation error

[Fujimoto et al. 2018a]. In other words, when estimating the value of 𝑄𝜙 (𝑠𝑡+1, 𝑎𝑡+1) in equation

2.7, where 𝑎𝑡+1 is selected by the target policy, the approximation may be arbitrarily bad without

sufficient data near (𝑠𝑡+1, 𝑎𝑡+1).

Another cause of the extrapolation error ismodel bias. When performing off-policyQ-learning

with a batchD, the Bellman operator is approximated by sampling transitions tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟 , 𝑠𝑡+1)

from D to estimate the expectation over 𝑠𝑡+1. However, for a stochastic MDP, without infinite

state-action access, this can lead to a biased approximation of the transition dynamics:

𝑄 (𝑠𝑡 , 𝑎𝑡) ≈ E𝑠𝑡+1∼D [𝑟 + 𝛾𝑄 (𝑠𝑡+1, 𝜇 (𝑠𝑡+1;𝜃))] (2.12)

The expectation is with respect to transitions data in the batch D instead of the true MDP.

Trainingmismatch is another factor leading to extrapolation error. Supposewe have sufficient

data, and transitions are sampled uniformly from the dataset. The loss 2.7 is weightedwith respect

to the likelihood of data in the batch, which is now given as

≈ 1
|D|

∑︁
(𝑠𝑡 ,𝑎𝑡 ,𝑟 ,𝑑,𝑠𝑡+1)∼D

∥𝑟 + 𝛾 (1 − 𝑑)𝑄′
𝜙
(𝑠𝑡+1, 𝜇 (𝑠𝑡+1;𝜃)) −𝑄𝜙 (𝑠𝑡 , 𝑎𝑡)∥2 (2.13)

If the distribution of data in the batchD mismatches the distribution of the current policy 𝜇 (;𝜃),

the value function may do a poor job estimating state action values for actions selected by the

current policy.

In summary, training agents with fixed offline data can result in large amounts of extrapola-

tion error which state of the art off-policy deep reinforcement learning algorithms fail to address.

In the following sections, we will discuss two common ways, policy regularization and critic

penalty, which aim to address extrapolation error by using appropriate regularizers to constrain

the learned policy to stay close to the batch data.

13

2.4.1 Policy Regularization

Policy regularization can be imposed either for critic or policy learning. The basic idea is to

restrict the policy from choosing unfamiliar actions.

Batch-Constrained deep Q-learning (BCQ) proposed by Fujimoto et al. [2018a] restricts the

policy to select familiar actions in the offline dataset by adopting a conditional Variational Au-

toEncoder (VAE) [Kingma and Welling 2014; Sohn et al. 2015]. The VAE, denoted as 𝐺𝜔 , models

the distribution by transforming an underlying latent space, which takes state and action pairs

as input, and is trained to reconstruct the input actions. When optimizing the approximate Q-

function over actions, instead of optimizing over all actions, BCQ optimizes over a subset of

actions generated by the VAE. In other words, 𝑛 candidate actions are sampled from the VAE

and the action with the largest critic-approximated value is selected among the candidates for

update. A perturbation model, which employs an additional neural network 𝜉𝜓 that outputs an

adjustment to an action, is further introduced in BCQ:

𝜃 ← arg max
𝑎𝑖+𝜉𝜓 (𝑠,𝑎)

𝑄𝜙 (𝑠, 𝑎𝑖 + 𝜉𝜓 (𝑠, 𝑎)) {𝑎𝑖 ∼ 𝐺𝜔 (𝑠)}𝑛𝑖=1 (2.14)

One limitation of BCQ is that a large number of sampled candidate actions is required for

competitive performance [Ghasemipour et al. 2020].

An alternative approach is to use divergence penalty. Instead of applying hard constraints on

action selection, Wu et al. [2019] proposed to use KL-divergence to regularize the standard policy

learning in equation 2.9 to stay close to the batch distribution:

𝜃 ← arg max
𝜃
E𝑠∼D

[
E𝑎∼𝜇𝜃 [𝑄𝜙 (𝑠, 𝑎)] − 𝛼𝐷𝐾𝐿 (𝜇 (𝑠;𝜃)∥𝜇 (𝑠;𝜃𝐵))

]
(2.15)

where 𝜃𝐵 represents the behavioral policy which is used to generate the offline dataset D. How-

ever, a common failure for this kind of policy regularization methods is that the Q-function re-

14

ceives no learning signal for actions not observed in the offline buffer. Thus, when Q-function is

queried on out-of-distribution actions, critic extrapolation may still dominate policy regulariza-

tion.

2.4.2 Critic Penalty

Critic penalty methods attempt to incorporate some divergence regularization into the action

value functions. The basic idea is to punish the state action value estimates for out-of-distribution

data. Specifically, Q-values are pushed down for actions sampled from the training policy while

minimizing standard TD-error.

Based on the idea, Kumar et al. [2020] created Conversative Q-learning (CQL), which extends

the standard critic loss in equation 2.7 with additional regularization. The regularization is to

minimize the Q-values if actions 𝑎 are sampled from a training policy, and maximize the Q-values

if actions 𝑎 are sampled from the offline dataset D:

min
𝜙
𝐿(𝜙,D) + 𝜆E𝑠∼D

[
log

∑︁
𝑎

exp(𝑄𝜙 (𝑠, 𝑎)) − E𝑎∼D [𝑄𝜙 (𝑠, 𝑎)]
]

(2.16)

Unlike policy regularization algorithms, such critic penalty methods provide a learning signal

to the critic Q-values on the entire action space. However, the log-sum-exp term that appears

in the formulation is not tractable for continuous actions and must be computed via numerical

integration; thus, there is a significant computational burden for actor critic training.

15

3 | Streamlined Off-policy Algorithms

3.1 Introduction

Recently a number of new off-policy deep reinforcement learning algorithms have been pro-

posed for control tasks with continuous state and action spaces, including Deep Deterministic

Policy Gradient (DDPG) and Twin Delayed DDPG (TD3) [Lillicrap et al. 2019; Fujimoto et al.

2018b]. TD3, which introduced clipped double-Q learning, delayed policy updates and target pol-

icy smoothing, has been shown to be significantly more sample efficient than popular on-policy

methods for a wide range of MuJoCo benchmarks.

The field of Deep Reinforcement Learning (DRL) has also recently seen a surge in the popu-

larity of maximum entropy RL algorithms. In particular, Soft Actor-Critic (SAC), which combines

off-policy learning with maximum-entropy RL, not only has many attractive theoretical proper-

ties, but can also give superior performance on a wide-range of MuJoCo environments, including

on the high-dimensional environment Humanoid for which both DDPG and TD3 perform poorly

[Haarnoja et al. 2018a,b; Langlois et al. 2019]. SAC and TD3 have similar off-policy structures with

clipped double-Q learning, but SAC also employs maximum entropy reinforcement learning.

Maximum entropy reinforcement learning takes a different approach than Equation (2.1) by

optimizing policies to maximize both the expected return and the expected entropy of the policy

[Ziebart et al. 2008; Ziebart 2010; Todorov 2008; Rawlik et al. 2013; Levine and Koltun 2013; Levine

et al. 2016; Nachum et al. 2017; Haarnoja et al. 2017, 2018a,b].

16

In particular, the maximum entropy RL objective is:

𝑉𝜋 (𝑠) =
∞∑︁
𝑡=0

𝛾 𝑡E𝜋 [𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝜆𝐻 (𝜋 (·|𝑠𝑡)) |𝑠0 = 𝑠] (3.1)

where 𝐻 (𝜋 (·|𝑠)) is the entropy of the policy when in state 𝑠 , and the temperature parameter 𝜆

determines the relative importance of the entropy term against the reward. Formaximum entropy

DRL, when given state 𝑠 the policy network will typically output a 𝐾-dimensional vector 𝜎 (𝑠;𝜃)

in addition to the vector 𝜇 (𝑠;𝜃). The action selected when in state 𝑠 is then modeled as 𝜇 (𝑠;𝜃) +𝜖

where 𝜖 ∼ 𝑁 (0, 𝜎 (𝑠;𝜃)).

Maximum entropy RL has been touted to have a number of conceptual and practical advan-

tages for DRL [Haarnoja et al. 2018a,b]. For example, it has been argued that the policy is incen-

tivized to explore more widely, while giving up on clearly unpromising avenues. It has also been

argued that the policy can capture multiple modes of near-optimal behavior, that is, in problem

settings where multiple actions seem equally attractive, the policy will commit equal probability

mass to those actions.

In this chapter, we first seek to understand the primary contribution of the entropy term to

the performance of maximum entropy algorithms. We demonstrate that when using the standard

objective without entropy along with standard additive noise exploration, there is often insuffi-

cient exploration due to the bounded nature of the action spaces in the MuJoCo benchmark.

Specifically, the outputs of the policy network are often way outside the bounds of the action

space, so that they need to be squashed to fit within the action space. The squashing results in

actions persistently taking on their maximal values, resulting in insufficient exploration. The

entropy term in the SAC objective forces the outputs to have sensible values, so that even with

squashing, exploration is maintained.

With this insight, we propose the Streamlined Off Policy (SOP) algorithm, which is a mini-

malistic off-policy algorithm that includes a simple but crucial output normalization. The nor-

17

malization addresses the bounded nature of the action spaces, allowing satisfactory exploration

throughout training. We also consider using inverting gradients (IG) [Hausknecht and Stone

2015] with the streamlined scheme, which we refer to as SOP_IG. Both approaches use the stan-

dard objective without the entropy term. Our results show that SOP and SOP_IG match the sam-

ple efficiency and robust performance of SAC, including on the challenging Ant and Humanoid

environments.

Having just matched SAC performance without using entropy maximization, we then seek to

further improve sample-efficiency and attain state-of-the-art performance by employing a non-

uniform sampling method for selecting transitions from the replay buffer during training. Our

method, called Emphasizing Recent Experience (ERE), samples more aggressively recent experi-

ence while not neglecting past experience. We show that when SOP, SOP IG, or SAC is combined

with ERE, the resulting algorithm out-performs SAC and provides state of the art performance.

3.2 Sqashing Exploration Problem

3.2.1 Bounded Action Spaces

Continuous environments typically have bounded action spaces, that is, along each action dimen-

sion 𝑘 , there is a minimum possible action value 𝑎min
𝑘

and a maximum possible action value 𝑎max
𝑘

.

When selecting an action, the action needs to be selected within these bounds before the action

can be taken. DRL algorithms often handle this by squashing the action so that it fits within the

bounds. For example, if along any one dimension the value 𝜇 (𝑠;𝜃) + 𝜖 exceeds 𝑎max, the action is

set (clipped) to 𝑎max. Alternatively, a smooth form of squashing can be employed. For example,

suppose 𝑎min
𝑘

= −𝑀 and 𝑎max
𝑘

= +𝑀 for some positive number𝑀 , then a smooth form of squash-

ing could use 𝑎 = 𝑀 tanh(𝜇 (𝑠;𝜃) + 𝜖) in which tanh() is being applied to each component of the

𝐾-dimensional vector. DDPG [Hou et al. 2017] and TD3 [Fujimoto et al. 2018b] use clipping, and

18

SAC [Haarnoja et al. 2018a,b] uses smooth squashing with the tanh() function. For concreteness,

henceforth we will assume that smooth squashing with the tanh() is employed.

We now make a simple but crucial observation: squashing actions to fit into a bounded ac-

tion space can have a disastrous effect on additive-noise exploration strategies. To see this, let

the output of the policy network be 𝜇 (𝑠) = (𝜇1(𝑠), . . . , 𝜇𝐾 (𝑠)). Consider an action taken along

one dimension 𝑘 , and suppose 𝜇𝑘 (𝑠) >> 1 and |𝜖𝑘 | is relatively small compared to 𝜇𝑘 (𝑠). Then

the action 𝑎𝑘 = 𝑀 tanh(𝜇𝑘 (𝑠) + 𝜖𝑘) will be very close (essentially equal) to 𝑀 . If the condition

𝜇𝑘 (𝑠) >> 1 persists over many consecutive states, then 𝑎𝑘 will remain close to 1 for all these

states, and consequently there will be essentially no exploration along the 𝑘th dimension. We

will refer to this problem as the squashing exploration problem. We will argue that algorithms us-

ing the standard objective (Equation 2.1) with additive noise exploration can be greatly impaired

by squashing exploration.

3.2.2 Contribution of the Entropy Maximization

In this section, we argue that the principal contribution of the entropy term in the SAC objective

is to resolve the squashing exploration problem, thereby maintaining sufficient exploration when

facing bounded action spaces.

To argue this, we consider two DRL algorithms: SAC with adaptive temperature [Haarnoja

et al. 2018b], and SAC with entropy removed altogether (temperature set to zero) but everything

else the same. We refer to them as SAC and as SAC without entropy. For SAC without entropy,

for exploration we use additive zero-mean Gaussian noise with 𝜎 fixed at 0.3. Both algorithms use

tanh squashing. We compare these two algorithms on two MuJoCo environments: Humanoid-v2

and Walker2d-v2.

Figure 3.1 shows the performance of the two algorithms with 10 seeds. For Humanoid, SAC

performs much better than SAC without entropy. However, for Walker, SAC without entropy

performs nearly as well as SAC, implying maximum entropy RL is not as critical for this envi-

19

ronment.

(a) Humanoid-v2 (b) Walker2d-v2

Figure 3.1: SAC performance with and without entropy maximization

To understand why entropy maximization is important for one environment but less so for

another, we examine the actions selected when training these two algorithms. Humanoid and

Walker have action dimensions 𝐾 = 17 and 𝐾 = 6, respectively. Here we show representative

results for one dimension for both environments. The top and bottom rows of Figure 3.2 shows

results for Humanoid and Walker, respectively. The first column shows the 𝜇𝑘 values for an

interval of 1,000 consecutive time steps, namely, for time steps 599,000 to 600,000. The second

column shows the actual action values passed to the environment for these time steps. The third

and fourth columns show a concatenation of 10 such intervals of 1000 time steps, with each

interval coming from a larger interval of 100,000 time steps.

The top and bottom rows of Figure 3.2 are strikingly different. For Humanoid using SAC with

entropy, the |𝜇𝑘 | values are small, mostly in the range [-1.5,1.5], and fluctuate significantly. This

allows the action values to also fluctuate significantly, providing exploration in the action space.

On the other hand, for SAC without entropy the |𝜇𝑘 | values are typically huge, most of which are

well outside the interval [-10,10]. This causes the actions 𝑎𝑘 to be persistently clustered at either

𝑀 or -𝑀 , leading to essentially no exploration along that dimension. For Walker, we see that for

both algorithms, the 𝜇𝑘 values are sensible, mostly in the range [-1,1] and therefore the actions

chosen by both algorithms exhibit exploration.

20

(a) Humanoid-v2

(b) Walker2d-v2

Figure 3.2: 𝜇𝑘 and 𝑎𝑘 values from SAC and SAC without entropy maximization. See section 3.2 for a
discussion.

In conclusion, the principal benefit of maximum entropy RL in SAC for the MuJoCo envi-

ronments is that it resolves the squashing exploration problem. For some environments (such as

Walker), the outputs of the policy network take on sensible values, so that sufficient exploration

is maintained and overall good performance is achieved without the need for entropy maximiza-

tion. For other environments (such as Humanoid), entropy maximization is needed to reduce

the magnitudes of the outputs so that exploration is maintained and overall good performance is

achieved.

3.3 Methods

3.3.1 Output Normalization

As we observed in the previous section, in some environments the policy network output values

|𝜇𝑘 |, 𝑘 = 1, . . . , 𝐾 , can become persistently huge, which leads to insufficient exploration due to the

squashing. Based on the observation, we propose a simple solution of normalizing the outputs of

21

the policy network when they collectively (across the action dimensions) become too large.

Algorithm 1 Streamlined Off-Policy
1: Input: initial policy parameters 𝜃 , Q-function parameters 𝜙1, 𝜙2, empty replay buffer D
2: Throughout the output of the policy network 𝜇𝜃 (𝑠) is normalized if𝐺 > 1. (See Section 4.1.)
3: Set target parameters equal to main parameters 𝜙targ𝑖 ← 𝜙𝑖 for i = 1, 2
4: repeat
5: Generate an episode using actions 𝑎 = 𝑀tanh(𝜇𝜃 (𝑠) + 𝜖) where 𝜖 ∼ N(0, 𝜎1).
6: for 𝑗 in range(however many updates) do
7: Randomly sample a batch of transitions, 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠)} from D
8: Compute targets for Q functions:

𝑦𝑞 (𝑟, 𝑠′) = 𝑟 + 𝛾 min𝑖=1,2𝑄𝜙targ𝑖 (𝑠
′, 𝑀tanh(𝜇𝜃 (𝑠′) + 𝛿)) 𝛿 ∼ N(0, 𝜎2)

9: Update Q-functions by one step of gradient descent using
∇𝜙𝑖 1
|𝐵 |

∑
(𝑠,𝑎,𝑟,𝑠 ′)∈𝐵

(
𝑄𝜙𝑖 (𝑠, 𝑎) − 𝑦𝑞 (𝑟, 𝑠′)

)2 for 𝑖 = 1, 2
10: Update policy by one step of gradient ascent using

∇𝜃 1
|𝐵 |

∑
𝑠∈𝐵 𝑄𝜙1 (𝑠, 𝑀 tanh(𝜇𝜃 (𝑠)))

11: Update target networks with
𝜙targ𝑖 ← 𝜌𝜙targ𝑖 + (1 − 𝜌)𝜙𝑖 for 𝑖 = 1, 2

12: end for
13: until Convergence

To this end, let 𝜇 = (𝜇1, . . . , 𝜇𝐾) be the output of the original policy network, and let 𝐺 =∑
𝑘 |𝜇𝑘 |/𝐾 . The 𝐺 is simply the average of the magnitudes of the components of 𝜇. The normal-

ization procedure is as follows. If𝐺 > 1, then we reset 𝜇𝑘 ← 𝜇𝑘/𝐺 for all 𝑘 = 1, . . . , 𝐾 ; otherwise,

we leave 𝜇 unchanged. With this simple normalization, we are assured that the average of the

normalized magnitudes is never greater than one.

Our Streamlined Off Policy (SOP) algorithm is described in Algorithm 1. The SOP algorithm

is “streamlined” as it has no entropy terms, temperature adaptation, target policy parameters or

delayed policy updates. It is essentially TD3 minus the delayed policy updates and the target

policy parameters but with the addition of the normalization described above.

3.3.2 Inverting Gradients

We also consider using SOP but replacing the output normalization with the Inverting Gradients

(IG) scheme [Hausknecht and Stone 2015]. In this scheme, when gradients suggest increasing the

22

action magnitudes, gradients are down scaled if actions are within the boundaries, and inverted if

otherwise. We remove the tanh function from SOP and use Inverting Gradients instead to bound

the actions. More specifically, let 𝑝 be the output of the last layer of the policy network. During

exploration 𝑝 will be the mean of a normal distribution that we sample actions from. Let 𝑝min

and 𝑝max be the action boundaries. The IG approach can be summarized as follows [Hausknecht

and Stone 2015]:

∇𝑝 = ∇𝑝 ·


𝑝max−𝑝
𝑝max−𝑝min

if ∇𝑝 suggests increasing 𝑝

𝑝−𝑝min
𝑝max−𝑝min

otherwise
(3.2)

Where ∇𝑝 is the gradient of the policy loss w.r.t to 𝑝 . During a policy network update, we first

backpropagate the gradients from the outputs of the Q network to the output of the policy net-

work for each data point in the batch, we then compute the ratio (𝑝max − 𝑝)/(𝑝max − 𝑝min) or

(𝑝max − 𝑝)/(𝑝max − 𝑝min) for each 𝑝 value (each action dimension), depending on the sign of the

gradient. We then backpropagate from the output of the policy network to parameters of the

policy network, and we modify the gradients in the policy network according to the ratios we

computed. We refer to SOP with IG as SOP_IG.

We compares SAC (with temperature adaptation [Haarnoja et al. 2018a,b]) with SOP, SOP_IG,

and TD3 plus the simple normalization (which we call TD3+) for five of the most challenging

MuJoCo environments in section 3.4. Results show that SOP, the simplest of all the schemes,

performs as well or better than all other schemes. In particular, SAC and SOP have similar sample

efficiency and robustness across all environments

3.3.3 Non-uniform Sampling

Having matched SAC performance by SOP without using entropy maximization is not enough,

we propose a novel non-uniform sampling method for selection transitions from the replay buffer

during training to further improve sample efficiency and attain state-of-the-art performance.

23

Algorithm 2 SOP with Emphasizing Recent Experience
1: Input: initial policy parameters 𝜃 , Q-function parameters 𝜙1, 𝜙2, empty replay buffer D of

size 𝑁 , initial 𝜂0, recent and max performance improvement 𝐼𝑟𝑒𝑐𝑒𝑛𝑡 = 𝐼𝑚𝑎𝑥 = 0.
2: Set target parameters equal to main parameters 𝜙targ,i ← 𝜙𝑖 for i = 1, 2
3: repeat
4: Generate an episode using actions 𝑎 = 𝑀tanh(𝜇𝜃 (𝑠) + 𝜖) where 𝜖 ∼ N(0, 𝜎1).
5: update 𝐼𝑟𝑒𝑐𝑒𝑛𝑡 , 𝐼𝑚𝑎𝑥 with training episode returns, let 𝐾 = length of episode
6: compute 𝜂 = 𝜂0 · 𝐼𝑟𝑒𝑐𝑒𝑛𝑡𝐼𝑚𝑎𝑥

+ (1 − 𝐼𝑟𝑒𝑐𝑒𝑛𝑡
𝐼𝑚𝑎𝑥
)

7: for 𝑗 in range(𝐾) do
8: Compute 𝑐𝑘 = 𝑁 · 𝜂𝑘

1000
𝐾

9: Sample a batch of transitions, 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠)} from most recent 𝑐𝑘 data in D
10: Compute targets for Q functions:

𝑦𝑞 (𝑟, 𝑠′) = 𝑟 + 𝛾 min𝑖=1,2𝑄𝜙targ,𝑖 (𝑠′, 𝑀tanh(𝜇𝜃 (𝑠′) + 𝛿)) 𝛿 ∼ N(0, 𝜎2)
11: Update Q-functions by one step of gradient descent using

∇𝜙𝑖 1
|𝐵 |

∑
(𝑠,𝑎,𝑟,𝑠 ′)∈𝐵

(
𝑄𝜙,𝑖 (𝑠, 𝑎) − 𝑦𝑞 (𝑟, 𝑠′)

)2 for 𝑖 = 1, 2
12: Update policy by one step of gradient ascent using

∇𝜃 1
|𝐵 |

∑
𝑠∈𝐵 𝑄𝜙,1(𝑠, 𝑀 tanh(𝜇𝜃 (𝑠)))

13: Update target networks with
𝜙targ, i ← 𝜌𝜙targ, i + (1 − 𝜌)𝜙𝑖 for 𝑖 = 1, 2

14: end for
15: until Convergence

24

The basic idea is that during the parameter update phase, the first mini-batch is sampled from

the entire buffer, then for each subsequent mini-batch we gradually reduce our range of sampling

to sample more from recent data. Specifically, assume that in the current update phase we are

to make 1000 mini-batch updates. Let 𝑁 be the max size of the buffer. Then for the 𝑘𝑡ℎ update,

we sample uniformly from the most recent 𝑐𝑘 data points, where 𝑐𝑘 = 𝑁 · 𝜂𝑘 and 𝜂 ∈ (0, 1] is a

hyper-parameter that determines how much emphasis we put on recent data. 𝜂 = 1 is uniform

sampling. When 𝜂 < 1, 𝑐𝑘 decreases as we perform each update. 𝜂 can be made to adapt to the

learning speed of the agent so that we do not have to tune it for each environment. We call this

non-uniform sampling scheme Emphasizing Recent Experience (ERE). The algorithmic details of

such an adaptive scheme is given in algorithm 2.

The effect of such a sampling formulation is twofold. The first is recent data have a higher

chance of being sampled. The second is that sampling is done in an ordered way: we first sample

from all the data in the buffer, and gradually shrink the range of sampling to only sample from

the most recent data. This scheme reduces the chance of over-writing parameter changes made

by new data with parameter changes made by old data [French 1999; McClelland et al. 1995; Mc-

Closkey and Cohen 1989; Ratcliff 1990; Robins 1995]. This allows us to quickly obtain information

from recent data, and better approximate the value functions near recently-visited states, while

still maintaining an acceptable approximation near states visited in the more distant past.

Consider the case of uniform sampling, if we uniformly sample several times from a fixed

buffer (uniform fixed), where the buffer is filled, and no new data is coming in, then the expected

number of times a data point has been sampled is the same for all data points. Now consider a

scenario where we have a buffer of size 1000 (FIFO queue), we collect one data at a time, and then

perform one update with mini-batch size of one. If we start with an empty buffer and sample

uniformly (uniform empty), as data fills the buffer, each data point gets less and less chance of

being sampled. Specifically, start from timestep 0, over a period of 1000 updates, the expected

number of times the 𝑡 th data (the data point collected at 𝑡 th timestep) has been sampled is: 1
𝑡
+

25

Figure 3.3: Comparison between uniform and ERE sampling

1
𝑡+1 + · · · +

1
1000 . And if we start with a filled buffer and sample uniformly (uniform full), then the

expected number of times the 𝑡 th data has been sampled is
∑1000
𝑡 ′=𝑡

1
1000 = 1000−𝑡

1000 .

Figure 3.3 shows the expected number of times a data point has been sampled (at the end of

1000 updates) as a function of its position in the buffer. We see that when uniform sampling is

used, older data are expected to get sampled much more than newer data, especially in the empty

buffer case. This is undesirable because when the agent is improving and exploring new areas

of the state space; new data points may contain more interesting information than the old ones,

which have already been updated many times.

When we apply the ERE scheme, we effectively skew the curve towards assigning higher

expected number of samples for the newer data, allowing the newer data to be frequently sampled

soon after being collected, which can accelerate the learning process. In Figure 3.3 we can see

that the curves for ERE (ERE empty and ERE full) are much closer to the horizontal line (Uniform

fixed), compared to when uniform sampling is used. With ERE, at any point during training,

we expect all data points currently in the buffer to have been sampled approximately the same

number of times.

We also implement the proportional variant of Prioritized Experience Replay [Schaul et al.

2015] with SOP.

26

Since SOP has two Q-networks, we redefine the absolute TD error |𝛿 | of a transition (𝑠, 𝑎, 𝑟, 𝑠′)

to be the average absolute TD error in the Q network update:

|𝛿 | = 1
2

2∑︁
𝑙=1
|𝑦𝑞 (𝑟, 𝑠′) −𝑄𝜙,𝑙 (𝑠, 𝑎) | (3.3)

Within the sum, the first term𝑦𝑞 (𝑟, 𝑠′) = 𝑟 +𝛾 min𝑖=1,2𝑄𝜙targ,𝑖 (𝑠′, tanh(𝜇𝜃 (𝑠′) +𝛿)), 𝛿 ∼ N(0, 𝜎2)

is simply the target for the Q network, and the term 𝑄𝜃,𝑙 (𝑠, 𝑎) is the current estimate of the 𝑙𝑡ℎ

Q network. For the 𝑖𝑡ℎ data point, the definition of the priority value 𝑝𝑖 is 𝑝𝑖 = |𝛿𝑖 | + 𝜖 . The

probability of sampling a data point 𝑃 (𝑖) is computed as:

𝑃 (𝑖) =
𝑝
𝛽1
𝑖∑
𝑗 𝑝

𝛽1
𝑗

(3.4)

where 𝛽1 is a hyperparameter that controls how much the priority value affects the sampling

probability, which is denoted by 𝛼 in Schaul et al. [2015], but to avoid confusion with the 𝛼 in

SAC, we denote it as 𝛽1. The importance sampling (IS) weight𝑤𝑖 for a data point is computed as:

𝑤𝑖 = (
1
𝑁
· 1
𝑃 (𝑖))

𝛽2 (3.5)

where 𝛽2 is denoted as 𝛽 in Schaul et al. [2015].

Based on the SOP algorithm, we change the sampling method from uniform sampling to

sampling using the probabilities 𝑃 (𝑖), and for the Q updates we apply the IS weight𝑤𝑖 . This gives

SOP with Prioritized Experience Replay (SOP+PER). We note that as compared with SOP+PER,

ERE does not require a special data structure and has negligible extra cost, while PER uses a

sum-tree structure with some additional computational cost.

The ERE scheme is also similar to an exponential sampling (EXP) scheme where we assign

the probability of sampling according to the probability density function of an exponential dis-

tribution. Essentially, in such a sampling scheme, the more recent data points get exponentially

27

more probability of being sampled compared to older data.

For the 𝑖𝑡ℎ most recent data point, the probability of sampling a data point 𝑃 (𝑖) is computed

as:

𝑃 (𝑖) = 𝜆𝑒−𝜆𝑥 (3.6)

We apply this sampling scheme to SOP and refer to this variant as SOP+EXP.

3.4 Experiments

3.4.1 Results on MuJoCo

We use the same code baseline code comparing SAC (with temperature adaptation [Haarnoja

et al. 2018a,b]) with SOP, SOP_IG, and TD3 plus the simple normalization (which we call TD3+)

for five of the most challenging MuJoCo environments. We train each of the algorithms with 10

seeds. Each algorithm performs five evaluation rollouts every 5000 environment steps. The solid

curves correspond to the mean, and the shaded region to the standard deviation of the returns

over seeds. In figure 3.4, results show that SOP, the simplest of all the schemes, performs as well

or better than all other schemes. In particular, SAC and SOP have similar sample efficiency and

robustness across all environments.

TD3+ has slightly weaker asymptotic performance for Walker and Humanoid. SOP_IG ini-

tially learns slowly for Humanoid with high variance across random seeds, but gives similar

asymptotic performance. These experiments confirm that the sample efficiency and performance

of SAC can be achieved without maximum entropy RL.

3.4.2 Experimental Results for ERE

Figure 3.5 compares the performance of SAC (considered the baseline here), SAC+ERE, SOP+ERE,

and SOP_IG+ERE. ERE gives a significant boost to all three algorithms, surpassing SAC and

28

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 3.4: Streamlined Off-Policy (SOP) versus SAC, SOP_IG and TD3

achieving a new SOTA. Among the three algorithms, SOP+ERE gives the best performance for

Ant and Humanoid (the two most challenging environments) and performance roughly equiva-

lent to SAC+ERE and SOP_IG+ERE for the other three environments.

In particular, for Ant and Humanoid, SOP+ERE improves performance by 21% and 24% over

SAC at 1 million samples, respectively. For Humanoid, at 3 million samples, SOP+ERE improves

performance by 15%. In conclusion, SOP+ERE is not only a simple algorithm, but also exceeds

state-of-the-art performance.

3.4.3 Ablation Study

In this section, we first separately examine the importance of (𝑖) the normalization at the output

of the policy network; (𝑖𝑖) the double Q networks; (𝑖𝑖𝑖) and randomization used in the line 9 of

the SOP algorithm (that is, target policy smoothing [Fujimoto et al. 2018b]).

Figure 3.6 shows the results for the five environments considered in this chapter. In Figure

29

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 3.5: (a) to (e) show the performance of SAC baseline, SOP+ERE, SAC+ERE, and SOP_IG+ERE.

3.6, “no normalization” is SOP without the normalization of the outputs of the policy network;

“single Q” is SOP with one Q-network instead of two; and “no smoothing” is SOP without the

randomness in line 8 of the algorithm.

Figure 3.6 confirms that doubleQ-networks are critical for obtaining good performance [VanHas-

selt et al. 2016; Fujimoto et al. 2018b; Haarnoja et al. 2018a]. Figure 3.6 also shows that output

normalization is critical. Without output normalization, performance fluctuates wildly, and aver-

age performance can decrease dramatically, particularly for Humanoid and HalfCheetah. Target

policy smoothing improves performance by a relatively small amount.

In addition, to better understand whether the simple normalization term in SOP achieves a

similar effect compared to explicitly maximizing entropy, we plot the entropy values for SOP and

SAC throughout training for all environments. We found that SOP and SAC have very similar

entropy values across training, while removing the entropy term from SAC makes the entropy

value much lower, as shown in figure 3.7. This indicates that the effect of the action normalization

30

is very similar to maximizing entropy.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 3.6: Ablation Study for SOP

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 3.7: Entropy value comparison between SOP, SAC, and SAC without entropy maximization

31

Finally, we investigate the effect of Prioritized Experience Replay (PER) [Schaul et al. 2015]

and Exponential Sampling (EXP) with SOP on the MuJoCo benchmark.

Figure 3.8 shows a performance comparison of SOP, SOP+ERE, SOP+EXP and SOP+PER. Re-

sults show that the exponential sampling scheme gives a boost to the performance of SOP, and

especially in the Humanoid environment, although not as good as ERE. Surprisingly, SOP+PER

does not give a significant performance boost to SOP (if any boost at all). We also found that it is

difficult to find hyperparameter settings for SOP+PER that work well for all environments. Some

of the other hyperparameter settings actually reduce performance. It is unclear why PER does

not work so well for SOP. A similar result has been found in another recent paper [Fu et al. 2019],

showing that PER can significantly reduce performance on TD3. Further research is needed to

understand how PER can be successfully adapted to environments with continuous action spaces

and dense reward structure.

(a) Hopper-v2 (b) Walker2d-v2 (c) Halfcheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 3.8: Streamlined Off-Policy (SOP), with ERE and PER sampling schemes

32

3.4.4 Implementation Details

All experiments are run on cpu nodes only. Each job runs on a single Intel(R) Xeon(R) CPU

E5-2620 v3 with 2.40GHz. In table 3.1, we show hyperparameters used for SOP, SOP+ERE and

SOP+PER. For adaptive SAC, we use our own PyTorch implementation for the comparisons. Our

implementation uses the same hyperparameters as used in the original paper [Haarnoja et al.

2018b]. Our implementation of SOP variants and adaptive SAC share most of the code base. For

TD3, our implementation uses the same hyperparamters as used in the authors’ implementation,

which is different from the ones in the original paper [Fujimoto et al. 2018b]. They claimed that

the new set of hyperparamters can improve performance for TD3. We now discuss hyperparam-

eter search for better clarity, fairness and reproducibility [Henderson et al. 2018; Duan et al. 2016;

Islam et al. 2017].

For the 𝜂 value in the ERE scheme, in our early experiments we tried the values (0.993, 0.994,

0.995, 0.996, 0.997, 0.998) on the Ant and found 0.995 to work well. This initial range of values was

decided by computing the ERE sampling range for the oldest data. We found that for smaller val-

ues, the range would simply be too small. For the PER scheme, we did some informal preliminary

search, then searched on Ant for 𝛽1 in (0, 0.4, 0.6, 0.8), 𝛽2 in (0, 0.4, 0.5, 0.6, 1), and learning rate

in (1e-4, 2e-4, 3e-4, 5e-4, 8e-4, 1e-3), we decided to search these values because the original paper

used 𝛽1 = 0.6, 𝛽2 = 0.4 and with reduced learning rate. For the exponential sampling scheme, we

searched the 𝜆 value in (3e-7, 1e-6, 3e-6, 5e-6, 1e-5, 3e-5, 5e-5, 1e-4) in Ant, this search range was

decided by plotting out the probabilities of sampling, and then pick a set of values that are not too

extreme. For 𝜎 in SOP, in some of our early experiments with SAC, we accidentally found that

𝜎 = 0.3 gives good performance for SAC without entropy and with Gaussian noise. We searched

values (0.27, 0.28, 0.29, 0.3). For 𝜎 values for TD3+, we searched values (0.1, 0.15, 0.2, 0.25, 0.3).

In the ERE scheme, the sampling range always starts with the entire buffer (1M data) and then

gradually shrinks. This is true even when the buffer is not full. So even if there are not many data

33

Table 3.1: SOP Hyperparameters

Parameter Value
Shared

optimizer Adam [Kingma and Ba 2014]
learning rate 3 · 10−4

discount (𝛾) 0.99
target smoothing coefficient (𝜌) 0.005
target update interval 1
replay buffer size 106

number of hidden layers for all networks 2
number of hidden units per layer 256
mini-batch size 256
nonlinearity ReLU

SAC adaptive
entropy target -dim(A) (e.g., 6 for HalfCheetah-v2)

SOP
gaussian noise std 𝜎 = 𝜎1 = 𝜎2 0.29

TD3
gaussian noise std for data collection 𝜎 0.1 * action limit
guassian noise std for target policy smoothing 𝜎̃ 0.2

TD3+
gaussian noise std for data collection 𝜎 0.15
guassian noise std for target policy smoothing 𝜎̃ 0.2

ERE
ERE initial 𝜂0 0.995

PER
PER 𝛽1 (𝛼 in PER paper) 0.4
PER 𝛽2 (𝛽 in PER paper) 0.4

EXP
Exponential 𝜆 5𝑒 − 06

34

points in the buffer, we compute 𝑐𝑘 based as if there are 1M data points in the buffer. One can

also modify the design slightly to obtain a variant that uses the current amount of data points

to compute 𝑐𝑘 . In addition to the reported scheme, we also tried shrinking the sampling range

linearly, but it gives less performance gain.

In our implementation we set the number of updates after an episode to be the same as the

number of timesteps in that episode. Since environments do not always end at 1000 timesteps,

we can give a more general formula for 𝑐𝑘 . Let 𝐾 be the number of mini-batch updates, let 𝑁 be

the max size of the replay buffer, then:

𝑐𝑘 = 𝑁 · 𝜂𝑘
1000
𝐾 (3.7)

With this formulation, the range of sampling shrinks in more or less the same way with

varying number of mini-batch updates. We always do uniform sampling in the first update, and

we always have 𝜂𝐾
1000
𝐾 = 𝜂1000 in the last update.

When 𝜂 is small, 𝑐𝑘 can also become small for some of the mini-batches. To prevent getting

a mini-batch with too many repeating data points, we set the minimum value for 𝑐𝑘 to 5000. We

did not find this value to be too important and did not find the need to tune it. It also does not

have any effect for any 𝜂 ≥ 0.995 since the sampling range cannot be lower than 6000.

In the adaptive scheme with buffer of size 1M, the recent performance improvement is com-

puted as the difference of the current episode return compared to the episode return 500,000

timesteps earlier. Before we reach 500,000 timesteps, we simply use 𝜂0. The exact way of com-

puting performance improvement does not have a significant effect on performance as long as it

is reasonable.

35

3.5 Related Work

In recent years, there has been significant progress in improving the sample efficiency of DRL for

continuous robotic locomotion tasks with off-policy algorithms [Lillicrap et al. 2019; Fujimoto

et al. 2018b; Haarnoja et al. 2018a,b]. There is also a significant body of research on maximum

entropy RL methods [Ziebart et al. 2008; Ziebart 2010; Todorov 2008; Rawlik et al. 2013; Levine

and Koltun 2013; Levine et al. 2016; Nachum et al. 2017; Haarnoja et al. 2017, 2018a,b]. Ahmed

et al. [2019] very recently shed light on how entropy leads to a smoother optimization landscape.

By taking clipping in the MuJoCo environments explicitly into account, Fujita and Maeda [2018]

modified the policy gradient algorithm to reduce variance and provide superior performance

among on-policy algorithms. Eisenach et al. [2018] extend the work of Fujita and Maeda [2018]

for when an actionmay be direction. Hausknecht and Stone [2015] introduce Inverting Gradients,

for which we provide expermintal results in this chapter for the MuJoCo environments. Chou

et al. [2017] also explores DRL in the context of bounded action spaces. Dalal et al. [2018] consider

safe exploration in the context of constrained action spaces.

Experience replay [Lin 1992] is a simple yet powerful method for enhancing the performance

of an off-policy DRL algorithm. Experience replay stores past experience in a replay buffer and

reuses this past data when making updates. It achieved great successes in Deep Q-Networks

(DQN) [Mnih et al. 2013, 2015].

Uniform sampling is the most common way to sample from a replay buffer. One of the most

well-known alternatives is prioritized experience replay (PER) [Schaul et al. 2015]. PER uses

the absolute TD-error of a data point as the measure for priority, and data points with higher

priority will have a higher chance of being sampled. This method has been tested on DQN [Mnih

et al. 2015] and double DQN (DDQN) [Van Hasselt et al. 2016] with significant improvement and

applied successfully in other algorithms [Wang et al. 2015; Schulze and Schulze 2018; Hessel et al.

2018; Hou et al. 2017] and can be implemented in a distributed manner [Horgan et al. 2018].

36

When new data points lead to large TD errors in the Q update, PER will also assign high

sampling probability to newer data points. However, PER has a different effect compared to ERE.

PER tries to fit well on both old and new data points. While for ERE, old data points are always

considered less important than newer data points even if these old data points start to give a high

TD error. A performance comparison of PER and ERE are given in the supplementary materials.

There are other methods proposed to make better use of the replay buffer. The ACER al-

gorithm has an on-policy part and an off-policy part, with a hyper-parameter controlling the

ratio of off-policy to on-policy updates [Wang et al. 2016]. The RACER algorithm [Novati and

Koumoutsakos 2018] selectively removes data points from the buffer, based on the degree of “off-

policyness,” bringing improvement to DDPG [Lillicrap et al. 2019], NAF [Gu et al. 2016] and PPO

[Schulman et al. 2017]. In De Bruin et al. [2015], replay buffers of different sizes were tested,

showing large buffer with data diversity can lead to better performance. Finally, with Hindsight

Experience Replay[Andrychowicz et al. 2017], priority can be given to trajectories with lower

density estimation [Zhao and Tresp 2019] to tackle multi-goal, sparse reward environments.

3.6 Conclusion

In this chapter, we first showed that the primary role of maximum entropy RL for the MuJoCo

benchmark is to maintain satisfactory exploration in the presence of bounded action spaces. With

the insight, we then developed a new streamlined algorithm which does not employ entropy

maximization but nevertheless matches the sampling efficiency and robust performance of SAC

for the MuJoCo benchmarks. Finally, we combined our streamlined algorithm with a simple non-

uniform sampling scheme to create a simple algorithm that further improves sample efficiency

and achieves state-of-the art performance for the MuJoCo benchmark.

37

4 | Aggressive Q-learning with

Ensembles

4.1 Introduction

In the last chapter, we have discussed a number of off-policy Deep RL algorithms for control tasks

with continuous state and action spaces, including Deep Deterministic Policy Gradient (DDPG),

Twin Delayed DDPG (TD3) and Soft Actor Critic (SAC) [Lillicrap et al. 2019; Fujimoto et al. 2018b;

Haarnoja et al. 2018a,b]. Techniques such as reusing past experience from a replay buffer, clipped

double-Q learning, maximum entropy and output normalization proposed by these off-policy

Deep RL algorithms are proved to provide excellent sample efficiency and asymptotic perfor-

mance in a wide-range of MuJoCo environments.

More recently, Kuznetsov et al. [2020] proposed Truncated Quantile Critics (TQC), a model-

free algorithm which includes distributional representations of critics, truncation of critics pre-

diction, and ensembling of multiple critics. Instead of the usual modeling of the Q-function of

the expectation of return, TQC approximates the distribution of the return random variable con-

ditioned on the state and action. By dropping several of the top-most “atoms” and varying the

number of dropped atoms of the return distribution approximation, TQC can control the over-

estimation bias. TQC’s asymptotic performance (that is after a long period of training) was shown

to be better than that of SAC on the continuous control MuJoCo benchmark suite, including a 25%

38

improvement on the most challenging Humanoid environment. However, TQC is not sample effi-

cient in that it generally requires a large number of samples to reach even moderate performance

levels.

Chen et al. [2021] proposed Randomized Ensembled Double Q-learning(REDQ), a model-free

algorithm which includes a high Update-To-Data (UTD) ratio, an ensemble of Q functions, and

in-target minimization across a random subset of Q functions from the ensemble. Using a UTD

ratio much larger than one, meaning that several gradient steps are taken for each environment

interaction, improves sample efficiency, while the ensemble and in-targetminimization allows the

algorithm to maintain stable and near-uniform bias under the high UTD ratio. The algorithmwas

shown to attain much better performance than SAC at the early stage of training, and to match

or improve the sample-efficiency of the state-of-the-art model-based algorithms for the MuJoCo

benchmarks. However, although REDQ is highly sample efficient for early-stage training, its

asymptotic performance is significantly below that of TQC.

Is it possible to design a simple, streamlined model-free algorithm which can achieve REDQ’s

high sample efficiency in early-stage training and also achieve TQC’s high asymptotic perfor-

mance in late state training? In this chapter, we achieve this goal with a new model-free algo-

rithm, Aggressive Q-Learning with Ensembles (AQE). Like TQC and REDQ, AQE uses an ensem-

ble of Q-functions, and like REDQ it uses a UTD ratio > 1. However AQE is very simple, requiring

neither distributional representation of critics as in TQC nor target randomization and double-Q

learning as in REDQ. AQE controls over estimation bias and the standard deviation of the bias by

varying the number of ensemble members 𝑁 and the number of ensembles 𝐾 ≤ 𝑁 that are kept

when calculating the targets.

Through carefully designed experiments, we provide a detailed analysis of AQE. We perform

extensive and comprehensive experiments for both MuJoCo and DeepMind Control Suite (DMC)

environments. We first show that for the five most challenging MuJoCo benchmark, AQE pro-

vides state-of-the-art performance, surpassing the performance of SAC, REDQ, and TQC at all

39

stages of training. When averaged across the five MuJoCo environments, AQE’s early stage per-

formance is 2.9 times better than SAC, 1.6 times better than TQC and 1.1 times better than REDQ.

AQE’s asymptotic performance is 26%, 22%, and 6% higher than SAC, REDQ, and TQC, respec-

tively. Then we provide additional experimental results for the nine most challenging DeepMind

Control Suite (DMC) environments, which TQC and REDQ did not consider. We show that AQE

also provides state-of-the-art performance at both early stage and late-stage of training. When

averaged over nine environments, AQE’s early stage performance is 13.71 times better than SAC,

7.59 times better than TQC and 1.02 times better than REDQ. AQE’s asymptotic performance is

37% better than SAC, 3% better than REDQ, and 8% better than TQC. We also perform an ablation

study, and show that AQE is robust to choices of hyperparameters: AQE can work well with small

ensembles consisting of 10-20 ensemble members, and performance does not vary significantly

with small changes in the keep parameter𝐾 . We show that that AQE performs better than several

variations, including using the median of all ensemble members and removing the most extreme

minimum and maximum outlier in the targets. In order to improve computational time, we also

consider different multi-head architectures for the ensemble of critics: consistent with the su-

pervised convolutional network literature, we find that a two-head architecture not only reduces

computational time but can actually improve performance for some environments. Additionally,

we show that AQE continues to out-perform SAC and TQC even when these algorithms are made

aggressive with a UTD≫ 1.

4.2 Related Work

Overestimation bias due to in target maximization in Q-learning can significantly slow learn-

ing [Thrun and Schwartz 1993]. For tabular Q-learning, Hasselt [2010] introduced Double Q-

Learning, and showed that it removes the overestimation basis and in general leads to an under-

estimation bias. Van Hasselt et al. [2016] showed that adding Double Q-learning to deep-Q net-

40

works can have a similar effect, leading to a major performance boost for the Atari games bench-

mark. As stated in the Introduction, for continuous-action spaces, TD3 and SAC address the

overestimation bias using clipped-double Q-learning, which brings significant performance im-

provements [Fujimoto et al. 2018b; Haarnoja et al. 2018a,b].

As mentioned in the Introduction, Kuznetsov et al. [2020] control the over-estimation bias by

estimating the distribution of the return random variable, and then by dropping several of the

top-most “atoms” from the estimated distribution. The distribution estimate is based on amethod-

ology developed in Bellemare et al. [2017]; Dabney et al. [2018a,b], which employs an asymmetric

Huber loss function tominimize theWasserstein distance between the neural network output dis-

tribution and the target distribution. In this chapter, in order to counter over-estimation bias, we

also drop the top-most estimates, although we do so solely with an ensemble of Q-function mean

estimators rather than with an ensemble of the more complex distributional models employed in

[Kuznetsov et al. 2020].

It is well-known that using ensembles can improve the performance of DRL algorithms [Faußer

and Schwenker 2015; Nachum et al. 2017; Lee et al. 2021]. For Q-learning based methods, An-

schel et al. [2017] use the average of multiple Q estimates to reduce variance. Lan et al. [2020b]

introduced Maxmin Q-learning, which uses the minimum of all the Q-estimates rather than the

average. Agarwal et al. [2020] use Random Ensemble Mixture (REM), which employs a random

convex combination of multiple Q estimates.

Model-based methods often attain high sample efficiency by using a high UTD ratio. In par-

ticular, Model-Based Policy Optimization (MBPO) [Janner et al. 2019] uses a large UTD ratio of

20-40. Compared to Soft-Actor-Critic (SAC), which is model-free and uses a UTD of 1, MBPO

achieves much higher sample efficiency in the OpenAI MuJoCo benchmark [Todorov et al. 2012;

Brockman et al. 2016]. REDQ [Chen et al. 2021], amodel-free algorithm, also successfully employs

a high UTD ratio to achieve high sample efficiency.

41

4.3 Aggressive Q-learning with Ensemble

In this section, we introduce details of our proposed algorithm, Aggressive Q-learning with En-

sembles (AQE), a simple model-free algorithm which provides state-of-the-art performance for

both MuJoCo and DeepMind Control Suite (DMC) benchmark for both early and late stage of

training. The pseudo-code is shown in Algorithm 3.

4.3.1 Architecture

As is the case with most off-policy continuous-control algorithms, AQE has a single actor (policy

network) and multiple critics (Q-function networks), and employs Polyak averaging of the target

parameters to enhance stability. Building on this algorithmic base, it also employs an update-to-

data ratio 𝐺 > 1, an ensemble of 𝑁 ≥ 3 Q-functions (rather than just two as in TD3 and SAC),

and targets that average all the Q-functions excluding the Q-functions with the highest 𝑁 − 𝐾

values. As discussed in section 4.3.2, we demonstrate theoretically in the tabular case of the

algorithm that we can control over-estimation through adjusting 𝐾 and 𝑁 . More concretely, we

can bring the bias term from above zero (i.e. overestimation) to under zero (i.e. underestimation)

by decreasing𝐾 and/or increasing𝑁 . In contrast, REDQ employs two randomly chosen ensemble

memberswhen calculating the target, the bias does not depend on the number of ensemblemodels

𝑁 [Chen et al. 2021]. Unlike REDQ, AQE can control the bias term through both the number of

ensemblemodels used in the average calculation𝐾 and the total number of ensembles𝑁 , allowing

for more flexibility. One other drawback for REDQ is that it ignores the estimates of all other

ensemble estimates except for the minimal one in the randomly chosen set, which diminishes

the power of the multiple ensemble sets. In contrast, AQE utilizes most of the ensemble models

when calculating the target.The resulting algorithm is not only simple and streamlined, but also

provides state-of-the art performance. For exploration, it uses entropy maximization as in SAC,

although it could easily incorporate alternative exploration schemes.

42

Algorithm 3 Aggressive Q-Learning with Ensembles
1: Initial policy parameters 𝜃 , 𝑁 Q-function parameters 𝜙𝑖, 𝑖 = 1,. . . , 𝑁 , empty replay buffer D.

Set target parameters 𝜙targ,𝑖 ← 𝜙𝑖 for 𝑖 = 1, 2,. . . , 𝑁 .
2: repeat
3: Take one action 𝑎𝑡 ∼ 𝜋𝜃 (·|𝑠𝑡). Observe reward 𝑟𝑡 , new state 𝑠𝑡+1.
4: Add data to replay buffer: D ← D ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}
5: for 𝐺 updates do
6: Randomly sample a mini-batch 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠′)} from D.
7: for each (𝑠, 𝑎, 𝑟, 𝑠′) ∈ 𝐵 do
8: Sample 𝑎′ ∼ 𝜋𝜃 (·|𝑠′).
9: Determine the 𝐾 indices from 𝑖 = 1, . . . , 𝑁 that minimize 𝑄target,𝑖 (𝑠′, 𝑎′).
10: Compute the Q target 𝑦:

𝑦 (𝑠, 𝑎) = 𝑟 + 𝛾
(

1
𝐾

∑︁
𝑖∈𝐾

𝑄𝜙targ,𝑖 (𝑠′, 𝑎′) − 𝛼 log𝜋𝜃 (𝑎′|𝑠′)
)

11: end for
12: for 𝑖 = 1, . . . , 𝑁 do
13: Update 𝜙𝑖 with gradient descent using

∇𝜙𝑖 1
|𝐵 |

∑︁
(𝑠,𝑎,𝑟,𝑠 ′)∈𝐵

(
𝑄𝜙𝑖 (𝑠, 𝑎) − 𝑦 (𝑠, 𝑎)

)2

14: Update target networks with 𝜙targ,𝑖 ← 𝜌𝜙targ,𝑖 + (1 − 𝜌)𝜙𝑖
15: end for
16: end for
17: Update policy parameters 𝜃 with gradient ascent using

∇𝜃 1
|𝐵 |

∑︁
𝑠∈𝐵

(
1
𝑁

𝑁∑︁
𝑖=1

𝑄𝜙𝑖 (𝑠, 𝑎𝜃 (𝑠)) − 𝛼 log𝜋𝜃 (𝑎𝜃 (𝑠) |𝑠)
)

𝑎𝜃 (𝑠) ∼ 𝜋𝜃 (·|𝑠)

18: until Convergence

AQE has three key hyperparameters, 𝐺 , 𝑁 , and 𝐾 . If we set 𝑁 = 2, 𝐾 = 1 and 𝐺 = 1, AQE

is simply the underlying off-policy algorithm such as SAC. When 𝑁 > 2, 𝐾 = 1 and 𝐺 = 1, then

AQE becomes similar to, but not equivalent to, Maxmin Q-learning [Lan et al. 2020b].

AQE uses an ensemble of Q networks (as does REDQ and TQC). Employing multiple net-

works, one for each Q-function output, can be expensive in terms of computation and memory.

In order to reduce the computation andmemory requirements, we also consider multi-head archi-

tectures for generating multiple Q-function outputs. Instead of each network providing a single

Q-estimate output, we consider 𝑁 separate Q networks each with ℎ heads, providing a total of

ℎ · 𝑁 estimates. The ℎ heads from one network share all of the layers except the final fully-

43

connected layer. In practice, we have found ℎ = 2 heads works well for AQE, consistent with

work in ensembles of convolutional neural networks for computer vision tasks [Lee et al. 2015].

When properly sharing low level weights, multi-headed networks may not only retain the per-

formance of full ensembles, but can sometimes outperform them. We conduct ablation studies on

the multi-head architecture in AQE in Section 4.4.3.

4.3.2 Theoretical Analysis

In this section, we characterize how changing the size of the ensemble 𝑁 and the keep parameter

𝐾 affects the estimation bias term in the AQE algorithm. We will restrict our analysis to the

tabular version of AQE in algorithm 4.

Algorithm 4 Tabular AQE
1: Initialize: 𝑄 𝑗 (𝑠, 𝑎) for all 𝑠 ∈ S, 𝑎 ∈ A, 𝑗 = 1, . . . , 𝑁 .
2: repeat
3: For some state 𝑠 ∈ S, choose 𝑎 ∈ A based on

{
𝑄 𝑗 (𝑠, 𝑎)

}𝑁
𝑗=1, observe 𝑟 , 𝑠

′.
4: For each 𝑎′ ∈ A, let 𝐸𝐾,𝑁 (𝑠′, 𝑎′) be the ensemble members in {1, . . . , 𝑁 } with the 𝐾 lowest

values of 𝑄 𝑗 (𝑠′, 𝑎′), 𝑗 = 1, . . . , 𝑁 .
5: Get target

𝑦 = 𝑟 + 𝛾 max
𝑎′∈A

1
𝐾

∑︁
𝑗∈𝐸𝐾,𝑁 (𝑠 ′,𝑎′)

𝑄 𝑗 (𝑠′, 𝑎′)

6: for 𝑗 = 1, . . . , 𝑁 do
7: Update each 𝑄 𝑗 (𝑠, 𝑎)

𝑄 𝑗 (𝑠, 𝑎) ← 𝑄 𝑗 (𝑠, 𝑎) + 𝛼 (𝑦 −𝑄 𝑗 (𝑠, 𝑎))

8: end for
9: 𝑠 ← 𝑠′

10: until end

Our analysis will follow similar lines of reasoning as Lan et al. [2020b] and Chen et al. [2021]

which extends upon the theoretical framework introduced in Thrun and Schwartz [1993].

For each 𝑎 ∈ A, let 𝐸𝐾,𝑁 (𝑠, 𝑎) be the ensemble members in {1, . . . , 𝑁 }with the𝐾 lowest values

44

of 𝑄 𝑗 (𝑠, 𝑎), 𝑗 = 1, . . . , 𝑁 . In the tabular case, the target for the Q networks take the form:

𝑟 + 𝛾 max
𝑎′

©­« 1
𝐾

∑︁
𝑗∈𝐸𝐾,𝑁 (𝑠 ′,𝑎′)

𝑄 𝑗 (𝑠′, 𝑎′)ª®¬ . (4.1)

Define the post-update estimation bias as

𝑍𝐾,𝑁 := 𝑟 + 𝛾 max
𝑎′

©­« 1
𝐾

∑︁
𝑗∈𝐸𝐾,𝑁 (𝑠 ′,𝑎′)

𝑄 𝑗 (𝑠′, 𝑎′)ª®¬ −
(
𝑟 + 𝛾 max

𝑎′
𝑄𝜋 (𝑠′, 𝑎′)

)
= 𝛾

max
𝑎′

©­« 1
𝐾

∑︁
𝑗∈𝐸𝐾,𝑁 (𝑠 ′,𝑎′)

𝑄 𝑗 (𝑠′, 𝑎′)ª®¬ −max
𝑎′

𝑄𝜋 (𝑠′, 𝑎′)


(4.2)

Under this definition, if E[𝑍𝐾,𝑁] > 0, then the expected post-update estimation bias is posi-

tive and there is a tendency for the positive bias to accumulate during updates. Similarly, if

E[𝑍𝐾,𝑁] < 0, then the expected post-update estimation bias is negative and there is a tendency

for the negative bias to accumulate during updates. Ideally, we would like E[𝑍𝐾,𝑁] ≈ 0

Also let

𝑄 𝑗 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) + 𝑒 𝑗 (𝑠, 𝑎) (4.3)

where 𝑒 𝑗 (𝑠, 𝑎) is an independent and identically distributed error term across all 𝑗 ’s and all 𝑎’s

for each fixed 𝑠 . We further assume that E[𝑒 𝑗 (𝑠, 𝑎)] = 0. Note that with this assumption

E

[
1
𝑁

𝑁∑︁
𝑗=1

𝑄 𝑗 (𝑠, 𝑎)
]
−𝑄𝜋 (𝑠, 𝑎) = 0,

that is the pre-update estimation bias is zero. The following theorem shows how the expected

estimation bias changes with 𝑁 and 𝐾 :

Theorem 4.1. The following results hold for E[𝑍𝐾,𝑁]:

1. E[𝑍𝑁,𝑁] ≥ 0 for all 𝑁 ≥ 1.

45

2. E[𝑍𝐾−1,𝑁] ≤ E[𝑍𝐾,𝑁] for all 𝐾 ≤ 𝑁 .

3. E[𝑍𝐾,𝑁+1] ≤ E[𝑍𝐾,𝑁].

4. Suppose that 𝑒 𝑗𝑠𝑎 ≤ 𝑐 for some 𝑐 > 0 for all 𝑠, 𝑎 and 𝑗 . Then there exists an 𝑁 sufficiently large

and 𝐾 < 𝑁 such that E[𝑍𝐾,𝑁] < 0.

Proof Sketch. Part 1 is a result of Jensen’s Inequality, and Parts 2 and 3 can be shown by analyzing

how the average of the 𝐾 smallest ensembles changes when adding an extra ensemble model.

Given the first three parts, we only need to show that E[𝑍1,𝑁] < 0 to show that there exists a 𝐾

for a sufficiently large 𝑁 where the expected bias is negative. See below for full proof. □

We first present the following lemma:

Lemma 4.2 (Chen et al. 2021). Let𝑋1, 𝑋2, . . . be an infinite sequence of 𝑖 .𝑖 .𝑑 . random variables with

cdf 𝐹 (𝑥) and let 𝜏 = inf 𝑥 : 𝐹 (𝑥) > 0. Also let 𝑌𝑁 = min{𝑋1, 𝑋2, . . . , 𝑋𝑁 }. Then 𝑌1, 𝑌2, . . . converges

to 𝜏 almost surely.

Proof. See Appendix A.2 of Chen et al. [2021] □

Theorem 4.1. The following results hold for E[𝑍𝐾,𝑁]:

1. E[𝑍𝑁,𝑁] ≥ 0 for all 𝑁 ≥ 1.

2. E[𝑍𝐾−1,𝑁] ≤ E[𝑍𝐾,𝑁] for all 𝐾 ≤ 𝑁 .

3. E[𝑍𝐾,𝑁+1] ≤ E[𝑍𝐾,𝑁].

4. Suppose that 𝑒 𝑗𝑠𝑎 ≤ 𝑐 for some 𝑐 > 0 for all 𝑠, 𝑎 and 𝑗 . Then there exists an 𝑁 sufficiently large

and 𝐾 < 𝑁 such that E[𝑍𝐾,𝑁] < 0.

46

Proof. 1. By definition,

E[𝑍𝑁,𝑁] = 𝛾 E
[
max
𝑎′

(
1
𝑁

𝑁∑︁
𝑗=1

𝑄 𝑗 (𝑠′, 𝑎′)
)
−max

𝑎′
𝑄𝜋 (𝑠′, 𝑎′)

]
≥ 𝛾

[
max
𝑎′

𝐸

[(
1
𝑁

𝑁∑︁
𝑗=1

𝑄 𝑗 (𝑠′, 𝑎′)
)]
−max

𝑎′
𝑄𝜋 (𝑠′, 𝑎′)

]
= 𝛾

[
max
𝑎′

𝑄𝜋 (𝑠′, 𝑎′) −max
𝑎′

𝑄𝜋 (𝑠′, 𝑎′)
]
= 0

(4.4)

2. Let

𝑄𝐾,𝑁 (𝑠, 𝑎) =
1
𝐾

∑︁
𝑗∈𝐸𝐾,𝑁

𝑄 𝑗 (𝑠, 𝑎). (4.5)

Since for any state 𝑠 , max𝑎𝑄𝐾+1,𝑁 (𝑠, 𝑎) ≥ max𝑎𝑄𝐾,𝑁 (𝑠, 𝑎),

E[𝑍𝐾+1,𝑁] = 𝛾 E
[
max
𝑎′

𝑄𝐾+1,𝑁 (𝑠′, 𝑎′) −max
𝑎′

𝑄𝜋 (𝑠′, 𝑎′)
]

≥ 𝛾 E
[
max
𝑎′

𝑄𝐾,𝑁 (𝑠′, 𝑎′) −max
𝑎′

𝑄𝜋 (𝑠′, 𝑎′)
]

= E[𝑍𝐾,𝑁]

(4.6)

3. Comparing E[𝑍𝐾,𝑁] and E[𝑍𝐾,𝑁+1] is equivalent to comparing 𝑄𝐾,𝑁 (𝑠, 𝑎) and 𝑄𝐾,𝑁+1(𝑠, 𝑎).

Since 𝑒 𝑗 (𝑠, 𝑎) is i.i.d., by extension 𝑄 𝑗 (𝑠, 𝑎) is also i.i.d. for 𝑗 = 1, 2, · · · . Suppose 𝑄 𝑗 (𝑠, 𝑎)

is drawn from some probability distribution 𝐹 , then given 𝑄𝐾,𝑁 (𝑠, 𝑎), 𝑄𝐾,𝑁+1(𝑠, 𝑎) can be

calculated by generating an additional 𝑄𝑖 (𝑠, 𝑎) from 𝐹 . The new sample 𝑄𝑖 (𝑠, 𝑎) affects the

calculation of 𝑄𝐾,𝑁+1(𝑠, 𝑎) under the following two cases:

• If 𝑄𝑖 (𝑠, 𝑎) > max 𝑗∈𝐸𝐾,𝑁 𝑄 𝑗 (𝑠, 𝑎), then the lowest 𝐾 values remain unchanged hence

𝑄𝐾,𝑁 (𝑠, 𝑎) = 𝑄𝐾,𝑁+1(𝑠, 𝑎).

• Else if 𝑄𝑖 (𝑠, 𝑎) ≤ max 𝑗∈𝐸𝐾,𝑁 𝑄 𝑗 (𝑠, 𝑎), then max 𝑗∈𝐸𝐾,𝑁 𝑄 𝑗 (𝑠, 𝑎) would be removed from

and 𝑄𝑖 (𝑠, 𝑎) would be added to the set of lowest 𝐾 values, therefore 𝑄𝐾,𝑁+1(𝑠, 𝑎) ≤

𝑄𝐾,𝑁 (𝑠, 𝑎).

47

Combining the two cases 𝑄𝐾,𝑁+1(𝑠, 𝑎) ≤ 𝑄𝐾,𝑁 (𝑠, 𝑎), therefore E[𝑍𝐾,𝑁+1] ≤ E[𝑍𝐾,𝑁]

4. Since E[𝑍𝑁,𝑁] ≥ 0, E[𝑍𝐾,𝑁] ≤ E[𝑍𝐾+1,𝑁] and E[𝑍𝐾,𝑁+1] ≤ E[𝑍𝐾,𝑁]. It is suffice to show

that E[𝑍1,𝑁] < 0 for some 𝑁 . The rest of the proof largely follows Theorem 1 of Chen et al.

[2021].

Let 𝜏 = inf{𝑥 : 𝐹𝑎 (𝑥) > 0} where 𝐹𝑎 (𝑥) is the cdf of 𝑄 𝑗 (𝑠, 𝑎), 𝑗 = 1, 2, By Lemma

1, 𝑄1,𝑁 (𝑠, 𝑎) = min1≤ 𝑗≤𝑁 𝑄 𝑗 (𝑠, 𝑎) converges almost surely to to 𝜏𝑎 for each 𝑎. Since the

action space is finite, it then follows that max𝑎𝑄1,𝑁 (𝑠, 𝑎) converges almost surely to to

𝜏 = max𝑎 𝜏𝑎 . Due to our assumption that 𝑒 𝑗 (𝑠, 𝑎) ≤ 𝑐 and that 𝑄𝜋 (𝑠, 𝑎) is finite, it then

follows that max𝑎𝑄1,𝑁 (𝑠, 𝑎) is also bounded above. By Part 3 of the theorem, 𝑄1,𝑁 (𝑠, 𝑎) is

monotonoically decreasing w.r.t. 𝑁 . and since max𝑎𝑄1,𝑁 (𝑠, 𝑎) is also bounded above and

converges almost surely to 𝜏 , we have

E[𝑍1,𝑁] = 𝛾
(
E[max

𝑎
min

1≤ 𝑗≤𝑁
𝑄 𝑗 (𝑠, 𝑎)] −max

𝑎
𝑄𝜋 (𝑠, 𝑎)

)
= 𝛾

(
E[max

𝑎
𝑌𝑁𝑎] −max

𝑎
𝑄𝜋 (𝑠, 𝑎)

)
𝑁→∞−→ 𝛾

(
max
𝑎
𝜏𝑎 −max

𝑎
𝑄𝜋 (𝑠, 𝑎)

)
< 0

(4.7)

where the last equality follows from the assumption that the error 𝑒 𝑗 (𝑠, 𝑎) is non-trivial,

and hence 𝜏𝑎 < max𝑎𝑄𝜋 (𝑠, 𝑎) for all 𝑎. Therefore for a sufficiently large 𝑁 , there exists a

1 ≤ 𝐾 ≤ 𝑁 such that E𝐾,𝑁 < 0.

□

Theorem 4.1 shows that we can control the expected post-update biasE[𝑍𝐾,𝑁] through adjust-

ing 𝐾 and 𝑁 . More concretely, we can bring the bias term from above zero (i.e. over estimation)

to under zero (i.e. under estimation) by decreasing 𝐾 and/or increasing 𝑁 .

We note also that similar to Chen et al. [2021], we make very few assumptions on the error

term 𝑒𝑠,𝑎 . This is in contrary to Thrun and Schwartz [1993] and Lan et al. [2020b], both of whom

assume that the error term is uniformly distributed.

48

In REDQ, a random subset of ensemble models of size 𝑀 is chosen and for any fixed 𝑀 , the

bias does not depend on the number of ensemble models 𝑁 [Chen et al. 2021]. We can thus see

from Figure 4.7 in Appendix, with𝑀 = 2 fixed, increasing the size of ensemble 𝑁 with the multi-

head architecture does not necessarily help the training of REDQ. Unlike REDQ, AQE can control

the bias term through both the number of ensemble models used in the average calculation𝐾 and

the total number of ensembles 𝑁 , allowing for more flexibility.

4.4 Experiments

4.4.1 Results on MuJoCo

We provide experimental results in this section for AQE, TQC, REDQ and SAC for the five most

challengingMuJoCo environments, namely, Hopper,Walker2d, HalfCheetah, Ant andHumanoid.

To make a fair comparison, the TQC, REDQ and SAC results are reproduced using the authors’

open source code, and use the same network sizes and hyperparameters reported in their papers.

In particular, TQC employs 5 critic networks with 25 distributional samples for a total of 125

atoms. TQC drops 5 atoms per critic for Hopper, 0 atoms per critic for Half Cheetah, and 2 atoms

per critic for Walker, Ant, and Humanoid. For REDQ, we also use the authors’ suggested values

of 𝑁 = 10 and𝑀 = 2, where𝑀 is the number ensemble members used in the target calculation.

The REDQ paper uses𝐺 = 20 for the update-to-data ratio, and provides results for up to 300K

environment interactions. Using such a high value for 𝐺 is computationally infeasible in our

experimental setting, since we use 3 million environment interactions for Ant and Humanoid in

order to investigate asymptotic performance as well early-stage sample efficiency. In the experi-

ments reported here, we use a value of 𝐺 = 5 for both REDQ and AQE.

For AQE, we use 10 Q-networks each with 2 heads, producing 20 Q-values for each input. The

AQE networks are the same size as those in the REDQ paper. AQE keeps 10 out of 20 values for

49

Hopper, all 20 values for half-Cheetah, and 16 out of 20 values for Walker, Ant and Humanoid.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 4.1: AQE versus TQC, REDQ and SAC. AQE is the only algorithm that beats SAC in all five envi-
ronments during all stages of training, and it typically beats SAC by a wide margin.

Figure 4.1 shows the training curves for AQE, TQC, REDQ, and SAC. For each algorithm, we

plot the average return of 5 independent trials as the solid curve, and plot the standard deviation

across 5 seeds as the shaded region. For each environment, we train each algorithm for exactly the

same number of environment interactions as done in the SAC paper. We use the same evaluation

protocol as in the TQC paper. Specifically, after every epoch, we run ten test episodes with

the current policy, record the undiscounted sum of all the rewards in each episode and take the

average of the sums as the performance. A more detailed discussion on hyperparameters and

implementation details is given in section 4.4.4.

We see from Figure 4.1 that AQE is the only algorithm that beats SAC in all five environments

during all stages of training. Moreover, it typically beats SAC by a very wide margin. Table 4.1

shows that, when averaged across the five environments, AQE achieves SAC asymptotic per-

50

formance approximately 3x faster than SAC and 2x faster than REDQ and TQC. As seen from

Figure 4.1 and Table 4.2, in the early stages of training, AQE matches the excellent performance

of REDQ in all five environments, and both algorithms are much more sample efficient than SAC

and TQC. As seen from Figure 4.1 and Table 4.3, in late-stage training, AQE always matches or

beats all other algorithms, except for Humanoid, where TQC is about 10% better. Table 4.3 shows

that, when averaged across all five environments, AQE’s asymptotic performance is 26%, 22%,

and 6% higher than SAC, REDQ, and TQC, respectively.

Performance SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 3000 506K 184K 136K 77K 6.57 2.39 1.77
Walker2d at 4000 631K 371K 501K 277K 2.28 1.34 1.81
HalfCheetah at 10000 763K 737K 552K 304K 2.51 2.42 1.82
Ant at 5500 1445K 1759K 1749K 632K 2.29 2.78 2.77
Humanoid at 6000 2469K 1043K 1862K 1345K 1.84 0.78 1.38
Average - - - - 3.10 1.94 1.91

Table 4.1: Sample efficiency comparison of SAC, TQC, REDQ and AQE. The numbers show the amount
of data collected when the specified performance level is reached (roughly corresponding to 90% of SAC’s
final performance). The last three columns show howmany times AQE is more sample efficient than SAC,
TQC and REDQ in reaching that performance level.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 100K 1456 1807 2747 3345 2.30 1.85 1.22
Walker2d at 100K 501 1215 1810 2150 4.29 1.77 1.19
HalfCheetah at 100K 3055 4801 6876 6378 2.09 1.33 0.93
Ant at 250K 2107 2344 3279 4153 1.97 1.77 1.27
Humanoid at 250K 1094 3038 4535 3973 3.63 1.31 0.88
Average at early stage - - - - 2.86 1.61 1.10

Table 4.2: Early-stage performance comparison of SAC, TQC, REDQ and AQE. The numbers show the
performance achieved when the specific amount of data is collected. On average, AQE performs 2.9 times
better than SAC, 1.6 times better than TQC and 1.1 times better than REDQ.

Following the TQC paper, in Figure 4.1 we used different drop atoms for TQC for the different

environments. To make the comparison fair, we also used different keep values 𝐾 for AQE for

the different environments. In Figure 4.2, we repeat the experiment on the five MuJoCo envi-

51

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 1M 3282 3612 2954 3541 1.08 0.98 1.20
Walker2d at 1M 4134 5532 4637 5517 1.33 1.00 1.19
HalfCheetah at 1M 10475 10887 11562 13093 1.25 1.20 1.13
Ant at 3M 5903 6186 5785 7345 1.24 1.19 1.27
Humanoid at 3M 6177 9593 6649 8680 1.41 0.91 1.31
Average at late stage - - - - 1.26 1.06 1.22

Table 4.3: Late-stage performance comparison of SAC, TQC, REDQ and AQE. The numbers show the
performance achieved when the specific amount of data is collected. The last three columns show the
ratio of AQE performance compared to SAC, TQC and REDQ performance. On average, during late-stage
training, AQE performs 1.26 times better than SAC, 1.06 times better than TQC and 1.22 times better than
REDQ.

ronments, but now use the same hyperparameter values across environments for TQC (drop two

atoms per network) and AQE (𝐾 = 16). These choices of fixed hyper-parameters appear to give

the best overall performance for the two algorithms. We report detailed early-stage and late-stage

performance comparisons of all algorithms in Table 4.4 and Table 4.5.

We can see from the results that with fixed hyperparamters, the conclusions for AQE remain

largely unchanged, except for Hopper, where REDQ becomes the strongest algorithm. Table

4.4 shows that when averaging performance across environments, AQE still matches the high

sample efficiency of REDQ during the early stages of training. Furthermore, Table 4.5 shows

that, on average, AQE’s asymptotic performance is still 16%, 11% and 9% higher than SAC, REDQ

and TQC, respectively.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 100K 1456 1719 2747 2294 1.58 1.33 0.84
Walker2d at 100K 501 1215 1810 2150 4.29 1.77 1.19
HalfCheetah at 100K 3055 3594 6876 6325 2.10 1.76 0.92
Ant at 250K 2107 2344 3279 4153 1.97 1.77 1.27
Humanoid at 250K 1094 3038 4535 3973 3.63 1.31 0.88
Average at early stage - - - - 2.71 1.59 1.02

Table 4.4: Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC using
the same hyperparameters across the environments. On average, AQE performs 2.71 times better than
SAC, 1.59 times better than TQC and 1.02 times better than REDQ.

52

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 4.2: Performance for AQE and TQC using same hyper-parameters across the five environments.
AQE uses 𝐾 = 16 and TQC uses atoms = 2 per critic.

4.4.2 Results on DeepMind Control Suite

In this section, we provide detailed experimental results for AQE, TQC, REDQ and SAC for the

nine most challenging DeepMind Control Suite (DMC) environments. The TQC and REDQ pa-

pers do not consider DMC benchmark, so we employ the same hyper-parameters for TQC and

REDQ as for the MuJoCo environments. For TQC, we employ 5 critic networks with 25 distribu-

tional samples and drop 2 atoms per critic across environments. For REDQ, we keep using 𝑁 = 10

and 𝑀 = 2. To make the comparison fair, we also use the same hyperparameter values across

environments for AQE. We present the learning curves in Figure 4.3. Similar to MuJoCo bench-

mark, for each algorithm, we plot the average return of 5 independent trials as the solid curve,

and plot the standard deviation across 5 seeds as the shaded region. We run all algorithms to 1

million environment interactions except for the most challenging environment, Humanoid-run,

where we run up to 4.5 million environment interactions. We use the same evaluation protocol

53

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 1M 3282 2024 2954 2404 0.73 1.19 0.81
Walker2d at 1M 4134 5532 4637 5517 1.33 1.00 1.19
HalfCheetah at 1M 10475 9792 11562 11293 1.08 1.15 0.98
Ant at 3M 5903 6186 5785 7345 1.24 1.19 1.27
Humanoid at 3M 6177 9593 6649 8680 1.41 0.91 1.31
Average at late stage - - - - 1.16 1.09 1.11

Table 4.5: Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC using
the same hyperparameters across the environments. On average, AQE performs 16% better than SAC, 9%
better than TQC and 11% times better than REDQ.

as for the MuJoCo environments.

(a) Cheetah run (b) Fish swim (c) Hopper hop

(d) Humanoid stand (e) Humanoid walk (f) Humanoid run

(g) Quadruped walk (h) Quadruped run (i) Walker run

Figure 4.3: AQE versus TQC, REDQ and SAC in DeepMind Control Suite benchmark. AQE and TQC use
same hyperparameters across the nine environments.

54

Figure 4.3 shows that in DMC environments with fixed hyper-parameters, AQE continues to

outperform TQC except for the Humanoid-run environment, where TQC performs better than

AQE in the final stage of training. AQE and REDQ have comparable results in some of the DMC

environments during traning, however, AQE usually outperforms REDQ in the more challeng-

ing environments, such as Hopper-hop, Humanoid-run, and Quadruped-run. We report detailed

early-stage and late-stage performance comparisons of all algorithms in Table 4.6 and Table 4.7.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 100K 205 235 317 339 1.65 1.44 1.07
Fish-swim at 100K 121 149 234 230 1.90 1.54 0.98
Hopper-hop at 100K 2 11 50 64 32.0 5.81 1.28
Quadruped-walk at 100K 116 172 452 341 2.94 1.98 0.75
Quadruped-run at 100K 114 111 294 284 2.49 2.56 0.97
Walker-run at 100K 305 372 468 457 1.50 1.23 0.98
Humanoid-stand at 100K 5 5 37 52 10.4 10.4 1.41
Humanoid-walk at 100K 1 1 57 40 40.0 40.0 0.70
Humanoid-run at 250K 2 18 59 61 30.5 3.39 1.03
Average at early stage - - - - 13.71 7.59 1.02

Table 4.6: Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC using
the same hyperparameters across the DMC environments. On average, AQE performs 13.71 times better
than SAC, 7.59 times better than TQC and 1.02 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 1M 734 829 844 856 1.17 1.03 1.01
Fish-swim at 1M 639 722 753 747 1.17 1.03 0.99
Hopper-hop at 1M 293 256 279 294 1.00 1.15 1.05
Quadruped-walk at 1M 871 948 949 948 1.09 1.00 1.00
Quadruped-run at 1M 676 893 904 928 1.37 1.04 1.03
Walker-run at 1M 660 780 826 808 1.22 1.04 0.98
Humanoid-stand at 1M 323 429 547 546 1.69 1.27 1.00
Humanoid-walk at 1M 325 427 596 576 1.77 1.35 0.97
Humanoid-run at 4.5M 146 324 216 271 1.86 0.84 1.25
Average at late stage - - - - 1.37 1.08 1.03

Table 4.7: Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC using
the same hyperparameters across the DMC environments. On average, AQE performs 1.37 times better
than SAC, 1.08 times better than TQC and 1.03 times better than REDQ.

In summary, in the early stage of training (100K data), AQE performs 13.71x better than SAC,

55

7.59x better than TQC and matches the excellent performance of REDQ in nine environments.

In the late-stage training (1M data), AQE always matches or outperforms all other algorithms,

except for Humanoid-run, where TQC performs the best. On average, AQE performs 37% better

than SAC, 8% better than TQC, and 3% better than REDQ. Moreover, as shown in Table 4.8, us-

ing the same hyper-parameters and averaged across nine DMC environments, AQE achieves the

asymptotic performance of SAC approximately 3x faster than SAC, 1.57x faster than TQC, and

1.05x faster than REDQ.

Performance SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 700 746K 440K 506K 350K 2.13 1.26 1.45
Fish-swim at 600 794K 494K 317K 417K 1.90 1.18 0.76
Hopper-hop at 250 580K 856K 451K 371K 1.56 2.31 1.22
Quadruped-walk at 800 844K 301K 302K 236K 3.58 1.28 1.28
Quadruped-run at 650 942K 521K 267K 248K 3.80 2.10 1.08
Walker-run at 600 516K 201K 156K 174K 2.97 1.16 0.90
Humanoid-stand at 250 626K 429K 279K 342K 1.83 1.25 0.82
Humanoid-walk at 300 820K 523K 279K 300K 2.73 1.74 0.93
Humanoid-run at 120 3940K 1100K 602K 603K 6.53 1.82 1.00
Average - - - - 3.00 1.57 1.05

Table 4.8: Sample efficiency comparison of SAC, TQC, REDQ and AQE. The numbers show the amount
of data collected when the specified performance level is reached (roughly corresponding to 90% of SAC’s
final performance). The last three columns show howmany times AQE is more sample efficient than SAC,
TQC and REDQ in reaching that performance level.

4.4.3 Ablation Study

In this section, we use ablations to provide further insight into AQE. As in the REDQ paper, we

consider not only performance but normalized bias and standard deviation of normalized bias as

defined by the REDQ authors. We focus on the Ant environment, and run the experiments up

to 1M time steps. We first look at how the ensemble size 𝑁 affects AQE. The first row in Figure

4.4 shows AQE with 𝑁 equal to 2, 5, 10 and 15, with two heads for each Q network, and the

percentage of kept Q-values unchanged. As the ensemble size 𝑁 increases, we generally obtain

56

a more stable average bias, a lower std of bias, and stronger performance. When trained with

high UTD value, a relatively small ensemble size, for example, 𝑁 = 5, can greatly reduce bias

accumulation, resulting in much stronger performance. This experimental finding is consistent

with the results in Theorem 4.1 in Section 4.3.2.

(a) Ensemble size: Perf (b) Ensemble size: Bias (c) Ensemble size:Std

(d) Keep value: Perf (e) Keep value: Bias (f) Keep value: Std

(g) Variations: Perf (h) Variations: Bias (i) Variations: Std

Figure 4.4: AQE ablation results for Ant. The top row shows the effect of the ensemble size 𝑁 . The second
row shows the effect of keep number parameter 𝐾 . The third row compares AQE to some variants.

The second row in Figure 4.4 shows the how the keep parameter can affect the algorithm’s

performance: under the same high UTD value, as𝐾 decreases, the average normalized Q bias goes

from over-estimation to under-estimation. Consistent with the theoretical result in Theorem 4.1,

57

by decreasing 𝐾 we lower the average bias. When 𝐾 becomes too small, the Q estimate becomes

too conservative and starts to have negative bias, which makes learning difficult. We see that

𝐾 = 16 has an average bias closest to 0 and also a consistently small std of bias. These results are

similar for the other four environments, as shown in Figure 4.5.

The third row in Figure 4.4 shows results for variants of the target computation methods.

The Median curve uses the median value of all the Q estimates in the ensemble to compute the Q

target. The RemoveMinMax curve drops theminimum andmaximum values of all the Q estimates

in the ensemble to compute the Q target. We see that these two variants give larger positive Q

bias values.

We also considered different combinations of ensemble size 𝑁 and the number of multi-heads

ℎ while keeping the total number of Q-function estimates 𝑁 ·ℎ fixed. We performed these experi-

ments for all five environments, and the results are shown in Figure 4.6. In terms of performance,

we found the two best combinations to be 𝑁 = 20, ℎ = 1 and 𝑁 = 10, ℎ = 2, with the former

being about 50% slower than latter in terms of computation time.

Figure 4.4 only compares the different size of the ensemble 𝑁 and the number of heads ℎ for

Ant. Figure 4.6 shows the results for all five environments. We can see that the combination of

𝑁 = 10, ℎ = 2 and 𝑁 = 20, ℎ = 1 have comparable performance. However, 𝑁 = 10 and ℎ = 2 is

faster in terms of computation time.

We also consider endowing REDQ with the same multi-head ensemble architecture as AQE.

Figure 4.7 examines the performance of REDQ when it is endowed with the same multi-head

architecture as AQE. We see that the performance of REDQ does not substantially improve.

In addition, we include a UTD ratio of 𝐺 = 5 in both SAC and TQC, and compare these

aggressive versions with AQE, also with 𝐺 = 5. Figure 4.8 presents the performance of AQE,

SAC-5 and TQC-5 for all the environments. SAC-5 and TQC-5 uses UTD ratio G = 5 for SAC

and TQC, respectively. We can see that AQE continues to outperform both algorithms except

for Humanoid, where TQC performs somewhat better than AQE in the final stage training. SAC

58

becomes more sample efficient with 𝐺 = 5; however, AQE still beats SAC-5 by a large margin.

(a) Performance, Hopper (b) Average normalized bias (c) Std of normalized bias

(d) Performance, Walker (e) Average normalized bias (f) Std of normalized bias

(g) Performance, HalfCheetah (h) Average normalized bias (i) Std of normalized bias

(j) Performance, Ant (k) Average normalized bias (l) Std of normalized bias

59

(m) Performance, Humanoid (n) Average normalized bias (o) Std of normalized bias

Figure 4.5: Performance, average and std of normalized Q bias for AQE with different values of 𝐾 .

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 4.6: Performance for AQE with different combinations of number of Q networks and number of
heads.

4.4.4 Implementation Details

Table 4.9 gives a list of hyperparameters used in the experiments. Most of AQE’s hyper-parameters

are made the same as in the REDQ paper to ensure fairness and consistency in comparisons, ex-

cept that AQE has 2-head critic networks. As compared with AQE and REDQ, TQC uses a larger

60

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 4.7: Performance of REDQ with N=10 and heads = 2 as compared with REDQ and AQE.

critic network with 3 layers of 512 units per layer. In table 4.10, we report the dropped atoms 𝑑

for TQC and the number of Q values we keep in the ensemble to calculate the target in AQE.

(a) Performance, Hopper (b) Average normalized bias (c) Std of normalized bias

61

(d) Performance, Walker (e) Average normalized bias (f) Std of normalized bias

(g) Performance, HalfCheetah (h) Average normalized bias (i) Std of normalized bias

(j) Performance, Ant (k) Average normalized bias (l) Std of normalized bias

(m) Performance, Humanoid (n) Average normalized bias (o) Std of normalized bias

Figure 4.8: Performance, average and std of normalized Q bias for AQE, SAC-5 and TQC-5. All of the
algorithms in this experiment use UTD = 5.

62

Hyperparameters AQE SAC REDQ TQC
optimizer Adam[Kingma and Ba 2014]
learning rate 3 · 10−4
discount(𝛾) 0.99
target smoothing coefficient(𝜌) 0.005
replay buffer size 1 · 106

number of critics 𝑁 10 2 10 5
number of hidden layers in critic networks 2 2 2 3
size of hidden layers in critic networks 256 256 256 512
number of heads in critic networks ℎ 2 1 1 25
number of hidden layers in policy network 2
size of hidden layers in policy network 256
mini-batch size 256
nonlinearity ReLU
UTD ratio G 5 1 5 1

Table 4.9: Hyperparameter values.

Environment Dropped atoms per critic Kept Q values out of 𝑁 · ℎ values
Hopper 5 10
HalfCheetah 0 20
Walker 2 16
Ant 2 16
Humanoid 2 16

Table 4.10: Environment-dependent hyper-parameters for TQC and AQE.

63

4.5 Conclusion

We develop a simple model-free algorithm can do surprisingly well, providing state-of-art perfor-

mance at all stages of training. There is no need for a model, distributional representation of the

return, or in-target randomization to achieve high sample efficiency and asymptotic performance.

With extensive experiments and ablations, we show that AQE is both performant and robust.

In both OpenAI Gym and DMControl, AQE is able to achieve superior performance in all stages of

training with the same hyperparameters, and it can be further improved with per-task finetuning.

Our ablations show that AQE is robust to small changes in the hyperparameters. Our theoretical

results complement the experimental results, showing that the estimation bias can be controlled

by either varying the ensemble size 𝑁 or the keep parameter 𝐾 .

AQE along with prior works show that a high update-to-data ratio combined with refined

bias control can lead to very significant performance gain. An interesting future work direction

is to investigate whether there are other critical factors (in addition to bias control) that can allow

us to further benefit from a high update-to-data ratio, and achieve even better sample efficiency

with simple model-free methods.

64

5 | Best-Action Imitation Learning

5.1 Introduction

Offline reinforcement learning, also known as batch reinforcement learning, is the problem of

sample-efficient learning from a given dataset without additional interactions with the environ-

ment. Batch reinforcement learning in both the tabular and function approximator settings has

long been studied [Lange et al. 2012; Strehl et al. 2010] and continues to be a highly active area

of research [Swaminathan and Joachims 2015; Jiang and Li 2015; Thomas and Brunskill 2016;

Farajtabar et al. 2018; Irpan et al. 2019; Jaques et al. 2019]. It enables reusing the data collected

by a policy to possibly improve the policy without further interactions with the environment, it

has the potential to leverage existing large datasets to obtain much better sample efficiency. A

batch reinforcement learning algorithm can also be deployed as part of a growing-batch algo-

rithm, where the batch algorithm seeks a high-performing exploitation policy using the data in

an experience replay buffer [Lin 1992], combines this policy with exploration to add fresh data

to the buffer, and then repeats the whole process [Lange et al. 2012; Ernst et al. 2005b].

Standard off-policy deep reinforcement learning algorithmswe have discussed in the previous

chapters fail to learn well in the offline setting even entirely diverge due to extrapolation error.

Many recent offline DRL algorithms address extrapolation errors by policy regularization and

critic penalty, as introduced in section 2.4.1 and section 2.4.2. In addition to these two categories,

Imitation Learning (IL)-based algorithms, such as Monotonic Advantage Re-Weighted Imitation

65

Learning (MARWIL) [Wang et al. 2018] and Advantage Weighted Regression (AWR) [Peng et al.

2019], can also obtain high-performing policies from batch data. IL-based algorithms tackle ex-

trapolation error by avoiding Q-learning to query out-of-distribution actions. More concretely,

MARWIL uses exponentially weighted imitation learning, with the weights being determined by

estimates of the advantage function. AWR is conceptually very similar toMARWIL. It is primarily

designed for online learning, but can also be employed in batch RL.

We propose a novel IL-based algorithm called Best-Action Imitation Learning (BAIL), which

strives for both simplicity and performance in this chapter. BAIL, being an IL-based algorithm,

shares some similarities with other IL-based algorithms MARWIL and AWR [Wang et al. 2018;

Peng et al. 2019]. We summarize BAIL to three steps. In the first step, BAIL learns a state value

function𝑉 by training a neural network to obtain the “upper envelope of the data”. In the second

step, it selects from the dataset the state-action pairs whose Monte Carlo returns are close to the

upper envelope. In the last step, it simply trains a policy network with vanilla imitation learning

using the selected actions. The method thus combines a novel approach for V-learning with IL.

5.2 BAIL

In this section, we present the detailed explanation of BAIL, which not only provides state-of-

the-art performance on simulated robotic locomotion tasks, but is also fast and algorithmically

simple. The motivation behind BAIL is as follows. For a given deterministic MDP, let 𝑉 ∗(𝑠) be

the optimal value function. For a particular state-action pair (𝑠, 𝑎), let 𝐺 (𝑠, 𝑎) denote a return

using some policy when beginning state 𝑠 and choosing action 𝑎. Any action 𝑎∗ that satisfies

𝐺 (𝑠, 𝑎∗) = 𝑉 ∗(𝑠) is an optimal action for state 𝑠 . Thus, ideally we would like to construct an

algorithm which finds actions that satisfy 𝐺 (𝑠, 𝑎∗) = 𝑉 ∗(𝑠) for each state 𝑠 .

In batch reinforcement learning, since we are only given limited data, we can only hope to

obtain an approximation of𝑉 ∗(𝑠). In BAIL, we first try to make the best possible estimate of𝑉 ∗(𝑠)

66

using only the limited information in the batch dataset. Call this estimate 𝑉 (𝑠). We then select

state-action pairs from the dataset whose associated returns𝐺 (𝑠, 𝑎) are close to𝑉 (𝑠). Finally, we

train a policy with IL using the selected state-action pairs. Thus, BAIL combines both V-learning

and IL. To obtain the estimate 𝑉 (𝑠) of the value function, we introduce the “upper envelope of

the data”.

5.2.1 Upper Envelope of the Data

We first define a 𝜆-regularized upper envelope, and then provide an algorithm for finding it. To

the best of our knowledge, the notion of the upper envelope of a dataset is novel.

Recall that we have a batch of dataB = {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖), 𝑖 = 1, ...,𝑚}. Althoughwe do not assume

we know what algorithm was used to generate the batch, we make the natural assumption that

the data in the batchwas generated in an episodic fashion, and that the data in the batch is ordered

accordingly. For each data point 𝑖 ∈ {1, . . . ,𝑚}, we calculate the Monte Carlo return 𝐺𝑖 as the

sum of the discounted rewards from state 𝑠𝑖 to the end of the episode as𝐺𝑖 =
∑𝑇
𝑡=𝑖 𝛾

𝑡−𝑖𝑟𝑡 where𝑇

denotes the time at which the episode ends for the episode that contains the 𝑖th data point.

Having defined the return for each data point in the batch, we now seek an upper-envelope

of the data G := {(𝑠𝑖,𝐺𝑖), 𝑖 = 1, ...,𝑚}. Let 𝑉𝜙 (𝑠) denote a neural networks parameterized by

𝜙 = (𝑤,𝑏) that takes as input a state 𝑠 and outputs a real number, where 𝑤 and 𝑏 denote the

weights and bias, respectively. For a fixed 𝜆 ≥ 0, we say that 𝑉𝜙𝜆 (𝑠) is a 𝜆-regularized upper

envelope for G if 𝜙𝜆 is an optimal solution for the following constrained optimization problem:

min
𝜙

𝑚∑︁
𝑖=1
[𝑉𝜙 (𝑠𝑖) −𝐺𝑖]2 + 𝜆∥𝑤 ∥2 𝑠 .𝑡 . 𝑉𝜙 (𝑠𝑖) ≥ 𝐺𝑖, 𝑖 = 1, 2, . . . ,𝑚 (5.1)

Note that a 𝜆-regularized upper envelope always lies above all the returns. The optimization

problem strives to bring the envelope as close to the data as possible while maintaining regular-

ization to prevent overfitting. The solution 𝜙𝜆 to the constrained optimization problem may not

67

be unique. Nevertheless, we have the following theorem to characterize the limiting behavior of

𝜆-regularized upper envelopes.

Theorem 5.1. Suppose𝑉𝜙 (𝑠) is a multi-layer fully connected neural network with ReLu activation

units, and there is a bias term at the output layer. For each 𝜆 ≥ 0, let𝑉𝜙𝜆 (𝑠) be a 𝜆-regularized upper

envelope for G, that is, 𝜙𝜆 = (𝑤𝜆, 𝑏𝜆) is an optimal solution of the above constrained optimization

problem. Then, we have

(1) lim
𝜆→∞

𝑉𝜙𝜆 (𝑠) = max
1⩽𝑖⩽𝑚

{𝐺𝑖} for all 𝑠 ∈ S.

(2) When 𝜆 = 0, if there are sufficient number of activation units and layers, then 𝑉𝜙0 (𝑠) will

interpolate the data in G, i.e., 𝑉𝜙0 (𝑠𝑖) = 𝐺𝑖 for all 𝑖 = 1, . . . ,𝑚.

Proof. Part (1): For any 𝜆 ≥ 0 and 𝜙 = (𝑤,𝑏) define

𝐽 𝜆 (𝜙) =
𝑚∑︁
𝑖=1
[𝑉𝜙 (𝑠𝑖) −𝐺𝑖]2 + 𝜆∥𝑤 ∥2 (5.2)

Note that for any𝜙 of the form𝜙 = (0, 𝑏), we have𝑉(0,𝑏) (𝑠) = 𝑏 for all 𝑠 and 𝐽 𝜆 (0, 𝑏) =
∑𝑚
𝑖=1(𝑏−𝐺𝑖)2

for all 𝜆 ≥ 0. Also define

𝐺∗ := max
1⩽𝑖⩽𝑚

{𝐺𝑖}

and 𝜙 = (0,𝐺∗). Note that 𝜙 is feasible for the constrained optimization problem. It therefore

follows that for any 𝜆 ≥ 0:

𝐽 𝜆 (𝜙𝜆) ≤ 𝐽 𝜆 (𝜙) =
𝑚∑︁
𝑖=1
(𝐺∗ −𝐺𝑖)2 := 𝐻 ∗ (5.3)

We first show that lim
𝜆→∞

𝑤𝜆 = 0. To proceed with a proof by contradiction, assume that this is

not true. There then exists an 𝜖 > 0 such that for any 𝜆 ≥ 0 there exists some 𝜆′ ⩾ 𝜆 such that

68

∥𝑤𝜆′∥2 > 𝜖 . Choosing 𝜆 = 𝐻 ∗/𝜖 , we have for some 𝜆′:

𝐽 𝜆
′ (𝜙𝜆′) ⩾ 𝜆′∥𝑤𝜆′∥2 > 𝜆 · 𝜖 = 𝐻 ∗ (5.4)

But this contradicts (5.3), establishing lim
𝜆→∞

𝑤𝜆 = 0.

Next, we show lim
𝜆→∞

𝑏𝜆 = 𝐺∗. To prove this, we will show 𝑏 := lim sup
𝜆→∞

𝑏𝜆 = 𝐺∗ and also

𝑏 := lim inf
𝜆→∞

𝑏𝜆 = 𝐺∗. First, consider a subsequence {𝑏𝜆𝑛 } such that lim
𝑛→∞

𝑏𝜆𝑛 = 𝑏. Due to the

continuity of 𝜙 → 𝑉𝜙 (𝑠) and lim
𝜆→∞

𝑤𝜆 = 0, we have

lim
𝑛→∞

𝑉𝜙𝜆𝑛 (𝑠) = 𝑉(0,𝑏) (𝑠) = 𝑏 ∀𝑠 (5.5)

Moreover, since 𝜙𝜆𝑛 has to satisfy the constraints, we also have

𝑉𝜙𝜆𝑛 (𝑠 𝑗) ⩾ 𝐺 𝑗 = 𝐺
∗ (5.6)

where 𝑗 = arg max
𝑖
𝐺𝑖 . Therefore, combining (5.5) and (5.6) yields

lim inf
𝜆→∞

𝑏𝜆 ⩾ 𝐺∗ (5.7)

Similarly, consider another subsequence {𝑏𝜆𝑘 } such that lim
𝑘→∞

𝑏𝜆𝑘 = 𝑏. Again, we have

lim
𝑘→∞

𝑉𝜙𝜆𝑘 (𝑠) = 𝑏 ∀𝑠 (5.8)

We have from (5.3) that

𝐽 𝜆𝑘 (𝜙𝜆𝑘) ≤ 𝐻 ∗ (5.9)

Letting 𝑘 →∞ gives
𝑚∑︁
𝑖=1
(𝑏 −𝐺𝑖)2 ⩽

𝑚∑︁
𝑖=1
(𝐺∗ −𝐺𝑖)2 (5.10)

69

which implies that

𝑏 = lim sup
𝜆→∞

𝑏𝜆 ⩽ 𝐺∗ (5.11)

Therefore, combining (5.7) and (5.11) together, we have finally shown that lim
𝜆→∞

𝑏𝜆 = 𝐺∗. As we

have previously shown lim
𝜆→∞

𝑤𝜆 = 0, it follows that

lim
𝜆→∞

𝑉𝜙𝜆 (𝑠) = max
1⩽𝑖⩽𝑚

{𝐺𝑖}, ∀𝑠 (5.12)

Part (2): For the case of 𝜆 = 0, notice that we have finitely many inputs 𝑠𝑖 to feed into the

neural network. Therefore, this is a typical problem regarding the finite-sample expressivity of

neural networks, and the proof directly follows from the work done in [Zhang et al. 2017]. □

From the theorem 5.1, we see that when 𝜆 is very small, the upper envelope aims to interpolate

the data, and when 𝜆 is large, the upper envelope approaches a constant going through the data

point with the highest return. Just as in classical regression, there is a sweet-spot for 𝜆, the one

that provides the best generalization.

We solve the constrained optimization problem (5.1) with a penalty-function approach. Specif-

ically, to obtain an approximate upper envelope of the data G, we solve an unconstrained opti-

mization problem with a penalty loss function (with 𝜆 fixed):

𝐿𝐾 (𝜙) =
𝑚∑︁
𝑖=1
(𝑉𝜙 (𝑠𝑖) −𝐺𝑖)2{1(𝑉𝜙 (𝑠𝑖)⩾𝐺𝑖) + 𝐾 · 1(𝑉𝜙 (𝑠𝑖)<𝐺𝑖)} + 𝜆∥𝑤 ∥

2 (5.13)

where 𝐾 >> 1 is the penalty coefficient and 1(·) is the indicator function. For a finite 𝐾 value,

the penalty loss function will produce an approximate upper envelope 𝑉 (𝑠𝑖), since 𝑉 (𝑠𝑖) may be

slightly less than𝐺𝑖 for some data points. In practice, we find𝐾 = 1000 works well for all environ-

ments tested. For 𝐾 →∞, we have the following theoretical justification of the approximation:

Theorem 5.2. Let 𝜙𝐾 be a solution that minimizes 𝐿𝐾 (𝜙) with penalty constant𝐾 . Let 𝜙∗ be a limit

point of {𝜙𝐾 }. Then 𝑉𝜙∗ (𝑠) is an exact 𝜆-regularized upper envelope, i.e., 𝜙∗ is an optimal solution

70

for the constrained optimization problem (5.1).

Proof. Let 𝐽 𝜆 (𝜙) = ∑𝑚
𝑖=1 [𝑉𝜙 (𝑠𝑖) −𝐺𝑖]2 + 𝜆∥𝑤 ∥2 be the loss function that defines the 𝜆-regularized

upper envelope. We notice that the penalty loss function 𝐿𝐾 (𝜙) takes the form:

𝐿𝐾 (𝜙) = 𝐽 𝜆 (𝜙) + (𝐾 − 1)
𝑚∑︁
𝑖=1
(max{0,𝐺𝑖 −𝑉𝜙 (𝑠𝑖)})2 (5.14)

The theorem then directly follows from the standard convergence theorem for penalty functions

[Luenberger and Ye 2008]. □

In practice, instead of 𝐿2 regularization, we employ a mechanism similar to early-stopping

regularization. We split the data into a training set and validation set. During training, after

every epoch, we check whether the validation error for the penalty loss function (5.13) decreases,

and stop updating the network parameters when the validation loss increases repeatedly. We

describe the details of the early-stopping scheme in the section 5.3.4.

Figure 5.1 provides some examples of upper envelopes obtained with training sets consisting

of 1 million data points. Each figure shows the upper envelope and the returns for one environ-

ment. To aid visualization, the states are ordered in terms of their upper envelope 𝑉 (𝑠𝑖) values.

(a) Hopper (b)Walker2d (c) HalfCheetah (d) Ant

Figure 5.1: Upper Envelopes trained on batches from different MuJoCo environments.

Upper envelopes visualization for the rest of the environments is shown in supplementary

material in section A.1.

71

5.2.2 Action Selection

For action selection, BAIL employs the upper envelope to select the best (𝑠, 𝑎) pairs from the

batch data B. Let 𝑉 (𝑠) denote the upper envelope obtained from minimizing the penalty loss

function (5.13) for a fixed value of 𝐾 . We consider two approaches for selecting the best actions.

In the first approach, which we call BAIL-ratio, for a fixed 𝑥 > 0, we choose all (𝑠𝑖, 𝑎𝑖) pairs from

the batch data set B such that

𝐺𝑖 > 𝑥𝑉 (𝑠𝑖) (5.15)

We set 𝑥 such that 𝑝% of the data points are selected, where 𝑝 is a hyper-parameter. In this

chapter we use 𝑝 = 25% for all environments and batches. In the second approach, which we call

BAIL-difference, for a fixed 𝑥 > 0, we choose all (𝑠𝑖, 𝑎𝑖) pairs from the batch data set B such that

𝐺𝑖 ≥ 𝑉 (𝑠𝑖) − 𝑥 (5.16)

In our experiments, BAIL-ratio and BAIL-difference have similar performance, with BAIL-ratio

sometimes a little better. We henceforth only consider BAIL-ratio, and simply refer to it as BAIL.

In summary, BAIL employs two neural networks. The first network is used to approximate

the optimal value function based on the data in the batch B. The second network is the policy,

which is trained with imitation learning. We refer to the algorithm just described as BAIL. We

also consider a variation, which we call Progressive BAIL, in which we train the upper envelope

parameters 𝜙 and the policy network parameters 𝜃 in parallel rather than sequentially. Progres-

sive BAIL doesn’t change how we obtain the upper envelope, since the upper envelope does not

depend on the policy parameters in either BAIL or Progressive BAIL. It does, however, affect the

training of the policy parameters. We provide detailed pseudo-code for both BAIL and Progres-

sive BAIL in algorithm 5 and 6, which include the early stopping scheme. Note BAIL has two for

loops in series, whereas Progressive BAIL has only one for loop.

72

Our experimental results in section 5.3.2 show that BAIL and Progressive BAIL both perform

well with about the same performance over all batches. But BAIL might be a better choice since

it’s much faster.

Algorithm 5 BAIL
Initialize upper envelope parameters𝜙, 𝜙′, policy parameters𝜃 . Obtain batch dataB. Randomly
split data into training set B𝑡 and validation set B𝑣 for the upper envelope.
Compute return 𝐺𝑖 for each data point 𝑖 in B.
Obtain upper envelope by minimizing the loss 𝐿𝐾 (𝜙):
for 𝑗 = 1, . . . , 𝐽 do
Sample a mini-batch 𝐵 from B.
Update 𝜙 using the gradient: ∇𝜙

∑
𝑖∈𝐵 (𝑉𝜙 (𝑠𝑖) −𝐺𝑖)2 {1(𝑉𝜙 (𝑠𝑖)>𝐺𝑖) + 𝐾1(𝑉𝜙 (𝑠𝑖)<𝐺𝑖)} + 𝜆∥𝜙 ∥2

if time to do validation for the upper envelope then
Compute validation loss on 𝐵𝑣
Update 𝜙 and 𝜙′ according to the validation loss

end if
end for
Select data point 𝑖 if 𝐺𝑖 > 𝑥𝑉𝜙 (𝑠𝑖), where 𝑥 is such that 𝑝% of data in B are selected. LetU be
the set of selected data points.
for 𝑙 = 1, . . . , 𝐿 do
Sample a mini-batch𝑈 of data fromU.
Update 𝜃 using the gradient: ∇𝜃

∑
𝑖∈𝑈 (𝜋𝜃 (𝑠𝑖) − 𝑎𝑖)2

end for

Algorithm 6 Progressive BAIL
Initialize upper envelope parameters 𝜙, 𝜙′, policy parameters 𝜃 .
Obtain batch data B. Randomly split data into training set B𝑡 and validation set B𝑣 for the
upper envelope.
Compute return 𝐺𝑖 for each data point 𝑖 in B.
for 𝑙 = 1, . . . , 𝐿 do
Sample a mini-batch of data 𝐵 from the batch B𝑡 .
Update 𝜙 using the gradient: ∇𝜙

∑
𝑖∈𝐵𝑡 (𝑉𝜙 (𝑠𝑖) −𝐺𝑖)2 {1(𝑉𝜙 (𝑠𝑖)>𝐺𝑖) + 𝐾1(𝑉𝜙 (𝑠𝑖)<𝐺𝑖)} + 𝜆∥𝜙 ∥2

if time to validate then
Compute validation loss on 𝐵𝑣
Update 𝜙 and 𝜙′ according to validation loss

end if
Select data point 𝑖 if 𝐺𝑖 > 𝑥𝑉𝜙 (𝑠𝑖), where 𝑥 is such that 𝑝% of data in 𝐵 are selected. Let 𝑈
be the set of selected data points.
Update 𝜃 using the gradient: ∇𝜃

∑
𝑖∈𝑈 (𝜋𝜃 (𝑠𝑖) − 𝑎𝑖)2

end for

73

5.2.3 Augmented and Oracle Returns

Both BCQ and BEAR papers use the MuJoCo robotic locomotive benchmarks to gauge the per-

formance of their algorithms [Fujimoto et al. 2018a] [Kumar et al. 2019a]. We will compare the

performance of BAIL with BCQ, BEAR, MARWIL and BC using the same MuJoCo environments.

The MuJoCo environments are naturally infinite-horizon non-episodic continuing-task envi-

ronments [Sutton and Barto 2018]. During training, however, researchers typically create arti-

ficial episodes of maximum length 1000 time steps; after 1000 time steps, a random initial state

is chosen and a new episode begins. This means that to apply BAIL, we need to approximate

infinite-horizon discounted returns using the finite-length episodes in the data set. For data points

appearing near the beginning of the episode, the finite-horizon return will closely approximate

the (idealized) infinite-horizon return due to discounting; but for a data point near the end of

an episode, the finite horizon return can be inaccurate and should be augmented. To calculate

the augmentation for the 𝑖th data point, we use the following heuristic. Let E ⊂ B denote the

episode of data that contains the 𝑖th data point, and let 𝑠′ be the last state in episode E. We then

set 𝑠 𝑗 to be the state in the first max{1000 − 𝑖, 200} data points of the episode E that is closest (in

Euclidean norm) to the “terminal state” 𝑠′. We then set

𝐺𝑖 =

𝑇∑︁
𝑡=𝑖

𝛾 𝑡−𝑖𝑟𝑡 + 𝛾𝑇−𝑖+1
𝑇∑︁
𝑡= 𝑗

𝛾 𝑡− 𝑗𝑟𝑡 (5.17)

Note that𝐺𝑖 in (5.17) will have at least 800 terms, so there is no need for additional terms due to the

discounting. Importantly, the rewards in the two sums in (5.17) are generated by the same policy.

The first sum uses the actual rewards accrued until to the end of the episode; the second sum

approximates what the actual rewards would have been if the episode was allowed to continue

past 1000 time steps.

To validate this heuristic, we did an ablation study in section 5.3.3 comparing the performance

74

of BAIL with the augmentation heuristic and with oracle for Hopper-v2 for seven diverse batches.

The results are shown in figure 5.3.

5.3 Experiments

In this section, we provide a comprehensive comparison of five algorithms: BAIL, BCQ, BEAR,

MARWIL and BC using 62 diverse batches (many of which are similar to those used in the BCQ

and BEAR papers). The batch description is provided in section 5.3.1. We use authors’ code and

recommended hyper-parameters when available, and we strive to make the comparisons as fair

as possible.

5.3.1 Data Batch Description

For generating datasets, we use the same procedures proposed in the BCQ and BEAR papers,

and compare the algorithms using those data sets. The BCQ [Fujimoto et al. 2018a] and BEAR

[Kumar et al. 2019a] papers generate data batches for five MuJoCo environments: HalfCheetah-

v2, Hopper-v2, Walker2d-v2, Ant-v2, and Humanoid-v2. Both algorithm use batch datasets of one

million samples, but generate the batches using different approaches. One important observation

wemake, which was not brought to light in previous offline DRL papers, is that batches generated

with different seeds but with otherwise exactly the same algorithm can give drastically different

results for offline DRL. Because of this, for every experimental scenario considered in this chapter,

we generate two batches, each generated with a different random seed.

More specifically, We generate batcheswhile trainingDDPG [Lillicrap et al. 2019] from scratch

with exploration noise of 𝜎 = 0.5 for HalfCheetah-v2, Hopper-v2, and Walker2d-v2, as exactly

done in the BCQ paper. We also generate batches with 𝜎 = 0.1 to study the robustness of tested

algorithms with lower noise level. We also generate training batches for all five environments

by training policies with adaptive Soft Actor Critic (SAC) [Haarnoja et al. 2018b]. This gives six

75

DDPG and five SAC scenarios. For each one, we generate two batches with different random

seeds, giving a total of 22 “training batches” composed of non-expert data. These batches are

the most important ones to measure the performance of a batch method, since they contain sub-

optimal data obtained from the training process well before optimal performance is achieved (and

in many cases using sub-optimal algorithms for training), which is difficult for vanilla behavioral

cloning to use.

In addition to training batches, we also study execution batches. We do a similar procedure

as in the BEAR paper: first train SAC [Haarnoja et al. 2018b] for a certain number of environ-

ment interactions, then fixes the trained policy and generates one million “execution data points”.

The BEAR paper generates batches with “mediocre data” where training is up to a mediocre

performance, and with “optimal data” where training is up to near optimal performance. When

generating the batches with the trained policy, the BEAR paper continues to include exploration

noise, using the trained 𝜎 (𝑠) values in the policy network. Since after training, a test policy is

typically deployed without exploration noise, we also consider noise-free data generation. The

BEAR paper considers the same five MuJoCo environments considered here. This gives rise to

20 scenarios. For each one we generate two batches with random seeds, giving a total of 40

“execution batches".

5.3.2 Main Results

Wenow carefully compare the five algorithms. For a fair comparison, we keep all hyper-parameters

fixed for all experiments, instead of fine-tuning for each one. For BCQ we use the authors’ code

with their default hyper-parameters. For BEAR we use the authors’ code with their version “0”

with “use ensemble variance” set to False and employ the recommended hyper-parameters. Be-

cause theMARWIL code is not publicly available, wewrite our own code, and use neural networks

the same size as in BAIL. In the section 5.3.4, we provide more details on implementations, and

explain how the comparisons are carefully and fairly done.

76

For each algorithm, we train for 100 epochs (with each epoch consisting of one million data

points). For each algorithm, after every 0.5 epochs, we run ten test episodes with the current

policy to evaluate performance. We then repeat the procedure for five seeds to obtain the mean

and confidence intervals shown in the learning curves. Due to page length limitations, we cannot

present the learning curves for all 62 datasets. Here we focus on the 6 DDPG training data batches

with 𝜎 = 0.5 (corresponding to the datasets in the BCQ paper), and present the learning curves

for the other batches in the supplementary material A.1. However, we present summary results

for all datasets in this section.

Figure 5.2 shows the learning curves for the 6 DDPG data sets over 100 epochs. As is com-

monly done, we present smoothed average performance and standard deviations. Note that for

BAIL, all curves start at 50 epochs. This provides a fair comparison, since for BAIL we first use

50 epochs of data to train the upper envelopes and then use imitation learning to train the policy

network. The horizontal grey dashed line indicates the average return of episodes contained in

the batch.

(a) Hopper, batch 1 (b) Hopper, batch 2 (c)Walker2d, batch 1

(d) Walker2d, batch 2 (e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2

Figure 5.2: Learning curves using DDPG training batches with 𝜎 = 0.5.

77

Table 5.1: Performance of five Batch DRL algorithms for 22 different training datasets.

Environment BAIL BCQ BEAR BC MARWIL

𝜎 = 0.1 Hopper B1 2173± 291 1219 ± 114 505 ± 285 626 ± 112 827 ± 220
𝜎 = 0.1 Hopper B2 2078± 180 1178 ± 87 985 ± 3 579 ± 141 620 ± 336
𝜎 = 0.1 Walker B1 1125± 113 576 ± 309 610 ± 212 514 ± 17 436 ± 24
𝜎 = 0.1 Walker B2 3141± 300 2338 ± 388 2707 ± 425 1741 ± 239 1810 ± 200
𝜎 = 0.1 HC B1 5746± 29 5883± 43 0 ± 0 5546± 29 5573± 35
𝜎 = 0.1 HC B2 7212± 43 7562± 31 0 ± 0 6765 ± 108 6828± 111
𝜎 = 0.5 Hopper B1 2054± 158 1145 ± 300 203 ± 42 919 ± 52 946 ± 103
𝜎 = 0.5 Hopper B2 2623± 282 1823 ± 555 241 ± 239 694 ± 64 818 ± 112
𝜎 = 0.5 Walker B1 2522± 51 1552 ± 455 1248 ± 181 2178 ± 178 2111 ± 52
𝜎 = 0.5 Walker B2 3115± 133 2785 ± 123 2302 ± 630 2483 ± 94 2364 ± 228
𝜎 = 0.5 HC B1 1055 ± 9 1222± 38 924 ± 579 570 ± 35 512 ± 43
𝜎 = 0.5 HC B2 7173± 120 5807 ± 249 −114 ± 140 6545± 171 6668± 93
SAC Hopper B1 3296± 105 2681 ± 438 1000 ± 110 2853 ± 318 2897 ± 227
SAC Hopper B2 1831 ± 915 2134± 917 1139 ± 317 2240± 367 2063± 168
SAC Walker B1 2455± 211 2408± 84 −3 ± 5 1674 ± 277 1484 ± 140
SAC Walker B2 4767± 130 3794 ± 398 325 ± 75 2599 ± 145 2651 ± 268
SAC HC B1 10143± 77 8607 ± 473 7392 ± 257 8874 ± 221 9105 ± 90
SAC HC B2 10772± 59 10106± 134 7217 ± 273 9523 ± 164 9488 ± 136
SAC Ant B1 4284± 64 4042± 113 3452 ± 128 3986± 112 4033± 130
SAC Ant B2 4946± 148 4640± 76 3712 ± 236 4618± 111 4589± 130
SAC Humanoid B1 3852± 430 1411 ± 250 0 ± 0 543 ± 378 589 ± 121
SAC Humanoid B2 3565± 153 1221 ± 207 0 ± 0 1216 ± 826 1033 ± 257

Table 5.1 presents our main results, comparing the five algorithms for the 22 training batches.

In batch DRL, since there is no interaction with the environment, one cannot use the policy

parameters that provided the highest test returns to assess performance. So in Table 5.1 , for

each algorithm, we assume that the practitioner would use the policy obtained after 100 epochs

of training. Since there can be significant variation in performance from one policy to the next

during training, we calculate the average performance across epochs 95.5 to 100 (i.e., averaged

over the last ten tested policies). We do this for each of the five training seeds. We then report

the average and standard deviation of these values across the five seeds. For each batch, all

the algorithms that are within 10% of the highest average value are considered winners and are

indicated in bold.

78

From Table 5.1 we observe that for the training batches, BAIL is the clear winner. BAIL

wins for 20 of the 22 batches, and BCQ is in second place winning for only 8 of the 22 batches.

These results show that BAIL is very robust for a wide variety of training datasets, including

non-expert datasets, datasets generated as described in the BCQ paper, and for datasets with

the more challenging Ant and Humanoid environments. To evaluate the average performance

improvement of BAIL over BCQ, for each batch we take the ratio of the BAIL performance to

the BCQ performance and then average over the 22 bathes. We also do the same for BC. With

this metric, BAIL performs 42% better than BCQ, and 101% better than BC. BAIL is also more

stable across seeds: The normalized standard deviations (standard deviation divided by average

performance) of BAIL, averaged over the 22 batches, is about half that of BCQ. Because BAIL

performs so well for training batches, BAIL can potentially be successfully used for growing

batch DRL.

We also note that BEAR occasionally performs very poorly. This is likely because we are

using one set of recommended BEAR hyper-parameters for all environments, whereas the BEAR

paper reports results using different hyper-parameters for different environments. We also note

that for the MuJoCo environments, MARWIL performs similarly to BC.

For the execution batches, the results are given in table 5.2. When BAIL uses the same hyper-

parameters as for training batches (though fine-tuning will yield better results, we strive for a

fair comparison), BC, MARWIL, BAIL, and BCQ have similar overall performance, with BC being

the most robust and the overall winner. Comparing BAIL and BCQ, BAIL has slightly stronger

average performance score, and BCQhas a fewmorewins. It is no surprise that BC is the strongest

here, since the execution batches are generated with a single fixed policy and are easy for BC to

learn well. These results imply that the focus of future research on batch DRL should be on

training batches, or other diverse datasets, since vanilla BC already works very well for fixed-

policy datasets.

Intuitively, BAIL can perform better than BCQ and BEAR because these policy-constraint

79

methods rely on carefully tuned constraints to prevent the use of out-of-distribution actions.

A loose constraint can cause extrapolation error to accumulate quickly, and a tight constraint

will prevent the policy from choosing some of the good actions. BAIL, however, identifies and

imitates the highest-performing actions in the dataset, thus avoiding the need to carefully tune

such a constraint.

In our experiments we run all algorithms each for 100 epochs for five seeds for each batch.

For training with one seed, it takes 1 ∼ 2 hours for BAIL (including the time for upper envelope

training and imitation learning), 12 ∼ 24 hours for Progressive BAIL, 36 ∼ 72 hours for BCQ and

60 ∼ 100 hours for BEAR on a CPU node. Thus, roughly speaking, training BAIL is roughly 35

times faster than BCQ and 50 times faster than BEAR.

5.3.3 Ablation Study

To validate our heuristic for the augmented returns in section 5.2.3, we compute oracle returns by

letting episodes run up to 2000 time steps. In this manner, every return is calculated with at least

1000 actual rewards, and is therefore essentially exact due to discounting. Figure 5.3 compares the

performance of BAIL using our augmentation heuristic and BAIL using the oracle for Hopper-v2

for seven diverse batches.

The results show that our augmentation heuristic typically achieves oracle-level performance.

We conclude that our augmentation heuristic is a satisfactory method for addressing continual

environments such as MuJoCo, which is also confirmed with its good performance shown in

Table 5.2 .

BAIL uses an upper envelope to select the “best” data points for training a policy network

with imitation learning. It is natural to ask how BAIL would perform when using the more naive

approach of selecting the best actions by simply selecting the same percentage of data points

with the highest 𝐺𝑖 values, and also by constructing the value function with regression rather

than with an upper envelope. These schemes do not do as well as BAIL by a wide margin.

80

(a) DDPG training batch with
𝜎 = 0.5

(b) DDPG training batch with
𝜎 = 0.1

(c) SAC mediocre execution
batch with 𝜎 = 0

(d) SAC mediocre execution
batch with 𝜎 = 𝜎 (𝑠)

(e) SAC optimal execution
batch with 𝜎 = 0

(f) SAC optimal execution
batch with 𝜎 = 𝜎 (𝑠)

(g) SAC training batch

Figure 5.3: Augmented Returns versus Oracle Performance. All learning curves are for the Hopper-v2
environment. The x-axis ranges from 50 to 100 epochs since this comparison involves only BAIL. The
results show that the augmentation heuristic typically achieves oracle-level performance.

Figure 5.4 compares BAIL with the algorithm that simply chooses the state-action pairs with

the highest returns (without using an upper envelope). The learning curves show that the upper

envelope is a critical component of BAIL.

Figure 5.5 compares BAIL with the more naive scheme of using standard regression in place

of an upper envelope. The learning curves show that the upper envelope is a critical component

of BAIL.

81

(a) Hopper 𝜎 = 0.5 1st (b) Hopper 𝜎 = 0.5 2nd (c) Hopper 𝜎 = 0.1 1st (d) Hopper 𝜎 = 0.1 2nd

(e)Walker2d 𝜎 = 0.5 1st (f)Walker2d 𝜎 = 0.5 2nd (g) Walker2d 𝜎 = 0.1 1st (h)Walker2d 𝜎 = 0.1 2nd

(i) HalfCheetah 𝜎 = 0.5
1st

(j) HalfCheetah 𝜎 = 0.5
2nd

(k) HalfCheetah 𝜎 = 0.1
1st

(l) HalfCheetah 𝜎 = 0.1
2nd

Figure 5.4: Ablation study for data selection. The figure compares BAIL with the algorithm that simply
chooses the state-action pairs with the highest returns (without using an upper envelope). The learning
curves show that the upper envelope is critical components of BAIL.

5.3.4 Implementation Details

BAIL includes a regularization scheme to prevent over-fitting when generating the upper en-

velope. We refer to it as an “early stopping scheme” because the key idea is to return to the

parameter values which gave the lowest validation error (see Section 7.8 of Goodfellow et al.

[2016a]). In our implementation, we initialize two upper envelope networks with parameters 𝜙

and 𝜙′, where 𝜙 is trained using the penalty loss, and 𝜙′ records the parameters with the lowest

validation error encountered so far. The procedure is done as follows: After every epoch, we

calculate the validation loss 𝐿𝜙 as the penalty loss over all the data in the validation set B𝑣 . We

compare this validation loss 𝐿𝜙 to 𝐿𝜙 ′ , which is the minimum validation loss encountered so far

82

(a) Training SAC,
Hopper

(b) Training SAC,
Walker2d

(c) Training SAC,
Ant

(d) Training SAC,
Humanoid

(e) Training DDPG
𝜎 = 0.5, Hopper

(f) Training DDPG
𝜎 = 0.5, Walker2d

(g) Training DDPG
𝜎 = 0.1, Hopper

(h) Training DDPG
𝜎 = 0.1, Walker2d

Figure 5.5: Ablation study using standard regression instead of an upper envelope. The figure compares
BAIL with the more naive scheme of using standard regression in place of an upper envelope. The learning
curves show that the upper envelope is a critical component of BAIL.

(throughout the history of training). If 𝐿𝜙 < 𝐿𝜙 ′ , we set 𝜙′← 𝜙 . If 𝐿𝜙 > 𝐿𝜙 ′ , we count the number

of consecutive times this occurs. The training parameters 𝜙 are returned to 𝜙′ once there are 𝐶

consecutive times with 𝐿𝜙 > 𝐿𝜙 ′ . We use 𝐶 = 4 in practice.

BAIL and Progressive BAIL use the same hyper-parameters except for the selection percent-

age 𝑝 . Details are provided in Table 5.3. A common feature among all the batch DRL algorithms

is that they have a policy neural network. BCQ and BEAR both have an architecture consisting

of 400× 300 hidden units with ReLU activation units. We use exactly the same network architec-

ture for the policy network for BAIL and Progressive BAIL. For the IL-based algorithms, we also

use this same policy network architecture. All algorithms considered in our experiments use the

same learning rate of 1 · 10−3 for the policy network, which is also the default in BCQ and BEAR.

When designing RL algorithms, it is desirable that they generalize over new, unforeseen envi-

ronments and tasks. Therefore, consistent with common practice for online reinforcement learn-

ing [Schulman et al. 2015, 2017; Vuong et al. 2018; Lillicrap et al. 2019; Fujimoto et al. 2018b;

Wang et al. 2020], when evaluating any given algorithm, we use the same hyper-parameters for

83

all environments and all batches. The BCQ paper [Fujimoto et al. 2018a] also uses the same

hyper-parameters for all experiments.

Alternatively, one could optimize the hyper-parameters for each environment separately. Not

only is this not standard practice, but to make a fair comparison across all algorithms, this would

require, for each of the five algorithms, performing a separate hyper-parameter search for each

of the five environments.

In our experiments, we went the extra mile to make a fair comparison to other batch RL

algorithms. We are therefore confident about properly using the authors’ BCQ and BEAR code,

and fairly reproducing MARWIL for the MuJoCo benchmark.

For BCQ, we use the authors’ code and recommended hyper-parameters. In the BCQ paper,

the “final buffer” batches are where the BCQ algorithm shines the most; therefore, included in

our training batches are batches for which we used exactly the same “final buffer” experimental

set-up. In our terminology, this corresponds to DDPG training batches with sigma = 0.5. Looking

at the BCQ final-buffer results in Table 5.1, we see that they are consistent with the results in

Figure 2a in the BCQ paper.

To ensure that we are running the BEAR code properly, we obtained a dataset directly from

the BEAR authors and ran the BEAR algorithm with a specific set of hyper-parameters among

their recommendations. Specifically, we used their version "0” with “use ensemble variance” set

to False and employ Laplacian kernel. The dataset provided by the authors was for Hopper-v2

with mediocre performance. The performance we obtained is shown in Figure 5.6, which fully

matches the Hopper-v2 case in Figure 3 in [Kumar et al. 2019a]. Also, we observed that for some

of our batches, we obtained very similar results to what is shown in the BEAR paper.

The authors of MARWIL do not provide an open-source implementation of their algorithm.

Furthermore, experiments in [Wang et al. 2018] are carried out on environments like HFO and

TORCS which are considerably different from MuJoCo. We replicate all implementation details

discussed in MARWIL, except that we use the same network architectures used for BCQ, BEAR

84

Figure 5.6: Our results when we apply BEAR to the authors’ dataset. This figure matches Figure 3 in
Kumar et al. [2019a].

and BAIL to ensure a fair comparison. We use the same augmentation heuristic for the returns

as we use in BAIL. We use the recommended hyper-parameters given by the MARWIL authors.

To evaluate the performance of the current policy during training, we run ten episodes of test

runs with the current policy and record the average of the returns. This is done with the same

frequency for each algorithm considered in our experiments.

For a test episode, we sometimes encounter an error signal from the MuJoCo environment,

and thus are not able to continue the episode. In these cases, we assign a zero value to the return

for the terminated episode. In Tables 5.1 and 5.2, there are a few entries with zero mean and zero

standard deviation. These zeros are due to repeatedly encountering this error signal for the test

runs using different seeds, with each test run getting a zero value for the return. This happens

for BEAR in several batches, which is likely because we are not using different hyper-parameters

for each environment.

All experiments are run on Intel Xeon Gold 6248 CPU nodes, each job runs on a single CPU

with base frequency of 2.50GHZ.

85

5.4 Conclusion

In conclusion, our experimental results show that (𝑖) for the training data batches, BAIL is the

clear winner, winning for 20 of 22 batches with a performance improvement of 42% over BCQ

and 101% over BC; (𝑖𝑖) for the execution batches, vanilla BC does well with not much room for

improvement, although BAIL and BCQ are almost as good and occasionally beat BC by a small

amount; (𝑖𝑖𝑖) BAIL is computationally much faster than the Q-learning-based algorithms BCQ

and BEAR.

The results in this chapter show that it is possible to achieve state-of-the art performance with

a simple, computationally fast IL-based algorithm. BAIL is based on the notion of the “upper

envelope of the data”, which appears to be novel and may find applications in other machine-

learning domains. One potential future research direction is to combine batch methods such as

BAIL with exploration techniques to build robust online algorithms for better sample efficiency.

Another potential direction is to develop methods that are more robust across different batches

and hyperparameters and study what makes them robust. Such robustness can greatly improve

computation time, and might be safer to work with when deployed to real-world systems.

86

Table 5.2: Performance of Five Batch DRL Algorithms for 40 different execution datasets.

Environment Bail BCQ BEAR BC MARWIL

M 𝜎 = 0 Hopper B1 1026± 0 901 ± 132 4 ± 1 1026± 0 1026± 0
M 𝜎 = 0 Hopper B2 696 ± 233 805 ± 312 19 ± 23 977± 0 977± 1
M 𝜎 = 0 Walker B1 437 ± 20 525± 45 380 ± 194 444 ± 16 439 ± 17
M 𝜎 = 0 Walker B2 500± 12 554± 29 546± 28 489 ± 15 504± 4
M 𝜎 = 0 HC B1 4057± 69 4255± 150 4470± 96 4032± 72 4073± 55
M 𝜎 = 0 HC B2 4013± 12 4438± 25 4395± 31 3998± 4 3999± 6
M 𝜎 = 0 Ant B1 753 ± 9 996± 52 734 ± 43 730 ± 7 732 ± 11
M 𝜎 = 0 Ant B2 738 ± 4 994± 12 988± 30 708 ± 11 725 ± 7
M 𝜎 = 0 Humanoid B1 4313± 139 3108 ± 510 0 ± 0 4507± 481 4521± 156
M 𝜎 = 0 Humanoid B2 4053± 252 2906 ± 226 0 ± 0 3994± 530 3940± 165
M 𝜎 = 𝜎 (𝑠) Hopper B1 375 ± 52 881 ± 155 0 ± 0 1026± 0 1026± 0
M 𝜎 = 𝜎 (𝑠) Hopper B2 254 ± 102 961± 25 3 ± 7 977± 0 977± 0
M 𝜎 = 𝜎 (𝑠) Walker B1 384 ± 21 399 ± 21 507± 7 369 ± 10 359 ± 15
M 𝜎 = 𝜎 (𝑠) Walker B2 512± 24 517± 19 515± 30 527± 12 532± 5
M 𝜎 = 𝜎 (𝑠) HC B1 4744 ± 19 5500± 12 5443± 21 4415 ± 25 4439 ± 59
M 𝜎 = 𝜎 (𝑠) HC B2 4123 ± 19 4712± 40 4824± 51 3928 ± 18 3936 ± 18
M 𝜎 = 𝜎 (𝑠) Ant B1 790 ± 9 1068± 12 1161± 32 775 ± 7 774 ± 15
M 𝜎 = 𝜎 (𝑠) Ant B2 781 ± 6 1089± 29 1150± 18 768 ± 5 761 ± 6
M 𝜎 = 𝜎 (𝑠) Humanoid B1 1375 ± 387 489 ± 87 0 ± 0 1947± 901 1963± 264
M 𝜎 = 𝜎 (𝑠) Humanoid B2 1309 ± 372 816 ± 177 0 ± 0 3021± 1042 2976± 241
O 𝜎 = 0 Hopper B1 2602± 5 1976 ± 383 1904 ± 321 2594± 8 2603± 4
O 𝜎 = 0 Hopper B2 3046± 34 3014± 47 2202 ± 410 3071± 10 3050± 22
O 𝜎 = 0 Walker B1 2735± 26 2409 ± 235 877 ± 1077 2646± 133 2691± 121
O 𝜎 = 0 Walker B2 3019± 6 3019± 45 0 ± 0 3014± 5 3013± 5
O 𝜎 = 0 HC B1 11265± 243 10405 ± 275 1755 ± 1142 11674± 90 11661± 49
O 𝜎 = 0 HC B2 11360± 265 10792± 209 1139 ± 960 11797± 29 11691± 96
O 𝜎 = 0 Ant B1 4901± 65 4646± 179 1756 ± 2151 4881± 74 4933± 74
O 𝜎 = 0 Ant B2 4975± 108 4734± 100 0 ± 0 5041± 29 4974± 52
O 𝜎 = 0 Humanoid B1 4872 ± 895 4884 ± 641 0 ± 0 5462± 124 5503± 1
O 𝜎 = 0 Humanoid B2 5320± 125 5362± 54 0 ± 0 5413± 64 5413± 29
O 𝜎 = 𝜎 (𝑠) Hopper B1 2359 ± 153 2650± 99 1962 ± 300 1952 ± 85 2012 ± 101
O 𝜎 = 𝜎 (𝑠) Hopper B2 2035± 217 1678 ± 113 1461 ± 75 2063± 95 2092± 100
O 𝜎 = 𝜎 (𝑠) Walker B1 2834 ± 120 3386± 196 3278± 128 2024 ± 131 1987 ± 114
O 𝜎 = 𝜎 (𝑠) Walker B2 3200± 16 3375± 12 2100 ± 1715 3091± 15 3090± 10
O 𝜎 = 𝜎 (𝑠) HC B1 10258 ± 1255 10928± 215 694 ± 651 11659± 75 11663± 44
O 𝜎 = 𝜎 (𝑠) HC B2 10882± 634 11755± 97 1470 ± 1211 11871± 57 11819± 78
O 𝜎 = 𝜎 (𝑠) Ant B1 4981± 91 4878± 117 3462 ± 1740 5000± 79 4992± 86
O 𝜎 = 𝜎 (𝑠) Ant B2 5067± 83 5054± 157 0 ± 0 5079± 55 5124± 47
O 𝜎 = 𝜎 (𝑠) Humanoid B1 2129 ± 381 1715 ± 637 0 ± 0 3514± 1195 3180± 503
O 𝜎 = 𝜎 (𝑠) Humanoid B2 4328 ± 569 1970 ± 512 0 ± 0 4875± 885 4772± 272

87

Table 5.3: BAIL hyper-parameters

Parameter Value

discount rate 𝛾 0.99
horizon 𝑇 1000
training set size 0.8 · |B|
validation set size 0.2 · |B|
optimizer Adam [Kingma and Ba 2014]
percentage 𝑝% 30% for BAIL

25% for Progressive BAIL
upper envelope network
structure 128 × 128 hidden units, ReLU activation
learning rate 3 · 10−3

penalty loss coefficient 𝐾 1000
policy network
structure 400 × 300 hidden units, ReLU activation
learning rate 1 · 10−3

88

6 | Conclusion and Future Directions

6.1 Conclusions

In this thesis, we have discussed various methods for improving sample efficiency in off-policy

and offline deep reinforcement learning. Advances in theories and techniques, such as clipped

double-Q learning, target policy smoothing, maximum entropy and non-uniform sampling [Fuji-

moto et al. 2018b; Haarnoja et al. 2018a; Hou et al. 2017], have allowed more effective training for

off-policy algorithms. The introduction of extrapolation error in offline RL along with different

regularizers to address the issue have shown some success in a wide-range of offline datasets

[Fujimoto et al. 2018a; Fu et al. 2020; Kumar et al. 2020]. Driven by these research advances, we

develop our own off-policy and offline algorithms aiming to further improve sample efficiency

and asymptotic performance in the simulated robotic locomotion environments.

In Chapters 3 and 4, we focus on improving sample efficiency in off-policy DRL. Specifically,

in Chapter 3, we first identify squashing exploration problem and show that the primary role

of maximum entropy RL is to maintain satisfactory exploration in the presence of squashing

exploration problem. We then introduce a simpler output normalization scheme for maximum

entropy DRL algorithms. When combined with a novel non-uniform sampling scheme, our algo-

rithm achieves higher sample efficiency and asymptotic performance in the MuJoCo benchmark

environments.

In Chapter 4, to develop an algorithm which further improves sample efficiency and perfor-

89

mance, we adopt a high update-to-data (UTD) ratio and address the overestimation bias issue

using Q-ensembles during training. With extensive experiments and ablations, we show that our

framework is robust and gives us an algorithm providing state-of-art performance at all stages

of training. Our theoretical results also complement the experimental results, showing that the

Q estimation bias can be controlled by either varying the ensemble size 𝑁 or the keep parameter

𝐾 .

In Chapter 5, we discussed the sample efficiency topic in the offline DRL setting. We intro-

duce a novel notion of “upper envelope of the data” and develop our Imitation-Learning-based

algorithm based on the notion. Our approach is computationallymuch faster than theQ-learning-

based algorithms and achieves state-of-art performance for a wide range of offline datasets.

6.2 Future directions

We have shown that using a high update-to-data (UTD) ratio𝐺 combined with refined bias con-

trol can greatly improve sample efficiency in off-policy DRL [Chen et al. 2021; Wu et al. 2021].

When using a very high update-to-data (UTD) ratio in off-policy algorithms, during each train-

ing iteration, the agent is updating from a static replay buffer 𝐺 (𝐺 ≫ 1) times before collecting

new transitions, which resembles the offline training process. In our algorithm, AQE, we address

the overestimation bias by adopting Q-ensembles and keeping several lowest values. One future

direction is to combine regularization techniques from offline RL with a very high update-to-data

ratio (𝐺 ≫ 1) to develop novel off-policy algorithms. Another interesting future work direction is

to investigate whether there are other critical factors (in addition to Q-bias control) that can allow

us to further benefit from a high update-to-data ratio, and achieve even better sample efficiency

with simple model-free methods.

We have discussed extrapolation error, introduced by the mismatch between the dataset and

true state-action visitation of the current policy. Existing research work mainly focuses on train-

90

ing a policy to avoid out-of-distribution actions by applying critic penalty, policy regularization

or using imitation-learning-based algorithms [Fujimoto et al. 2018a; Kumar et al. 2020; Chen et al.

2019]. A potential research direction is to study the effect of out-of-distribution states during pol-

icy evaluation. In particular, during policy evaluation, agent may visit out-of-distribution states

which leads to huge performance drop. Keep taking in-distribution actions in the presence of

out-of-distribution states may be problematic. One direction is to teach agents to avoid taking

out-of-distribution actions as well as avoid visiting out-of-distribution states.

We recall from Chapter 5 that we have compared 5 offline RL algorithms in a wide range of

MuJoCo offline datasets. Some algorithms perform really well for some of the offline datasets but

fail for others. This is also commonly shown in other offline RL papers [Kostrikov et al. 2021a; Fu

et al. 2020; Kostrikov et al. 2021b]. A potential research direction is to identify the reasons and

patterns behind the variance in performance among the datasets.

91

A | Appendix

A.1 Supplementary Material for Chapter 5

A.1.1 Supplementary Figures

We present the learning curves for all 62 batches described in section 5.3.1 in this section.

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d)Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2

Figure A.1: Performance of batch DRL algorithms on DDPG training batches with 𝜎 = 0.5. The policy
networks for all algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs after
training the upper envelope for 50 epochs.

92

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d)Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2

Figure A.2: Performance of batch DRL algorithms on DDPG training batches with 𝜎 = 0.1. The policy
networks for all algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs after
training the upper envelope for 50 epochs.

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d)Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure A.3: Performance of batch DRL algorithms on SAC training batches. The policy networks for all
algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs after training the upper
envelope for 50 epochs.

93

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d)Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure A.4: Performance of batch DRL algorithms on SAC mediocre execution batches with 𝜎 = 0. The
policy networks for all algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs
after training the upper envelope for 50 epochs.

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d)Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure A.5: Performance of batch DRL algorithms on SAC mediocre execution batches with 𝜎 = 𝜎 (𝑠).
The policy networks for all algorithms are trained for 100 epochs except BAIL, which is trained for 50
epochs after training the upper envelope for 50 epochs.

94

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d)Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure A.6: Performance of batch DRL algorithms on SAC optimal execution batches with 𝜎 = 0. The
policy networks for all algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs
after training the upper envelope for 50 epochs.

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d)Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure A.7: Performance of batch DRL algorithms on SAC optimal execution batches with 𝜎 = 𝜎 (𝑠). The
policy networks for all algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs
after training the upper envelope for 50 epochs.

95

(a) training data, batch 1 (b) training data, batch 2

(c) mediocre 𝜎 = 𝜎 (𝑠), batch 1 (d) mediocre 𝜎 = 𝜎 (𝑠), batch 2 (e) mediocre 𝜎 = 0, batch 1

(f) mediocre 𝜎 = 0, batch 2 (g) optimal 𝜎 = 𝜎 (𝑠), batch 1 (h) optimal 𝜎 = 𝜎 (𝑠), batch 2

(i) optimal 𝜎 = 0, batch 1 (j) optimal 𝜎 = 0, batch 2

Figure A.8: Performance of batch DRL algorithms with the Humanoid-v2 environment. All batches are
obtained with SAC.

96

(a) Hopper 𝜎 = 0.5 1st (b) Hopper 𝜎 = 0.5 2nd (c) Walker2d 𝜎 = 0.5 1st

(d) Walker2d 𝜎 = 0.5 2nd (e) HalfCheetah 𝜎 = 0.5 1st (f) HalfCheetah 𝜎 = 0.5 2nd

(g) Hopper 𝜎 = 0.1 1st (h) Hopper 𝜎 = 0.1 2nd (i) Walker2d 𝜎 = 0.1 1st

(j)Walker2d 𝜎 = 0.1 2nd (k) HalfCheetah 𝜎 = 0.1 1st (l) HalfCheetah 𝜎 = 0.1 2nd

Figure A.9: Typical Upper Envelopes for BAIL. For each figure, states are ordered from lowest 𝑉 (𝑠𝑖)
upper envelope value to highest. Thus the upper envelope curve is monotonically increasing. Each curve
is trained with one million returns, shown with the orange dots. Note that the upper envelope lies above
most data points but not all data points.

97

Bibliography

Agarwal, R., Schuurmans, D., and Norouzi, M. (2020). An optimistic perspective on offline rein-

forcement learning. In International Conference on Machine Learning.

Ahmed, Z., Le Roux, N., Norouzi, M., and Schuurmans, D. (2019). Understanding the impact of

entropy on policy optimization. In International Conference on Machine Learning, pages 151–

160.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin,

J., Abbeel, O. P., and Zaremba, W. (2017). Hindsight experience replay. In Advances in Neural

Information Processing Systems, pages 5048–5058.

Anschel, O., Baram, N., and Shimkin, N. (2017). Averaged-DQN: Variance reduction and stabi-

lization for deep reinforcement learning. In Proceedings of the 34th International Conference on

Machine Learning, pages 176–185.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). A brief survey of

deep reinforcement learning. CoRR, abs/1708.05866.

Bellemare, M. G., Dabney,W., andMunos, R. (2017). A distributional perspective on reinforcement

learning. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference

on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 449–458.

PMLR.

98

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016). Uni-

fying count-based exploration and intrinsic motivation. In Proceedings of the 30th International

Conference on Neural Information Processing Systems, NIPS’16, page 1479–1487, Red Hook, NY,

USA. Curran Associates Inc.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ, USA.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming, volume 5. Athena

Scientific Belmont, MA.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.

(2016). Openai gym.

Chen, X., Wang, C., Zhou, Z., and Ross, K. W. (2021). Randomized ensembled double q-learning:

Learning fast without a model. In International Conference on Learning Representations.

Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y., Deng, Q., and Ross, K.W. (2019). BAIL: best-action

imitation learning for batch deep reinforcement learning. CoRR, abs/1910.12179.

Chou, P.-W., Maturana, D., and Scherer, S. (2017). Improving stochastic policy gradients in con-

tinuous control with deep reinforcement learning using the beta distribution. In Proceedings

of the 34th International Conference on Machine Learning-Volume 70, pages 834–843. JMLR. org.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018a). Implicit quantile networks for dis-

tributional reinforcement learning. In Dy, J. G. and Krause, A., editors, Proceedings of the 35th

International Conference on Machine Learning, volume 80, pages 1104–1113.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. (2018b). Distributional reinforcement

learning with quantile regression. In McIlraith, S. A. andWeinberger, K. Q., editors, Proceedings

of the Thirty-Second AAAI Conference on Artificial Intelligence.

99

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., and Tassa, Y. (2018). Safe exploration

in continuous action spaces. arXiv preprint arXiv:1801.08757.

De Bruin, T., Kober, J., Tuyls, K., and Babuška, R. (2015). The importance of experience replay

database composition in deep reinforcement learning. InDeep reinforcement learning workshop,

NIPS.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking deep rein-

forcement learning for continuous control. In International Conference on Machine Learning,

pages 1329–1338.

Dulac-Arnold, G., Mankowitz, D. J., and Hester, T. (2019). Challenges of real-world reinforcement

learning. CoRR, abs/1904.12901.

Eisenach, C., Yang, H., Liu, J., and Liu, H. (2018). Marginal policy gradients: A unified family of

estimators for bounded action spaces with applications. arXiv preprint arXiv:1806.05134.

Ernst, D., Geurts, P., and Wehenkel, L. (2005a). Tree-based batch mode reinforcement learning.

J. Mach. Learn. Res., 6:503–556.

Ernst, D., Geurts, P., and Wehenkel, L. (2005b). Tree-based batch mode reinforcement learning.

Journal of Machine Learning Research, 6(Apr):503–556.

Farajtabar, M., Chow, Y., and Ghavamzadeh, M. (2018). More robust doubly robust off-policy

evaluation. arXiv preprint arXiv:1802.03493.

Faußer, S. and Schwenker, F. (2015). Neural network ensembles in reinforcement learning. Neural

Process. Lett., page 55–69.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive

sciences, 3(4):128–135.

100

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4RL: datasets for deep data-

driven reinforcement learning. CoRR, abs/2004.07219.

Fu, J., Kumar, A., Soh, M., and Levine, S. (2019). Diagnosing bottlenecks in deep q-learning

algorithms. arXiv preprint arXiv:1902.10250.

Fujimoto, S., Meger, D., and Precup, D. (2018a). Off-policy deep reinforcement learning without

exploration. CoRR, abs/1812.02900.

Fujimoto, S., van Hoof, H., and Meger, D. (2018b). Addressing function approximation error in

actor-critic methods.

Fujita, Y. and Maeda, S.-i. (2018). Clipped action policy gradient. arXiv preprint arXiv:1802.07564.

Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. (2020). Emaq: Expected-max q-learning

operator for simple yet effective offline and online RL. CoRR, abs/2007.11091.

Goodfellow, I., Bengio, Y., and Courville, A. (2016a). Deep Learning, chapter Regularization for

Deep Learning. MIT Press. http://www.deeplearningbook.org.

Goodfellow, I. J., Bengio, Y., and Courville, A. (2016b). Deep Learning. MIT Press, Cambridge,

MA, USA. http://www.deeplearningbook.org.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous deep q-learning with model-

based acceleration. In International Conference on Machine Learning, pages 2829–2838.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement learningwith deep energy-

based policies. In Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 1352–1361. JMLR. org.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a). Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290.

101

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,

A., Abbeel, P., et al. (2018b). Soft actor-critic algorithms and applications. arXiv preprint

arXiv:1812.05905.

Hasselt, H. (2010). Double q-learning. In Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R.,

and Culotta, A., editors, Advances in Neural Information Processing Systems, volume 23. Curran

Associates, Inc.

Hasselt, H. v., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-

learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16,

page 2094–2100. AAAI Press.

Hausknecht, M. and Stone, P. (2015). Deep reinforcement learning in parameterized action space.

arXiv preprint arXiv:1511.04143.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018). Deep rein-

forcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelligence.

Hernandez, D. and Brown, T. B. (2020). Measuring the algorithmic efficiency of neural networks.

CoRR, abs/2005.04305.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot,

B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement

learning. In Thirty-Second AAAI Conference on Artificial Intelligence.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., Van Hasselt, H., and Silver, D.

(2018). Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933.

Hou, Y., Liu, L., Wei, Q., Xu, X., and Chen, C. (2017). A novel ddpg method with prioritized

experience replay. In 2017 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pages 316–321. IEEE.

102

Irpan, A., Rao, K., Bousmalis, K., Harris, C., Ibarz, J., and Levine, S. (2019). Off-policy evaluation

via off-policy classification. arXiv preprint arXiv:1906.01624.

Islam, R., Henderson, P., Gomrokchi, M., and Precup, D. (2017). Reproducibility of benchmarked

deep reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133.

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to trust your model: Model-based

policy optimization. In Proceedings of the 33rd International Conference on Neural Information

Processing Systems.

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C., Lapedriza, A., Jones, N., Gu, S., and

Picard, R. (2019). Way off-policy batch deep reinforcement learning of implicit human prefer-

ences in dialog. arXiv preprint arXiv:1907.00456.

Jiang, N. and Li, L. (2015). Doubly robust off-policy value evaluation for reinforcement learning.

arXiv preprint arXiv:1511.03722.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kingma, D. P. andWelling, M. (2014). Auto-Encoding Variational Bayes. In 2nd International Con-

ference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference

Track Proceedings.

Kostrikov, I., Nair, A., and Levine, S. (2021a). Offline reinforcement learning with implicit q-

learning. CoRR, abs/2110.06169.

Kostrikov, I., Tompson, J., Fergus, R., and Nachum, O. (2021b). Offline reinforcement learning

with fisher divergence critic regularization. CoRR, abs/2103.08050.

Kumar, A., Fu, J., Tucker, G., and Levine, S. (2019a). Stabilizing off-policy q-learning via boot-

strapping error reduction. arXiv preprint arXiv:1906.00949.

103

Kumar, A., Fu, J., Tucker, G., and Levine, S. (2019b). Stabilizing off-policy q-learning via boot-

strapping error reduction. CoRR, abs/1906.00949.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative q-learning for offline rein-

forcement learning. CoRR, abs/2006.04779.

Kuznetsov, A., Shvechikov, P., Grishin, A., and Vetrov, D. (2020). Controlling overestimation bias

with truncated mixture of continuous distributional quantile critics. In Proceedings of the 37th

International Conference on Machine Learning, pages 5556–5566.

Lan, Q., Pan, Y., Fyshe, A., and White, M. (2020a). Maxmin q-learning: Controlling the estimation

bias of q-learning. CoRR, abs/2002.06487.

Lan, Q., Pan, Y., Fyshe, A., andWhite, M. (2020b). Maxmin q-learning: Controlling the estimation

bias of q-learning. In 8th International Conference on Learning Representations.

Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch reinforcement learning. In Reinforcement

learning, pages 45–73. Springer.

Langlois, E., Zhang, S., Zhang, G., Abbeel, P., and Ba, J. (2019). Benchmarking model-based

reinforcement learning. arXiv preprint arXiv:1907.02057.

Lee, K., Laskin, M., Srinivas, A., and Abbeel, P. (2021). SUNRISE: A simple unified framework

for ensemble learning in deep reinforcement learning. In Proceedings of the 38th International

Conference on Machine Learning, ICML 2021, volume 139, pages 6131–6141.

Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D. J., and Batra, D. (2015). Why M heads are

better than one: Training a diverse ensemble of deep networks. CoRR.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor

policies. The Journal of Machine Learning Research, 17(1):1334–1373.

104

Levine, S. and Koltun, V. (2013). Guided policy search. In International Conference on Machine

Learning, pages 1–9.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial,

review, and perspectives on open problems. CoRR, abs/2005.01643.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.

(2019). Continuous control with deep reinforcement learning.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and

teaching. Machine learning, 8(3-4):293–321.

Luenberger, D. G. and Ye, Y. (2008). Linear and Nonlinear Programming, chapter Penalty and

Barrier Methods. Springer.

McClelland, J. L., McNaughton, B. L., and O’reilly, R. C. (1995). Why there are complementary

learning systems in the hippocampus and neocortex: insights from the successes and failures

of connectionist models of learning and memory. Psychological review, 102(3):419.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist networks:

The sequential learning problem. In Psychology of learning and motivation, volume 24, pages

109–165. Elsevier.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu,

K. (2016). Asynchronous methods for deep reinforcement learning. CoRR, abs/1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.

(2013). Playing atari with deep reinforcement learning. cite arxiv:1312.5602Comment: NIPS

Deep Learning Workshop 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-

miller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,

105

King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control

through deep reinforcement learning. Nature, 518(7540):529–533.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. (2017). Bridging the gap between value

and policy based reinforcement learning. InAdvances in Neural Information Processing Systems,

pages 2775–2785.

Novati, G. and Koumoutsakos, P. (2018). Remember and forget for experience replay. arXiv

preprint arXiv:1807.05827.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S. (2019). Advantage-weighted regression: Simple

and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177.

Puterman, M. L. (2014). Markov Decision Processes.: Discrete Stochastic Dynamic Programming.

John Wiley & Sons.

Ratcliff, R. (1990). Connectionist models of recognition memory: constraints imposed by learning

and forgetting functions. Psychological review, 97(2):285.

Rawlik, K., Toussaint, M., and Vijayakumar, S. (2013). On stochastic optimal control and rein-

forcement learning by approximate inference. In Twenty-Third International Joint Conference

on Artificial Intelligence.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science,

7(2):123–146.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Prentice Hall, 3

edition.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. arXiv

preprint arXiv:1511.05952.

106

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy opti-

mization. In International Conference on Machine Learning, pages 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy opti-

mization algorithms. arXiv preprint arXiv:1707.06347.

Schulze, C. and Schulze, M. (2018). Vizdoom: Drqn with prioritized experience replay, double-q

learning and snapshot ensembling. In Proceedings of SAI Intelligent Systems Conference, pages

1–17. Springer.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,

Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbren-

ner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D.

(2016). Mastering the game of go with deep neural networks and tree search. Nature, 529:484–

503.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,

Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. (2018). A general re-

inforcement learning algorithm that masters chess, shogi, and go through self-play. Science,

362(6419):1140–1144.

Sohn, K., Lee, H., and Yan, X. (2015). Learning structured output representation using deep con-

ditional generative models. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R.,

editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.

Strehl, A., Langford, J., Li, L., and Kakade, S. M. (2010). Learning from logged implicit exploration

data. In Advances in Neural Information Processing Systems, pages 2217–2225.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. 3(1):9–44.

107

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT Press,

second edition.

Swaminathan, A. and Joachims, T. (2015). Batch learning from logged bandit feedback through

counterfactual risk minimization. Journal of Machine Learning Research, 16(1):1731–1755.

Thomas, P. and Brunskill, E. (2016). Data-efficient off-policy policy evaluation for reinforcement

learning. In International Conference on Machine Learning, pages 2139–2148.

Thrun, S. and Schwartz, A. (1993). Issues in using function approximation for reinforcement

learning. In Proceedings of the Fourth Connectionist Models Summer School, pages 255–263.

Hillsdale, NJ.

Todorov, E. (2008). General duality between optimal control and estimation. In 2008 47th IEEE

Conference on Decision and Control, pages 4286–4292. IEEE.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-

learning. In AAAI, volume 2, page 5. Phoenix, AZ.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,

Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre,

L., Cai, T., Agapiou, J. P., Jaderberg, M., Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,

Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre, C., Wang, Z., Pfaff, T., Wu, Y., Ring, R.,

Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T. P., Kavukcuoglu, K.,

Hassabis, D., Apps, C., and Silver, D. (2019). Grandmaster level in starcraft ii using multi-agent

reinforcement learning. Nature, pages 1–5.

108

Vuong, Q., Zhang, Y., and Ross, K. W. (2018). Supervised policy update for deep reinforcement

learning. arXiv preprint arXiv:1805.11706.

Wang, C., Wu, Y., Vuong, Q., and Ross, K. (2020). Striving for simplicity and performance in

off-policy drl: Output normalization and non-uniform sampling. ICML.

Wang, Q., Xiong, J., Han, L., Liu, H., Zhang, T., et al. (2018). Exponentially weighted imitation

learning for batched historical data. In Advances in Neural Information Processing Systems,

pages 6288–6297.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Freitas, N. (2016).

Sample efficient actor-critic with experience replay. CoRR, abs/1611.01224.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N. (2015). Dueling

network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Publication.

Wu, Y., Chen, X., Wang, C., Zhang, Y., Zhou, Z., and Ross, K.W. (2021). Aggressive q-learningwith

ensembles: Achieving both high sample efficiency and high asymptotic performance. CoRR,

abs/2111.09159.

Wu, Y., Tucker, G., and Nachum, O. (2019). Behavior regularized offline reinforcement learning.

CoRR, abs/1911.11361.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding deep learning

requires rethinking generalization. ICLR.

Zhao, R. and Tresp, V. (2019). Curiosity-driven experience prioritization via density estimation.

arXiv preprint arXiv:1902.08039.

109

Ziebart, B. D. (2010). Modeling purposeful adaptive behavior with the principle of maximum causal

entropy. PhD thesis, figshare.

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy inverse reinforce-

ment learning.

110

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Sample Efficiency
	Why Off-policy
	Why Offline
	Thesis Outline

	Preliminaries
	Markov Decision Processes
	MuJoCo Benchmark
	Q-learning
	Overestimation Bias

	Extrapolation Error
	Policy Regularization
	Critic Penalty

	Streamlined Off-policy Algorithms
	Introduction
	Squashing Exploration Problem
	Bounded Action Spaces
	Contribution of the Entropy Maximization

	Methods
	Output Normalization
	Inverting Gradients
	Non-uniform Sampling

	Experiments
	Results on MuJoCo
	Experimental Results for ERE
	Ablation Study
	Implementation Details

	Related Work
	Conclusion

	Aggressive Q-learning with Ensembles
	Introduction
	Related Work
	Aggressive Q-learning with Ensemble
	Architecture
	Theoretical Analysis

	Experiments
	Results on MuJoCo
	Results on DeepMind Control Suite
	Ablation Study
	Implementation Details

	Conclusion

	Best-Action Imitation Learning
	Introduction
	BAIL
	Upper Envelope of the Data
	Action Selection
	Augmented and Oracle Returns

	Experiments
	Data Batch Description
	Main Results
	Ablation Study
	Implementation Details

	Conclusion

	Conclusion and Future Directions
	Conclusions
	Future directions

	Appendix
	Supplementary Material for Chapter 5
	Supplementary Figures

	Bibliography

