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ABSTRACT

This Ph.D. dissertation presents a fundamental analysis of several central problems in large-scale

machine learning. We derive novel and scalable algorithms supported by strong theoretical guar-

antees for the most practically important large-scale learning scenarios. These scenarios include

extensions of the standard supervised learning to multiple base hypothesis spaces, multiple objec-

tive functions, multiple distributions, multiple classes and high-dimensional feature spaces.

A standard supervised learning scenario consists of fitting a predictor from a fixed hypothesis

space that minimizes a certain empirical loss on a sample drawn i.i.d. from a particular distribution.

The richness of modern machine learning applications requires the learning scenario to be large-

scale by having the ability to learn from many training examples. While scalability in terms of

many examples is widely studied, the current state of research in the field overlooks other scenarios

and directions for scalability that may be even more important than many training examples. For

instance, by allowing the learner to select predictors from multiple hypothesis spaces of varying

complexity or fit to multiple objective functions.

While the problems mentioned above may seem to relate to separate aspects of large-scale

learning, this thesis provides a unified theoretical analysis framework that brings these central

problems together. This framework is based on the Rademacher complexity analysis as well as on

the Empirical and Structural Risk Minimization principles.
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1 | INTRODUCTION

This Ph.D. dissertation proposes novel theoretical and algorithmic solutions to several central prob-

lems in large-scale machine learning. In the introduction, we first briefly describe the standard

supervised classification framework and its limitations, which give rise to the key problems ad-

dressed in the core thesis chapters. Next, we discuss an example of one important large-scale

application, which is machine translation. We analyze this example from multiple angles and ex-

plain what research questions arise from it and how they lead to the formulation of each critical

learning problem discussed in this dissertation. Finally, having familiarized the reader with im-

portant open questions with the assistance of the machine translation example, we formulate five

fundamental and interconnected problems that are central to large-scale machine learning:

• Regularized gradient boosting

• Boosting with multiple sources

• Agnostic learning with multiple objectives

• Efficient gradient computation for structured output learning with rational and tropical losses

• Generalization bounds for supervised dimensionality reduction

In sections 1.3 - 1.7 of the introduction, we provide a brief summary of each problem, including

a) a rigorous problem definition and the motivation behind it; b) the discussion of related work;
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c) a high-level description of the solutions introduced in this dissertation d) the novelty of the

techniques and ideas introduced. In the main part of the thesis that consists of Chapters 3 - 7, we

provide a complete treatment of each central problem, including theoretical and empirical results.

1.1 SUPERVISED CLASSIFICATION

One of the most widely used frameworks in machine learning is that of supervised classification

[Mohri et al. 2018a; Friedman et al. 2001]. Given that X and Y are the input and output spaces,

the learner has access to a training sample S = {(x1, y1), . . . , (xm, ym)} drawn i.i.d. according to

some distribution D over X×Y. The goal of the learner in this scenario is to find a predictor h from

a given hypothesis space H that minimizes a specific loss function ` on sample S. The structure of

such a scenario is rather limited in the sense that it contains only one of each of its core concepts:

a single hypothesis set H, a single distribution D, a single objective function `. Additionally,

such a scenario considers samples of relatively small size m and small input space dimension

d = dim(X). This thesis studies the topic of large-scale learning, where the learner has access not

only to a large number of training examples and features that can limit computational capacity, but

also to a large number of concepts in the learning scenario, which includes: i) multiple hypothesis

spaces ii) multiple data distributions iii) multiple objective functions iv) multiple classes. This

thesis provides a unified and principled analysis of several central problems in the large-scale

machine learning scenarios described above.

Large-scale learning is one of the most important topics in machine learning because compu-

tational resources that we have now allow us to process millions of training examples. However,

the academic understanding of what is large-scale has been limited to problems with many data

points. This view overlooks other fundamental aspects of machine learning problems that are often
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Figure 1.1: Illustration of the encoder-decoder neural machine translation system, where the
source language is German, and the target language is English [Britz 2016].

more important than simply scaling to many input examples. Hence, learning problems can also

be large-scale in terms of hypothesis spaces, objective functions, output classes, and data dimen-

sion. Having fundamental theory and practical algorithms that deal with these aspects would be a

significant and highly sought-after academic contribution. This thesis closes the missing gap by

providing an in-depth analysis of each of the large-scale aspects described above and introducing

novel theory and algorithms that efficiently solve problems with large-scale characteristics.

1.2 MACHINE TRANSLATION EXAMPLE

An important problem in machine learning — machine translation — will serve as an example

of the large-scale settings that we consider in this thesis. Here, given a fixed pair of source and

target languages, the goal is to find the best function h ∈ H that maps the sentences in the source

language to the sentences in the target language. Clearly, languages contain millions of sentences,

which makes the problem large-scale regarding the number of training examples. However, this
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is only one aspect of many. For instance, because sentences are represented as high-dimensional

vectors (features), it takes significant computational resources to process them. To solve that scal-

ability issue, linear and nonlinear dimensionality reduction methods are used to map the features

to a lower-dimensional space. But how does the dimensionality reduction method influence the

quality of the resulting translation model? Can we provide the theory that connects the complexity

of the reduced feature space to the precision of the translation model itself?

Another central question is: What objective function should we optimize for to obtain a de-

sired machine translation mapping from one language to another? The classic assumption that

the learner is interested in optimizing for a specific objective ` is too restrictive because there is

no single way to evaluate the quality of machine translation. In fact, there are multiple scores

that measure the similarity of a source-target pair of sentences. For example, the BLEU score

[Papineni et al. 2002] is commonly selected as a single objective for model training and evalua-

tion. However, it overfits to short sentences because it is focused on word-based n-gram precision

[Duh et al. 2012]. Thus, it is often agreed upon in the research community that machine transla-

tion models need to perform well not only in terms of the BLEU score but also for other metrics

that measure various aspects of translation beyond the n-gram similarity; for example, METEOR

[Lavie and Agarwal 2007], which measures synonym matching, or RIBES [Isozaki et al. 2010],

which accounts for deviation in word order. In the end, should the learner optimize for BLEU

score, METEOR score, or a weighted combination of these? More generally, can we provide a

theoretical framework for learning with multiple losses?

When the correct objective function for the machine translation task is determined, the next

challenge is to find h ∈ H that minimizes this objective on the training sample; that is, h? =

argminh∈H
1
m

∑m
i=1 `(h(xi), yi). This is typically done with gradient descent techniques. However,

for many structurally defined objectives, such as BLEU, RIBES, or even the edit-distance, the
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gradient computation is intractable. Can we find efficient gradient computation algorithms for

such objectives? Can we provide principled theoretical analysis of their convergence properties?

Another assumption of the supervised learning scenario that does not hold for the problem of

machine translation is that the data originate from one distribution D. In practice, this is not the

case because sentences can be sampled from different people, groups, or dialects of the same lan-

guage, which calls for an extension of our analysis to multiple distributions D1, . . . ,Dp. Given that

a learner has access to predictors, each of which is fit to a particular distribution of the sentences in

the source language, can we combine such predictors to obtain an even better one? Can we provide

theory and learning guarantees for that?

Finally, to build a meaningful machine translation model, one must define the space of se-

quence - to - sequence mappings H. There is a broad variety of classes of functions to work with:

from highly simple ones to extremely rich ones. For example, simple functions such as logistic

regression Hreg or decision trees Htree are able to map the most common and easy word patterns

from the source language to the target. The richer families such as deep neural networks Hdnn ex-

hibit such discriminatory power that they can translate rare and complicated sentences. However,

they tend to overfit to a particular sample of sentences that they are trained on. Which hypothesis

classes Hreg, Htree or Hdnn should be used and when? If the number of such families is large (finite

or countably infinite), what is the best and most scalable way to find the right space? Further, can

we combine several simple and more complex hypothesis families to have an even better predictor?

In this thesis, a separate chapter is dedicated to each central problem in large-scale learning

described above. The solutions provided in each chapter are based on research papers that are

published or under review in conferences and journals, namely:

• Chapter 3. Regularized Gradient Boosting [Cortes et al. 2019]

• Chapter 4. Boosting with Multiple Sources (under review)
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• Chapter 5. Agnostic Learning with Multiple Objectives [Cortes et al. 2020]

• Chapter 6. Efficient Gradient Computation for Structured Output Learning with Rational

and Tropical Losses [Cortes et al. 2018]

• Chapter 7. Generalization Bounds for Supervised Dimensionality Reduction [Mohri et al.

2015]

Each chapter proposes a novel principled theoretical framework that addresses the given large-

scale problem. The core part of the theory is the derivation of sample-dependent learning guaran-

tees based on the Rademacher complexity of the underlying hypothesis class. Next, an algorithm

is given that is motivated by the learning guarantees. Finally, an empirical study of the algorithm

is provided with illustration of its performance on various datasets.

Although the abovementioned problems may seem to relate to separate aspects of large-scale

learning, this thesis provides a unified theoretical framework that brings these central problems

together. This framework is based on the Rademacher complexity analysis [Koltchinskii and

Panchenko 2002a] and the empirical and structural risk minimization principles [Vapnik 1992].

In the several paragraphs below, we provide a brief technical summary of each of the central large-

scale learning problems mentioned above, including a) a detailed discussion of previous related

work; b) a high-level description of the solutions that we propose; c) the novelty of the techniques

and ideas introduced.

1.3 REGULARIZED GRADIENT BOOSTING

As mentioned in the machine translation example above, when the learner is provided with a set

of hypothesis spaces {H1, . . . ,Hp}, selecting the space that provides an optimal tradeoff between
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the sample fit and complexity is a highly nontrivial task. This issue is particularly relevant for

ensemble algorithms, such as ADABOOST or GRADIENTBOOSTING. Ensemble methods form

a powerful family of techniques in machine learning that combine multiple base predictors to

create more accurate ones. These methods are often highly effective in practice and can achieve

a significant performance improvement over the individual base predictors [Quinlan et al. 1996;

Caruana et al. 2004; Freund et al. 1996; Dietterich 2000]. ADABOOST [Freund and Schapire

1997b], and its variants are among the most prominent ensemble methods because they are both

highly effective in practice and benefit from well-studied theoretical margin guarantees [Freund

and Schapire 1997b; Koltchinskii and Panchenko 2002b].

The learning guarantees of boosting critically depend on the complexity of the underlying hy-

pothesis space H, from which the base predictors are selected. The most commonly used families

of base predictors are binary decision trees Htrees or decision stumps Hstumps (trees of depth one).

Using extremely rich hypothesis classes can make the learning guarantees much looser, whereas

the algorithm has an increased risk of over-fitting to a particular training sample. Deep boosting

[Cortes et al. 2014; Kuznetsov et al. 2014] is an alternative framework, where the boosting algo-

rithm has access to p base hypothesis classes of varying complexity H1, . . . ,Hp. At every boosting

round, the learner chooses a particular base class Hk and selects a base predictor from that class.

Empirically, deep boosting has been demonstrated to produce an optimal balance by selecting

more complex hypothesis classes less often. Having hypothesis classes of varying complexity, out

of which base predictors are selected, can be understood as regularization for the boosting algo-

rithm. A comprehensive theoretical and algorithmic analysis of such regularization techniques for

boosting is one of the key contributions of this thesis in Chapter 3.

In addition to the ADABOOST algorithm, another popular and highly successful boosting tech-

nique is GRADIENTBOOSTING, which is implemented in several widely used software libraries:

7



XGBOOST [Chen and Guestrin 2016], MART [Friedman 2002], and DART [Rashmi and Gilad-

Bachrach 2015]. Although ADABOOST and GRADIENTBOOSTING may be presented quite differ-

ently, both of them are, in fact, instances of functional gradient descent [Mason et al. 2000; Grubb

and Bagnell 2011] applied to a convex and differentiable objective. Taking the functional gradient

descent view provides a thorough understanding of the nature of regularization on the hypothesis

class H in all boosting algorithms. For example, GRADIENTBOOSTING seeks a predictor function

h that is closest to the functional gradient of the convex objective within some constrained fam-

ily of base predictors H. Specifying this base predictor family H such that the selected function

does not overfit the gradient, as well as defining an efficient search procedure over H, is crucial

for the algorithm’s success. In most practical instances, several types of constraints are imposed

for that purpose. As an example, for binary regression trees, XGBOOST bounds the number of

leaves and the norm of the leaf values vector. This can be viewed as a regularization. Further,

dividing the original hypothesis space H that the learning problem is endowed with into subsets of

varying complexity, such as the subsets Htrees
d of decision trees with depth less than d, is nothing

but regularization.

Such regularization is widely used by practitioners for ADABOOST, GRADIENTBOOSTING,

and other similar algorithms. However, to our knowledge, no theoretical analysis has been provided

for these commonly used constraints, which makes the analysis of Regularized Gradient Boosting

a central problem. A natural question is whether one can derive the learning guarantees that explain

how this regularization on H, and, perhaps even more general forms of constraints on functions

h ∈ H, are connected to the generalization performance of GRADIENTBOOSTING. We seek

inspiration from the margin-based learning bounds given for ADABOOST [Schapire et al. 1997a;

Mohri et al. 2012]. These guarantees, however, do not provide a detailed analysis of the constraints

on the families of tree base predictors, nor do they offer guidance on how to conduct an efficient

8



search of these families to select a predictor during each boosting round. Thus, how to apply

regularization in hypothesis spaces used in boosting algorithms becomes a central problem to that

area of machine learning. If we had the comprehensive learning guarantees we are seeking, we

could significantly benefit from them and use them as a tool to guide the design of regularization

and search over H, making GRADIENTBOOSTING methods more robust and less prone to over-

fitting.

This thesis provides a novel solution to the problem of regularization in boosting algorithms

in Chapter 3. We provide a comprehensive analysis of regularization in GRADIENTBOOSTING

and derive learning guarantees that explain what type of regularization is appropriate to use under

different circumstances. We give data-dependent learning bounds for GRADIENTBOOSTING with

regularization, expressed in terms of the Rademacher complexities of the constrained hypotheses’

sub-families, from which the base predictors are selected, as well as the ensemble mixture weights.

We present a new algorithm, referred to as RGB for regularized gradient boosting, which general-

izes the existing gradient boosting methods by introducing a general functional q-norm constraint

for the families of the tree base predictors.

Our algorithm and its objective function are directly guided by the theory we develop. Our

bound suggests that the structural risk minimization principle (SRM) [Vapnik 1992] should be used

to break down H into subsets of varying complexities and, at each round, select a base learner h

from a subset that provides the best tradeoff between proximity to the functional gradient and the

complexity.

The novelty of the solutions that we present in Chapter 3 includes: a) analyzing the regu-

larization for boosting algorithms in terms of complexities of the nested hypothesis subspaces

H1 ⊂ H2 · · · ⊂ Hp, inspired by deep boosting [Cortes et al. 2014]; b) based on the theory pro-

vided, defining a regularized objective function L(α) such that the regularized gradient boosting
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is equivalent to minimizing that objective function via coordinate descent; c) introducing general

q-norm constraints on the families of base predictors, specifically decision trees with bounded leaf

values; d) providing a scalable solution for the cases when the number of nested hypotheses p is

extremely large, based on randomized coordinate descent [Nesterov 2012].

Finally, Chapter 3 provides the pseudocode of the novel regularized gradient boosting algo-

rithm as well as experimental results on several open-source machine learning datasets. These re-

sults demonstrate that our algorithm achieves significantly better out-of-sample performance than

the baselines such as XGBOOST. Although the experiments are conducted for specific families of

binary decision trees Htrees
d with depth bounded by a fixed constant d, similar studies can be easily

extended to broader families of predictor functions, such as SVMs [Cortes and Vapnik 1995] and

deep neural networks [LeCun et al. 2015]. Given favorable experimental results and the gener-

ality of the regularization theory that we propose, the results of Chapter 3 have a broad range of

applications, including text and image analysis, as well as regression problems.

1.4 BOOSTING WITH MULTIPLE SOURCES

As illustrated by the machine translation example, the common assumption that the source data dis-

tribution is the same as the target data distribution does not hold in a vast number of applications.

However, such an assumption is still heavily relied upon in the theoretical analysis of many al-

gorithms, including ensemble methods: bagging, AdaBoost, stacking, error-correction techniques,

Bayesian averaging, AdaNet, or other adaptive methods for learning neural networks [Breiman

1996; Freund and Schapire 1997a; Smyth and Wolpert 1999; MacKay 1991; Freund et al. 2004;

Cortes et al. 2017]. Whereas these algorithms rely on the assumption that the distribution from

which the source training data are drawn is the same as the target distribution, in most real-world
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applications, the learner actually receives labeled samples from multiple different data distributions

D1, . . . ,Dp. Given access to these multiple sources, the goal of the learner is to obtain such a pre-

dictor that works well on some target distribution that belongs to a convex hull of the sources; that

is, conv
(
D1, . . . ,Dp

)
[Hoffman et al. 2018a; Mansour et al. 2008; Muandet et al. 2013; Xu et al.

2014; Hoffman et al. 2012; Saito et al. 2019; Wang et al. 2019a]. Clearly, the next central problem

is: How can we generalize both theory and algorithmic implementation of ensemble methods to

the case of multiple data distributions? This thesis proposes several novel solutions to this problem

as well as a generalization of boosting to multiple sources in Chapter 4.

Several related problems have been tackled in previous work. In the special case of a single

target domain, boosting solutions have been derived [Dai et al. 2007; Yao and Doretto 2010]. These

algorithms have been further improved by boosting base predictors jointly with source features

(or feature views) that are predictive in the target [Yuan et al. 2017; Cheng et al. 2013; Zhang

et al. 2014; Xu and Sun 2012, 2011]. Such methods have been widely adopted in various domain

adaptation scenarios for different types of data. For example, Huang et al. [2010, 2012] showed

that by selecting a base learner jointly with a feature that is predictive across multiple domains

at every boosting step, one can achieve higher accuracy than standard transfer learning methods.

Moreover, the margin provided by boosting-style algorithms can aid in transfer learning where

the target domain is unlabeled. [Habrard et al. 2013] have developed an algorithm that jointly

minimizes the source domain error and margin violation proportion on the target domain. [Wang

et al. 2019a] have demonstrated that boosting classifiers from different domains can be carried out

online. [Taherkhani et al. 2020] and [Becker et al. 2013] have shown that multi-source boosting

can be combined with deep neural networks for multi-task learning on large-scale datasets.

Although some solutions to the multi-source boosting exist, they fail to address key questions

related to the presence of multiple sources: 1) what should be the form of the ensemble solutions?
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2) what should be the form of the objective function? 3) can we derive favorable margin-based

guarantees in the presence of multiple sources? In Chapter 4 of this thesis, we address all these

questions by developing a novel multi-source boosting framework.

To answer question (1), we illustrate with several examples that standard convex combinations

of base predictors, such as those in ADABOOST and GRADIENTBOOSTING may fail in the pres-

ence of multiple sources. Instead, our novel technique is to use Q-ensembles, which are convex

combinations weighted by a domain classifier Q; that is, Q(k|x) is the conditional probability of

domain k given input point x.

To answer question (2), we provide a general solution that is accurate for any mixture of the

source distributions, where the mixture weights may be constrained to belong to a subset of the sim-

plex. For that purpose, we employ the notion of agnostic objective [Mohri et al. 2019a]. Further,

we present an algorithm that minimizes such an objective using coordinate descent: MULTIBOOST.

For question (3), we provide margin-based and sample-dependent generalization bounds that

are expressed in terms of the Rademacher complexity of the underlying hypothesis classes and the

empirical margin loss. The bounds presented in Chapter 4 are remarkable in a sense that they hold

for any target mixture of the source distributions.

Additionally, Chapter 4 presents an extension of the novel MULTIBOOST algorithm to the

federated learning scenario. That is an extremely important large-scale learning setting [Kairouz

et al. 2021; Brisimi et al. 2018], where a single centralized model is updated using large numbers of

independent distributed clients. Chapter 4 concludes with the results of extensive experiments with

our MULTIBOOST algorithm, both in its original version and in the FEDMULTIBOOST version.
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1.5 AGNOSTIC LEARNING WITH MULTIPLE OBJECTIVES

The machine translation example illustrated that in real-world applications, the learner typically

seeks to achieve favorable performance across a number of objectives as opposed to any particular

metric. In such cases, the learner has access to a set of base objective functions {L1, . . . ,Lp}, with

a certain degree of inter-dependence or correlation between them. Committing to any particular Lk

often fails to capture the full complexity of the underlying problem and causes models to over-fit

to that individual objective [Kendall et al. 2018]. The central learning problem considered here is

to develop a foundational framework for learning with multiple objectives. Can such a framework

have favorable generalization bounds? What combination of the base objectives should the learner

optimize for, and how can the complexities of these base losses be incorporated in the learning

guarantees?

There is a considerable amount of related work that contains various techniques of learning

with multiple objectives. These techniques can be roughly broken down into two types: a) seeking

a Pareto-optimal frontier of objectives {L1, . . . ,Lp}; b) optimizing for a mixture of objectives∑p
k=1 λkLk for some fixed mixture weights λ.

The approaches that are directed towards estimating a Pareto-efficient frontier and seeking a

solution that lies on that frontier [Jin and Sendhoff 2008; Sener and Koltun 2018; Shah and Ghahra-

mani 2016; Marler and Arora 2004] have a number of drawbacks. In particular, the search for such

a frontier is computationally expensive [Duh et al. 2012; Godfrey et al. 2007] and poorly scales

with the number of base objectives. Additionally, the Pareto-efficient frontier optimization requires

multiple gradient computations, which is a significant challenge for the large-scale problems con-

sidered in this dissertation.

The methods that propose using an ensemble Lλ =
∑p

k=1 λkLk most frequently assume that λ
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belongs to some simplex ∆p, or a strict convex subset of that simplex Λ ⊂ ∆p [Jin 2006]. From

a computation standpoint, such an approach is favorable because it reduces the learning problem

to constrained scalar optimization. However, the fact that the mixture weights λ are fixed raises a

number of issues [Van Moffaert et al. 2014]. For instance: a) how can the λ distribution reflect the

relative importance of the base objectives? b) can fixed λ account for the cases when the learner’s

preferences are shifting over time? Moreover, in certain cases, the true learner’s preferences may be

unobservable or even unknown. This suggests that a better way to describe the multiple objectives

problem is to examine the constraint set Λ itself, rather than a particular distribution weights λ.

Given these challenges of working with a fixed mixture weights distribution discussed above,

we propose a novel theoretical framework in Chapter 5, termed Agnostic Learning with Multiple

Objectives (ALMO) backed by strong experimental results. The framework proposed is different

from the previous works mentioned above and improves upon them in the following aspects.

First, it performs well for any possible combination of mixture weights in the ensemble Lλ =∑p
k=1 λkLk. Thus, ALMO is also risk averse because being robust against any combination of

ensemble weights is also robust against their worst (adversarial) combination. Second, our solution

is, in fact, guaranteed to be Pareto-optimal, thus lying on the frontier. Our algorithms, hence,

provide a theoretical justification for selecting one of the possibly many points on the frontier.

Third, the ALMO framework closely matches the learning setting used by most real-world ML

practitioners, who often seek to deploy a model that is robust against any mixture of base objectives

and does not need to be frequently retrained when the base objective preferences shift. Fourth,

we provide a scalable algorithmic implementation of the ALMO framework, based on stochastic

gradient descent methods. This solution is implemented in TENSORFLOW [Abadi et al. 2016]

and KERAS [Chollet et al. 2015]; thus, it can be made immediately available for applications.

Furthermore, we show that our optimization problem has a natural two-player zero-sum game
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interpretation.

To achieve such favorable characteristics, we employ the notion of the agnostic empirical loss,

introduced in earlier works [Mohri et al. 2019a]. Such an objective relies on maxλ∈Λ

∑p
k=1 λkLk,

which is the maximum of the mixture of base objectives Lλ over a convex set of preferences

Λ. In Chapter 5, we provide favorable sample-dependent generalization bounds based on the

Rademacher complexity of the underlying base loss functions as well as the agnostic empirical

loss. We suggest an efficient optimization algorithm for the ALMO setting that is inspired by the

generalization bounds derived in this paper. Such an algorithm is based on mirror-prox gradient

descent [Juditsky et al. 2011]. Finally, we provide an elaborate experimental study that confirms

the superiority of ALMO versus using a fixed mixture distribution for large-scale multi-objective

problems. We demonstrate that these results carry over from convex hypothesis spaces to non-

convex ones (e.g., Deep Neural Networks).

1.6 EFFICIENT GRADIENT COMPUTATION FOR STRUCTURED

OUTPUT LEARNING WITH RATIONAL AND TROPICAL

LOSSES

Structured prediction is an advanced learning setting that encompasses a significant number of

large-scale problems. Whereas in the standard supervised classification, the output space Y =

{+1,−1} is assumed to be binary, in structured prediction, the output space takes the form of a

sequence, graph, or another combination of substructures. Structured prediction problems include

the majority of natural language processing tasks, such as pronunciation modeling, part-of-speech

tagging, context-free parsing, dependency parsing, machine translation, speech recognition, where
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the output labels are sequences of phonemes, part-of-speech tags, words, parse trees, or acyclic

graphs, as well as other sequence modeling tasks in computational biology. They also include

a variety of problems in computer vision, such as image segmentation, feature detection, object

recognition, motion estimation, computational photography and many others.

The key to finding a successful model in the structured prediction setting is to describe how

conditional probability densities for each substructure are related with each other. The most suc-

cessful and widely used algorithms for that have traditionally included: conditional random fields

(CRFs) [Lafferty et al. 2001; Gimpel and Smith 2010], StructSVMs [Tsochantaridis et al. 2005],

maximum-margin Markov networks (M3N) [Taskar et al. 2003], kernel-regression-based algo-

rithms [Cortes et al. 2007], and search-based methods [Daumé III et al. 2009; Doppa et al. 2014;

Lam et al. 2015; Chang et al. 2015; Ross et al. 2011]. A recent development in the field is that deep

learning methods are becoming increasingly successful for the structured prediction tasks, partic-

ularly for part-of-speech tagging [Jurafsky and Martin 2009; Vinyals et al. 2015a], named-entity

recognition [Nadeau and Sekine 2007], machine translation [Zhang et al. 2008; Wu et al. 2016],

image segmentation [Lucchi et al. 2013], and image annotation [Vinyals et al. 2015b].

Several key problems in structured prediction relate to the objective function and the optimiza-

tion techniques used to fit a predictor to that objective. Almost every structured prediction problem

admits a natural objective that describes sequence similarity in the output space Y. For example,

edit-distance or n-gram loss are used for grammar correction tasks, and BLEU score is used for

machine translation. The true goal of the learner in the structured prediction setting is to find

such a predictor that provides the best similarity measure. However, in real applications, including

those that involve deep neural networks, the true sequence similarity measure is often ignored for

a number of reasons: a) gradients do not admit closed form; b) gradients can be computationally

expensive; c) a key subroutine within the main optimization, such as one requiring to determine
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the most violating constraint, may be computationally intractable. Rather than using the true ob-

jectives, alternative surrogate objectives that are easier to compute and that admit closed form

gradients are used, such as the cross-entropy.

The fact that the true sequence similarity measures that ideally should be directly used in struc-

tured prediction are replaced by simpler surrogate objectives because of intractable or computa-

tionally hard gradients motivates a central problem in that field. Namely, can we provide efficient

methods to compute the precise gradients of the true objectives, such as the edit-distance or BLEU

score? Are there foundational theory and favorable convergence guarantees behind such methods?

In Chapter 6, we provide a novel solution to this central problem that includes a direct and princi-

pled way to compute gradients.

Previous work that addresses similar questions consists of a number of methods. The majority

of these methods compute the true objective directly either on a small subsample of examples

in the input space or sub-structures in the output space. For example, minimum risk training

(MRT) [Och 2003; Shen et al. 2016] samples the top-n structured outputs to make the problem

computationally tractable. REINFORCE-based methods [Ranzato et al. 2015; Wu et al. 2016]

make use of the unbiased stochastic estimate of the true objective, as a result of which the problem

becomes computationally tractable. These and similar works [Ranjbar et al. 2013; Eban et al.

2017; McAllester et al. 2010] have demonstrated that even using a restricted (typically quite small)

sample to compute the true objective provides much better results than working with a simpler

surrogate instead. However, these solutions are incomplete and suffer from a number of drawbacks:

a) prohibitively high variance of the gradient estimates; b) gradient bias. Moreover, REINFORCE

methods are often required to provide the ground-truth labels of the sequences in the output space

while training a predictor, which has a risk of over-fitting to the training sample.

Motivated by the previous work, in Chapter 6, we suggest efficient methods to compute gradi-
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ents for the true objectives directly. Compared to previous work, our method does not need to use

a small sub-sample of examples or sub-structures to evaluate the true loss and its gradient. Fur-

thermore, the method scales to a large number of examples and complex output space structures.

This is achieved by using a number of original techniques: a) using weighted automata and graph

operations over appropriate semirings, which allows us to circumvent the computation of expo-

nentially sized sums in the gradient formula; b) using algebras on specific families of semirings:

rational and tropical that allows to execute efficient shortest distance computations. The results of

Chapter 6 apply to two broad families of structured prediction objective functions that are based

on rational and tropical semirings. These families include, as special cases, the n-gram loss, the

edit-distance loss, and many other loss functions commonly used in natural language processing

and computational biology tasks that are based on sequence similarity measures.

The results presented in Chapter 6 of this dissertation open doors for efficient learning in large-

scale structured prediction problems. Because our solutions are focused on the gradient compu-

tation, they are particularly beneficial to deep neural networks. When combined with the recent

developments in automatic differentiation (e.g., CNTK [Seide and Agarwal 2016], MXNet [Chen

et al. 2015], PyTorch [Paszke et al. 2017], and TensorFlow [Abadi et al. 2016]), they can be used

to train structured prediction models such as neural networks with the natural loss of the task. In

particular, the use of our techniques for the top layer of neural network models can further acceler-

ate progress in end-to-end training [Amodei et al. 2016; Graves and Jaitly 2014; Wu et al. 2016].

For problems with limited data, such as uncommon languages or some biological problems, our

work overcomes the computational bottleneck, uses the exact loss function, and renders the amount

of data available the next hurdle for improved performance. For extremely large-scale problems

with more data than can be processed, we further present an approximate truncated shortest-path

algorithm that can be used for fast approximate gradient computations of the edit-distance.
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1.7 GENERALIZATION BOUNDS FOR SUPERVISED

DIMENSIONALITY REDUCTION

Most of the large-scale learning problems employ dimensionality reduction techniques one way

or another. Such techniques are aimed at projecting the original data onto some low-dimensional

subspace that retains most of the information within the data.

The most widely used dimensionality reduction methods include principal component analysis

(PCA) [Pearson 1901] and more recent techniques such as isometric feature mapping [Tenenbaum

et al. 2000] and locally linear embedding [Roweis and Saul 2000]. Although the goal of these meth-

ods is the same—to project the data onto a low-dimensional subspace—each technique provides

its specific view on how to define such a subspace and estimate the projection function. More gen-

erally, the dimensionality reduction techniques just mentioned and most others have been shown to

be specific instances of the kernel PCA (KPCA) algorithm [Ham et al. 2004] for different choices

of the kernel function. This equivalence holds simply because the low-dimensional subspace and

the projection onto it are defined by the inner product function in that space. A kernel function, as

long as it satisfies a positive definite symmetric property exactly describes the inner product [Mohri

et al. 2018a].

There exists a certain degree of inconsistency in the way the methods above construct the low-

dimensional subspace and in the way the projections of the original data onto that subspace are

used for the subsequent learning algorithm. Specifically, whereas the low-dimensional space is

constructed in such a way as to preserve the maximum amount of certain information in the data

(e.g., pairwise distances or variance), it is unclear whether this specific information is beneficial

for the subsequent learning procedure. Dimensionality reduction used in such a way is typically

referred to as unsupervised or decoupled, which means that the objective of the dimensionality
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reduction techniques stage and that of the learning stage are kept separate. However, it is most

beneficial for the learner if dimensionality reduction is supervised or coupled. That is, the low-

dimensional subspace and the related projection are estimated in such a way that benefits the most

to the subsequent learning task that is performed on the projected data. However, there are no

consistent and complete theoretical results in the literature that explain how should the supervised

dimensionality reduction happen. The central problem of large-scale learning considered in Chap-

ter 7 is exactly this: can we have principled theory for supervised dimensionality reduction? Can

such theory clearly connect the geometric properties of the low-dimensional subspace with the

complexity of the subsequent learning problem? Can such theory inspire an algorithm that con-

structs the subspace jointly with the prediction function within that subspace? Chapter 7 provides

complete answers to all these questions and also introduces a novel supervised dimensionality

reduction algorithm.

The novel contributions and original techniques in Chapter 7 include the following. First, we

introduce the supervised dimensionality reduction learning scenario, where the low-dimensional

projection step is coupled with the learning step in the projected space. Second, in this learn-

ing scenario, we make use of the Kernel PCA and the kernel function, which allows us to de-

scribe a variety of projections and generalize many existing dimensionality reduction techniques.

Third, we present sample-dependent generalization bounds for this scenario based on the empiri-

cal Rademacher complexity of the relevant hypothesis set and the properties of the kernel function.

The generalization bounds in our analysis scale as Õ(
√

Λ(r)/m), where m is the sample size, and

Λ(r) is the upper bound on the Ky-Fan r-norm of the r−dimensional projection operator. Fourth,

we derive a novel algorithm, termed Supervised Kernel PCA (SKPCA), that allows to jointly learn

the projection function and the discriminatory function in the projected space.

The joint learning algorithm presented in Chapter 7 is largely inspired by the learning kernels
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topic [Lanckriet et al. 2004; Cortes et al. 2009, 2010; Kloft et al. 2011; Gönen and Alpaydın 2011;

Lin et al. 2011; Mosci et al. 2007], where a weighted linear ensembleKλ =
∑p

k=1 λkKk of the base

kernels {K1, . . . ,Kp} is learned. Our work is further motivated by several empirical studies that

demonstrate that a coupled dimensionality reduction problem results in much better performance

than an uncoupled one [Fukumizu et al. 2004; Gönen 2014].
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2 | PRELIMINARIES

In this chapter, we define several fundamental concepts and introduce notations that will be used

throughout the thesis. Section 2.1 introduces the key complexity notions, such as VC-dimension

and Rademacher complexity, that will be used throughout the thesis. Section 2.2 describes the

structural risk minimization principle, which is the foundation for several algorithms in multiple

hypothesis space scenarios proposed in the thesis. Section 2.3 introduces boosting, its learning sce-

nario, and learning guarantees based on the properties of convex ensembles of prediction functions.

Boosting and its alternative deep boosting serve as foundational tools in our analysis of learning

with multiple regularized hypothesis spaces in Chapter 3 and learning with multiple distributions

(sources) in Chapter 4.

2.1 LEARNING AND COMPLEXITY

We consider the supervised learning setting, in which the learner receives a labeled sample S =

(x1, y1), . . . , (xm, ym) drawn i.i.d. from some distribution D over X × Y, where X denotes the

input space, and Y ⊂ R denotes the output space. Let H be the hypothesis space, which is a set

of functions h : X 7→ Y. Let l : Y × Y 7→ R+ be a loss function that measures the correctness of

a hypothesis h ∈ H. The loss of h ∈ H for a labeled instance (x, y) equals `(h(x), y), and the
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expectation of the loss is

L(h) = E
(x,y)∼D

[`(h(x), y)] . (2.1)

In a standard supervised learning scenario, the goal of the learner is to find such a hypothesis h?

from the given space H that has the minimal expected loss with respect to the distribution D, that

is:

h? = argmin
h∈H

L(h). (2.2)

In most cases, the true distribution D is not available to the learner. Instead, the learner has

access to empirical distribution Dm =
(
X × Y

)m, which is represented as a labeled sample

S = (x1, y1), . . . , (xm, ym). The learner will use this sample to evaluate the empirical loss function

ˆ̀=
1

m

m∑
i=1

`(h(x), y) (2.3)

and look for a hypothesis that minimizes the empirical loss

h? = argmin
h∈H

ˆ̀(h). (2.4)

A significant part of this thesis is dedicated to the analysis of the complexity of hypothesis sets H

in large-scale learning scenarios; therefore, it is important to introduce several standard measures

of the capacity of functional sets, such as the Rademacher complexity and VC dimension. We

define the key concepts below, whereas for a more detailed treatment, the reader should refer to

[Mohri et al. 2012].

Definition 2.1 (Sample Rademacher Complexity). . Let G : Z 7→ R be a family of functions

mapping from some set Z to R. Given an i.i.d. sample S = (z1, · · · , zm) ∼ Zm, the empirical
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Rademacher complexity of G is defined as follows:

R̂S(G) =
1

m
E
σ

[
sup
g∈G

m∑
i=1

σig(zi)

]
, (2.5)

where σi-s, i ∈ [m], are independent uniformly distributed random variables in {−1, 1}.

Definition 2.2 (Rademacher Complexity). The Rademacher complexity of G is the expected sam-

ple Rademacher complexity of G; that is,

RS(G) = E
[
R̂S(G)

]
. (2.6)

Definition 2.3 (Growth function). Let G : Z 7→ {−1, 1} be a family of functions mapping from Z

to {−1, 1}. The Growth function ΠG : Z 7→ Z of G is defined as:

ΠG(m) = max
(z1,··· ,zm)∈Z

|{(g(z1), · · · , g(zm))|g ∈ G}| (2.7)

Growth function is related to Rademacher complexity by Massart’s lemma [Massart and Picard

2007].

Theorem 2.4 (Massart’s lemma). Let G be a family of functions taking values in {−1, 1}; then,

the following inequality holds for any sample S of size m:

R̂S(G) ≤
√

2 log ΠG(m)

m
. (2.8)

Definition 2.5 (VC-dimension). Let G be a family of functions taking values in {−1, 1}; then, the

VC dimension of G, denoted as V Cdim(G), is the largest value of d such that ΠG(d) = 2d.

Growth function and VC dimension are related via Sauer’s lemma.
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Theorem 2.6 (Sauer’s lemma). Let G be a family of functions with V Cdim(G) = d; then, for all

m ≥ d, the following inequality holds:

ΠG(m) ≤
d∑
i=1

(
m

i

)
≤
(em
d

)d
. (2.9)

Because the learner is selecting a hypothesis h? from the function class H, it is natural that

the capacity characteristics (or richness) of the space H plays a key role in how well h? can fit the

training sample and if this result can be generalized to any other sample from the same data distri-

bution. In fact, there are fundamental inequalities (generalization bounds or learning guarantees)

that connect the richness of H described in terms of its Rademacher complexity with the error

of individual function h ∈ H [Koltchinskii and Panchenko 2002b; Ledoux and Talagrand 1991a;

Mohri et al. 2012].

Theorem 2.7 (Rademacher complexity bounds for binary classification). Let H be a family of

functions taking values in {−1, 1} and D be the distribution over the input space X. Then, for

any δ > 0 with a probability of at least 1 − δ over a sample S of size m drawn i.i.d. from D, the

following inequalities hold for any h ∈ H:

R(h) ≤ R̂S(h) + RS(H) +

√
log 1

δ

2m
, (2.10)

where R̂S(h) and R(h) are empirical and expected losses of hypothesis h.

Note that this bound holds uniformly for all h ∈ H and consists of two parts (up to probability

coefficients): the empirical one R̂S(h) and the theoretical one RS(H). The empirical part corre-

sponds to the observed error of a hypotheses h on the training sample S, and the theoretical part

describes the richness of the function class H from which the individual h is taken.
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2.2 STRUCTURAL RISK MINIMIZATION

The generalization bound above describes the fundamental tradeoff that lies at the core of all

machine learning algorithms; that is, the tradeoff between the richness of hypothesis space H

and its generalization properties. In this thesis, we will refer multiple times to this tradeoff; thus,

explaining it in more detail is critical. To illustrate, consider a highly rich hypothesis class Hdnn of

deep neural networks and a less rich space Hreg of logistic regression. A neural network from Hdnn

can often near-perfectly fit a particular sample S, making R̂S(h) small, but due to their richness

RS(Hdnn) is large, which raises the upper bound on the generalization error R(h). On the other

hand, a logistic regression from Hreg does not fit a particular sample S as well as a neural network;

however, the space Hreg is less rich, making its capacity RS(Hreg) much smaller, contributing to

a decrease in the generalization bound on R(h). It can often occur that such a tradeoff is in favor

of logistic regression, and the upper bound on its generalization error consisting of the sum of two

terms is actually smaller than that of the deep neural network class. To be completely rigorous, the

opposite situation can also happen when the tradeoff is in favor of neural networks; because the

bounds are sample dependent, the results can vary for different samples.

The bounds above indicate the importance of understanding the richness and structure of the

hypothesis class H used for a particular problem. This thesis dedicates a significant part to giving

novel theoretical analysis of the structure of H for a variety of learning scenarios. Such an analysis

is largely based on the fundamental principle of SRM [Vapnik 1992], which we summarize below.

This framework assumes that the hypothesis space H is decomposed into a countable union of

smaller subspaces H = ∪k≥1Hk such that the sequence of subspaces is nested (i.e., Hk ⊂ Hk+1

for all k ≥ 1). The SRM consists of choosing the index k? and a hypothesis h? ∈ Hk? that

minimizes sample empirical error. The pair k?, h? are jointly selected to minimize the upper bound
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on generalization error. In this way, the SRM principle serves as a principled guideline to solve

the tradeoff that we described above. SRM benefits from strong learning guarantees, which are

presented in the following theorem.

Theorem 2.8 (SRM learning guarantees). For any δ > 0 with a probability of at least 1 − δ over

the draw of an i.i.d. training sample S of size m, the generalization error of hypothesis h? given

by the SRM principle is bounded as follows:

R(h?) ≤ inf
h∈H

(
R(h) + 2RS(Hk(h)) +

√
log k(h)

m

)
+

√
2 log 3

δ

m
, (2.11)

where Hk(h) is the hypothesis subclass with the smallest complexity among those that contain h.

SRM shows what structure in terms of nesting subclasses needs to be imposed on the space

H and how to select the subclass to minimize the upper bound on generalization error. SRM and

its guarantees are key tools for learning with complex and large-scale hypothesis spaces and are

called upon multiple times in this thesis. In fact, several novel theoretical results and algorithms

presented in the following sections are built up from the SRM foundations.

2.3 BOOSTING

Boosting is a widely used method to combine several base predictors into a more powerful one.

Popular boosting algorithms, such as ADABOOSTor GRADIENTBOOSTING, show impressive re-

sults in practice and benefit from rich theoretical analysis. This chapter describes the main concepts

and results in boosting research, preparing the reader to understand the novel contribution of this

thesis.

The learning scenario of boosting is such that the learner has access to N base predictors
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{h1, · · · , hN}, each of which satisfy the weak learning property.

Definition 2.9 (Weak Learning). A concept class C is weakly PAC learnable if there exists algo-

rithm A and γ > 0 s.t. ∀δ > 0, for all distributions D on X and any target concept c ∈ C the

following holds for any sample size m > poly(1/δ):

PS∼Dm
[
R(hS) ≤ 1

2
− γ
]
≥ 1− δ. (2.12)

2.3.1 ADABOOST

The weak learning assumption essentially means that the predictor h is only γ-better than random.

Boosting will combine such base predictors into an ensemble f =
∑N

j=1 αjhj . In Figure 2.1, we il-

lustrate the pseudocode of the widely used technique termed ADABOOST for binary classification.

The algorithm takes a training sample S = (x1, y1), . . . , (xm, ym) and maintains a distribution Dt

over that sample for every boosting round t ∈ [T ].

At every round, the algorithm selects a base predictor ht that minimizes the weighted empirical

classification error; that is:

ht = argmin
h∈H

Pi∼Dt(h(xi) 6= yi) = argmin
h∈H

m∑
i=1

Dt(i)1yi 6=h(xi)︸ ︷︷ ︸
εt

. (2.13)

Because εt < 1
2
, then the ensemble weights αt assigned by the ADABOOST to base predictors

are nonnegative. Therefore, the next round distribution Dt+1 is derived from the previous round

distribution Dt by increasing the weights of incorrectly classified examples and decreasing the

weights of correctly classified ones.
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ADABOOST(S = (x1, y1), . . . , (xm, ym))

1 for i← 1 to m do
2 D1(i)← 1

m

3 for t← 1 to T do

4 ht ← argminh∈H

[ m∑
i=1

Dt(i)1yi 6=h(xi)︸ ︷︷ ︸
εt

]

5 αt ← 1
2

log 1−εt
εt

6 Zt ← 2
√
εt(1− εt)

7 for i← 1 to m do
8 Dt+1(i)← Dt(i)e−αtyiht(xi)

Zt

9 f ←
∑T

t=1 αtht
10 return f

Figure 2.1: Pseudocode of the ADABOOST algorithm.

2.3.2 BOOSTING AS COORDINATE DESCENT

ADABOOST and its extensions, as well as other boosting algorithms, can be represented as in-

stances of the coordinate descent algorithm with an appropriately defined convex objective func-

tion.

For the purpose of this section, assume that the hypothesis space H = {h1, . . . , hN} is finite,

consisting of N base classifiers. The ensemble returned by the ADABOOST algorithm can be

written as f =
∑N

j=1 ᾱjhj , where ᾱj > 0. Let ᾱ = [ᾱ1, · · · , ᾱN ]> ∈ RN and define the following

objective function:

F (ᾱ) =
1

m

m∑
i=1

e−yif(xi) =
1

m

m∑
i=1

e−yi
∑N
j=1 ᾱjhj(xi). (2.14)

Because the zero-one loss u 7→ 1u≤0 can be upper-bounded by the exponential loss u 7→ e−u, the

29



objective above is an upper bound on the empirical error of the ensemble function f . Observe that

F (ᾱ) is convex as a sum of convex functions; thus, its minimum can be found using the maximum

derivative coordinate descent algorithm. We will illustrate below that F (ᾱ) corresponds to the

objective function of the ADABOOST algorithm and that argminᾱ F (ᾱ) precisely matches the

weights assigned to base classifiers from H by the ADABOOST algorithm.

The directional derivative of F (ᾱ) along a basis vector ek is

F ′(ᾱt−1, ek) = lim
η 7→0

F (ᾱt−1 + ηek)− F (ᾱt−1)

η

= − 1

m

m∑
i=1

yihk(xi)e
−yi

∑N
j=1[ᾱt−1]jhj(xi)

=

[
2εt,k − 1

]
︸ ︷︷ ︸

<0

Zt
m
,

where εt,k is the distribution-weighted error of the base classifier hk. Due to the fact that εt,k < 1
2
,

then 2εt,k − 1 < 0, and Zt
m

is nonnegative. Thus, the maximum derivative direction selected by the

coordinate descent at step t corresponds to the base classifier hk with the smallest error selected by

the ADABOOST at step t.
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The step size η along the direction ek is equal to η = argminη F (ᾱt−1 + ηek).

dF (ᾱt−1 + ηek)

dη
= 0⇔ − 1

m

m∑
i=1

yihk(xi)e
−yi

∑N
j=1[ᾱt−1]jhj(xi)e−ηyihk(xi) = 0

⇔ − 1

m

m∑
i=1

yihk(xi)D̄t(i)Z̄te
−ηyihk(xi) = 0

⇔ − 1

m

m∑
i=1

yihk(xi)D̄t(i)e
−ηyihk(xi) = 0

⇔ −
[
(1− ε̄t,k)e−η − ε̄t,keη

]
= 0

⇔ η =
1

2
log

1− εt,k
εt,k

,

which verifies that the step size selected by the coordinate descent is equal to the weight αt chosen

at the t-th round of ADABOOST.

The coordinate descent view of the ADABOOST algorithm can be extended to other convex and

differentiable objective functions of ᾱ. For example, applying coordinate descent to the objective

based on the logistic loss u 7→ log2(1 + e−u) instead of the exponential loss u 7→ e−u leads to the

LOGITBOOST [Friedman et al. 2000] algorithm.

2.3.3 LEARNING GUARANTEES

The generalization properties of the ADABOOST algorithm can be analyzed using the complex-

ity of families of convex ensembles. Let conv (H) be the convex hull of a space of real-valued

functions H:

conv (H) =

{
p∑

k=1

µkhk : p ≥ 1,∀k ∈ [p] : µk ≥ 0, hk ∈ H,

p∑
k=1

µk ≤ 1

}
. (2.15)
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Theorem 2.10 (Ensemble Rademacher margin bound). Let H be the set of real-valued functions.

Fix ρ > 0. Then, for any δ > 0, with a probability of at least 1− δ over the draw of a sample S of

size m, the following inequalities hold for all h ∈ conv (H):

R(h) ≤ R̂S,ρ(h) +
2

ρ
Rm(H) +

√
log 1

δ

2m
,

R(h) ≤ R̂S,ρ(h) +
2

ρ
R̂S(H) + 3

√
log 2

δ

2m
.

Note that f =
∑N

i=1 αjhj returned by the ADABOOST algorithm is not in conv (H). However,

its normalized version f̄ =
∑N
i=1 αjhj
‖α‖1 ∈ conv (H). Thus, we can apply the ensemble Rademacher

bound from above to f̄ to obtain the following inequality with a probability of at least 1− δ:

R(f) ≤ R̂S,ρ(f̄) +
2

ρ
Rm(H) +

√
log 1

δ

2m
. (2.16)

The bound above guarantees effective generalization for the scenarios where the margin lossRρ(f̄)

is small for a large margin ρ.

2.3.4 REGULARIZATION

It may occur in practice that ADABOOST overfits to particular base predictors hj , assigning high

weights αj to them in a linear ensemble. Typically, this happens because the algorithm focuses

of a small fraction of the training examples that are difficult to classify. Avoiding such situations

can be done either by reducing the number of boosting rounds (early stopping) or by controlling

the mixture coefficients α1, . . . , αN . Given ᾱ = [ᾱ1, · · · , ᾱN ]> ∈ RN ; the latter can be done

by introducing the norm of ᾱ into the objective function. For some λ > 0, let G(ᾱ) be the
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L1-regularized objective function of the ADABOOST algorithm defined by:

G(ᾱ) =
1

m

m∑
i=1

e−yif(xi) + λ‖ᾱ‖1 =
1

m

m∑
i=1

e−yi
∑N
j=1 ᾱjhj(xi) + λ‖ᾱ‖1. (2.17)

Because the original ADABOOST objective 1
m

∑m
i=1 e

−yif(xi) is convex, and the L1-norm is a

convex function of ᾱ, thenG(ᾱ) is convex as well. Therefore, ADABOOST with L1-regularization

is equivalent to applying coordinate descent to the objective G(ᾱ).

2.3.5 DEEP BOOSTING

ADABOOST and its extensions combine functions from a hypothesis set of base classifiers H.

In many applications, H consists of decision trees. In particular, decision trees of depth one (also

referred to as boosting stumps) have been extremely successful in practice for small datasets. How-

ever, for large-scale applications (such as speech or image processing), the boosting stumps do not

provide sufficient discriminatory power. Thus, it is desirable to use richer hypothesis classes. For

example, the families of all decision trees Htrees
k with depth bounded by a sufficiently large constant

k. As has been described in the previous sections, the learning guarantees for boosting depend not

only on the empirical error but also on the complexity of the hypothesis class R(Htrees
k ). If a large-

scale problem uses boosting with deep decision trees, then for k sufficiently large, the increased

complexity R(Htrees
k ) can make the learning guarantees much looser, whereas the algorithm has

increased risk of over-fitting to a particular training sample.

An alternative boosting framework that solves the problem above is deep boosting [Cortes

et al. 2014; Kuznetsov et al. 2014]. In this framework, the boosting algorithm has access to p

base hypothesis classes of increasing complexity H1, . . . ,Hp, such as the Htrees
k of increasing tree

depth. At every boosting round, the learner picks a particular base class Hk and selects a base
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Figure 2.2: Base classifier set H decomposed into subfamilies H1, . . . ,Hp or their union [Cortes
et al. 2014].

predictor from that class. The intuition is that whereas on some boosting rounds, extremely rich

classes of functions may be selected, this need not happen at every step. In fact, one can achieve

strong performance by using simple Hk in a significant fraction of the boosting steps and using

rich families only on several occasions. This flexibility allows the boosting algorithm to find a

balance between the complexity and the sample error of the algorithm at each boosting stage and,

in fact, is motivated by the SRM principle.

Theorem 2.11 (Deep Boosting Generalization Bound). Assume p > 1. Fix ρ > 0. Then, for any

δ > 0, with a probability of at least 1 − δ over the draw of a sample S of size m, the following

inequality holds for all f =
∑T

t=1 αtht ∈ F , where F = conv
(
∪pk=1 Hk

)

R(h) ≤ R̂S,ρ(h) +
4

ρ

T∑
t=1

αtRm(Hkt) + C(m, p),

where C(m, p) = O

(√
log p
ρ2m

log
(
ρ2m
log p

))
The theorem above provides data-dependent learning guarantees for convex ensembles with

multiple hypothesis sets {H1, . . . ,Hp}. It is important to note that the complexity term in the

bound admits an explicit dependency on the mixture coefficients αt; that is, the complexity of each

base hypothesis class Rm(Hkt) is weighted by the mixture weight αt of the predictor that belongs

to Hkt . Thus, the bound in Theorem 2.11 suggests that whereas hypothesis sets of extremely high

complexity can be selected by the boosting algorithm, if their total α - ensemble weight is relatively
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small, then the algorithm will still achieve favorable margin guarantees.

The learning scenario of deep boosting is extremely powerful while dealing with hypothesis

classes of varying complexity. It will be used as a foundation for the analysis of learning with

multiple regularized hypothesis spaces in Chapter 3 as well as with multiple data distributions in

Chapter 4.

2.4 STRUCTURED PREDICTION

Many important machine learning tasks are instances of structured prediction problems. This

area is an extension of the standard supervised classification learning scenario to problems beyond

those with binary space Y = {+1,−1}. These are learning problems where the output labels admit

some structure that is important to consider both for statistical and computational reasons. Struc-

tured prediction problems include most natural language processing tasks, such as pronunciation

modeling, part-of-speech tagging, context-free parsing, dependency parsing, machine translation,

speech recognition, where the output labels are sequences of phonemes, part-of-speech tags, words,

parse trees, or acyclic graphs, as well as other sequence modeling tasks in computational biology.

They also include a variety of problems in computer vision such as image segmentation, feature

detection, object recognition, motion estimation, computational photography, and many others.

We consider the supervised learning setting, in which the learner receives a labeled sample S =

{(x1, y1), . . . , (xm, ym)} drawn i.i.d. from some unknown distribution over X×Y, where X denotes

the input space and Y the output space. In structured prediction, we assume that the elements of

the output space Y can be decomposed into possibly overlapping substructures y = (y1, . . . , yl).

We further assume that the loss function L : Y × Y → R+ can similarly be decomposed along

these substructures. A straightforward subset of the structured prediction problems is multi-class
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classification, where each substructure in the output space is of unit size and corresponds to a

particular class label.

However, the nature of the label space in structured prediction problems is significantly richer

than that in multi-class classification. Consider the example of part-of-speech tagging, where the

task is to assign a part-of-speech (noun, verb, adjective, etc.) to every word in a given sentence.

Thus, a sentence with words w = w1, . . . , wn will be associated with a sequence of part-of-speech

tags t1, . . . , tn, which can be viewed as the label of the sentence w. However, because each word

in the sentence w can have any one of the part-of-speech tags, the label space for sentences is

exponential in the length of the sentence. More generally, if Σ is the alphabet of part-of-speech

tags, and the length of the source sentences is n, then the size of the label space is |Σ|n, which

corresponds to the number of possible tag sequences.

The critical aspect of most of the structured prediction problems is that the objective L is not

simply a zero-one loss over the entire output sequence but a function that is decomposed along

different substructures. Moreover, the penalties incurred for incorrect predictions can vary based

on which substructure the prediction is taking place.

Some key examples of loss functions that are relevant to our work are the Hamming, n-

gram, and edit-distance losses. The Hamming loss is defined for all y = (y1, . . . , yl) and y′ =

(y′1, . . . , y′l) by L(y, y′) = 1
l

∑l
k=1 1yk 6=y′k , with yk, y′k ∈ Yk. The edit-distance loss is commonly

used in natural language processing (NLP) applications where Y is a set of sequences defined over

a finite alphabet, and the loss function between two sequences y and y′ is defined as the mini-

mum cost of a sequence of edit operations, typically insertions, deletions, and substitutions, that

transform y into y′. The n-gram loss is defined as the negative inner product (or its logarithm) of

the vectors of n-gram counts of two sequences. This can serve as an approximation to the BLEU

[Papineni et al. 2002] score, which is commonly used in machine translation.
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The goal of the learner in the structured prediction setting, similar to that in basic supervised

classification, is to find an optimal predictor h ∈ H that minimizes the empirical loss on a given

sample S; that is, R̂S(h) = 1
m

∑m
i=1 L(h(xi), yi).

The features that the prediction algorithm uses to learn from the input data typically depend

both on the input and output. Thus, let Φ(x, y) be the feature vector associated to the pair (x, y) ∈

X× Y. Given the dependency of the features on both the input and output, the hypothesis space is

described as

∀x ∈ X : h(x) = argmax
y∈Y

w ·Φ(x, y) (2.18)

for some real valued vector w ∈ RN .

Given a labeled sample Sm = ((x1, y1), . . . , (xm, ym)) ∈ (X×Y)m, the learner in the structured

prediction setting seeks to minimize an empirical objective function that is based on the average

loss measure L over Sm. The empirical objective functions commonly used in structured prediction

include Maximum Margin Markov Networks (M3N) [Roller et al. 2004]:

min
w

1

2
‖w‖2 + C

m∑
i=1

max
y 6=yi

max

(
0, L(y, yi)−w ·

[
Φ(xi, yi)−Φ(xi, y)

])
, (2.19)

as well as CRFs [Lafferty et al. 2001]:

min
w

1

2
‖w‖2 + C

m∑
i=1

log
∑
y∈Y

exp
(
L(y, yi)−w ·

[
Φ(xi, yi)−Φ(xi, y)

])
. (2.20)

The M3N objective involves an additive penalty of L(y, yi) for margin violation. Such an objec-

tive is natural when the output space Y is endowed with a graph structure that satisfies a Markov

property. For instance, Y can be a chain or a tree. By taking advantage of the Markov structure

of the output label space Y, it is possible to decompose the similarity measure L(y, yi) along the
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Figure 2.3: The application of principal component analysis and linear discriminant analysis for a
sample of two-dimensional data. [Raj 2019].

substructures of Y and achieve a polynomial-time algorithm to solve the problem in 2.19.

The CRF objective in Equation 2.20 is obtained from the Maximum Margin Markov Networks

objective in Equation 2.19 by replacing the max function with the soft-max, which is its smooth

approximation, defined as (x1, . . . , xk) 7→ log
(∑k

j=1 e
xj
)
.

2.5 DIMENSIONALITY REDUCTION

For modern large-scale learning problems, storing a full representation of the input sample Sm

of examples from the input space X is computationally intensive and often infeasible. In these

situations, dimensionality reduction is often used to find a low-dimensional subspace (manifold)

of X that retains the most important information about the sample Sm for the purpose of a statistical

learning procedure.

Each dimensionality reduction method is geared towards constructing a low-dimensional man-

ifold with specific properties. For example, PCA [Pearson 1901] defines the low-dimensional

subspace as the span of the top eigenvectors of the data covariance matrix. Nonlinear dimension-

ality reduction methods, such as Isometric Feature Mapping [Tenenbaum et al. 2000] and Locally

Linear Embedding [Roweis and Saul 2000] define a manifold that approximately preserves the
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neighborhood properties of the sample points.

Dimensionality reduction is applied for two main reasons [Gönen 2014]: (i) exploratory data

analysis and (ii) learning from the reduced data. Dimensionality reduction helps in exploratory

analysis by allowing to visualize low-dimensional (typically R2 or R3) data representation or per-

form cluster analysis [Belkin and Niyogi 2003]. Learning, forecasting, and classification can be

improved with dimensionality reduction because it enables data’s inherent noise to be removed

[Zhang 2009]. In this thesis, we are considering the coupled dimensionality reduction problem,

where the goal of fitting a low-dimensional manifold is to provide the maximum benefit for the

subsequent supervised learning on features from that manifold.

When determining the effective subspace S of data for the purpose of learning, it is shown that

an efficient dimensionality reduction method would use not only the structure of features but also

the labels of those features (or values of dependent variable). To that means, dimensionality re-

duction methods can be narrowed down to three types [Lin et al. 2011]: unsupervised, supervised,

and semi-supervised.

• Unsupervised. Access to the output labels is not provided. Therefore, the learner cannot

use them to guide the choice of the low-dimensional subspace S. Rather, one has to rely

on the intrinsic structure of explanatory variables. Examples of unsupervised dimensionality

reduction include PCA [Pearson 1901], Isometric Feature Mapping [Tenenbaum et al. 2000],

and Locally Linear Embedding [Roweis and Saul 2000].

• Supervised. Access to labels/classes or values of dependent variables is provided. Those

labels/classes or values are used to guide the fitting of the low-dimensional subspace. For

instance, if the labels of each training example are known, fitting a low-dimensional projec-

tion will benefit from optimizing the within- and between-class distances, as done in linear

discriminant analysis. It is also possible to find an effective subspace Sj for each different
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class j and then combine them, as performed in local discriminant embedding.

• Semi-Supervised. Access to labels or dependent variables is only partially provided. In

such cases, one can preserve the intrinsic dimension structure on unlabeled points and com-

bine it with supervised learning on labeled points. An example would be semi-supervised

discriminant analysis [Cai et al. 2007].

The large-scale nature of modern machine learning problems is often evident in the dimension

of the input space: d = dim(X). If X = Rd, then the dimensionality of X is easily understood.

However, for some complex input spaces, it is not straightforward to conceptualize what the di-

mension of X is. Thus, one of the critical concepts that exist in machine learning research is the

so-called intrinsic (sometimes effective) dimension of data. Intuitively, the intrinsic dimension is

the dimension of the manifold onto which the data can be projected without losing essential infor-

mation. The common methods of measuring the intrinsic dimension are PCA, Multidimensional

Scaling, and statistical methods based on stochastic processes [Levina and Bickel 2004]. When an

estimate of the intrinsic dimension d? of the input data is obtained, the learner would project the

data onto a d?-dimensional manifold and then execute a learning algorithm within the projected

space.

According to PCA, the intrinsic dimension of the input data is the number of covariance matrix

eigenvalues that are larger than some threshold (in fact, that is the dimension of the subspace

spanned by top-k eigenvectors). However, the subspace produced by the top-k eigenvectors is

linear. Constructing a nonlinear subspace of a specific dimension d? provides better discriminatory

properties for most dataset types. Such a nonlinear subspace can be constructed using a nonlinear

extension of the standard PCA—Kernel PCA (KPCA) [Schölkopf et al. 1997]. The key difference

of KPCA is that in this procedure, each example xi is mapped onto a high dimensional Hilbert

space H with a mapping Φ (xi) : X → H. It is essential that the image space is Hilbert, which
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is endowed with an inner product and satisfies the completeness property. Whereas in standard

PCA, the orthogonal projection is applied in the input space X, in Kernel PCA, it is carried out

in the image space H; that is, the data are projected onto top-k orthonormal eigenvectors of the

covariance matrix of images yi = Φ (xi).

2.5.1 KERNEL METHODS AND KERNEL PCA

As articulated in the literature that the dimensionality reduction techniques just mentioned and

most others are specific instances of the KPCA algorithm [Ham et al. 2004] for different choices

of a kernel function. An even broader view of dimensionality reduction techniques is that they first

map input points to the Reproducing Kernel Hilbert Space (RKHS) of some positive semi-definite

(PSD) kernel K and next project vectors onto a low-dimensional subspace of that Hilbert space.

Because KPCA is so fundamental to the understanding of dimensionality reduction techniques and,

in fact, strictly generalizes most popular methods, we provide a detailed description of the KPCA

algorithm as well as summarize the key properties of the Hilbert space that is associated to it.

For simplicity, let X = Rn, from which a labeled sample Sm = {(xi, yi), . . . , (xm, ym)} is

selected. Assuming that the data are centered, define a covariance matrix C = 1
m

∑m
i=1 xix

>
i . The

solution of the eigenvalue problem for the covariance matrix C : λV = CV results in eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λm and orthonormal eigenvectors v1, . . . , vm, corresponding to the ordered

eigenvalues. Standard PCA selects top r eigenvalues and projects every xi onto span (v1, . . . , vr),

effectively reducing the dimension of the data to the dimension of the span of the eigenvectors,

which is equal to r. Denote such orthogonal projection as Pxi. Given a predictor h, examples are

classified using h (Pxi)→ {−1, 1}.

As described, PCA reduces the data’s dimension while keeping most of the variance within the

projected subspace. However, although PCA efficiently captures the data’s linear structure, it can
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fail in cases when the data are embedded in some nonlinear manifold. In such cases, KPCA is

applied, where the data are mapped with Φ : Rn → H into some higher-dimensional space. The

space H is typically referred to as a feature space, and Φ is termed a feature mapping. The image

of the data in H will have an (approximately) linear structure, which allows to perform PCA in

the image space H instead of Rn. The discriminatory properties of the projection in H critically

depend on the way the inner product is defined in that space, which is carried out using the kernel

function.

Definition 2.12 (Kernel). A function K : X× X 7→ R is referred to as a kernel over X.

In a particular case, when X = Rn, the kernel is a functional over the space of real-valued

vectors of dimension n.

Definition 2.13 (Positive Definite Symmetric Kernels). A kernel K : X × X 7→ R is said to be

positive definite symmetric (PDS) if for any {x1, . . . , xm} ⊂ X, the matrix K = [K(xi, xj)]i,j ∈

Rm×m is symmetric positive semidefinite (SPSD).

The kernel matrix K is SPSD given that it is symmetric and satisfies one of the two equivalent

conditions below:

• all eigenvalues of K are non-negative;

• given any vector c = [c1, . . . , cm]> ∈ Rm×1, the following inequality holds:

c>Kc =
n∑

i,j=1

cicjK(xi, xj) ≥ 0 (2.21)

Widely used examples of PDS kernel functions include Gaussian kernel

KGaussian(x, y) = exp
(
− ‖x− y‖

2σ2

)
, (2.22)
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Sigmoid kernel

KSigmoid(x, y) = tanh
(
a(x · y) + b

)
, (2.23)

and Polynomial kernel

Kpoly(x, y) =
(
x · y + c

)d
. (2.24)

A fundamental result in functional analysis guarantees that a Hilbert space can be constructed

using the kernel function as an inner product [Aronszajn 1950].

Theorem 2.14 (Reproducing Kernel Hilbert Space). Let K : X× X→ R be a PDS Kernel; then,

there exists a Hilbert space H and a mapping Φ : X 7→ H such that

(∀x, y ∈ X)K (x, y) = 〈Φ (x) ,Φ (y)〉

H is termed an RKHS associated to kernel K.

The Hilbert space H constructed in such a way is characterized by the reproducing property:

∀h ∈ H,∀x ∈ X : h(x) = 〈h,K(x, ·)〉. (2.25)

Theorem 2.15 (Rademacher complexity of kernel-based hypotheses). Let K : X × X 7→ R be a

PDS kernel and Φ : X 7→ H be a feature mapping associated to K. Let Sm ⊂ {x : K(x, x) ≤ r2}

be a sample of size m and let H = {x 7→ 〈w,Φ(x)〉 : ‖w‖H ≤ Λ} for some Λ ≥ 0; then, the

following Rademacher complexity bound holds:

R̂S(H) ≤
Λ
√

Tr[K]

m
≤
√
r2Λ2

m
(2.26)
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Theorem 2.16 (Margin bounds for kernel-based hypotheses). Let K : X × X 7→ R be a PDS

kernel with r2 = supx∈XK(x, x). Let Φ : X 7→ H be the feature mapping associated to K and

let H = {x 7→ 〈w,Φ(x)〉 : ‖w‖H ≤ Λ} for some Λ ≥ 0. Fix ρ > 0; then, for any δ > 0, the

following inequalities hold with a probability of at least 1− δ for any h ∈ H:

R(h) ≤ R̂S,ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
, (2.27)

R(h) ≤ R̂S,ρ(h) + 2

√
Tr[K]Λ2/ρ2

m
+ 3

√
log 2

δ

2m
. (2.28)
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3 | REGULARIZED GRADIENT BOOSTING

Gradient Boosting (GB) is a popular and very successful ensemble method for binary trees. While

various types of regularization of the base predictors are used with this algorithm, the theory that

connects such regularizations with generalization guarantees is poorly understood. We fill this

gap by deriving data-dependent learning guarantees for GB used with regularization, expressed in

terms of the Rademacher complexities of the constrained families of base predictors. We introduce

a new algorithm, called RGB, that directly benefits from these generalization bounds and that, at

every boosting round, applies the Structural Risk Minimization principle to search for a base pre-

dictor with the best empirical fit versus complexity trade-off. Inspired by Randomized Coordinate

Descent we provide a scalable implementation of our algorithm, able to search over large fami-

lies of base predictors. Finally, we provide experimental results, demonstrating that our algorithm

achieves significantly better out-of-sample performance on multiple datasets than the standard GB

algorithm used with its regularization.

3.1 BACKGROUND

Ensemble methods form a powerful family of techniques in machine learning that combine multi-

ple base predictors to create more accurate ones. These methods are often very effective in practice

and can achieve a significant performance improvement over the individual base predictors [Quin-
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lan et al. 1996; Caruana et al. 2004; Freund et al. 1996; Dietterich 2000]. ADABOOST [Freund and

Schapire 1997b] and its variants are among the most prominent ensemble methods since they are

both very effective in practice and benefit from well-studied theoretical margin guarantees [Freund

and Schapire 1997b; Koltchinskii and Panchenko 2002b].

Gradient Boosting (GB) [Friedman 2001] is another popular tree-based ensemble method that

has inspired a number of widely-used software libraries (e.g., XGBOOST [Chen and Guestrin

2016], MART [Friedman 2002], and DART [Rashmi and Gilad-Bachrach 2015]) and has fre-

quently ranked among the top in benchmark competitions such as Kaggle. But, while it is often

introduced and presented differently, GB exactly coincides with AdaBoost, when the objective

function used is the exponential function, as shown for example by [Schapire and Freund 2012].

More generally, both of these algorithms are instances of Functional Gradient Descent [Mason

et al. 2000; Grubb and Bagnell 2011] when non-increasing convex and differentiable upper bounds

on the zero-one loss are used. Viewed from the Functional Gradient Descent perspective, at every

boosting step, GB seeks a predictor function h that is closest to the functional gradient of the ob-

jective within some constrained family of base predictors H. Specifying this base predictor family

H such that the selected function does not overfit the gradient, as well as defining an efficient

search procedure over H is crucial for the success of the algorithm. In most practical instances,

several types of constraints are imposed to do so. As an example, for binary regression trees, XG-

BOOST bounds the number of leaves and the norm of the leaf values vector. This can be viewed as

a regularization. However, to our knowledge, no theoretical analysis has been provided for these

commonly-used constraints.

A natural question is whether one can derive learning guarantees that explain how this regu-

larization on H, and, perhaps even more general forms of constraints on functions h ∈ H, are

connected to the generalization performance of GB. We seek inspiration from the margin-based
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learning bounds given for ADABOOST [Schapire et al. 1997a; Mohri et al. 2012]. These guar-

antees, however, do not provide a detailed analysis of the constraints on the families of tree base

predictors, nor do they provide guidance on how to conduct an efficient search of these families to

select a predictor during each boosting round.

We fill this gap by providing a comprehensive analysis of regularization in GB and derive

learning guarantees that explain what type of regularization should be used and how. We give

data-dependent learning bounds for GB with regularization, expressed in terms of the Rademacher

complexities of the constrained hypotheses’ sub-families, from which the base predictors are se-

lected, as well as the ensemble mixture weights. We present a new algorithm, called RGB for

Regularized Gradient Boosting, which generalizes the existing gradient boosting methods by in-

troducing a general functional q-norm constraint for the families of the tree base predictors.

Our algorithm and its objective function are directly guided by the theory we develop. Our

bound suggests that the Structural Risk Minimization principle (SRM) [Vapnik 1992] should be

used to break down H into subsets of varying complexities and, at each round, select a base learner

h from a subset that provides the best trade-off between proximity to the functional gradient and

the complexity.

Applying SRM to search over subsets of H is challenging, since often these subsets are ex-

tremely rich, possibly infinite. An example is the families of decision trees with bounded depth

used in GB. We provide a solution to the problem of expensive search and show how Randomized

Coordinate Descent [Nesterov 2012] can be used to search over H efficiently, using our general-

ization bounds.

Finally, this paper provides experimental results, demonstrating that our algorithm achieves

significantly better out-of-sample performance than the baselines such as XGBOOST on multiple

datasets. We give specific bounds, as well as the pseudocode and experimental results, for the fam-
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ilies of binary regression trees, but our analysis can be extended to broader families of functions,

such as SVMs [Cortes and Vapnik 1995] and Deep Neural Networks [LeCun et al. 2015].

The paper is organized as follows. In Section 3.2, we introduce what we name a Regularized

Gradient Boosting framework. In Section 3.3 we derive a Rademacher complexity bound on the

families of regularized regression trees, which allows us to establish learning guarantees for Reg-

ularized Gradient Boosting. This bound directly inspire the optimization objective and the RGB

algorithm presented in Section 3.4 that benefits from the guarantees following from the SRM prin-

ciple. A non-uniform randomized search over the families of base predictors provides an efficient

solution. In Section 3.5, we present our experimental results, which illustrate the benefits of the

RGB algorithm.

3.2 REGULARIZED GRADIENT BOOSTING

In this section, we examine the correspondence between gradient descent in functional spaces and

coordinate descent in vector spaces. This connection will help us rigorously define a Regularized

Gradient Boosting learning scenario and develop a scalable implementation for it.

3.2.1 GRADIENT BOOSTING AS FUNCTIONAL GRADIENT DESCENT

Let X denote the input space, and let F be an inner product space of functions from X to R. We

define a restricted family of functions H ⊆ F to be a set of base hypotheses. In a standard super-

vised learning scenario, the training and test points are drawn i.i.d. according to some distribution

D over X× {−1, 1}, and S = {(x1, y1), . . . , (xm, ym)} is a training sample of size m drawn from

Dm. In this scenario, a general boosting algorithm selects a sequence of functions h1, . . . , hT from

H to minimize a certain empirical loss L : F 7→ R. [Friedman 2001; Grubb and Bagnell 2011;
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Mason et al. 2000; Schapire 1999; Cortes et al. 2014]. The specification of H and the method of

selecting each ht ∈ H are essential for the success of the boosting algorithms. In fact, different

answers to these two questions have resulted in distinct and separately-studied algorithms, such as

GB, ADABOOST, and LOGITBOOST [Friedman et al. 1998].

The goal of boosting algorithms is typically to minimize an empirical loss functional:

L(F ) =
1

m

m∑
i=1

Φ

(
yi, F (xi)

)
, (3.1)

where F (x) =
∑T

t=1 αtht(x) such that ∀t ∈ [1, T ] : ht ∈ H. Popular ensemble learning algo-

rithms, such as ADABOOST and GB, despite having originated in different research communities

at different times, are particular instances of a more general algorithm, Functional Gradient De-

scent. The objective in Equation 3.1 is viewed by the Functional Gradient Descent as a functional

rather than a vector-valued function, with the goal of minimizing L over F by taking steps in the

direction of the steepest descent F ← F − η∇L(F ) for some positive learning rate η ∈ R. In

the learning scenario described above, only the trace of F on x1, . . . , xm is observable; therefore,

the functional gradient of L is ∇L =

[
∂L(F )
∂F (x1)

, . . . , ∂L(F )
∂F (xm)

]
. This makes the Functional Gradient

Descent update equal to F (xi)← F (xi)− η ∂L(F )
∂F (xi)

. Of course, to make sure this functional update

is well defined and to avoid over-fitting, it is natural to restrict F (x) to some hypothesis set H,

which implies the following form of the functional update:

h = argmin
h∈H

d(∇L, h), (3.2)

where d is some distance measure. This means that h ∈ H is chosen to be the closest function

h ∈ H to the projection of ∇L onto H. The update in Equation 3.2 is a fundamental but not

well-studied component of virtually all boosting methods. Simply by varying the choice of H and
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d, this single equation recovers most widely-used boosting algorithms.

If we restrict the optimization steps to a set of base hypotheses H, then each step is chosen to

be the function closest in the direction to the negative gradient, which means it maximizes

−∇L · h = −
m∑
i=1

∂L(F )

∂F (xi)
h(xi). (3.3)

Particularly, if Φ(yi, f(xi)) = e−yif(xi), then the Functional Gradient Descent recovers the original

ADABOOST algorithm, and if Φ(yi, f(xi)) = log
(
1 + e−yif(xi)

)
, then it recovers LOGITBOOST.

When, instead of the negative inner product−∇L·h, we minimize the distance ‖−∇L(F )−h‖2
2,

we recover the GB algorithm.

3.2.2 GRADIENT BOOSTING AS VECTOR SPACE COORDINATE DESCENT

There is an equivalence relation between gradient descent in functional spaces and coordinate

descent in vector spaces that often helps to obtain efficient algorithms for ensemble learning. At

each of the T steps of the Functional Gradient Descent, ∇L is projected onto H, hence the final

solution F can be expressed as Fα =
∑T

t=1 αtht for some α ∈ RT , where ∀1 ≤ t ≤ T : ht ∈

HIt ⊆ H, where HIt indicates the subset of H selected at the t-th step. The subsets HIt can be

viewed as coordinate blocks in H. In this view, at boosting step t a particular subspace HIt out

of {H1, . . . ,HK} is selected; then a base predictor ht ∈ HIt from that subspace is added to the

ensemble.

This allows switching from minimizing the loss functional L(F ) to minimizing the loss func-

tion L(α) = L(Fα).

L(α) =
1

m

m∑
i=1

Φ

(
yi,

T∑
t=1

αtht(xi)

)
(3.4)

over the ensemble weights vector α ∈ RT . Selecting a projection ht and a step size αt on the t-th
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step of the Functional Gradient Descent on L(Fα) or alternatively selecting a coordinate αt on the

t-th step of the vector space coordinate descent on L(α) both result in the same form of the update

Fα,t = Fα,t−1 + αtht. Additionally, the full sequence of these updates for t from 1 to T is equal

since, by the chain rule

∀1 ≤ t ≤ T : −∂L(αt)

∂αt
= −

m∑
i=1

∂L(Fα)

∂Fα(xi)
ht(xi) = −∇L · ht, (3.5)

which means that min1≤t≤T −∂L(αt)
∂αt

selected by the coordinate descent is equal to min1≤t≤T −∇L·

ht selected by Functional Gradient Descent.

This equivalence illustrates two important points. First, coordinate descent methods can be

used to provide efficient numerical solutions for boosting. Second, the proper construction of

the subsets Ht such that ht ∈ HIt ⊆ H is crucial for the success of boosting algorithms. We

rely on this equivalence when presenting a coordinate-descent-style algorithm for minimizing the

regularized boosting objective that scales well to large families of base predictors.

3.2.3 REGULARIZED GRADIENT BOOSTING

In this subsection, we describe the main novelty of our work – the analysis of regularization applied

to GB. We formulate what we name a Regularized Gradient Boosting framework and show the

subtle connection between the regularization and the properties of Hk ⊆ H. As we shall see, the

regularization terms are not explicitly introduced in the definition of the objective, but only in the

definition of an approximation to the functional gradient.

While the unregularized projection step, as in Equation 3.2, has been extensively studied for

GB, the fundamental theory of the regularization commonly used is missing. However, a number

of empirical studies and software frameworks [Sun et al. 2014; Chen and Guestrin 2016] indicate
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that introducing regularization to this step is extremely beneficial. For example, the popular XG-

BOOST library, dedicated to boosted decision trees, regularizes the norm of the leaf values, as well

as the number of leafs. We are filling this gap by providing a theory that links regularization with

learning guarantees for GB algorithms.

For a convex function Ω: F 7→ R, a closed subspace H ⊆ F and β ∈ R+, let the Regularized

Gradient Boosting step be defined by

h = argmin
h∈H

d(∇L, h) + βΩ(h). (3.6)

Given the convexity of Ω, this step is equivalent to h = argminh∈Ĥ d(∇L, h), where Ĥ = H ∩

{h : Ω(h) ≤ β}. Such a reduction illustrates the subtle, yet extremely important, connection

between regularization and the definition of hypothesis set H. The equivalence between vector

space coordinate descent and Functional Gradient Descent presented in Section 3.2, meaning that

both of these methods iteratively select the same sequence of functions ht ∈ HIt ⊆ H, suggests

that a natural way to use regularization for boosting is to define F = conv(∪Kk=1Hk), where

Hk = {h : θk−1 < Ω(h) ≤ θk} are disjointed sets of functions for a set of parameters [θ1, . . . , θK ].

Note that, with this formulation, the regularization is not in the objective function; instead the

search for the gradient approximation is constrained by a regularization.

We show, in the following section, that such a definition of F allows us to obtain margin-based

learning guarantees for the Regularized Gradient Boosting that are dependent on the complexities

of each individual Hk.
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3.3 LEARNING GUARANTEES

As described in the previous section, by projecting the functional gradient onto the subspace F =

conv(∪Kk=1Hk) at each step, we are able to learn an ensemble function f =
∑T

t=1 αtft ∈ F , where

the Hks are families of functions with varying complexity. Thus, it is natural to seek learning guar-

antees depending on the properties of each Hk and the mixture weight vector α = [α1, . . . , αT ].

The first margin bound based on the VC-dimension for ensembles
∑T

t=1 αtft was given by

[Freund and Schapire 1997b]. Later, tighter data-dependent bounds in terms of the Rademacher

complexity of the underlying function class H were given by [Koltchinskii and Panchenko 2002b],

see also [Mohri et al. 2018b]. For the specific case where H = conv(∪Kk=1Hk), Rademacher

complexity-based guarantees were given in [Cortes et al. 2014]. In this section, we will use these

theoretical results to derive margin-based guarantees based on the Rademacher complexities of the

families of regularized decision trees Hk and the mixture weights α. The bounds that we show,

being data-dependent, will not only fill the missing generalization theory for the existing gradient

tree boosting frameworks but also motivate a new scalable learning algorithm for the Regularized

Gradient Boosting framework, called RGB, in Section 3.4.

Here, we restrict our analysis to the hypothesis families Hk of regression trees. However, our

results can be extended to other families, such as kernel-based hypotheses and neural networks, so

long as the sample Rademacher complexities of these families can be bounded.

Each leaf l in a regression tree contains a real-valued number wl providing the output value

of the tree for any sample point allocated to that leaf; thus, we let w be a vector of stacked

leaf values. The function computed by a regression tree can thus be represented by h(x) =∑
l∈leaves(h) wl Ix ∈ leafl, where Ix ∈ leafl is the indicator function for sample point x ∈ Rd being

allocated to leafl; this value h(x) can be used for classification in a straightforward manner by
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thresholding.

The node partition functions in binary regression trees are of the form [x]j ≤ θ for some

feature index j ∈ [1, d] and θ ∈ R, which means that if [xi]j ≤ θ for a sample point xi ∈ Rd,

then xi is allocated to the left subtree and to the right subtree otherwise. Let Hn,λ,q be the set of

all regularized binary regression trees with the number of internal nodes bounded by n and a leaf

values vector w such that ‖w‖q ≤ λ, q ≥ 1. Special instances of these families of trees are widely

used in practice. For example, Hn,λ,1 and Hn,λ,2 are implemented in XGBOOST and frequently

implemented in software libraries.

Theorem 3.1. For any sample S = (x1, . . . , xm), the empirical Rademacher complexity of a

hypothesis set H is defined by R̂S(H) = Eσ
[

suph∈H
∑m

i=1 σih(xi)
]
, where, σis, i ∈ [m], are

independent uniformly distributed random variables taking values in {−1, 1}. Let d be the input

data dimension. The following upper bound holds for the empirical Rademacher complexity of

Hn,λ,q:

R̂S(Hn,λ,q) ≤ λ

√
(4n+ 2) log2(d+ 2) log(m+ 1)

m
.

The proof of Theorem 3.1 is given in the Appendix. This bound shows how the empirical

Rademacher complexity of the regularized decision trees depends both on on the number of internal

nodes n and the upper bound λ on the q-norm of leaf values.

Using this bound, we can now derive our margin-based learning guarantees for the family F .

Let R(f) denote the binary classification error of f ∈ F , R(f) = E(x,y)∼D I yf(x) ≤ 0, and

Rρ(f) its empirical ρ-margin loss for a sample S, Rρ(f) = E(x,y)∼D I yf(x) ≤ ρ. Let R̂ρ(f) =

E(x,y)∼S I yf(x) ≤ ρ.

Theorem 3.2. Fix ρ > 0. Let Hk = Hnk,λk,qk , where (nk), (λk) are sequences of constraints on

the number of internal nodes n and the leaf vector norm ‖w‖q. Define F = conv(∪Kk=1Hk). Then,

54



for any δ > 0, with probability at least 1− δ over the draw of a sample S of size m, the following

inequality holds for all f =
∑T

t=1 αtht ∈ F:

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtλIt

√
(4nIt + 2) log2(d+ 2) log(m+ 1)

m
+ C(m,K),

where It is the index of the subclass selected at time t and C(m,K) = O

(√
log(K)
ρ2m

log
[
ρ2m

log(K)

])
.

The proof of Theorem 3.2 is given in the Appendix. The generalization bound of Theorem 3.2

motivates a specific algorithm for Regularized Gradient Boosting, described and discussed in the

next section.

3.4 ALGORITHM

The multiplicative structure of the bound in Theorem 3.2 with respect to the mixture weights

[α1, . . . , αT ] and the complexities HIt suggests the use of these complexities (or upper bounds)

in the regularization Ω(h). Additionally, one may upper-bound the empirical loss function of

u 7→ Iu ≤ 0 in Theorem 3.2, leading to the following objective:

L(α) =
1

m

m∑
i=1

Φ

(
yi,

T∑
t=1

αtht(xi)

)
+β

T∑
t=1

|αt|λIt

√
(4nIt + 2) log2(d+ 2) log(m+ 1)

m
. (3.7)

Minimizing the function with vector space coordinate descent is equivalent to solving for a projec-

tion at each Functional Gradient Descent step of the form

ht = argmin
h∈H

d(∇L, h) + β
K∑
k=1

λk

√
(4nk + 2) log2(d+ 2) log(m+ 1)

m
Ih ∈ Hk. (3.8)
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In this section we will devise an algorithm for minimizing the regularized objective L(α), called

RGB, that is able to scale to large families of base predictors.

3.4.1 RANDOMIZED COORDINATE DESCENT

The practical challenge of building an ensemble of base predictors in the Regularized Gradient

Boosting scenario is to both define the hypothesis sets Hk and implement an efficient search across

these sets to select the best update direction ht, at each optimization step. Applying coordinate

descent to the objective in Equation 3.7 may be feasible for finite hypothesis sets; however, we are

often required to work with infinite spaces of subfamilies of functions. A typical example would

be one where each subfamily is a decision tree with a fixed topology and fixed leaf values. It is

common to resort to heuristics or to discretize the search space to define an approximate search.

To solve the problem of an extensive search over Hk, we propose a novel method for boosting

updates using randomization applied to the functional space. Random selection of base learners

for GB in the context of Randomized Coordinate Descent has been shown to be successful in

practice. For example, [Lu and Mazumder 2018] demonstrated that uniform sampling helps make

the search over base hypothesis classes more scalable, gave favorable convergence guarantees for

this method. [Nesterov 2012] introduced probabilistic convergence guarantees for Randomized

Coordinate Descent expressed in terms of the local smoothness properties of the objective and

suggested a distribution to sample the coordinates.

Inspired by the analysis of [Nesterov 2012], our work is the first one to provide a method of

searching over the subspaces Hk that is fundamentally-justified, an algorithm that is both scal-

able and admits convergence guarantees. The RGB algorithm picks at each round at random a

subset {Ht1 , . . . ,HtS}. Given a meaningful distribution over H that captures the steepness of

the objective L(α) within each of these subsets, RGB is able to learn an ensemble of functions
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from families Hk of varying complexity. In the following, we show how to apply the Randomized

Coordinate Descent method, as in [Nesterov 2012], to the objective 3.7.

3.4.2 LIPSCHITZ-CONTINUOUS GRADIENTS

Consider the problem of minimizing L(α) as in Equation 3.7. The following lemma describes the

continuity properties of the partial derivatives of L(α), which are needed for the application of

Randomized Coordinate Descent.

Lemma 3.3. Assume that Φ(y, h) is differentiable with respect to the second argument, and that ∂Φ
∂h

is CΦ(y)-Lipschitz with respect to the second argument, for any fixed value y of the first argument.

For all k ∈ [0, K], define L′k(α) = ∂L
∂αk

. Then, L′k(α) is Ck-Lipschitz with Ck bounded as follows:

Ck ≤
1

m

m∑
i=1

h2
k(xi)CΦ(yi). (3.9)

Randomized Coordinate Descent samples the k-th coordinate with probability

pk = Ck/
K∑
k=1

Ck. (3.10)

The convergence guarantees for this procedure are given in [Nesterov 2012] as a function of the

Lipschitz constants Ck.

We can further give upper bounds for the Lipschitz constants above to avoid the computation

of the sums
∑m

i=1 h
2
k(xi). If we introduce the vectors hk and CΦ in Rm such that [hk]i = h2

k(xi)

and [CΦ]i = CΦ(yi), then, by Hölder’s inequality,

Ck ≤
1

m

m∑
i=1

h2
k(xi)CΦ(yi) =

1

m
h ·CΦ ≤

1

m
‖h‖r‖CΦ‖q, (3.11)
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where 1
r

+ 1
q

= 1. Various (r, q)-dual norms can be used, depending on the computational con-

straints and the complexity of the hypothesis classes for the application of the Randomized Coor-

dinate Descent method. For example, using ‖h‖1 and ‖CΦ‖∞ gives the following upper bound:

Ck ≤ 1
m

[
max1≤i≤mCΦ(yi)

]∑m
i=1 h

2
k(xi).

The developed generalization bounds imply the Lipschitz constants and thus define the Ran-

domized Coordinate Descent steps for the minimization of L(α), controlling its convergence. To

illustrate this point, the convergence rate stated in [Nesterov 2012] is as follows:

E
t−1

[
L(αt)

]
− L(α?) ≤

2

t+ 1

( K∑
j=1

Cj

)
R2

0(α0), (3.12)

where α0 is the starting point, α? is the global minimizer of L(α) and R0(α0) is the size of the

initial level set of the objective. The conditional expectation is taken over the random choice of

the next coordinate. The regularization applied to the base predictor families in our Regularized

Gradient Boosting Framework implies the bounds on Ck, thus controlling the convergence of the

algorithm.

3.4.3 PSEUDOCODE

The pseudocode of our RGB algorithm is given in Figure 3.1. The algorithm seeks to minimize

the objective given in Equation 3.7, using Randomized Coordinate Descent. Let P be a discrete

probability distribution over [1, K] with pk = Ck/
∑K

j=1 Cj . Equivalently, P is the distribution

over the base hypothesis sets H1, · · · ,HK . At each draw from P , we select a sample Ht1 , · · · ,HtS

of size S and, from this sample, select one function that provides the best trade-off in the decrease

in objective L(α) and the complexity bound of Theorem 3.1 of the underlying hypotheses family.

The local optimization procedure in Line 6 is an extra step required in the coordinate descent
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RGB(S = (x1, y1), . . . , (xm, ym))

1 for t ∈ [1, T ] do
2 [t1, · · · , tS]← P
3 for s ∈ [1, S] do
4 hs ← argminh∈Hts

1
m

∑m
i=1 Φ

(
yi, F − 1

Cts
L′ts(α)h

)
5 s? ← argmins∈[1,S]

[
1
m

∑m
i=1 Φ

(
yi, F − 1

Cts
L′ts(α)hs

)
+ βΩ(hts)

]
6 α← α− 1

Cs?
L′s?(α)ets?

7 F ← F − 1
Cs?

L′s?(α)hs?

8 return α, F

Figure 3.1: Pseudocode of the RGB algorithm.

procedure to select a single function from Hts . The step in Line 8 is required to select, out of

S sampled directions, the one with the best trade-off between sample fit and complexity bounds.

Note that the evaluation of sampled candidates in Line 5 can be done in parallel, making the time

of RGB per thread comparable to that of standard GB. More specifically, given a fixed sample of

S coordinates, the runtime of one RGB round is equal to the runtime of S rounds of GB when the

same subroutine is used for tree splitting.

3.5 EXPERIMENTS

In this section, we present the results of experiments with our RGB algorithm. We restrict our

attention to learning an ensemble of the regularized regression trees as defined in the family Hn,λ,q,

and to simplify the presentation, we let q = 2, although similar experiments can be easily done for

other norms. For the complexity of these base classifiers we use the bound derived in Theorem 3.1.

To define the subfamilies of base learners we impose a grid of size 7 on the maximum number

of internal nodes n ∈ {2, 4, 8, 16, 32, 64, 256} and a grid on λ ∈ {0.001, 0.01, 0.1, 0.5, 1, 2, 4}. For
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Table 3.1: Experimental Results

Error % sonar cancer diabetes ocr17 ocr49 mnist17 mnist49 higgs

RGB
Mean 26.94 5.19 28.86 0.90 3.10 0.43 1.53 28.60
(Std) (2.10) (0.97) (4.85) (0.45) (0.69) (0.10) (0.38) (0.41)

GB
Mean 28.64 6.14 28.39 1.35 3.50 0.55 1.66 29.11
(Std) (2.13) (0.94) (5.08) (0.52) (0.65) (0.11) (0.32) (0.37)

One-tailed, paired sample t-test
Signif. 5% 5% - 2.5% 2.5% 2% 5% 2.5%

each element from the Cartesian product of these grids, we assign (nk, λk), thus defining the base

families Hnk,λk,2 and F = conv
(
∪49
k=1 Hnk,λk,2

)
.

Given such a decomposition of the functional space, we directly minimize the regularized

objective in Equation 3.7 using Randomized Coordinate Descent with the distribution over the

coordinate blocks as described above. We use the logistic loss as the per-instance loss Φ. For

a given training sample, we normalize the regularization Ω(h) to be in [0, 1] and tune the RGB

parameter β using a grid search over β ∈ {0.001, 0.01, 0.1, 0.3, 1}.

Section 3.4 describes multiple ways to bound the coordinate-wise Lipschitz constants of the

derivative of the objective function, resulting in various coordinate sampling distributions for the

Randomized Coordinate Descent. For our experiments, and specifically to the families Hnk,λk,2

bound the Lipschitz constants by Ck ≤ λk
[

max1≤i≤mCΦ(yi)
]
, which implies that the k-th coor-

dinate is sampled with probability pk = λk/
∑K

j=1 λj , since the max1≤i≤mCΦ(yi) terms cancel out

(see Lemma A.1 in the Appendix for the derivation of this bound).

As a comparison, we run the standard GB, using the XGBOOST library with `2 regularization

on the vector of leaf scores w. We use grid search to tune the hyperparameters of XGBOOST with a
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grid that makes the families of trees explored comparable to the H defined for RGB above. Specifi-

cally, we let the `2 norm regularization parameter be in {0.001, 0.01, 0.1, 0.5, 1, 2, 4}, the maximum

tree depth in {1, 2, 3, 4, 5, 6, 7}, and the learning rate parameter in {0.001, 0.01, 0.1, 0.5, 1}. Both

GB and RGB are run for T = 100 boosting rounds. The hyperparameters are chosen via 5-fold

cross-validation, and the standard errors for the best set of hyperparameters reported.

Table 3.1 shows the classification errors on the test sets for the UCI datasets studied, for both

RGB and GB, see Table A.1 in the appendix for details on the dataset. A one-tailed, paired sample

t-test on the pairs of results from the different trials demonstrate that these results are in general

significant at a 5% level or better. Only for one of the dataset, diabetes with an input dimension

of just 8, we do not observe an improvement of RGB over GB. One natural hypothesis is that the

larger the input dimension, the more the need for proper regularization of the binary regression

trees forming the base learner, and the larger the advantage of the RGB algorithm.

In general, the results demonstrate that by randomly taking steps into coordinates that cor-

respond to subspaces Ht with a theoretically justified distribution, RGB can explore larger hy-

pothesis families more efficiently that the baseline methods. Furthermore, compared to baselines

that operate on the same hypotheses space H, by optimizing for the trade-off between sample fit

and functional subclass complexity, RGB can reduce over-fitting, thereby achieving greater test

accuracy on multiple datasets.

3.6 CONCLUSION

We introduced and analyzed a general framework of Regularized Gradient Boosting, for which we

also devised an effective algorithm, RGB. In this framework, regularization is not directly incorpo-

rated as a term in the loss function. Instead, its definition affects each boosting step by restricting
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the search for the gradient approximation to a constrained subset of base functions. Our analysis

is based upon strong margin-based Rademacher complexity learning guarantees. These bounds

suggest a natural approach for our optimization solution, which consists of dividing the space of

base learners into subfamilies of increasing complexity. For the special case of binary regression

trees, we derived explicit Rademacher complexity bounds that we subsequently exploit in the def-

inition of our RGB algorithm. Randomization over the subfamilies of base functions allows us to

scale our algorithm to large families of base predictors. Our experimental results suggest improved

performance, thanks to a more efficient and theoretically motivated exploration of large function

spaces without over-fitting. Also, as already stated, the run-times of the algorithms are compara-

ble, thereby making RGB a strong alternative to XGBOOST. Finally, our analysis can be extended

in a similar way to that of boosting with other families of base predictors, such as kernel-based

hypothesis sets and Deep Neural Networks.
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4 | BOOSTING WITH MULTIPLE SOURCES

We study the problem of learning accurate ensemble predictors, in particular boosting, in the pres-

ence of multiple source domains. We show that the standard convex combination ensembles in

general cannot succeed in this scenario and adopt instead a domain-weighted combination. We

introduce and analyze a new boosting algorithm, MULTIBOOST, for this scenario and show that

it benefits from favorable theoretical guarantees. We also report the results of several experiments

with our algorithm demonstrating that it outperforms natural baselines on multi-source text-based,

image-based and tabular data. Additionally, we present an extension of our algorithm to the feder-

ated learning scenario and report favorable experimental results for that setting as well.

4.1 MOTIVATION

Ensemble methods such as Bagging, AdaBoost, Stacking, error-correction techniques, Bayesian

averaging, AdaNet or other adaptive methods for learning neural networks are general machine

learning techniques used to combine several predictors to devise a more accurate one [Breiman

1996; Freund and Schapire 1997a; Smyth and Wolpert 1999; MacKay 1991; Freund et al. 2004;

Cortes et al. 2017]. These techniques are often very effective in practice and benefit from favorable

margin-based learning guarantees [Schapire et al. 1997b]. These algorithms assume access to a

training sample drawn from the target distribution. But, in many applications, the learner receives
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labeled data from multiple source domains that it seeks to use to find a good predictor for target

domains, which are typically assumed to be mixtures of source distributions [Hoffman et al. 2018a;

Mansour et al. 2008; Muandet et al. 2013; Xu et al. 2014; Hoffman et al. 2012; Saito et al. 2019;

Wang et al. 2019a]. How can we generalize ensemble methods such as boosting to this scenario?

Several related problems have been tackled in previous work. In the special case of a single tar-

get domain, boosting solutions have been derived [Dai et al. 2007; Yao and Doretto 2010]. These

algorithms have been further improved by boosting base predictors jointly with source features

(or feature views) that are predictive in the target [Yuan et al. 2017; Cheng et al. 2013; Zhang

et al. 2014; Xu and Sun 2012, 2011]. Such methods have been widely adopted in various domain

adaptation scenarios for different types of data. For example, Huang et al. [2010, 2012] showed

that by selecting a base learner jointly with a feature that is predictive across multiple domains

at every boosting step, one can achieve higher accuracy than standard transfer learning methods.

Moreover, the margin provided by boosting-style algorithms can aid in transfer learning where

target domain is unlabelled. [Habrard et al. 2013] have developed an algorithm that jointly mini-

mizes the source domain error and margin violation proportion on the target domain. [Wang et al.

2019a] have demonstrated that boosting classifiers from different domains can be carried out on-

line. [Taherkhani et al. 2020] and [Becker et al. 2013] have shown that multi-source boosting can

be combined with Deep Neural Networks for multi-task learning on large scale datasets.

We give a more detailed discussion of this related prior work in Appendix B.1. However, as

we demonstrate in this paper, several critical questions related to the presence of multiple domains

have not been fully addressed by existing boosting methods from both the algorithmic and the

theoretical point of view. First, what should be the form of the ensemble solutions? We show that,

in general, the standard convex combinations used in much of previous work may not succeed in

this problem (Section 4.2). Instead, we put forward Q-ensembles, which are convex combinations
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weighted by a domain classifier Q, that is, Q(k|x) is the conditional probability of domain k given

input point x. This crucially differentiates our work from that of past studies. Our learning scenario

strictly generalizes previous algorithms. In the special case of a single domain, the form of our

ensemble solutions coincides with that of the familiar ensembles used in AdaBoost.

Second, what should be the form of the objective? Unlike existing boosting methods which

optimize for a specific target distribution or domain, we seek a solution that is accurate for any

mixture of the source distributions, where the mixture weights may be constrained to be in a subset

of the simplex. This conforms with the learning goal in this scenario where the target distribution

is typically assumed to be a mixture of the source ones and is further inspired by the formulation

of the agnostic loss in the related context of federated learning [Mohri et al. 2019b]. Additionally,

this formulation can be viewed as more risk-averse and robust, and it also ensures more favorable

fairness properties, since it does not favor any distribution possibly biased towards some subset of

the source domains. In Section 4.3, we introduce and analyze an algorithm, MULTIBOOST, that

is based on such an objective. This further distinguishes our boosting algorithm from related prior

work.

Third, in Section 4.4, we present a theoretical analysis of our MULTIBOOST algorithm, includ-

ing margin-based generalization bounds that hold for any target mixture of the source distributions.

In Appendix B.6, we derive finer and more flexible learning bounds that can provide more favor-

able guarantees, in particular when the family of target mixtures is more constrained.

Fourth, in Section 4.5, we describe FEDMULTIBOOST, an extension of our MULTIBOOST

algorithm adapted to the distributed learning scenario of federated learning, which is increasingly

important in a wide array of applications [Kairouz et al. 2021], including healthcare [Brisimi et al.

2018]. FEDMULTIBOOST allows the server to train ensemble models that benefit from user data,

while the data remains with that users. We provide a detailed description of our algorithm, as well
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as a brief analysis of the communication costs, which are critical in this scenario. Appendix B.7

contains experimental results comparing FEDMULTIBOOST with several baselines. Finally, in

Section 4.6, we report the results of extensive experiments with our MULTIBOOST algorithm. We

start with a detailed description of the learning scenario we consider.

4.2 LEARNING SCENARIO

Let X denote the input space and Y = {−1,+1} be the output space, associated to binary classi-

fication. We assume the learner receives labeled samples from p source domains, each defined

by a distribution Dk over X × Y, k ∈ [p]. We denote by Sk = ((xk,1, yk,1), . . . . , (xk,mk , yk,mk)) ∈(
X × Y

)mk the labeled sample of size mk received from source k, which is drawn i.i.d. from Dk.

For any function f : X→ R and distribution D over X× Y, let L(D, f) be the expected loss of f ,

that is L(D, f) = E(x,y)∼D[`(f(x), y)], where ` is the binary loss `(f(x), y) = I(yf(x) ≤ 0).

For any k ∈ [p], let Hk denote a hypotheses set of functions mapping from X to [−1,+1],

|Hk| = Nk. The objective of the learner is to find an accurate predictor f for any target distribution

Dλ that is a mixture of the source distributions, where λ may be in a subset Λ of the simplex.

Specifically, Dλ =
∑p

k=1 λkDk, with λ = (λ1, . . . , λp), the set of distributions over the p domains.

This leads to the following agnostic loss of a predictor f [Mohri et al. 2019b]:

L(DΛ, f) = max
λ∈Λ
L(Dλ, f). (4.1)

To create a predictor f , the learner seeks an ensemble of functions from the base classes Hk. What
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should be the form of such ensembles? A natural solution is a convex combinations of the form

f =

p∑
l=1

Nl∑
j=1

αl,jhl,j, (4.2)

where hl,j ∈ Hl and αl,j ≥ 0,
∑p

l=1

∑Nl
j=1 αl,j = 1, as in prominent algorithms such as BAGGING

[Breiman 1999] or ADABOOST [Freund and Schapire 1997a]. It is not hard to show, however,

that for some distributions, any such convex combination of base predictors would lead to a poor

solution.

Proposition 4.1. There exist distributions D1 and D2 and hypotheses h1 and h2 with L(D1, h1) =

0 and L(D2, h2) = 0 such that L
(

1
2
(D1 + D2), αh1 + (1− α)h2

)
≥ 1

2
for any α ∈ [0, 1],

see Appendix B.2. The base predictors h1, h2 are each perfect for their respective domains,

but unlike the common case of a single source domain, standard convex combinations in general

may perform poorly. Thus, we will consider instead the following form for the ensembles of base

predictors:

∀x ∈ X, f(x) =

p∑
l=1

Nl∑
j=1

αl,jQ(l|x)hl,j(x), (4.3)

where Q(l|x) denotes the conditional probability of domain l given x. This helps us account for

that the learner combines base predictors from different domains. For a given point x, experts from

the domains where x is more likely to appear are allocated more weight in the voted combination.

The following result further substantiates the hope for this method to succeed.

Proposition 4.2. For the same distributions D1 and D2 and hypotheses h1 and h2 as in Proposi-

tion 4.1, the equality L(Dλ, (αQ(1|·)h1 + (1− α)Q(2|·)h2)) = 0 holds for any λ ∈ ∆ and any

α ∈ (0, 1),

see proof in Appendix B.2. Thus, our Q-ensembles can be substantially more effective in the
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multiple-source adaptation problem considered. Note, that in the special case of a single domain,

the Q-combinations coincide with standard convex combinations, since Q(k|x) = 1 for all x.

As in the standard boosting scenario, we will adopt a weak-learning assumption. However, our

assumption here must hold for each source domain: for each domain k ∈ [p] and any distribution

D over Sk, there exists a base classifier h ∈ Hk such that the weighted loss of h is γ-better than

random: 1
2
[1 − Ei∼D[yk,ih(xk,i)] ≤ 1

2
− γ, for some edge value γ > 0. This is equivalent to

the existence of a good rule of thumb for each domain. Unlike the standard scenario, however,

here we seek a Q-ensemble and further require it to be accurate for any target mixture Dλ. In the

next section, we present an algorithm, MULTIBOOST, for deriving an accurate Q-ensemble for any

target mixture domains that belongs to the convex combination of the source domains.

4.3 ALGORITHM

Let Φ be a convex, increasing and differentiable function such that u 7→ Φ(−u) upper-bounds

the binary loss u 7→ 1u≤0. Φ could be the exponential function as in ADABOOST or the logistic

function, as in logistic regression. Using Φ to upper-bound the agnostic loss leads to the following

objective function for an ensemble f defined by (4.3) for any α = (αl,j)(l,j)∈[p]×[Nl] ≥ 0:

F (α) = max
λ∈Λ

p∑
k=1

λk
mk

mk∑
i=1

Φ

(
−yk,i

p∑
l=1

Nl∑
j=1

αl,jQ(l|xk,i)hl,j(xk,i)
)
. (4.4)

Since a convex function composed with an affine function is convex and a sum of convex func-

tions is convex, F is convex as the maximum of a set of convex functions. In this section, we will

consider the case where the set Λ coincides with the full simplex, that is Λ = ∆. Our algorithm ap-

plies coordinate descent to this objective, as with ADABOOST and other boosting-type algorithms.

While convex, F is not differentiable and, in general, coordinate descent may not succeed in such
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cases [Tseng 2001; Luo and Tseng 1992]. This is because the algorithm may be stuck at a point

where no progress is possible along any of the axis directions, while there exists a favorable descent

along some other direction. However, we will show that, under the weak-learning assumption we

adopted, there always exists a main direction, along which a descent progress is possible. Alterna-

tively, one can replace the maximum with a soft-max, that is the (x1, . . . , xk) 7→ 1
µ

log(
∑p

k=1 e
µxk)

for µ > 0, which leads to a continuously differentiable function with a close approximation for η

sufficiently large.

Description. Let αt−1 denote the value of the parameter vector α = (αl,j) at the end of the

(t− 1)th iteration and ft−1 the corresponding function: ft−1 =
∑p

l=1

∑Nl
j=1 αt−1,l,jQ(l|·)hl,j . Co-

ordinate descent at iteration t consists of choosing a direction eq,r corresponding to base classifier

hq,r and a step value η > 0 to minimize F (αt−1 + η eq,r). To select a direction, we consider

the subdifferential of F along any eq,r. Observe that, since Λ = ∆, for any α, we can write

F (α) = maxk Fk(α), with Fk(α) = 1
mk

∑mk
i=1 Φ

(
−yk,i

∑p
l=1

∑Nl
j=1 αl,jQ(l|xk,i)hl,j(xk,i)

)
. Since

functions Fk are differentiable, by the subdifferential calculus for the maximum of functions, the

subdifferential of F at αt−1 along the direction eq,r is given by:

∂F (αt−1, eq,r) = conv{F ′k(αt−1, eq,r) : k ∈ Kt},

where F ′k(αt−1, eq,r) is the directional derivative of Fk at αt−1 along the direction eq,r and where

Kt = {k ∈ [p] : Fk(αt−1) = F (αt−1)}. We will therefore consider the direction eq,r with the

largest absolute directional derivative value |F ′k(αt−1, eq,r)|, k ∈ Kt, but will restrict ourselves

to q = k since, as we shall see, that will suffice us to guarantee a non-zero directional gradient.

To do so, we will express F ′k(αt−1, ek,r) in terms of the distribution Dt(k, ·) over Sk defined by
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Dt(k, i) =
Φ′(−yk,ift−1(xk,i))

Zt,k
, with Zt,k =

∑mk
i=1 Φ′(−yk,ift−1(xk,i)), for all i ∈ [mk]:

F ′k(αt−1, hk,r) =
1

mk

mk∑
i=1

−yk,iQ(k|xk,i)hk,r(xk,i)Φ′
(
−yk,ift−1(xk,i)

)
=
Zt,k
mk

[2εt,k,r − 1],

where εt,k,r = 1
2

[
1− Ei∼Dt(k,·)[yk,iQ(k|xk,i)hk,r(xk,i)]

]
denotes the weighted error of Q(k|·)hk,r.

For any s ∈ [mk], since xk,s is a sample drawn from Dk, we have Q(k|xk,s) > 0 and therefore we

have: Qt,k =
∑mk

s=1 Dt(k, s)Q(k|xk,s) > 0. Thus, we can write Ei∼Dt(k,·)[yk,iQ(k|xk,i)hk,r(xk,i)] as

mk∑
i=1

Dt(k, i)Q(k|xk,i)yk,ihk,r(xk,i)
Qt,k

Qt,k,= E
i∼D′t(k,·)

[yk,ihk,r(xk,i)]Qt,k,

where D′t(k, i) =
Dt(k,i)Q(k|xk,i)

Qt,k
. By our weak-learning assumption, there exists r ∈ Nk such that

Ei∼D′t(k,·)[yk,ihk,r(xk,i)] ≥ γ > 0. For that choice of r, we have εt,k,r < 1
2
− γ, with γ = γQt,k >

0. In view of that, it suffices for us to search along the directions hk,r and we do not need to

consider the directional derivative of Fk along directions hq,r with q 6= k. The direction chosen

by our coordinate descent algorithm is thus defined by: argmaxk∈Kt,r∈[Nk]
Zt,k
mk

[1− 2εt,k,r]. Given

the direction ek,r, the optimal step value η is argminη>0 F (αt−1 + ηek,r). The pseudocode of our

algorithm, MULTIBOOST, is provided in Figure 4.1. In the most general case, η can be found via

a line search or other numerical methods.

Step size. In some special cases, the line search can be executed using a simpler expression by

using an upper bound on F (αt−1 + ηek,r). Using the convexity of Φ, since yl,iQ(k|xl,i)hk,r(xl,i) =
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1+yl,iQ(k|xl,i)hk,r(xl,i)
2

· (+1) +
1−yl,iQ(k|xl,i)hk,r(xl,i)

2
· (−1), the following holds for all η ∈ R:

Φ(−yl,ift−1(xl,i)− η yl,iQ(k|xl,i)hk,r(xl,i)) ≤ 1+yl,iQ(k|xl,i)hk,r(xl,i)
2

Φ(−yl,ift−1(xl,i)− η)

+
1−yl,iQ(k|xl,i)hk,r(xl,i)

2
Φ(−yl,ift−1(xl,i) + η).

In the case of exponential and logistic functions, the following upper bounds can then be derived.

Lemma 4.3. For any k ∈ [p], the following upper bound holds when Φ is the exponential or the

logistic function:

F (αt−1 + ηek,r) ≤ max
l∈[p]

Zt,l
ml

[
(1− εt,l,k,r)e−η + εt,l,k,re

η
]
,

where εt,l,k,r = 1
2

[
1− Ei∼Dt(l,·)[yl,iQ(k|xl,i)hk,r(xl,i)]

]
.

For any k, function η 7→ (1− εt,l,k,r)e−η + εt,l,k,re
η reaches its minimum for η = 1

2
log

1−εt,l,k,r
εt,l,k,r

.

When the maximum is achieved for l = k, the solution coincides with the familiar expression of

the step size ηt = 1
2

log
1−εt,k,r
εt,k,r

used in ADABOOST.

Q-function. The conditional probability functions Q(k|·) are crucial to the definition of our

algorithm. As pointed out earlier, Q-ensembles can help achieve accurate solutions in some

cases that cannot be realized using convex combinations. Furthermore, for any k ∈ [p], since

Dt(k, ·) is a distribution over the sample Sk, it is natural to assume that for any j 6= k we have

Es∼Dt(k,·)[Q(k|xk,s)] ≥ Es∼Dt(k,·)[Q(j|xk,s)]. This implies the following lower bound:

E
s∼Dt(k,·)

[Q(k|xk,s)] ≥
1

p
,

which in turn implies γ ≥ γ
p
, since for any x ∈ X,

∑p
j=1 Q(j|x) = 1. In the special case where

all domains coincide, we have Q(k|xk,s) = 1
p

for all s and this lower bound is reached. At another
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MULTIBOOST(S1, . . . , Sp)

1 α0 ← 0
2 for t← 1 to T do
3 ft−1 ←

∑p
l=1

∑Nl
j=1 αt−1,l,jQ(l|·)hl,j

4 Φ̃k ← 1
mk

∑mk
i=1 Φ(−yk,ift−1(xk,i))

5 Kt ←
{
k : k ∈ argmaxk∈[p] Φ̃k

}
6 for k ∈ Kt do
7 Zt,k ←

∑mk
i=1 Φ′

(
−yk,ift−1(xk,i)

)
8 for i← 1 to mk do

9 Dt(k, i)←
Φ′(−yk,ift−1(xk,i))

Zt,k

10 (k, r)← argmax
k∈Kt,r∈[Nk]

Zt,k
mk

[1− 2εt,k,r]

11 ηt ← argminη>0 F (αt−1 + ηek,r)
12 αt ← αt−1 + ηtek,r
13 f ←

∑p
l=1

∑Nl
j=1 αT,l,jQ(l|·)hl,j

14 return f

Figure 4.1: Pseudocode of the MULTIBOOST algorithm. εt,k,r denotes the weighted error of
Q(k|·)hk,r.

extreme, when all domains admit distinct supports, we have Q(k|xk,s) = 1 for all s ∈ [mk] and

thus γ = γ.

In practice, we do not have access to the true conditional probabilities Q(k|·). Instead, we

can derive accurate estimates Q̂(k|·) using large unlabeled samples from the source domains, the

label used for training being simply the domain index. This can be done using algorithms such

as conditional maximum entropy models [Berger et al. 1996] (or multinomial logistic regression),

which benefit from strong theoretical guarantees [Mohri et al. 2018b, chapter 13], or other rich

models based on neural networks.

Other variants of MULTIBOOST. In Appendix B.4, we discuss other variants of our algo-

rithm, including their convergence guarantees.
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4.4 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of our algorithm, including margin-based learning

bounds for multiple-source Q-ensembles.

For any k ∈ [p], define the family Gk as follows: Gk =
{
Q(k|·)h : h ∈ Hk

}
. Then, the family

of ensemble functions F that we consider can be defined as F = conv(
⋃p
k=1 Gk). For any λ ∈ ∆,

let Dλ be the distribution defined by Dλ =
∑p

k=1 λkD̂k, where D̂k is the empirical distribution

associated to an i.i.d. sample Sk drawn from Dk. Dλ is distinct from the distribution associated to

Dλ. We seek to derive margin-based bounds for ensemble functions f ∈ F with respect to target

mixture distributions Dλ, while the empirical data is from multiple source distributions Dk, or

from Dλ. Thus, these guarantees differ from standard learning bounds where the source and target

distribution coincide.

For any distribution D over X × Y and ρ > 0, let Lρ(D, f) denote the expected ρ-margin

loss of f with respect to D: Lρ(D, f) = E(x,y)∼Dk [I(yf(x) ≤ ρ)]. We denote by Rm(F) the

Rademacher complexity of F for samples S = (x1, . . . , xm) of size m, defined by Rm(F) =

ES∼Dm
σ

[supf∈F
∑m

i=1 σif(xi)], with σis independent random variables taking values in {−1,+1}.

The following gives a margin-bound for our multiple-source learning with Q-ensembles.

Theorem 4.4. Fix ρ > 0. Then, for any δ > 0, with probability at least 1 − δ over the draw of

a sample S = (S1, . . . , Sp) ∼ Dm1
1 ⊗ · · · ⊗D

mp
p , the following inequality holds for all ensemble

functions f =
∑T

t=1 αtQ(kt|·)ht ∈ F and all λ ∈ ∆:

L(Dλ, f) ≤ Lρ(Dλ, f) +

p∑
k=1

λk

2

ρ
max
l∈[p]

Rmk(Hl) +

√
log p

δ

2mk

. (4.5)

Note that the complexity term depends only on the Rademacher complexities of the families of
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based predictors Hl and does not involve the domain classification function Q. Theorem 4.4 im-

proves upon previous known bounds of Mohri et al. [2019b]. In particular, it provides a dimension-

independent margin guarantee for the zero-one loss, while the bound of Mohri et al. [2019b], when

applied to the zero-one loss, is dimension-dependent [Mohri et al. 2019b, Lemma 3]. Additionally,

our bound holds for Q-ensembles. Our margin bound can be straightforwardly generalized to hold

uniformly for all ρ ∈ (0, 1), at the cost of an additional mild term depending on log log2(2/ρ) (see

Theorem B.2 in Appendix B.5). For the ensemble functions returned by our algorithm, the bound

applies to x 7→ f(x)
‖α‖1 . These learning guarantees suggest choosing α ≥ 0 and ρ to minimize the

following:

max
λ∈Λ

p∑
k=1

λk

{
E

(x,y)∼Sk

[
I

(
y

T∑
t=1

αt
‖α‖1

Q(kt|·)ht(x) ≤ ρ

)]
+
rk
ρ

}
,

where rk = 2 maxl∈[p] Rmk(Hl). Choosing 1
ρ

= ‖α‖1 and upper bounding the binary loss using

a convex function Φ, the problem can then be equivalently cast as the following unconstrained

minimization, for example in the case of the exponential function:

min
α≥0

max
λ∈Λ

p∑
k=1

λk

{
E

(x,y)∼Sk

[
exp

(
−y

T∑
t=1

αtQ(kt|·)ht(x)

)]
+ rk‖α‖1

}
.

Thus, the learning guarantees justify a posteriori an `1-regularized version of our algorithm. It is

straightforward to derive that extension of our algorithm and its pseudocode. This is similar to

the extension to the `1-ADABOOST [Rätsch et al. 2001] of the original unregularized ADABOOST

[Freund and Schapire 1997a]. Let us add that finer learning guarantees such as those for DEEP

BOOSTING [Cortes et al. 2014] ones can be derived similarly here, which would lead to a weighted

`1-regularization, where the weights are the Rademacher complexities of the families Hk. For the

sake of simplicity, we do not detail that extension. Let us point out, however, that such an extension

would also lead to an algorithm generalizing ADANET [Cortes et al. 2017] to multiple sources.
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In some applications, prior knowledge can be used to constrain Λ to a strict subset of the

simplex ∆. Finer margin-based learning guarantees can be derived to cover that scenario. Let Λ

be the set of vertices of a subsimplicial cover of Λ, that is a decomposition of a cover of Λ into

subsimplices and let Λε be the set of λs ε-close to Λ in `1-distance. Then, the following guarantees

hold.

Theorem 4.5. Fix ρ > 0 and ε > 0. Then, for any δ > 0, with probability at least 1 − δ over the

draw of a sample S = (S1, . . . , Sp) ∼ Dm1
1 ⊗ · · · ⊗D

mp
p , each of the following inequalities holds:

1. for all ensemble functions f =
∑T

t=1 αtQ(kt|·)ht ∈ F and all λ ∈ Λε:

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ
max
r∈[p]

Rm(Hr, λ) +
3ε

2
+

√√√√ p∑
k=1

λ2
k

2mk

log
|Λ|
δ
. (4.6)

2. for all ensemble functions f =
∑T

t=1 αtQ(kt|·)ht ∈ F and all λ =
∑p

k=1 µkβk ∈ conv(Λ):

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ

p∑
l=1

µk max
r∈[p]

Rm(Hr, βl) +

p∑
k=1

µk

√√√√ p∑
l=1

β2
l,k

2mk

log
|Λ|
δ
. (4.7)

The proof of the theorem and further discussion are presented in Appendix B.6. In the theorem

above, Rm(Hr, λ) is the λ-weighted Rademacher complexity of Hr (see Appendix B.6). For Λ a

strict subset of the simplex, these learning bounds suggest an algorithm with a regularization term

of the form
∑p

k=1 λ
2
k/mk.

4.5 FEDERATED MULTIBOOST ALGORITHM

In this section, we present an extension of our algorithm to the federated learning scenario, called

FEDMULTIBOOST. The pseudocode is given in Figure 4.2. Federated learning is a distributed
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learning scenario where a global model is trained at the server level, based on data remaining at

clients [Konečnỳ et al. 2016b,a; McMahan et al. 2017; Yang et al. 2019]. Clients are typically

mobile phones, network sensors, or other IoT devices. While the data remains at the clients, the

trained model significantly benefits from user data, as demonstrated, for example, in next word

prediction [Hard et al. 2018; Yang et al. 2018] and healthcare applications [Brisimi et al. 2018].

We refer the reader to [Kairouz et al. 2021] for a more detailed survey of federated learning.

A widely used algorithm in this scenario is federated averaging, where the server trains the

global model via stochastic updates from the clients [McMahan et al. 2017]. It has been argued

by [Mohri et al. 2019b], however, that minimizing the expected loss with respect to a particular

training distribution, as done by standard federated learning algorithms, may be risk-prone and

benefit only a specific subset of clients. This compromises fairness, which is one of the critical

questions in federated learning, where clients are often heterogeneous [Bickel et al. 1975; Hardt

et al. 2016; Abay et al. 2020; Li et al. 2020]. This issue can be further accentuated when the set

of participating clients during inference may significantly differ from those used in training. Such

cases may occur, for example, when clients loose access to network connection during training,

which results in distinct training and test distributions.

To overcome these problems, we adopt the agnostic federated learning approach suggested by

[Mohri et al. 2019b] and [Ro et al. 2021]. Following the client-partition approach of [Ro et al.

2021], let each client belong to one of p domains. The domains can be, for example, based on the

type of device or their geographical location. In this setting, the global model is optimized for all

convex combinations of domain distributions as in the objective of MULTIBOOST (Equation 4.4),

by taking the maximum over the mixtures weights λ. This ensures that the solution obtained is

risk-averse and reduces the worst-case mismatch between the inference and training distributions.

We propose FEDMULTIBOOST, a communication-efficient modification of MULTIBOOST, that
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FEDMULTIBOOST(S1, S2, . . . , Sn)

1 α0 ← 0
2 for t← 1 to T do
3 ft−1 ←

∑p
l=1

∑Nl
j=1 αt−1,l,jQ(l|·)hl,j

4 Ct,k ← SELECTCLIENT(k, r)
5 for k ← 1 to p do
6 for c ∈ Ct,k do
7 Φ̃k,c ← 1

mc

∑mc
i=1 Φ(−yc,ift−1(xc,i))

8 Zt,c ←
∑mc

i=1 Φ′
(
−yc,ift−1(xc,i)

)
9 Kt ←

{
k ∈ [p] : k ∈ argmaxk∈[p]

∑
c∈Ct,kΦ̃k,c

}
10 Zt,k ←

∑
c∈Ct,k Zt,c, ∀k ∈ [p]

11 Ht,k ← SELECTBASECLASSIFIER(k, s)
12 for k ∈ Kt do
13 for c ∈ Ct,k do
14 for i← 1 to mc do
15 Dt(c, i)← Φ′(−yc,ift−1(xc,i))

Zt,k

16 βt,c,r ← [1− 2εt,c,r]

17 (k, r)← argmax
k∈Kt,r∈Ht,k

Zt,k∑
c∈Ct,k

mc

∑
c∈Ct,k βt,c,r

18 ηt ← η0/
√
t

19 αt ← αt−1 + ηtek,r
20 f ←

∑p
l=1

∑Nl
j=1 αT,l,jQ(l|·)hl,j

21 return f

Figure 4.2: Pseudocode of the FEDMULTIBOOST algorithm. εt,c,r denotes the weighted error
of Q(k|·)hk,r, εt,c,r = 1

2

[
1− Ei∼Dt(c,·)[yc,iQ(k|xc,i)hk,r(xc,i)]

]
, where client c belongs to domain k.

cobalt steps are carried out by the server, red on the clients.

can overcome the communication bottleneck in federated learning [Konečnỳ et al. 2016b].

Before presenting our algorithm, we first describe the learning scenario and the notation we

adopt. Let n be the number of clients, which in the cross-device setting can be in the order of

millions. Let mc denote the number of samples in client c and (xc,i, yc,i) denote the ith sample

of client c. The server has access to a set of base-predictor classes Hk for k ∈ [p] and a domain
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classifier Q that assigns for each sample x, the likelihood of it belonging to each of the p domains.

The base classifiers can be obtained by training on public data or training on client data with

federated learning. The domain classifier Q can be trained using unlabeled client data.

Additional discussion of the algorithm as well as experimental results can be found in Ap-

pendix B.7. At each round, the algorithm randomly selects r clients and s base classifiers from

each domain. Next, it chooses the best classifier out of the previously selected subset, based on the

data from the subsampled clients. Since FEDMULTIBOOST operates only on a small set of base

classifiers at each round, the algorithm is communication-efficient. At round t, the server needs

to send Q, ft−1, and s base classifiers to the selected clients. Hence, the server-to-client commu-

nication cost at round t is O((t + s)K + K ′), where K is the number of parameters in a single

base classifier and K ′ is the number of parameters required to specify Q. Furthermore, the clients

communicate only the aggregate statistics Φ̃c, Zt,c, βt,c,r to the server and hence the client-to-server

communication is O(p · s) real numbers, which is independent of the number of parameters of the

base classifiers.

4.6 EXPERIMENTS

In this section, we present experimental results for the MULTIBOOST algorithm on several datasets

with multiple sources. Our study is restricted to learning an ensemble of decision stumps Hstumps

using the exponential surrogate loss Φ(u) = e−u. To estimate the probabilities Q(k|·) for k ∈ [p],

we assigned the label k to each sample from domain k and used multinomial logistic regression.

This step can be facilitated with unlabeled examples, as only their domain membership information

is required.

We compare MULTIBOOST with a set of boosting-style algorithms that operate on the same
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hypotheses class Hstumps. Those include ADABOOST-k for k ∈ [p] and ADABOOST-all. The

former is a standard ADABOOST algorithm trained only on a single source Sk and the latter is

ADABOOST trained on the union of all sources ∪pk=1Sk. It is natural to compare MULTIBOOST

against ADABOOST-all, since both of them have access to all sources during training. The dif-

ference is that while ADABOOST-all treats ∪pk=1Sk as a single dataset, MULTIBOOST trains base

learners separately for each source and weights examples by domain probabilities Q(k|·). We used

T = 100 boosting steps for all benchmarks. T up to 1,000 were explored, but did not change any

results significantly.

We report classification errors on the test data for various mixtures of the source distributions

λ1, . . . , λp, including: errors for λ on the simplex ∆ edges (errors on each domain separately);

errors on the uniform mixture ∀k : λk = 1
p
; agnostic error, which is the maximum error across all

sources. The errors and their standard deviations are reported based on 10-fold cross validation.

Each source Sk is independently split into 10 folds S1
k , . . . , S

10
k . For the i-th cross-validation step,

the test set is {Si1, . . . , Sip}, while the rest is used for training.

Datasets and preprocessing steps used are described below with additional dataset details pro-

vided in Appendix B.8. Note, that all datasets are public and do not contain any personal identifiers

or offensive information. The experiments were performed on Linux and Mac workstations with

Quad-Core Intel Core i7 2.9 GHz and Intel Xeon 2.20 GHz respectively. The time taken to per-

form 10-fold cross-validation varies per dataset: from roughly 1 hour on CPU for all benchmarks

on tabular data to 8 hours on CPU for all benchmarks on digits data. The run-times of a single

MULTIBOOST iteration is almost identical to that of ADABOOST-all when a closed form solution

is used for step size ηt (line 12 in Figure 4.1) for the exponential surrogate loss function. Alterna-

tively, for some experiments we used line search with 100 steps. If training time is critical, one can

use ηt = C/
√
t instead, at the cost of slightly worse convergence guarantee. Convergence plots
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Figure 4.3: Mean values of Q(k|·k) for the three domains of the Sentiment data projected on the
first principal component of the joint data.

are illustrated in Appendix B.9.

Sentiment analysis. The Sentiment dataset [Blitzer et al. 2007] consists of text reviews and

rating labels for products sold on Amazon in various categories. We selected p = 3 sources from

this dataset, where k = 1 corresponds to books, k = 2 means dvd and k = 3 is electronics.

We converted the labels to binary values, assigning y = +1 for a positive review and y = −1

for a negative one. The benchmarks are trained using bigram features generated from the raw

text reviews. Since the Sentiment dataset contains only 2,000 instances for each domain, we used

random train/test splits with 10 different seeds instead of the 10-fold cross-validation. To illustrate

the importance of the conditional domain probabilities Q(K|x), for each domain, we illustrate its

values along the projections of x onto the first principal component of the joint Sentiment dataset

in Figure 4.3. The figure shows that our domain classifiers are able to provide coherent separation

between the three domains and narrow the applicability of the base classifiers.
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Table 4.1: Test errors for multiple benchmarks.

Algorithm Error-1 Error-2 Error-3 Error-Uniform Error-Agnostic

Sentiment Analysis

ADABOOST-1 0.326 ± 0.019 0.300 ± 0.008 0.360 ± 0.017 0.329 ± 0.017 0.360 ± 0.019
ADABOOST-2 0.354 ± 0.020 0.266 ± 0.009 0.336 ± 0.023 0.318 ± 0.019 0.357 ± 0.019
ADABOOST-3 0.402 ± 0.015 0.334 ± 0.008 0.258 ± 0.015 0.331 ± 0.016 0.402 ± 0.018
ADABOOST-all 0.354 ± 0.020 0.325 ± 0.011 0.313 ± 0.022 0.324 ± 0.021 0.354 ± 0.016
MULTIBOOST 0.332 ± 0.027 0.288 ± 0.018 0.284 ± 0.027 0.301 ± 0.027 0.332 ± 0.024

Digits Recognition (4 vs. 9)

ADABOOST-1 0.044 ± 0.007 0.615 ± 0.012 0.476 ± 0.022 0.379 ± 0.008 0.615 ± 0.012
ADABOOST-2 0.455 ± 0.014 0.299 ± 0.011 0.504 ± 0.015 0.420 ± 0.011 0.504 ± 0.015
ADABOOST-3 0.549 ± 0.034 0.488 ± 0.015 0.300 ± 0.013 0.446 ± 0.013 0.549 ± 0.034
ADABOOST-all 0.060 ± 0.009 0.374 ± 0.015 0.353 ± 0.012 0.262 ± 0.009 0.374 ± 0.015
MULTIBOOST 0.096 ± 0.008 0.283 ± 0.028 0.246 ± 0.014 0.209 ± 0.013 0.284 ± 0.027

Digits Recognition (1 vs. 7)

ADABOOST-1 0.005 ± 0.002 0.613 ± 0.007 0.519 ± 0.012 0.379 ± 0.004 0.613 ± 0.007
ADABOOST-2 0.431 ± 0.022 0.252 ± 0.009 0.479 ± 0.012 0.387 ± 0.010 0.479 ± 0.012
ADABOOST-3 0.680 ± 0.031 0.490 ± 0.014 0.244 ± 0.012 0.474 ± 0.013 0.680 ± 0.031
ADABOOST-all 0.014 ± 0.003 0.286 ± 0.010 0.306 ± 0.012 0.202 ± 0.005 0.306 ± 0.011
MULTIBOOST 0.026 ± 0.004 0.261 ± 0.013 0.257 ± 0.015 0.181 ± 0.005 0.261 ± 0.011

Objects Recognition (Fashion-MNIST)

ADABOOST-1 0.015 ± 0.003 0.251 ± 0.026 0.602 ± 0.028 0.288 ± 0.017 0.602 ± 0.028
ADABOOST-2 0.435 ± 0.007 0.015 ± 0.002 0.169 ± 0.012 0.173 ± 0.003 0.435 ± 0.007
ADABOOST-3 0.311 ± 0.018 0.097 ± 0.005 0.014 ± 0.002 0.140 ± 0.006 0.311 ± 0.018
ADABOOST-all 0.036 ± 0.004 0.020 ± 0.002 0.025 ± 0.003 0.027 ± 0.002 0.036 ± 0.004
MULTIBOOST 0.028 ± 0.003 0.015 ± 0.003 0.022 ± 0.002 0.021 ± 0.001 0.028 ± 0.003

Tabular Data (Adult Data)

ADABOOST-1 0.201 ± 0.012 0.249 ± 0.021 0.215 ± 0.014 0.222 ± 0.012 0.249 ± 0.021
ADABOOST-2 0.298 ± 0.011 0.131 ± 0.009 0.142 ± 0.006 0.190 ± 0.007 0.298 ± 0.011
ADABOOST-3 0.225 ± 0.015 0.138 ± 0.010 0.133 ± 0.011 0.165 ± 0.008 0.225 ± 0.015
ADABOOST-all 0.221 ± 0.013 0.134 ± 0.007 0.131 ± 0.010 0.155 ± 0.004 0.221 ± 0.013
MULTIBOOST 0.190 ± 0.014 0.132 ± 0.008 0.130 ± 0.009 0.150 ± 0.005 0.190 ± 0.014

Digits recognition. For this problem, we aggregated 32x32 pixel handwritten digits images

from p = 3 sources: MNIST (k = 1), SVHN (k = 2), MNIST-M (k = 3). We compared algorithms

on two binary classification problems: digits 4 vs. 9 and digits 1 vs. 7.

Object recognition. We divided images of clothes items from Fashion-MNIST [Xiao et al.

2017a] dataset into two classes: tops and bottoms from p = 3 sources. k = 1 consists of

t-shirts, pullovers, trousers; k = 2 consists of dresses, coats, sandals;
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k = 3 consists of shirts, bags, sneakers, ankle-boots.

Tabular data. In addition to text and images, we tested MULTIBOOST on tabular data. We

used the Adult dataset [Kohavi 1996], which consists of numerical and categorical features describ-

ing an individual’s socioeconomic characteristics, given the task to predict if an person’s income

exceeds USD 50, 000. We divided this dataset into p = 3 sources based on individual’s educational

background. Source k = 1 consisted of individuals with a university degree (BSc, MS or PhD),

source k = 1 those with only a High School diploma, and source k = 2, none of the above.

Discussion As can be seen from Table 4.1, MULTIBOOST provides agnostic and uniform er-

rors that are significantly better than the baselines on all datasets. While ADABOOST-k predic-

tors on digits recognition and object recognition tasks each show the lowest error on their spe-

cific domains D1,D2,D3, they fail to generalize to other target distribution in conv{D1,D2,D3}.

Moreover, as suggested by the discussion in Section 4.2, the standard convex combination of

domain-specific predictors (ADABOOST-all) also performs poorly on several target distributions in

conv{D1,D2,D3}, such as the uniform and agnostic targets. As the experimental results confirm,

MULTIBOOST, by leveraging domain predictors Q(k|·) and the agnostic loss, is able to produce

an ensemble of domain-specific predictors that generalizes to different targets. Appendix B.9 pro-

vides additional illustrations of Q(k|·) by projecting each domain on the first principal component

of the joint data.

Moreover, for tabular data and the digits (4 vs. 9) classification problem, MULTIBOOST ben-

efits from positive knowledge transfer and obtains an error on individual domains that is even

smaller than that of the domain-specific predictors. From Figure B.3 in Appendix B.9 it can be

seen that the α-weight for the MULTIBOOST classifier in the 4 vs. 9 problem is heavily centered

on D2, but contributions from D1 and D3 adds to the stronger performance. The same figure also

illustrates the α-mass distribution for the other classification tasks. The standard convex ensemble
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ADABOOST-all, however, does not seem to exhibit the positive transfer property. Similar conclu-

sions carry over for other target distributions in conv{D1,D2,D3}, for the sake of simplicity we

do not present them here.

4.7 CONCLUSION

We presented a new boosting algorithm, MULTIBOOST, for a multiple-source scenario – a common

setting in domain adaptation problems – where the target distribution can be any mixture of the

source distributions. We showed that our algorithm benefits from strong theoretical guarantees and

exhibits favorable empirical performance. We also highlighted the extension of our work to the

federated learning scenario, which is a critical distributed learning setting in modern applications.
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5 | AGNOSTIC LEARNING WITH

MULTIPLE OBJECTIVES

The majority of machine learning tasks are inherently multi-objective. This means that the learner

has to come up with a model that performs well across a number base objectives L1, . . . ,Lp as op-

posed to a single one. Since optimizing with respect to multiple objectives at the same time is often

computationally expensive, the base objectives are often combined in an ensemble
∑p

k=1 λkLk, re-

ducing the problem to scalar optimization. The mixture weights λk are set to uniform or some other

fixed distribution based on the learner’s preferences. We argue that learning with a fixed distribu-

tion on the mixture weights has a risk of overfitting to some individual objectives and significantly

hurting the others, while still performing well on an entire ensemble. Moreover, in reality the

true preferences of a learner across multiple objectives are often unknown or hard to express as

a specific distribution. Instead, we propose a new framework of Agnostic Learning with Multiple

Objectives (ALMO), where a model is optimized for any weights in the mixture of base objec-

tives. We present data-dependent Rademacher complexity guarantees for learning in the ALMO

framework, which are then used to guide a scalable optimization algorithm and the corresponding

regularization. We present convergence guarantees for this algorithm assuming convexity of the

loss functions and the underlying hypotheses space. We further implement the algorithm in a popu-
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lar symbolic gradient computation framework and empirically demonstrate on a number of datasets

the benefits of ALMO framework versus learning with a fixed mixture weights distribution.

5.1 MOTIVATION

Machine learning is inherently a multi-objective task [Jin 2006; Jin and Sendhoff 2008]. In most

real-world problems, a learner is required to find a model with strong performance across a set

of objectives {L1, . . . ,Lp}. Committing to a single objective Lk often fails to capture the full

complexity of the underlying problem and causes models to overfit to that individual objective

[Kendall et al. 2018].

For example, the BLEU score [Papineni et al. 2002] is commonly selected as a single objective

for model training and evaluation in machine translation literature. However, it overfits to short

sentences, because it is focused on word-based n-gram precision [Duh et al. 2012]. Thus, it is

often agreed in the research community that machine translation models need to perform well not

just in the BLEU score, but in other metrics that measure various aspects of translation beyond

the n-gram similarity. For example, METEOR [Lavie and Agarwal 2007] that measures synonym

matching or RIBES [Isozaki et al. 2010] that accounts for deviation in word order.

A well-studied approach to working with multiple correlated objectives such as the ones de-

scribed above is to estimate a Pareto-efficient frontier and seek for a solution that lies on that

frontier [Jin and Sendhoff 2008; Sener and Koltun 2018; Shah and Ghahramani 2016; Marler and

Arora 2004]. While this approach can provide a rigorous description of the trade-offs between

multiple correlated objectives, the estimation of Pareto-efficient frontier is computationally expen-

sive [Duh et al. 2012; Godfrey et al. 2007] and poorly scales with the number of base objectives.

Moreover, optimization along the Pareto-efficient frontier typically requires to compute multiple
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gradients for each step, which is challenging to adapt to large-scale problems. Additionally, even

when the Pareto frontier is computed, some selection criterion is needed to choose a point on that

frontier. In Section 5.3, we will prove that our solution is actually guaranteed to be Pareto-optimal,

thus lying on the frontier. Our algorithms hence provide a theoretical justification for selecting one

of the possibly many points on the frontier.

In short, despite the multi-objective nature of machine learning, working with a vector of

multiple objectives at the same time turns out to be computationally challenging. For that rea-

son, researchers often combine the set of base objectives {L1, . . . ,Lp} into a weighed ensemble

Lλ =
∑p

k=1 λkLk for some λ in a simplex ∆p, essentially making it a scalar function [Jin 2006].

This allows one to make use of efficient scalar function optimization algorithms on large-scale

problems, typically using various stochastic gradient descent techniques [Bottou et al. 2018]. How-

ever, working with an ensemble of base objectives raises a natural question: how should we set

the mixture weights λ1, . . . , λp ? For example, if we define Lλ = λ1 · BLEU + λ2 · METEOR,

should we assume that BLEU and METEOR are equally important and set the mixture weights to

be uniform λ1 = λ2 = 1
2
? Or should we say that METEOR is significantly more important than

BLEU for a particular problem and λ2 should be set higher that λ1?

Despite the simplicity of the questions above, there is no clear answer to how to determine the

mixture weights for multi-objective problems. Particularly, this is because there is no straightfor-

ward way to map the requirements of a particular problem that a learner is trying to solve to a

corresponding distribution of the mixture weights [Van Moffaert et al. 2014]. Thus, the mixture

weights are usually assigned to uniform by default. However, in many cases the uniform ensemble

of objectives can do more harm than good. This is simply because fitting models with the uniform

mixture weights can significantly hurt some of the individual objectives in the mixture. For many

machine learning applications (e.g., vision or speech), a significant decrease in performance on one
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objective is intolerable even if the performance on the uniform average of objectives is improved.

One can argue that if the uniform combination of objectives is not the natural target, then we

should just set mixture weights for every problem separately based on the relative importance of

each of the base losses. However, this is still not the true goal, because the learner’s preferences

are often shifting over time, unobservable, and in some cases even unknown. It is also often the

case in the machine learning industry that when several parties develop a model for a particular

multi-objective problem, their preferences for the base objectives are conflicting with each other.

Given these challenges of working with a fixed mixture weights distribution discussed above,

we argue that the natural goal of a learner with multiple objectives {L1, . . . ,Lp} has agnostic

nature. That is, a learner wants to obtain a model that performs well for any possible combination

of mixture weights in the ensemble Lλ =
∑p

k=1 λkLk. Such a goal is also risk-averse, since being

robust against any combination of ensemble weights is also robust against their worst (adversarial)

combination.

We propose a new framework of Agnostic Learning with Multiple Objectives (ALMO) inspired

by the Agnostic Federated Learning algorithm [Mohri et al. 2019a], where the underlying model is

optimized for any possible distribution of the mixture weights in the ensemble Lλ =
∑p

k=1 λkLk.

Instead of optimizing the model for a fixed distribution of λ1, . . . , λp, with the high risk of over-

fitting to a subset of the base objectives, we define the agnostic loss function that ensures the

model performs well against any mixture, including the worst-case mixture values. Thus, the

ALMO framework closely matches the learning setting used by most real-world ML practitioners,

who often seek to deploy a model that is robust against any mixture of base objectives and does

not need to be frequently retrained when the base objective preferences shift.

In this paper, we provide sample-dependent generalization bounds based on the Rademacher

complexity of the underlying loss functions, which are then used to define the optimization algo-
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rithm and the regularization for the problem. We suggest an efficient optimization algorithm for the

ALMO setting that is inspired by the generalization bounds derived in this paper. The algorithm

can be applied in a straightforward manner across multiple tasks, since it is based on stochastic

gradient descent and can be implemented in popular symbolic gradient computation platforms,

including TENSORFLOW [Abadi et al. 2016], KERAS [Chollet et al. 2015] or PYTORCH [Paszke

et al. 2019].

We conduct a series of experiments on various datasets that demonstrate the benefits of the

ALMO framework versus learning with a uniform mixture weights distribution. The experiments

also show that the ALMO framework provides a generally robust model that performs better than

baselines on metrics that are not even included in the original set of base objectives. Moreover,

while the algorithm convergence bound holds for convex hypotheses spaces, we show that the

ALMO framework provides robust models even for non-convex hypotheses classes, such as Deep

Neural Networks.

The rest of the paper is structured as follows. In Section 5.2 we formally describe the ALMO

framework, define the agnostic multi-objective loss function, and discuss the connection of our

solution to the Pareto-optimal frontier. In Section 5.3 we derive the sample-dependent Rademacher

complexity bounds for the ALMO framework. In Section 5.4 we put forward a stochastic gradient-

descent-based algorithm inspired by the generalization bounds. In Section 5.5 we describe our

experimental setting and provide empirical results.

5.2 LEARNING SCENARIO

In this section, we introduce the formal learning scenario of the ALMO framework. We define the

agnostic loss function and argue that by optimizing this loss, the learner obtains a model that is
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robust against any mixture weights distribution in the ensemble Lλ =
∑p

k=1 λkLk.

We consider the supervised learning setting, in which the learner receives a labeled sample

S = (x1, y1), . . . , (xm, ym) drawn i.i.d. from some distribution D over X× Y, where X denotes he

input space and Y denotes the output space. Let H be the hypotheses space and l : X × Y 7→ R+

be a loss function. The loss of h ∈ H for a labeled instance (x, y) equals `(h(x), y), and the

expectation of the loss is L(h) = E(x,y)∼D [`(h(x), y)]. In a standard supervised learning scenario,

the goal of the learner is to find h? = argminh∈H L(h).

However, as we explained in the previous section, the majority of learning applications require

optimizing over a number of objectives (loss functions) at the same time. In such cases, the learner

has access to a set of p base loss functions {l1, . . . , lp}. For any h ∈ H, the expectations of these

base loss functions are {L1(h), . . . ,Lp(h)}, where ∀k : Lk(h) = E(x,y)∼D [`k(h(x), y)]. The goal

of the learner is to obtain a hypothesis h ∈ H that performs well across any weighted combination

of the expected base losses Lλ(h) =
∑p

k=1 λkLk(h), for some λ ∈ ∆p.

We assume that the learner has a defined boundary set of preferences over the mixture of

objectives that can be described by a convex subset Λ ⊂ ∆p. However, the true mixture coefficients

λ within Λ are unknown. Thus, the learner wants to have a solution that is favorable for any

possible λ ∈ Λ. Therefore, we define the agnostic multi-objective loss LΛ(h) associated to a

predictor h ∈ H and a subset Λ ⊂ ∆p as follows:

LΛ(h) = max
λ∈Λ
Lλ(h). (5.1)

The goal of the learner is to solve the constraint optimization and find the hypothesis hΛ ∈ H:

solve: min
h∈H
LΛ(h) and find: hΛ = argmin

h∈H
LΛ(h), (5.2)
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To determine the best hypotheses, a sample estimate of the agnostic multi-objective loss LΛ(h) is

needed. For that we define the empirical agnostic multi-objective loss L̂Λ(h) as follows:

L̂Λ(h) = max
λ∈Λ

p∑
k=1

λkL̂k(h) = max
λ∈Λ

p∑
k=1

λk
1

m

m∑
i=1

`k(h(xi), yi). (5.3)

We will show in Section 5.3 that with high probability LΛ(h) is bounded by L̂Λ(h) and terms

dependent on the Rademacher complexity of the underlying function class.

Assume the hypotheses set H is parameterized by a vector w ∈ W , thus h ∈ H can be denoted

as hw. When the learner has access to empirical distribution Sm, the (unregularized) optimization

problem of the learner is formulated as follows:

min
w∈W

max
λ∈Λ

p∑
k=1

λk
1

m

m∑
i=1

`k(hw(xi), yi)︸ ︷︷ ︸
L̂k(hw)

. (5.4)

Given a number of standard assumptions on W ,Λ and the base loss functions, the optimization

problem above is convex, and can be solved using gradient-based algorithms, as we show in Sec-

tion 5.4.

5.2.1 RELATIONSHIP WITH THE PARETO-OPTIMAL FRONTIER

In this section, we discuss the connection between the ALMO loss function and the Pareto frontier.

In particular, we will show that the solution of the ALMO loss function is a point on the Pareto-

optimal frontier.

The Pareto-optimal frontier is the set of feasible loss tuples (`1(h), . . . , `p(h)), h ∈ H, that are

not strictly dominated by some other feasible tuple. The function h ∈ H, or the corresponding

tuple (`1(h), . . . , `p(h)), is strictly dominated by h′ ∈ H, if `k(h′) ≤ `k(h) for all k ∈ [p] with
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Figure 5.1: Illustration of the connection between the ALMO loss and the Pareto-optimal frontier.
Left: two losses in a parameterized function space; middle: the Pareto-optimal frontier; right: the
optimal frontier indicated in the function space. See text for further explanation.

`j(h
′) < `j(h) for at least one index j ∈ [p].

Proposition 5.1. The agnostic solution is Pareto-optimal.

Proof. Assume that h∗ ∈ H is a minimizer of the ALMO objective for {`1, . . . , `p}.1 That is, for

all h ∈ H,

min
h∈H
LΛ(h) =

p∑
k=1

λ∗k`k(h
∗) ≤

p∑
k=1

λ∗k`k(h),

for some λ∗ ∈ Λ. Let h′ be a strictly dominating point for h∗. That is, ∀k ∈ [p], `k(h
′) ≤ `k(h

∗),

with `j(h′) < `j(h
∗) for at least one j ∈ [p]. Then, we must have:

p∑
k=1

λ∗k`k(h
′) <

p∑
k=1

λ∗k`k(h
∗) = min

h∈H
LΛ(h),

which, in view of the definition of minimality of h∗, implies that h′ is not in H, that the point

(`1(h′), . . . , `p(h
′)) is not feasible, and that h∗ is Pareto-optimal.

We illustrate the connection between the Pareto-optimal frontier and the optimizer of the

ALMO loss with the plots in Figure 5.1 for two losses `1 and `2. The leftmost plot in Figure 5.1
1Note that the solution is unique for strictly convex losses.
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illustrates the two losses, `1 in blue and `2 in red as a function of the parameterized function space.

For a given function h along the x-axis, the convex combination of the losses λ`1(h)+(1−λ)`2(h)

attains its maximum with respect to λ at the value max{`1(h), `2(h)}, circled in violet, with a value

of λ ∈ {0, 1}. The darker the violet color, the larger the value of the ALMO objective. The mini-

mum over h ∈ H of the ALMO objective is attained for ∂LΛ(h)/∂λ = 0, which is at the crossing

point `1(h∗) = `2(h∗) of the loss curves. At a crossing point, any value of λ attains this minimum,

a natural choice is to pick the λ corresponding to uniform weights.

In the middle plot we illustrate the corresponding Pareto-optimal frontier of the points (`1, `2)

in green and indicate the ALMO solution. Finally in the rightmost plot we tie back the Pareto-

optimal frontier to the plot of the losses.

5.3 LEARNING GUARANTEES

Here, we derive learning guarantees for the ALMO framework, that rely on the Rademacher com-

plexity bounds on the family of loss functions and the mixture weights λ. The bounds that we

show, being data-dependent, will motivate a scalable algorithm for the minimization of the agnos-

tic multi-objective loss. The algorithm is presented in Section 5.4.

Let G denote the family of the losses associated to a hypotheses set H: {G : (x, y) 7→

`(h(x), y) : ∀h ∈ H}. Typically, generalization analysis in similar cases involves bounding the

sample Rademacher complexity of G, which is

R̂S(G) = E
σ

[
sup
h∈H

1

m

m∑
i=1

σi`(h(xi), yi)

]
, (5.5)

where σi-s, i ∈ [m], are independent uniformly distributed random variables taking values in

{−1, 1}.
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However, the agnostic multi-objective loss LΛ(h) contains a maximum over λ ∈ Λ, which

causes additional complication. For the proper analysis, we need to extend the definition of the

sample Rademacher complexity by including the λk terms as follows:

R̂S(G, λ) = E
σ

[
sup
h∈H

p∑
k=1

λk
1

m

m∑
i=1

σi`k(h(xi), yi)

]
. (5.6)

By using R̂S(G, λ) in the theorem below, we show the connection between the theoretical and

empirical agnostic multi-objective losses LΛ(h) and L̂Λ(h). The theorem below is based on

common steps in Rademacher complexity bound proofs of [Koltchinskii and Panchenko 2002b;

Hoffman et al. 2018b; Mohri et al. 2012]. Additionally, for the theorem below we assume that

∀(x, y), (x′, y′) ∈ X × Y,∀h ∈ H : ||(h(x′), y′) − (h(x), y)|| ≤ DH. This holds for all bounded

hypotheses classes, for example for the case of binary classification DH = O(
√
C), where C is

the number of classes.

Theorem 5.2. If the loss functions `k are Mk-Lipschitz and bounded by M , then for any ε > 0 and

δ > 0, with probability at least 1− δ, the following inequality holds for ∀h ∈ H and ∀λ ∈ Λ:

Lλ(h) ≤ L̂λ(h) + 2R̂S(G, λ) +Mε+ DH

p∑
k=1

λkMk

√
1

2m
log

[
|Λ|ε
δ

]
, (5.7)

where Λε is an minimum ε-cover of Λ.

The proof of Theorem 5.2 is given in Appendix C.2.1 The bound in Theorem 5.2 is a function

of λ, to make it uniform with respect to λ, we first observe that when `k areMk-Lipschitz, by direct

application of Talagrand’s Lemma [Ledoux and Talagrand 1991a]:

R̂S(G, λ) ≤
p∑

k=1

λkMkR̂S(H). (5.8)
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Thus, the only terms that are λ-dependent in the bound are of the form
∑p

k=1 λkMk. This naturally

leads us to control the complexity by imposing a regularization of the form
∑p

k=1 λkMk ≤ β and

leads to the following generalization bound for the agnostic multi-objective loss:

Theorem 5.3. Let the loss functions `k be Mk-Lipschitz and bounded by M . Assume ∀λ ∈ Λ :∑p
k=1 λkMk ≤ β, then for any ε > 0 and δ > 0, with probability at least 1 − δ, the following

inequality holds for ∀h ∈ H:

LΛ(h) ≤ L̂Λ(h) + 2βR̂S(H) +Mε+ βDH

√
1

2m
log

[
|Λ|ε
δ

]
. (5.9)

The bound in Theorem 5.3 says that with high probability, the agnostic multi-objective loss

LΛ(h) is bounded by the empirical agnostic multi-objective loss L̂Λ(h) and the sample-dependent

complexity terms. The bound suggests that the learner in the ALMO framework should seek to

find such a hypothesis h ∈ H that provides the best trade-off between the empirical loss L̂λ(h) and

the Rademacher complexity. This means that the learner seeking to minimize Lλ(h) should mini-

mize its empirical estimate L̂λ(h) and apply a regularization to control the complexity terms. The

bound provides significant and also very clear intuition that the regularization should connect the

properties of the constraint set Λ and the Lipshitz properties of each individual base loss function

in the form
∑p

k=1 λkMk ≤ β. This means that the ALMO algorithm should control for the Mk-

weighted norm of the mixture weights vector λ. Note, that for the cases where it is nontrivial to

estimate the individual Lipschitz constants Mk, our theory allows to use a simplified regularization

‖λ‖q ≤ β for some q−norm ‖·‖q, which will also control
∑p

k=1 λkMk for bounded loss functions.
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5.4 ALGORITHM

In this section, we describe the algorithm for the ALMO framework and the regularization that is

inspired by the learning guarantees derived in Section 5.3. Moreover, we derive the convergence

guarantees for the algorithm, which demonstrate that it scales well to large problems. To emphasize

that for the optimization purpose, w ∈ W and λ ∈ Λ are real-valued vectors, we will use bold

symbols for the pair (w,λ).

5.4.1 REGULARIZATION

The generalization bounds in Section 5.3 suggest to minimize the agnostic empirical loss L̂Λ(h),

while controlling for the complexity of hypotheses class H. This naturally translates to the follow-

ing regularized minimization problem in the ALMO framework:

min
h∈H

max
λ∈conv(Λ)

L̂λ(h) + β1‖h‖H + β2

p∑
k=1

λkMk, (5.10)

where β1, β2 ≥ 0 are regularization parameters and ‖ · ‖H is a norm defined on the hypotheses

space H. Note that since L̂λ(h) is linear in λ, we have replaced maxλ∈Λ by maxλ∈conv(Λ).

Given a number of commonly used assumptions, the regularized problem in Equation 5.10 is

convex. Assuming that the base loss functions {`1, · · · , `p} are convex in the first argument ensures

that L̂λ(h) is convex as well. Since the norm ‖h‖H is convex, then L̂λ(h) + β1‖h‖H is a convex

function of h. The maximum over λ of convex functions is a convex function itself. Thus, for a

convex hypotheses space H the problem in Equation 5.10 is convex.
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5.4.2 OPTIMIZATION

The optimization problem in Equation 5.10 can be solved using projected gradient descent or more

generally with mirror descent algorithms [Nemirovski and Yudin 1983]. For large-scale problems,

we suggest to use the Stochastic Mirror-Prox gradient descent algorithm [Juditsky et al. 2011].

For the specific optimization problem presented in this paper, the Mirror-Prox algorithm admits

a simplified form and can be implemented in common machine learning software that relies on

symbolic gradient computation.

Assuming that the hypotheses set H is parameterized by a vector w ∈ W , we can sim-

plify the notations to emphasize that the optimization is performed over (w,λ). Let L(w) =

1
m

∑m
i=1 `(hw(xi), yi), then L(w,λ) =

∑p
k=1 λkLk(w). It is sufficient to present the algorithm for

the unregularized problem

min
w∈W

max
λ∈Λ

L(w,λ), (5.11)

which can be extended in a straightforward manner to include the regularization term for w and λ.

Let∇wL(w,λ) be the gradient of the loss function L(w,λ) with respect to w and∇λL(w,λ)

be the gradient with respect to λ. Let δwL(w,λ) and δλL(w,λ) be the unbiased stochastic esti-

mates of these gradients with respect to w and λ. The Mirror-Prox descent adapted to the learning

with multiple objectives problem obtains stochastic gradient estimates δwL(w,λ) and δλL(w,λ)

at each step t ∈ [1, T ] and then updates (wt,λt). After each update, the projections ΠW and ΠΛ

ontoW and Λ respectively are computed. If Λ = ∆p, then we can efficiently compute these pro-

jections [Duchi et al. 2008]. The pseudocode for the ALMO optimization algorithm is given in

Algorithm 5.2.
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ALMO(w0 ∈W,λ0 ∈ Λ)

1 for t ∈ [1, T ] do
2 wt ← ΠW

[
wt−1 − γwδwL(wt−1,λt−1)

]
3 λt ← ΠΛ

[
λt−1 + γλδλL(wt−1,λt−1)

]
4 wT ← 1

T

∑T
t=1 wt

5 λT ← 1
T

∑T
t=1 λt

Figure 5.2: Pseudocode for the ALMO algorithm with step sizes γλ, γw.

5.4.3 CONVERGENCE GUARANTEES

We can show favorable convergence guarantees for the ALMO algorithm using a number of com-

mon assumptions, including of course the convexity of L(w,λ) in the first argument.

Theorem 5.4. [See Appendix C.2.2 for the proof.] For L(w,λ) convex in the first argument,

assume ∀w ∈ W ,∀λ ∈ Λ : ‖w‖2 ≤ DW , ‖λ‖2 ≤ DΛ, ‖∇wL(w,λ)‖2 ≤ Gw, ‖∇λL(w,λ)‖2 ≤

Gλ. Let the variance of unbiased stochastic gradients be bounded by σ2
w and σ2

λ respectively. For

step sizes γw = 1√
T

2DW√
σ2
w+G2

w

and γλ = 1√
T

2DΛ√
σ2
λ+G2

λ

, the following convergence guarantees hold:

E
[

max
λ∈Λ

L(wT ,λ)− min
w∈W

max
λ∈Λ

L(w,λ)

]
≤ 1√

T

(
3DW

√
σ2

w + G2
w + 3DΛ

√
σ2
λ + G2

λ

)
. (5.12)

5.5 EXPERIMENTS

The experiments presented in this section illustrate the benefits of the ALMO framework com-

bined with the generalization guarantees derived in Section 5.3 and the stochastic algorithm in

Section 5.4. We present results for convex models and deep neural networks to demonstrate that

the algorithms performs well even for non-convex hypotheses classes. The ALMO optimization

97



algorithm is implemented in TENSORFLOW [Abadi et al. 2016] and KERAS [Chollet et al. 2015].
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Figure 5.3: DNN training dynamics of mixture weights λk on MNIST. Weights are logged at the
end of each epoch.

For the base losses {`1, . . . , `p} we use a variety of common training loss functions, each

having its own advantages and disadvantages. For example the Zero-One loss function often results

in robust models when the data has outliers, but it underperforms when the data is concentrated

near decision surface [Zhao et al. 2010]. The opposite usually applies to the hinge loss function.

To solve a complex machine learning problem, the learner would want to combine multiple loss

functions, making use of their strengths and mitigating weaknesses. For the experiments, each

base objective `k (see Appendix, Table C.1) is normalized so that Mk ≤ 1 and hence M = 1.

For every dataset, we train a model by minimizing the empirical agnostic multi-objective loss

L̂h objective and we benchmark it against p models trained with each individual k−th base loss

function for k ∈ [1, p]. We also include a model trained with fixed uniform mixture weights

λk = 1
p
. Note we don’t include techniques based on searching the Pareto-efficient solutions for the

mixture of losses, since the end goal of these frameworks is completely different from ALMO.

For the connection between the two frameworks, see the discussion in Section 5.2.
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The models are compared on MNIST [LeCun and Cortes 2010], Fashion-MNIST [Xiao et al.

2017b] and ADULT [Dua and Graff 2017] datasets with standard feature preprocessing techniques

applied. We report results for two model architectures: a logistic regression and a neural network

with dimensions 1024-512-128. For both models, we run hyper-parameter tuning with a parameter

grid size 50 on a validation set, which is 20% of the training data.

We report the average values of the cross-entropy, zero-one, hinge and 1-norm losses in Ta-

bles 5.1 and 5.2. We also provide AUC, which was not included in the training losses. The

standard deviations are obtained by retraining every model 3 times.

Experimental results support our claim that the ALMO framework improves the model for

the worst performing loss. The hinge loss is often observed with a significant loss value and as

illustrated in Figure 5.3 the corresponding λ attains a high value. In the appendix we provide results

from training on just one loss at a time and discuss the improvements of ALMO as compared to

that baseline.

The resulting model is robust and avoids selecting a specific set of mixture weights for train-

ing. It also performs better than the baseline in terms of AUC on all datasets, while AUC was

not used for training. Additionally, the ALMO algorithm can be used as a tool for selection of

base objectives (e.g., AutoML), as ALMO during training increases the mixture weights for the

worst performing base losses, while the others are decreasing (see Figure 5.3). As expected, losses

trained with a higher mixture weight show an improvement compared to the Uniform case. Even

for cases like cross-entropy in the DNN-MNIST configuration (see Table 5.2), the algorithm bal-

ances the 1-norm loss, and AUC shows a more robust model. Also interesting is the significant

improvement in AUC for the DNN-Adult dataset, which may be related to the dramatic decrease

of the hinge loss. Finally, as shown in both tables, ALMO does not select to optimize the 1-norm

loss, assigns it a low mixture weight and does not improve over uniform.
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Table 5.1: Comparison of loss functions for logistic regression model.

MNIST Fashion MNIST Adult
Uniform ALMO Uniform ALMO Uniform ALMO

Cross-entropy 0.1412 0.0726 0.1011 0.0716 0.680 0.501
(std) (0.0004) (0.0005) (0.0002) (0.0002) (0.002) (0.008)
Zero-one 0.143 0.114 0.1836 0.1789 0.224 0.214
(std) (0.003) (0.002) (0.0005) (0.0008) (0.002) (0.002)
Hinge 0.839 0.711 0.633 0.695 0.967 0.518
(std) (0.003) (0.005) (0.009) (0.011) (0.004) (0.021)
1-norm 0.2349 0.6587 0.488 0.672 0.250 0.871
(std) (0.001) (0.007) (0.008) (0.005) (0.003) (0.056)

AUC 0.9801 0.9877 0.9776 0.9794 0.8291 0.8321
(std) (0.0002) (0.0002) (0.0007) (0.0001) (0.0018) (0.0003)

Table 5.2: Comparison of loss functions for DNN model.

MNIST Fashion MNIST Adult
Uniform ALMO Uniform ALMO Uniform ALMO

Cross-entropy 0.044 0.045 0.0700 0.0614 0.673 0.460
(std) (0.003) (0.005) (0.0005) (0.0009) (0.001) (0.003)
Zero-one 0.0158 0.0153 0.114 0.110 0.149 0.159
(std) (0.0004) (0.0002) (0.003) (0.004) (0.002) (0.002)
Hinge 0.631 0.752 0.661 0.547 0.914 0.389
(std) (0.002) (0.041) (0.004) (0.008) (0.001) (0.006)
1-norm 0.436 0.313 0.435 0.554 0.153 0.845
(std) (0.002) (0.038) (0.006) (0.0010) (0.001) (0.022)

AUC 0.9986 0.9993 0.9883 0.9911 0.8092 0.8840
(std) (0.0002) (0.0001) (0.0002) (0.0005) (0.0004) (0.0031)

5.6 CONCLUSION

We have introduced a new framework (ALMO) for multi-objective learning that is robust against

any mixture distribution of the base objectives, hence avoiding the subjective step of selecting mix-

ture coefficients for multi-loss training. We have given a detailed theoretical analysis and a learning

algorithm motivated by the theory. The algorithm is based on stochastic gradient descent, there-

fore applicable to a wide range of large-scale domains and can be easily implemented in popular

computational frameworks. The experiments show that the ALMO framework builds more robust
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models for a variety of objectives in different machine learning problems. The agnostic framework

introduced here is directly applicable and beneficial not only for standard supervised learning set-

tings, but also to other scenarios where a learner is trying to combine multiple objectives, such as

transfer learning and domain adaptation.

BROADER IMPACT

This paper presents a novel approach for learning with multiple losses. The algorithm is robust in

the sense that it optimizes for the most adversarial mixture of the included losses. It furthermore

demonstrates good performance on losses not included in the optimization. This is an important

problem from a fairness perspective where multiple losses are often at play and different interest

groups may disagree on what loss to optimize for. An illustrative example is the analysis of the

COMPAS tool for predicting recidivism by [Angwin et al. 2019] demonstrating how different

interest groups would have wanted to optimize for different losses. Not all losses can be optimized

for simultaneously, as proven by [Kleinberg et al. 2017], but to the extent that this is possible, our

algorithm provides a step in the direction of guarding against the most unfavorable condition.
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6 | EFFICIENT GRADIENT COMPUTATION

FOR STRUCTURED OUTPUT LEARNING

WITH RATIONAL AND TROPICAL

LOSSES

Many structured prediction problems admit a natural loss function for evaluation such as the edit-

distance or n-gram loss. However, existing learning algorithms are typically designed to optimize

alternative objectives such as the cross-entropy. This is because a naïve implementation of the

natural loss functions often results in intractable gradient computations. In this paper, we design

efficient gradient computation algorithms for two broad families of structured prediction loss func-

tions: rational and tropical losses. These families include as special cases the n-gram loss, the

edit-distance loss, and many other loss functions commonly used in natural language processing

and computational biology tasks that are based on sequence similarity measures. Our algorithms

make use of weighted automata and graph operations over appropriate semirings to design efficient

solutions. They facilitate efficient gradient computation and hence enable one to train learning

models such as neural networks with complex structured losses.
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6.1 BACKGROUND

Many important machine learning tasks are instances of structured prediction problems. These

are learning problems where the output labels admit some structure that is important to take into

account both for statistical and computational reasons. Structured prediction problems include

most natural language processing tasks, such as pronunciation modeling, part-of-speech tagging,

context-free parsing, dependency parsing, machine translation, speech recognition, where the out-

put labels are sequences of phonemes, part-of-speech tags, words, parse trees, or acyclic graphs,

as well as other sequence modeling tasks in computational biology. They also include a variety

of problems in computer vision such as image segmentation, feature detection, object recognition,

motion estimation, computational photography and many others.

Several algorithms have been designed in the past for structured prediction tasks, including

Conditional Random Fields (CRFs) [Lafferty et al. 2001; Gimpel and Smith 2010], StructSVMs

[Tsochantaridis et al. 2005], Maximum-Margin Markov Networks (M3N) [Taskar et al. 2003],

kernel-regression-based algorithms [Cortes et al. 2007], and search-based methods [Daumé III

et al. 2009; Doppa et al. 2014; Lam et al. 2015; Chang et al. 2015; Ross et al. 2011]. More

recently, deep learning techniques have been designed for many structured prediction tasks, in-

cluding part-of-speech tagging [Jurafsky and Martin 2009; Vinyals et al. 2015a], named-entity

recognition [Nadeau and Sekine 2007], machine translation [Zhang et al. 2008; Wu et al. 2016],

image segmentation [Lucchi et al. 2013], and image annotation [Vinyals et al. 2015b].

Many of these algorithms have been successfully used with specific loss functions such as the

Hamming loss. Their use has been also extended to multivariate performance measures such as

Precision/Recall or F1-score [Joachims 2005], which depend on predictions on all training points.

However, the natural loss function relevant to a structured prediction task, which may be the n-
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gram loss, the edit-distance loss, or some sequence similarity-based loss, is otherwise often ig-

nored. Instead, an alternative measure such as the cross-entropy is used. This is typically due to

computational efficiency reasons: a key subroutine within the main optimization such as one re-

quiring to determine the most violating constraint may be computationally intractable, the gradient

may not admit a closed-form or may seem difficult to compute, as it may involve sums over a

number of terms exponential in the size of the input alphabet, with each term in itself being a large

non-trivial computational task.

Several techniques have been suggested in the past to address this issue. They include Min-

imum Risk Training (MRT) [Och 2003; Shen et al. 2016], which seeks to optimize the natural

objective directly but relies on sampling or focusing on only the top-n structured outputs to make

the problem computationally tractable. REINFORCE-based methods [Ranzato et al. 2015; Wu

et al. 2016] also seek to optimize the natural loss function by defining an unbiased stochastic

estimate of the objective, thereby making the problem computationally tractable. While these pub-

lications have demonstrated that training directly with the natural loss function yields better results

than using a naïve loss function, their solutions naturally suffer from issues such as high variance

in the gradient estimate, in the case of sampling, or bias in the case of top-n. Moreover, REIN-

FORCE methods often have to feed the ground-truth at training time, which is inconsistent with

the underlying theory.

Another technique has consisted of designing computationally more tractable surrogate loss

functions closer to the natural loss function [Ranjbar et al. 2013; Eban et al. 2017]. These pub-

lications also report improved performance using an objective closer to the natural loss, while

admitting the inherent issue of not optimizing the desired metric. [McAllester et al. 2010] propose

a perceptron-like update in the special case of linear models in structured prediction problems,

which avoids the use of surrogate losses. However, while they show that direct loss minimization
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admits some asymptotic statistical benefits, each update in their work requires solving an argmax

problem for which the authors do not give an algorithm and that is known to be computationally

hard in general, particularly for non-additive losses.

This paper is strongly motivated by much of this previous work, which reports empirical bene-

fits for using the natural loss associated to the task. We present efficient gradient computation algo-

rithms for two broad families of structured prediction loss functions: rational and tropical losses.

These families include as special cases the n-gram loss, the edit-distance loss, and many other loss

functions commonly used in natural language processing and computational biology tasks that

are based on sequence similarity measures. Our algorithms make use of weighted automata and

graph operations over appropriate semirings to design efficient solutions that circumvent the naïve

computation of exponentially sized sums in gradient formula.

Our algorithms enable one to train learning models such as neural networks with complex

structured losses. When combined with the recent developments in automatic differentiation, e.g.

CNTK [Seide and Agarwal 2016], MXNet [Chen et al. 2015], PyTorch [Paszke et al. 2017], and

TensorFlow [Abadi et al. 2016], they can be used to train structured prediction models such as

neural networks with the natural loss of the task. In particular, the use of our techniques for the

top layer of neural network models can further accelerate progress in end-to-end training [Amodei

et al. 2016; Graves and Jaitly 2014; Wu et al. 2016].

For problems with limited data, e.g. uncommon languages or some biological problems, our

work overcomes the computational bottleneck, uses the exact loss function, and renders the amount

of data available the next hurdle for improved performance. For extremely large-scale problems

with more data than can be processed, we further present an approximate truncated shortest-path

algorithm that can be used for fast approximate gradient computations of the edit-distance.

The rest of the paper is organized as follows. In Section 6.2, we briefly describe structured
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prediction problems and algorithms, discuss their learning objectives, and point out the challenge

of gradient computation. Section 6.3 defines several weighted automata and transducer operations

that we use to design efficient algorithms for gradient-based learning. In Sections 6.4 and 6.5, we

give general algorithms for computing the gradient of rational and tropical loss functions, respec-

tively. In Section 6.6, we report the results of experiments verifying the improvement due to using

our efficient methods compared to a naïve implementation. Further details regarding weighted au-

tomata and transducer operations and training recurrent neural network training with the structured

objective are presented in Appendix D.1 and Appendix D.2.

6.2 GRADIENT COMPUTATION IN STRUCTURED PREDICTION

In this section, we introduce the structured prediction learning problem. We start by defining the

learning scenario, including the relevant loss functions and features. We then move on to discussing

the hypothesis sets and forms of the objection function that are used by many structured prediction

algorithms, which leads us to describe the problem of computing their gradients.

6.2.1 STRUCTURED PREDICTION LEARNING SCENARIO

We consider the supervised learning setting, in which the learner receives a labeled sample S =

{(x1, y1), . . . , (xm, ym)} drawn i.i.d. from some unknown distribution over X×Y, where X denotes

the input space and Y the output space. In structured prediction, we assume that elements of the

output space Y can be decomposed into possibly overlapping substructures y = (y1, . . . , yl). We

further assume that the loss function L : Y × Y → R+ can similarly be decomposed along these

substructures. Some key examples of loss functions that are relevant to our work are the Hamming

loss, the n-gram loss and the edit-distance loss.

106



The Hamming loss is defined for all y = (y1, . . . , yl) and y′ = (y′1, . . . , y′l) by L(y, y′) =

1
l

∑l
k=1 1yk 6=y′k , with yk, y′k ∈ Yk. The edit-distance loss is commonly used in natural language

processing (NLP) applications where Y is a set of sequences defined over a finite alphabet, and the

loss function between two sequences y and y′ is defined as the minimum cost of a sequence of edit

operations, typically insertions, deletions, and substitutions, that transform y into y′. The n-gram

loss is defined as the negative inner product (or its logarithm) of the vectors of n-gram counts of

two sequences. This can serve as an approximation to the BLEU score, which is commonly used

in machine translation.

We assume that the learner has access to a feature mapping Ψ : X × Y → RN . This mapping

can be either a vector of manually designed features, as in the application of the CRF algorithm,

or the differentiable output of the penultimate layer of an artificial neural network. In practice,

feature mappings that correspond to the inherent structure of the input space X combined with

the structure of Y can be exploited to derive effective and efficient algorithms. As mentioned

previously, a common case in structured prediction is when Y is a set of sequences of length l

over a finite alphabet ∆. This is the setting that we will consider, as other structured prediction

problems can often be treated similarly.

We further assume that Ψ admits a Markovian property of order q, that is, for any (x, y) ∈ X×

Y, Ψ(x, y) can be decomposed as Ψ(x, y) =
∑l

s=1ψ(x, ys−q+1:s, s), for some position-dependent

feature vector function ψ defined over X × ∆q × [l], where the shorthand ys:s′ = (ys, . . . , ys
′
)

stands for the substring of y starting at index s and ending at s′. For convenience, for s ≤ 0, we

define ys to be the empty string ε. This Markovian assumption is commonly adopted in structured

prediction problems such as NLP [Manning and Schütze 1999]. In particular, it holds for feature

mappings that are frequently used in conjunction with the CRF, as well as outputs of a recurrent

neural network, reset at the begining of each new input (see Appendix D.2).
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6.2.2 OBJECTIVE FUNCTION AND GRADIENT COMPUTATION

The hypothesis set we consider is that of linear functions h : (x, y) 7→ w · Ψ(x, y) based on the

feature mapping Ψ. The empirical loss R̂S(h) = 1
m

∑m
i=1 L(h(xi), yi) associated to a hypothesis

h is often not differentiable in structured prediction since the loss function admits discrete values.

Taking the expectation over the distribution induced by the log-linear model, as in [Gimpel and

Smith 2010][Equation 5], does not help resolve this issue, since the method does not result in an

upper bound on the empirical loss and does not admit favorable generalization guarantees. Instead,

as in the familiar binary classification scenario, one can resort to upper-bounding the loss with a

differentiable (convex) surrogate. For instance, by [Cortes et al. 2016][Lemma 4], R̂S(h) can be

upper-bounded by the following objective function:

F (w) =
1

m

m∑
i=1

log

[∑
y∈Y

eL(y,yi)−w·(Ψ(xi,yi)−Ψ(xi,y))

]
, (6.1)

which, modulo a regularization term, coincides with the objective function of CRF. Note that

this expression has also been presented as the softmax margin [Gimpel and Smith 2010] and the

reward-augmented maximum likelihood [Norouzi et al. 2016]. Both of these references demon-

strate strong empirical evidence for this choice of objective function (in addition to the theoretical

results presented in [Cortes et al. 2016]).

Our focus in this work is on an efficient computation of the gradient of this objective function.

Since the computation of the subgradient of the regularization term often does not pose any issues,

we will only consider the unregularized part of the objective. For any w and i ∈ [m], let Fi(w)

denote the contribution of the i-th training point to the objective function F . A standard gradient

descent-based method would sum up all or a subset (mini-batch) of the gradients ∇Fi(w). As

illustrated in [Cortes et al. 2016][Lemma 15], the gradient ∇Fi(w) can be expressed as follows at
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any w:

∇Fi(w) =
1

m

l∑
s=1

∑
z∈∆q

Qw(z, s)ψ(xi, z, s)−
Ψ(xi, yi)

m
,

where, for all z ∈ ∆q and s ∈ [l], Qw(z, s) is defined by

Qw(z, s) =
∑

y : ys−q+1:s=z

eL(y,yi)+w·Ψ(xi,y)

Zw

and Zw =
∑
y∈Y

eL(y,yi)+w·Ψ(xi,y).

The bottleneck in the gradient computation is the evaluation of Qw(z, s), for all z ∈ ∆q and

s ∈ [l]. There are l|∆|q such terms and each term Qw(z, s) is defined by a sum over the |∆|l−q

sequences y of length l with a fixed substring z of length q. A straightforward computation of

these terms following their definition would therefore be computationally expensive. To avoid that

computational cost, many existing learning algorithms for structured prediction, including most of

those mentioned in the introduction, resort to further approximations and omit the loss L from the

definition of Qw(z, s). Combining that with the Markovian structure of Ψ can then lead to efficient

gradient computations. Of course, the caveat of this approach is that it ignores the key component

of the learning problem, namely the loss function.

In what follows, we will present efficient algorithms for the exact computation of the terms

Qw(z, s), with their full definition, including the loss function. This leads to an efficient computa-

tion of the gradients ∇Fi, which can be used as input to back-propagation algorithms that would

enable us to train neural network models with structured prediction losses.

The gradient computation methods we present apply to the Hamming loss, n-gram loss, and

edit-distance loss, and more generally to two broad families of losses that can be represented by

weighted finite-state transducers (WFSTs). This covers many losses based on sequence similar-

ity measures that are used in NLP and computational biology applications [Cortes et al. 2004;

Schölkopf et al. 2004].
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We briefly describe the WFST operations relevant to our solutions in the following section and

provide an example of how the edit-distance loss can be represented with a WFST in Section 6.5.

6.3 WEIGHTED AUTOMATA AND TRANSDUCERS

Weighted finite automata (WFA) and weighted finite-state transducers (WFST) are fundamental

concepts and representations widely used in computer science [Mohri 2009]. We will use WFAs

and WFSTs to devise algorithms that efficiently compute gradients of structured prediction objec-

tives. This section introduces some standard concepts and notation for WFAs and WFSTs. We

provide additional details in Appendix D.1. For a more comprehensive treatment of these topics,

we refer the reader to [Mohri 2009].

Definition. A weighted finite-state transducer T over a semiring (S,⊕,⊗, 0, 1) is an 8-tuple

(Σ,∆, Q, I, F, E, λ, ρ) where Σ is a finite input alphabet, ∆ is a finite output alphabet, Q is a

finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, E is a finite

multiset of transitions, which are elements of Q × (Σ ∪ {ε}) × (∆ ∪ {ε}) × S × Q, λ : I → S is

an initial weight function, and ρ : F → S is a final weight function. A weighted finite automaton is

a weighted finite-state transducer where the input and output labels are the same. See Figures 6.1

and 6.3 for some examples.

For many operations to be well defined, the weights of a WFST must belong to a semiring

(S,⊕,⊗, 0, 1). We provide a formal definition of a semiring in Appendix D.1. In this work,

we consider two semirings: the probability semiring (R+ ∪ {+∞},+,×, 0, 1) and the tropical

semiring (R ∪ {−∞,+∞},min,+,+∞, 0). The ⊗-operation is used to compute the weight of a

path by ⊗-multiplying the weights of the transitions along that path. The ⊕-operation is used to

compute the weight of a pair of input and output strings (x, y) by ⊕-summing the weights of the
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Figure 6.1: Bigram transducer Tbigram over the semiring (R+ ∪ {+∞},+,×, 0, 1) for the alphabet
∆ = {a, b}. The weight of each transition (or that of a final state) is indicated after the slash
separator. For example, for any string y and bigram u, Tbigram(y,u) is equal to the number of
occurrences of u in y [Cortes et al. 2015a].

paths labeled with (x, y). We denote this weight by T(x, y).

As shown in Sections 6.4 and 6.5, in many useful cases, we can reduce the computation of the

loss function L(y, y′) between two strings y and y′, along with the gradient of the corresponding

objective described in (6.1), to that of the ⊕-sum of the weights of all paths labeled by y:y′ in a

suitably defined transducer over either the probability or tropical semiring. We will use the follow-

ing standard WFST operations to construct these transducers: inverse (T−1), projection (Π(T)),

composition (T1 ◦T2), and determinization (Det(A)). The definitions of these operations are given

in Appendix D.1.

6.4 AN EFFICIENT ALGORITHM FOR THE GRADIENT

COMPUTATION OF RATIONAL LOSSES

As discussed in Section 6.2, computing Qw(z, s) is the main bottleneck in the gradient computa-

tion. In this section, we give an efficient algorithm for computing Qw(z, s) that works for an arbi-

trary rational loss, which includes as a special case the n-gram loss and other sequence similarity-

based losses. We first present the definition of a rational loss and show how the n-gram loss can be

encoded as a specific rational loss. Then, we present our gradient computation algorithm.

Let (R+ ∪ {+∞},+,×, 0, 1) be the probability semiring and let U be a WFST over the prob-

ability semiring admitting ∆ as both the input and output alphabet. Then, following [Cortes et al.
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GRAD-RATIONAL(xi, yi,w)

1 Y←WFA accepting any y ∈ ∆l.
2 Yi ←WFA accepting yi.
3 M← Π1(Y ◦ U ◦ Yi)
4 M← Det(M)
5 B← INVERSEWEIGHTS(M)
6 C← A ◦B
7 α← DISTFROMINITIAL(C, (+,×))
8 β ← DISTTOFINAL(C, (+,×))
9 Zw ← β(IC) . IC initial state of C

10 for (z, s) ∈ ∆q × [l] do
11 Qw(z, s)←

∑
e∈Ez,s

α(e)× ω(e)× β(e)

12 Qw(z, s)← Qw(z, s)/Zw

(b)

(c)

(d)

(a)

Figure 6.2: (a) Efficient computation of the key terms of the structured gradient for the rational
loss. For each transition e ∈ Ez,s, we denote its origin by e, destination by e and weight by ω(e). (b)
Illustration of the WFA Y for ∆ = {a, b} and l = 3. (c) Illustration of the WFA Yi representing string
dac. (d) Illustration of WFA A for q = 2, alphabet ∆ = (a, b) and string length l = 2. For example,
the transition from state (a, 1) to state (b, 2) has the label b and weight ω(ab, 2) = ew·ψ(xi,ab,2).

2015a], the rational loss associated to U is the function LU : ∆∗×∆∗ → R∪ {−∞,+∞} defined

for all y, y′ ∈ ∆∗ by LU(y, y′) = − log
(
U(y, y′)

)
. As an example, the n-gram loss of y and y′

is the negative logarithm of the inner product of the vectors of n-gram counts of y and y′. The

WFST Un-gram of an n-gram loss is obtained by composing a weighted transducer Tn-gram giving

the n-gram counts with its inverse T−1
n-gram, that is the transducer derived from Tn-gram by swapping

input and output labels for each transition. As an example, Figure 6.1 shows the WFST Tbigram for

bigrams.

To compute Qw(z, s) for a rational loss, recall that

Qw(z, s) ∝
∑

y : ys−q+1:s=z

eLU(y,yi)+w·Ψ(xi,y).
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Thus, we will design two WFAs, A and B, such that A(y) = ew·Ψ(xi,y), B(y) = eLU(y,yi), and their

composition C(y) = (A ◦ B)(y) = eLU(y,yi)+w·Ψ(xi,y). To compute Qw from C, we will need to

sum up the weights of all paths labeled with some substring z, which we will achieve by treating

this as a flow computation problem.

The pseudocode of our algorithm for computing the key terms Qw(z, s) for a rational loss is

given in Figure 6.2(a).

DESIGN OF A. We want to design a determnistic WFA A such that

A(y) = ew·Ψ(xi,y) =
l∏

t=1

ew·ψ(xi,y
t−q+1:t,t).

To accomplish this task, let A be a WFA with the following set of states QA =
{

(yt−q+1:t, t) : y ∈

∆l, t = 0, . . . , l
}
, with IA = (ε, 0) its single initial state, FA = {(yl−q+1:l, l) : y ∈ ∆l} its set of

final states, and with a transition from state (yt−q+1:t−1, t− 1) to state (yt−q+2:t−1 b, t) with label b

and weight ω(yt−q+1:t−1 b, t) = ew·ψ(xi,y
t−q+1:t−1b,t), that is, the following set of transitions:

EA =
{(

(yt−q+1:t−1, t− 1), b, ω(yt−q+1:t−1 b, t), (yt−q+2:t−1 b, t)
)

: y ∈ ∆l, b ∈ ∆, t ∈ [l]
}
.

Figure 6.2(d) illustrates this construction in the case q = 2. Note that the WFA A is deterministic

by construction. Since the weight of a path in A is obtained by multiplying the transition weights

along the path, A(y) computes the desired quantity.

DESIGN OF B. We now design a deterministic WFA B which associates to each sequence y ∈

∆l the exponential of the loss eLU(y,yi) = 1/U(y, yi). Let Y denote a WFA over the probability

semiring accepting the set of all strings of length l with weight one and let Yi denote the WFA
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accepting only yi with weight one. Figures 6.2(b) and 6.2(c) illustrate the constructions of Y

and Yi in some simple cases.1 We first use the composition operation for weighted automata

and transducers. Then, we use the projection operation on the input, which we denote by Π1,

to compute the following WFA: M = Π1(Y ◦ U ◦ Yi). Recalling that Y(y) = Yi(yi) = 1 by

construction and applying the definition of WFST composition, we observe that for any y ∈ ∆l

M(y) = (Y◦U◦Yi)(y, yi) =
∑

z=y,z′=yi

Y(z)U(z, z′)Yi(z
′) = Y(y)U(y, yi)Yi(yi) = U(y, yi). (6.2)

Next, we can apply weighted determinization [Mohri 1997] to compute a deterministic WFA

equivalent to M, denoted by Det(M). By [Cortes et al. 2015a][Theorem 3], Det(M) can be

computed in polynomial time. Since Det(M) is deterministic and by construction accepts pre-

cisely the set of strings y ∈ ∆l, it admits a unique accepting path labeled with y whose weight is

Det(M)(y) = M(y) = U(y, yi). The weight of that accepting path is obtained by multiplying the

weights of its transitions and that of the final state. Let B be the WFA derived from Det(M) by

replacing each transition weight or final weight u by its inverse 1
u

. Then, by construction, for any

y ∈ ∆l, we have B(y) = 1
U(y,yi)

.

COMBINING A AND B. Now consider the WFA C = A ◦ B, the composition of A and B.

C is deterministic since both A and B are deterministic. Moreover, C can be computed in time

O(|A||B|). By definition, for all y ∈ ∆l,

C(y) = A(y)×B(y) =
l∏

t=1

ew·ψ(xi,y
t−q+1:t,t) × 1

U(y, yi)
= eL(y,yi)

l∏
t=1

ew·ψ(xi,y
t−q+1:t,t). (6.3)

1Note that we do not need to explicitly construct Y, which could be costly when the alphabet size ∆ is large.
Instead, we can create its transitions on-the-fly as demanded by the composition operation. Thus, for the rational
kernels commonly used, at most the transitions labeled with the alphabet symbols appearing in Yi need to be created.
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To see how C can be used to compute Qw(z, s), we note first that the states of C can be identified

with pairs (qA, qB) where qA is a state of A, qB is a state of B, and the transitions are obtained by

matching a transition in A with one in B. Thus, for any z ∈ ∆q and s ∈ [l], let Ez,s be the set

of transitions of C constructed by pairing the transition in A ((z1:q−1, s − 1), zq, ω(z, s), (z2:q, s))

with a transition in B:

Ez,s =
{(

(qA, qB), zq, ω, (q′A, q
′
B)
)
∈ EC : qA = (z1:q−1, s− 1)

}
. (6.4)

Note that, since C is deterministic, there can be only one transition leaving a state labeled with zq.

Thus, to define Ez,s, we only needed to specify the origin state of the transitions.

For each transition e ∈ Ez,s, we denote its origin by e, destination by e and weight by ω(e).

Then, Qw(z, s) can be computed as
∑

e∈Ez,s
α(e) × ω(e) × β(e), where α(e) is the sum of the

weights of all paths from an initial state of C to e, and β(e) is the sum of the weights of all paths

from e to a final state of C. Since C is acyclic, α and β can be computed for all states in linear time

in the size of C using a single-source shortest-distance algorithm over the (+,×) semiring [Mohri

2002] or the so-called forward-backward algorithm. We denote these subroutines by DistFromIni-

tial and DistToFinal respectively in the pseudocode. Since C admits O(l|∆|q) transitions, we can

compute all of the quantities Qw(z, s), s ∈ [l] and z ∈ ∆q and Z ′w, in time O(l|∆|q).

Note that a natural alternative to the weighted transducer methods presented in this work is to

consider junction tree type methods for graphical methods. However, weighted transducer tech-

niques typically result in more “compact” representations than graphical model methods, and the

computational cost of the former can even be exponentially faster than the best one could achieve

using the latter [Poon and Domingos 2011].
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(a) (b)

Figure 6.3: (a) Edit-distance transducer Uedit over the tropical semiring, in the case where the
substitution cost is 1, the deletion cost 2, the insertion cost 3, and the alphabet ∆ = {a, b}. (b)
Smith-Waterman transducer USmith-Waterman over the tropical semiring, in the case where the sub-
stitution, deletion and insertion costs are 1, and where the matching cost is −2, for the alphabet
∆ = {a, b}.

6.5 AN EFFICIENT ALGORITHM FOR THE GRADIENT

COMPUTATION OF TROPICAL LOSSES

Following the treatment in [Cortes et al. 2015a], the tropical loss associated to a weighted trans-

ducer U over the tropical semiring is defined as the function LU : ∆∗ × ∆∗ → R coinciding with

U; thus, for all y, y′ ∈ ∆∗, LU(y, y′) = U(y, y′).

For examples of weighted transducers over the tropical semiring, see Figures 6.3(a) and (b).

Our algorithm for computing Qw(z, s) for a tropical loss, illustrated in Figure 6.4(a), is similar

to our algorithm for a rational loss, with the primary difference being that we exponentiate weights

instead of invert them in the WFA B. Specifically, we design A just as in Section 6.4, and we

design a deterministic WFA B by first designing Det(M) as in Section 6.4 and then deriving B

from Det(M) by replacing each transition weight or final weight u in Det(M) by eu. Then by

construction, for any y ∈ ∆l, B(y) = eU(y,yi). Moreover, composition of A with B yields a WFA
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GRAD-TROPICAL(xi, yi,w)

1 Y←WFA accepting any y ∈ ∆l.
2 Yi ←WFA accepting yi.
3 M← Π1(Y ◦ U ◦ Yi)
4 M← Det(M)
5 B← EXPONENTIATEWEIGHTS(M)
6 C← A ◦B
7 α← DISTFROMINITIAL(C, (+,×))
8 β ← DISTTOFINAL(C, (+,×))
9 Zw ← β(IC) . IC initial state of C

10 for (z, s) ∈ ∆q × [l] do
11 Qw(z, s)←

∑
e∈Ez,s

α(e)× ω(e)× β(e)

12 Qw(z, s)← Qw(z, s)/Zw

0/0

a:a/0
b:b/0
a:b/1
b:a/1
ε:a/1
ε:b/1
a:ε/1
b:ε/1

0/0

a:a/0
b:b/0
a:s/1
b:s/1
ε:i/1

0/0

a:a/0
b:b/0
s:a/0
s:b/0
s:ε/0
i:a/0
i:b/0

(a) (b)

Figure 6.4: (a) Efficient computation of the key terms of the structured gradient for the tropical
loss. (b) Factoring of the edit-distance transducer. The leftmost figure is the edit-distance weighted
transducer Uedit over alphabet Σ = {a, b}, the center figure is a weighted transducer T1, and the
rightmost figure is a weighted transducer T2 such that Uedit = T1 ◦ T2.

C = A ◦B such that for all y ∈ ∆l,

C(y) = A(y)×B(y) =
l∏

t=1

ew·ψ(xi,y
t−q+1:t,t) × eU(y,yi) = eL(y,yi)

l∏
t=1

ew·ψ(xi,y
t−q+1:t,t). (6.5)

As an example, the general edit-distance of two sequences y and y′ can, as already described,

be computed using Uedit in time O(|y||y′|) [Mohri 2003]. Note that for further computational op-

timization, Uedit and USmith-Waterman can be computed on-the-fly as demanded by the composition

operation, thereby creating only transitions with alphabet symbols appearing in the strings com-

pared.

In order to achieve optimal dependence on the size of the input alphabet, we can also apply

factoring to the edit-distance transducer. Figure 6.4(b) illustrates factoring of the edit-distance
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transducer over the alphabet Σ = {a, b}, where s is the substitution and deletion symbol and i is

the insertion symbol. Note that both T1 and T2 are linear in the size of Σ, while Uedit is quadratic

in |Σ|. Furthermore, using on-the-fly composition, for any Y1 and Y2, we can first compute Y1 ◦ T1

and T2 ◦ Y2 and then compose the result achieving time and space complexity in O(|Y1||Y2|).

6.6 EXPERIMENTS

6.6.1 RUNTIME EXPERIMENTS
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Figure 6.5: Runtime comparison of efficient versus naïve gradient computation methods for edit-
distance (a), Smith-Waterman (b) and bigram (c) loss functions. The naïve line refers to the
average runtime of Grad-Naïve, the efficient line refers to Grad-Tropical for edit-distance (a) and
Smith-Waterman (b) and Grad-Rational for bigram (c) loss. Naïve computations are shown only
up to string length l = 8.

In this section, we present experiments validating both the computational efficiency of our gra-

dient computation methods as well as the learning benefits of training with natural loss functions.

The experiments in this section should be treated as a proof of concept. We defer an extensive

study of training structured prediction models on large-scale datasets for future work.

For the runtime comparison, we randomly generate an input and output data pair (xi, yi), both

of a given fixed length, as well as a weight vector w, and we compute∇Fi(w) using both the naïve

and the outlined efficient methods. As shown in Section 6.2, the computationally demanding part

in the ∇Fi(w) calculation is evaluating Qw(z, s) for all s ∈ [l] and z ∈ ∆q, while the other terms

are generally not problematic to compute. We define a procedure Grad-Naïve (see Figure D.1 in
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the appendix) and compare the average runtimes of Grad-Naïve with that of Grad-Efficient for both

rational and tropical losses. The efficient algorithms suggested in this work improve upon the Grad-

Naïve runtime by eliminating the explicit loop over y ∈ Y and using the weighted automata and

transducer operations instead. All the weighted automata and transducer computations required

for Grad-Rational and Grad-Tropical are implemented using OpenFST [Allauzen et al. 2007].

More specifically, we define an alphabet |∆| = 10 and features Ψ(x, y) as vectors of counts

of all 100 possible bigrams. For each string length l from 2 to 30, we draw input pairs (xi, yi) ∈

∆l × ∆l uniformly at random and w ∈ R100 according to a standard normal distribution. The

average runtimes over 125 random trials are presented in Figure 6.5 for three loss functions: the

edit-distance, the Smith-Waterman distance and the bigram loss. The experiments demonstrate a

number of crucial benefits of our efficient gradient computation framework. Note that the Grad-

Naïve procedure runtime grows exponentially in l, while Grad-Tropical and Grad-Rational exhibit

linear dependency on the length of the input strings. In fact, using the threshold pruning as part of

determinization can allow one to compute approximate gradient for arbitrarily long input strings.

The computational improvement is even more evident for rational losses, in which case the de-

terminization of M can be achieved in polynomial time [Cortes et al. 2015a], thus pruning is not

required.

6.6.2 LEARNING EXPERIMENTS

We also provide preliminary learning experiments that illustrate the benefit of learning with a

structured loss, compared to training with the cross-entropy loss for two major tasks: sequence

alignment and machine translation.

The sequence alignment experiment replicates the artificial genome sequence data in [Joachims

et al. 2006], where each example consists of native, homolog, and decoy sequences of length 50
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and the task is to predict a sequence that is the closest to native in terms of the Smith-Waterman

alignment score. The experiment confirms that a model trained with Smith-Waterman distance

as the objective shows significantly higher average Smith-Waterman alignment score (and higher

accuracy) on a test set compared to a model trained with cross-entropy objective. The cross-entropy

model achieved a Smith-Waterman score of 42.73, while the augmented model achieved a score of

44.65 on a test set with a standard deviation of 0.35 averaged over 10 random folds.

6.7 CONCLUSION

We presented efficient algorithms for computing the gradients of structured prediction models with

rational and tropical losses, reporting experimental results confirming both runtime improvement

compared to naïve implementations and learning improvement compared to standard methods that

settle for using easier-to-optimize losses. We also showed how our approach can be incorporated

into the top layer of a neural network, so that it can be used to train end-to-end models in do-

mains including speech recognition, machine translation, and natural language processing. For

future work, we plan to run large-scale experiments with neural networks to further demonstrate

the benefit of working directly with rational or tropical losses using our efficient computational

methods.
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7 | GENERALIZATION BOUNDS FOR

SUPERVISED DIMENSIONALITY

REDUCTION

We introduce and study the learning scenario of supervised dimensionality reduction, which cou-

ples dimensionality reduction and a subsequent supervised learning step. We present new gener-

alization bounds for this scenario based on a careful analysis of the empirical Rademacher com-

plexity of the relevant hypothesis set. In particular, we show an upper bound on the Rademacher

complexity that is in Õ(
√

Λ(r)/m), where m is the sample size and Λ(r) the upper bound on the

Ky-Fan r-norm of the operator that defines the dimensionality reduction projection. We give both

upper and lower bounds in terms of that Ky-Fan r-norm, which strongly justifies the definition of

our hypothesis set. To the best of our knowledge, these are the first learning guarantees for the

problem of supervised dimensionality reduction with a learned kernel-based mapping. Our anal-

ysis and learning guarantees further apply to several special cases, such as that of using a fixed

kernel with supervised dimensionality reduction or that of unsupervised learning of a kernel for

dimensionality reduction followed by a supervised learning algorithm.
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7.1 INTRODUCTION

Dimensionality reduction techniques are common methods in machine learning used either to re-

duce the computational cost of working in higher-dimensional spaces, or to learn or approximate a

manifold expected to be more favorable to a subsequent learning task such as classification or re-

gression. They include classical techniques such as Principal Component Analysis (PCA) [Pearson

1901] and more recent techniques such as Isometric Feature Mapping [Tenenbaum et al. 2000] and

Locally Linear Embedding [Roweis and Saul 2000]. More generally, the dimensionality reduction

techniques just mentioned and most others have been shown to be specific instances of the kernel

PCA (KPCA) algorithm [Ham et al. 2004], for different choices of a kernel. An even broader view

of dimensionality reduction techniques is that they first map input points to the reproducing kernel

Hilbert space (RKHS) of some positive semi-definite (PSD) kernel K, and next project vectors

onto a low-dimensional space.

Standard dimensionality reduction techniques seek to determine a lower-dimensional space

preserving some geometric properties of the input. However, it is not clear which of these prop-

erties would be most beneficial to the later discrimination stage. Since they are typically unsuper-

vised, standard dimensionality reduction techniques also present a risk to the later classification

or regression task: the lower-dimensional space found may not be the most helpful one for the

second supervised learning stage and, in fact, in some cases could be harmful. Figure 7.1 shows a

very simple example where PCA can lead to a projected space that is detrimental to the subsequent

learning stage. More complex variants of this example can occur similarly in higher dimension

and for the broader case of KPCA, which covers most known techniques. How should we design

dimensionality reduction techniques to most benefit the subsequent supervised learning stage?

This paper seeks precisely to create a theoretical foundation guiding the design of dimensional-
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Figure 7.1: A simple example showing that simply preserving some geometric properties can be
detrimental to the subsequent learning task. The original data in (a) has four points from the blue
and red classes. The eigenvectors of the covariance matrix are v1 = ( 1

0 ) and v2 = ( 0
1 ). Standard

rank-one PCA projects both blue and red points onto v1, thus merging them (as plotted in (b)).
Any classification on the reduced data will necessarily incur a classification error of at least 1

2 .

ity reduction with learning guarantees. To do so, we consider a scenario where the dimensionality

reduction step is not carried out blindly and where, instead, it is coupled with the subsequent super-

vised learning stage. Since, as already discussed, the key choice defining dimensionality reduction

is that of a mapping to an RKHS defined by some PSD kernel K, the learning problem then

consists of selecting a PSD kernel K out of a family K such that the hypothesis learned on a low-

dimensional space after projection admits a small generalization error. We call this the supervised

kernel projection (SKP) setting.

The framework just described bears some similarity with that of learning kernels [Lanckriet

et al. 2004; Cortes et al. 2009, 2010; Kloft et al. 2011] (see [Gönen and Alpaydın 2011] and ref-

erences therein for a recent survey). However, while the selection of a kernel is common to both

frameworks, the learning problems and analyses are distinct, in particular because of the learner’s

freedom to select a projection space after mapping to an RKHS in the dimensionality reduction

case. Nevertheless, we will adopt the same common choice for the family K as in much of the

literature for learning kernels, that is that of convex combinations of p base PSD kernels. The

RKHS we consider is thus associated to a kernel in that family K and the projection is over the

top r eigenspace of an operator that is a function of the covariance operators of the weighted base

123



kernels. For the scenario of learning kernels, tight generalization bounds are known for this choice

of K [Cortes et al. 2010]. The main contribution of this paper is to similarly derive generalization

bounds for the SKP framework. Note that, while we consider a broader framework, our general-

ization bounds also apply to the special case of algorithms proceeding in two decoupled stages of

dimensionality reduction followed by supervised learning with a linear model in an RKHS.

The choice of our learning framework is further justified by some previous empirical studies

showing that tuning a dimensionality reduction algorithm in a supervised fashion, i.e. taking into

account the subsequent learning algorithm using the reduced features, can result in a considerably

better performance [Fukumizu et al. 2004; Gönen 2014]. Some recent work also explores learning

kernels in the setting of dimensionality reduction [Lin et al. 2011], though no theoretical analysis

or justification is provided for the algorithms considered. The vast majority of existing theoretical

analyses of dimensionality reduction techniques, even with a fixed kernel, do not directly take into

consideration the subsequent learning task and, instead, focus on the optimization of surrogate

metrics such as maximizing the variance of the projected features [Zwald and Blanchard 2005].

One exception is the work of [Mosci et al. 2007], which provides a generalization guarantee for

learning with hypotheses defined by KPCA with a fixed kernel followed by a regression algorithm

minimizing the squared loss. [Dhillon et al. 2013] also shows that the risk of PCA combined

with ordinary least squares regression is at most 4 times that of ridge regression. Recent related

work also includes that of [Gottlieb et al. 2013], which derives Rademacher complexity general-

ization bounds for learning Lipschitz functions in a general (fixed) metric space. They show that

the intrinsic dimension of the data can significantly influence learning guarantees by bounding

the corresponding Rademacher complexity in terms of dimension of underlying manifold and the

distortion of training set relative to that manifold.

The results of this paper are organized as follows. In Section 7.2 and 7.3 , we describe in detail
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the learning scenario and the hypothesis set we consider. Section 7.4 presents our main results,

which include an upper bound on the empirical Rademacher complexity of the hypothesis set, and

our main generalization bound. In Section 7.5, we show a lower bound on the sample Rademacher

complexity as well as other quantities, which demonstrates a necessary dependence on several

crucial quantities and helps to validate the design of the suggested hypothesis class. Finally, in

Section 7.6, we briefly discuss several implications of our results.

7.2 LEARNING SCENARIO

Let X denote the input space. We assume that the learner receives a labeled sample of size m,

S = ((x1, y1), . . . , (xm, ym)), drawn i.i.d. according to some distribution D over X × {−1,+1},

as well as an unlabeled sample U = (x′1, . . . , x
′
u) of size u, typically with u � m, drawn i.i.d.

according to the marginal distribution DX over X.

We assume that the learner has access to p PSD kernels K1, . . . , Kp. Instead of requiring the

learner to commit to a specific kernel K defining an RKHS, we consider the case of an RKHS de-

fined by a kernelKµ =
∑

k=1 µkKk that is a convex combination ofK1, . . . , Kp. The non-negative

mixture weights µk, k = 1, . . . , p, are parameters that can be selected by the learner to minimize

the error of the classifier using the result of the dimensionality reduction (see Figure 7.2). The

hypothesis set H we consider is thus that of linear hypotheses in a space obtained after projection

in the RKHS H defined by Kµ:

H =

{
x 7→ 〈w,ΠUΦ(x)〉H: ‖w‖H ≤ 1,µ ∈M

}
. (7.1)

Here, 〈·, ·〉H and ‖ · ‖H denote the inner product and norm in H, Φ : X→ H is the feature mapping

associated to Kµ, ΠU a projection using the unlabeled set U , and M a regularization set out
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Φ ΠΦ

Figure 7.2: Illustration of the supervised learning scenario: (a) raw input points; (b) points mapped
to a higher-dimensional space where linear separation is possible but not all dimensions are rele-
vant; (c) projection over a lower-dimensional space preserving linear separability.

of which µ is selected. Note that to avoid a heavier notation, we do not explicitly indicate the

dependency of Φ on µ as this should be clear from the context.

We now specify the choices of ΠU and µ. For any k ∈ [1, p], let CU,k : Hk → Hk denote the

empirical covariance operator based on the unlabeled sample U associated to the PSD kernel µkKk

with RKHS Hk. Let CU be the operator defined by CU = CU,1 + · · · + CU,p, which acts on the

sum of reproducing spaces H = H1 + · · · + Hp. For a fixed r, ΠU is the rank-r projection over

the eigenspace of CU that corresponds to the top-r eigenvalues of CU denoted by λ1(CU) ≥ . . . ≥

λr(CU).1 We define similarly the operators CS,k and CS for the sample S, as well as the projection

ΠS .

Note that the dimensionality reduction method just described is in general somewhat different

from the standard KPCA with kernel Kµ. Of course, in both cases, the projection is onto the top-r

eigenspace of an operator. But, while for KPCA that operator is the empirical covariance operator

associated to kernel Kµ, in the setting just described, the operator CU is the sum of the empirical

covariance operators associated to each base kernel. In the special case p = 1, the two methods

coincide. Also, both methods fall into the general SKP framework. Here, we consider the operator

1To simplify the presentation, we assume that the selected dimension r satisfies λr(CU ) 6= λr+1(CU ), but this
assumption is not necessary and our results can be straightforwardly extended to more general cases. Note that this
assumption is satisfied in particular when the eigenvalues are simple.
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CU or CS as they admit a favorable structure further discussed in Section 7.3.

We define the setM of admissible weight vectors µ as follows:

M =

{
µ ∈ Rp : ‖µ‖(r) ≤ Λ(r), ‖µ‖1 ≤ 1,

p∑
k=1

1

µk
≤ ν, µ ≥ 0

}
, (7.2)

where Λ(r) ≥ 0 and ν ≥ 0 are hyperparameters and where ‖µ‖(r) is the Ky-Fan r-norm of CU

[Bhatia 1997]:2

‖µ‖(r) = ‖CU‖(r) =
r∑
i=1

λi(CU) . (7.3)

We will later show that this choice of regularization is key as it appears as a crucial term in gener-

alization guarantees and in lower bounds. The vector µ is further upper bounded by an L1-norm

inequality ‖µ‖1 ≤ 1 as is standard in the learning kernel literature with similar kernel combina-

tions. The lower bound constraint on µ,
∑p

k=1 µ
−1
k ≤ ν, implies an upper bound on the eigengap

of the induced covariance operator, which is a fundamental quantity that influences the concentra-

tion of eigenspaces. In Section 7.5, we give a simple example demonstrating that the dependency

on the eigengap is tight, which implies the necessity of this lower bound regularization.

7.3 KERNEL PROPERTIES

In this section, we discuss the properties assumed about the base kernels, which turn out to be

rather mild assumptions. We will assume that the base kernels Kk, k ∈ [1, p], satisfy the condition

Kk(x, x) ≤ 1 for all x ∈ X, which is guaranteed to hold for all normalized kernels, such as

Gaussian kernels. We also assume that CU admits at least r non-zero eigenvalues and that at least

one kernel matrix among those associated to kernel Kk on sample S admits rank at least r, and

2The Ky-Fan r-norm is in fact a semi-norm.
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similarly for the kernel matrices defined over the sample U .

We denote by K the kernel matrix of a kernel K associated to the sample S, [K]i,j = K(xi, xj)

and by K the normalized kernel matrix defined by K = K
m

. Note that a kernel matrix thereby

normalized admits the same eigenvalues as the corresponding sample covariance operator (see for

example [Rosasco et al. 2010] Proposition 9.2). In particular, for any k ∈ [1, p] and i ∈ [1,m], we

have λi(Kk) = λi(CS,k).

We will assume the base kernels are linearly independent with respect to the union of the

samples S and U .

Definition 7.1 (Linearly Independent Kernels). Let K1, . . . , Kp be p PDS kernels and let S = (x1,

. . . , xn) be a sample of sizem. For any k ∈ [1, p], let Hk denote the RKHS associated toKk and Hk

the subspace of Hk spanned by the set of functions {ΦKk(xi) : i = 1, . . . ,m}. Then, K1, . . . , Kp

are said to be linearly independent with respect to the sample S if, for any k ∈ [1, p], no non-zero

function in Hk can be expressed as a linear combination of the functions in ∪l 6=kHl.

This condition typically holds in practice, e.g., for polynomial and Gaussian kernels on RN .

As an example, let X = RN and define the sample S = {x1, . . . , xm}. Define two base kernels:

GaussianK1(x, y) = e−‖x−y‖
2 and linearK2(x, y) = 〈x, y〉. Then ΦK1 is defined by ΦK1(x) : t 7→

e−‖x−t‖
2 , that is ΦK1(x) is an exponential function e−‖x−t‖

2 with parameter x and argument t.

Similarly, ΦK2 is defined by ΦK2(x) : t 7→ 〈x, t〉. Thus, H1 is the span of exponential functions

{e−‖x1−t‖2 , . . . , e−‖xm−t‖
2} and H2 is the span of linear functions {〈x1, t〉, . . . , 〈xm, t〉}. Clearly, no

exponential function can be represented as a linear combination of linear functions and likewise, in

general, no linear function is represented as a (finite) linear combination of exponential functions.

Thus, the base kernels K1 and K2 are linearly independent with respect to a finite sample S as in

Definition 7.1. More generally, the support of the base kernels can be straightforwardly modified

to ensure that this condition is satisfied.

128



By definition of H = H1 + · · · + Hp and by the results of [Aronszajn 1950, Section 6], when

the base kernels Kk are linearly independent with respect to sample S, then Hk are orthogonal

subspaces of H, thus we can define H =
⊕p

k=1 Hk, which will be extremely useful in decomposing

the spectra of operators CS . Linearly independent base kernels imply that CS admits at most pm

nonzero eigenvalues of the form µkλj(CS,k).

7.4 GENERALIZATION BOUND

In this section, we present our generalization bound for learning with the hypothesis set H we

introduced in Section 7.2. To obtain our generalization bound, we derive an upper bound on the

empirical Rademacher complexity of H for a sample S = (x1, . . . , xm), which is defined by

R̂S(H) =
1

m
E
σ

[
sup
h∈H

m∑
i=1

σih(xi)

]
.

Here, σis are i.i.d. random variables taking values +1 and −1 with equal probabilities. The hy-

pothesis set H we consider is parametrized by w and µ, thus R̂S(H) can be rewritten as follows:

R̂S(H) =
1

m
E
σ

 sup
‖w‖≤1
µ∈M

〈
w,ΠU

m∑
n=1

σiΦ(xi)
〉 =

1

m
E
σ

[
sup
µ∈M

∥∥∥∥ΠU

m∑
i=1

σiΦ(xi)

∥∥∥∥
]
,

where we used the equality case of the Cauchy-Schwarz inequality. To bound the resulting expres-

sion, it will be more convenient to work with ΠS instead of ΠU , since we are projecting instances

from sample S, and similarly control the Ky-Fan r-norm ‖CS‖(r) rather than ‖CU‖(r). Both of

these issues can be addressed by using concentration inequalities to bound the difference of the

projections ΠU and ΠS [Zwald and Blanchard 2005] as well as the difference of the operators CU
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and CS [Shawe-Taylor and Cristianini 2003]. To that end, we first extend the constraint setM to

a larger one N defined by

N =
{
µ ∈ Rp : ‖CS‖(r) ≤ Λ(r) + κ, ‖µ‖1 ≤ 1,

p∑
k=1

1

µk
≤ ν, µ ≥ 0

}
, (7.4)

where κ = 4
(

1 +

√
log ( 2p

δ
)

2

)
. Then, the following lemma provides an upper bound in terms of ΠS .

Lemma 7.2. For any δ > 0, with probability at least 1− δ, the following inequality holds for any

u ∈ H = H1 + · · ·+ Hp:

sup
µ∈M
‖ΠUu‖ ≤ sup

µ∈N

(
‖ΠSu‖+

8κν‖u‖
∆r

√
m

)
, (7.5)

where ∆r = mink∈[1,p]

(
λr(Ck) − λr+1(Ck)

)
, Ck is the population covariance operator of kernel

Kk and κ = 4
(

1 +

√
log ( 2p

δ
)

2

)
.

The proof of this lemma is given in Appendix E.1. In view of this lemma, with probability at

least 1− δ, R̂S(H) can be bounded as follows

R̂S(H) ≤ 1

m
E
σ

[
sup
µ∈N

(∥∥∥ΠS

m∑
i=1

σiΦ(xi)
∥∥∥+

8κν‖
∑m

i=1 σiΦ(xi)‖
∆r

√
m

)]

≤ 1

m
E
σ

[
sup
µ∈N

∥∥∥∥ΠS

m∑
i=1

σiΦ(xi)

∥∥∥∥
]

+
( 8κν

∆r

√
m

) 1

m
E
σ

[
sup
µ∈N

∥∥∥∥∥
m∑
i=1

σiΦ(xi)

∥∥∥∥∥
]
,

using the sub-additivity of the supremum operator and the linearity of expectation. The second

term can be bounded as follows:

1

m
E
σ

[
sup
µ∈N

∥∥∥∥ m∑
i=1

σiΦ(xi)

∥∥∥∥
]
≤ 1

m
E
σ

[
sup
‖µ‖1≤1

∥∥∥∥ m∑
i=1

σiΦ(xi)

∥∥∥∥
]
≤
√
η0edlog pe

m
, (7.6)
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where η0 = 23
22

, using the bound on the Rademacher complexity of learning kernels given by

Theorem 2 of [Cortes et al. 2010]. The following lemma helps us bound the first term.

Lemma 7.3. For any δ > 0, with probability at least 1− δ, the following inequality holds:

1

m
E
σ

[
sup
µ∈N

∥∥∥∥ΠS

m∑
i=1

σiΦ(xi)

∥∥∥∥
]
≤

√
2
(
Λ(r) + κ

)
log (2pm)

m
, (7.7)

where κ = 4
(

1 +

√
log 2p

δ

2

)
.

The proof of the lemma is given in Appendix E.2. Combining Lemmas 7.2 and 7.3 yields

directly the following result.

Theorem 7.4. Let H be the hypothesis set defined in (7.1). Then, for any δ > 0, with probability

at least 1− δ over the draw of an i.i.d. labeled sample S of size m < u, the empirical Rademacher

complexity of the hypothesis set H can be bounded as follows:

R̂S(H) ≤ 1√
m

[√
2
(
Λ(r) + κ

)
log (2pm) +

8κν

∆r

√
η0edlog pe

m

]
, (7.8)

where ∆r = mink∈[1,p]

(
λr(Ck) − λr+1(Ck)

)
, Ck is the population covariance operator of kernel

Kk, κ = 4
(

1 +
√

log (2p/δ)
2

)
and η0 = 23

22
.

Note that ∆r is not a random variable and does not depend on the choice of S or U . It only

depends on the spectral properties of the covariance operator for the distribution DX and the choice

of the projection dimension r.

We now compare this bound to the one known for the Rademacher complexity of a similar

hypothesis set in the scenario of learning kernels where a convex combination kernel Kµ is also

used [Cortes et al. 2010]. This will help us measure the additional complexity cost due to the
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dimensionality reduction step. Of course, the learning kernel scenario and regularization differ

from ours. But, we can make them comparable by considering the case U = S, that is the case

where U is an unlabeled version of S and can express Λ(r) in terms of unscaled sample kernel

matrices as follows:

Λ(r) =
1

m
sup
|I|=r

∑
(k,j)∈I

µkλj(Kk) ≤
1

m
sup
|I|=r

∑
(k,j)∈I

λj(Kk) . (7.9)

If we define sr = sup|I|=r
∑

(k,j)∈I λj(Kk) as the largest r-sum of eigenvalues selected from all

base kernel matrices, and s′m = supk∈[1,p] Tr[Kk], which is the largest m-sum of eigenvalues se-

lected from a single base kernel matrix, the Rademacher complexity of our hypothesis class is

in Õ
(√

sr/m
)
, while that of the hypothesis used in the learning kernel setting is in Õ

(√
s′m/m

)
.

Thus, for r = m, the upper bound on the Rademacher complexity in our supervised dimensionality

case is higher. The difference is due precisely to the extra freedom that the learner has to define

a projection space by selecting eigenvectors from different kernel matrices, while in the learning

kernel case he needs to commit instead to a single kernel matrix. For r sufficiently smaller than

m, the complexity term in the supervised dimensionality case could of course be more favorable

(sr ≤ s′m).

The following is our main generalization bound for supervised dimensionality reduction. We

denote by R(h) the generalization error with respect to the zero-one loss and by R̂S,ρ(h) the em-

pirical margin loss of h ∈ H, that is the fraction of points in S classified with margin less than ρ

by h.

Theorem 7.5. Let H be the hypothesis set defined in (7.1). Then, with probability at least 1 − δ
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over the draw of a sample S of size m, the following holds for all h ∈ H:

R(h) ≤ R̂S,ρ(h) +
2

ρ
√
m

(√
2
(
Λ(r) + κ

)
log (2pm) +

8κν

∆r

√
η0edlog pe

m

)
+ 3

√
log 4p

δ

2m
.

Proof. The theorem follows directly by combining the high-probability upper bound on the Rade-

macher complexity given by Theorem 7.4 and the standard high-probability Rademacher-based

generalization bound of [Koltchinskii and Panchenko 2002a] (see also [Bartlett and Mendelson

2003]).

To our knowledge, this is the first learning guarantee given for the scenario of supervised

dimensionality reduction. The bound of the theorem is inO
(√

Λ(r) log(pm)/m
)
. Thus, it suggests

that the Ky-Fan r-norm of the covariance operator plays a key role in the generalization ability of

hypotheses in this scenario. This is further supported by the presence of that term in a lower bound

proven in the next section. Note that the dependency of the bound on the number of base kernels

p is only logarithmic, which suggests using a rather large number of base kernels. The presence

of the term in the bound depending on ν and ∆r is due to the concentration bound for projections.

The parameter ν controls the eigengap of the learned operator CU , while, as already pointed out,

∆r is a quantity that does not depend on the sample or on µ, it is entirely defined by the choice of

the base kernel functions. We further elaborate on this in Section 7.5.

We note that [Mosci et al. 2007] and [Gottlieb et al. 2013] also give generalization bounds

for a supervised scenario of dimensionality reduction, however, they do not learn a mapping and

projection for dimensionality reduction jointly with a hypothesis learned on the projected space

using a discriminative algorithm. Nevertheless, their generalization bounds are comparable to the

special case of our bound where p = 1.

The analysis of [Gottlieb et al. 2013] is presented for general metric spaces, which is more gen-
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eral than what we consider here. In the case of the Euclidean space, their generalization bound is

in O
(√

d/m+
√
η/m

)
, where d is the dimension of underlying data manifold and η is the average

distance of the training set to that manifold. While both bounds admit a similar dependence on m,

our bound relies on the Ky-Fan norm of the projection rather than the intrinsic dimension of the

dataset. We note that the existence of an approximate low-dimensional manifold is a distributional

assumption which, depending on the task, may not hold. Furthermore, even when it does, the

estimation of the intrinsic dimension is typically a difficult task. The Ky-Fan norm, on the other

hand, can be directly controlled by the choice of the regularization parameter in the definition of

the hypothesis set.

The generalization bound of [Mosci et al. 2007] is in O
(
1/
√
m
)
. However, while we fix

the number of eigenvalues for dimensionality reduction to r, their bound requires selecting all

eigenvalues above a threshold λm = O
(
1/
√
m
)
. Furthermore, as already mentioned, their analysis

holds for the specific setting of KPCA with a fixed kernel (p = 1) followed by Ridge regression.

7.5 LOWER BOUNDS

In this section, we show a lower bound on the Rademacher complexity of the hypothesis class

H defined by (7.1). Furthermore, we give a simple example demonstrating the necessity of the

eigengap term appearing in Lemma 7.2 and also motivate the additional regularization term ν.

Theorem 7.6. For any m and r there exist samples S and U , a setting of the regularization pa-

rameter Λ(r), as well as a choice of base kernels K1, . . . , Kp such that the following inequality

holds:

R̂S(H) ≥
√

Λ(r)

2m
.

The proof is given in Appendix E.3. The result proves the tightness of the upper bound we

134



derived in terms of m, up to logarithmic factors. It further shows the key role of the regulariza-

tion parameter Λ(r) and justifies the presence of Ky-Fan r-norm constraint in the definition of the

hypothesis set.

We now also give a simple example showing that the projections must necessary depend on an

eigengap quantity. This in turn motivates the dependency of Lemma 7.2 on the quantity ∆r as well

as the regularization
∑p

k=1 µ
−1
k ≤ ν which is used to bound the eigengap of the learned operator

CS (see equation (E.3) in the proof of Lemma 7.2). The fact that the eigengap is essential for the

concentration of projections has been known in the matrix perturbation theory literature [Stewart

and Sun 1990]. The following proposition gives an example which shows that the dependence on

the eigengap is tight.

Proposition 7.7. There exist operators A and B such that

‖Pr(A)− Pr(B)‖ =
2‖A−B‖

λr(A)− λr+1(A)
,

where Pr(A) (resp. Pr(B)) is the orthogonal projection onto the top r eigenspace of A (resp. B).

Proof. Let r = 1 and consider A and B defined as follows: A =
(

1+ε 0
0 1

)
and B =

(
1 0
0 1+ε

)
, thus

A−B =
(
ε 0
0 −ε

)
, which implies that ‖A−B‖ = ε. Also, the eigengap is equal to λ1(A)−λ2(A) =

ε. Now, note that P1(A) is the projection onto e1 = (1, 0)> and P1(B) is the projection onto e2 =

(0, 1)>. Since e1 and e2 are orthogonal, this implies ‖P1(A)−P1(B)‖ = ‖P1(A)‖+‖P1(B)‖ = 2.

On the other hand, 2‖A−B‖
λ1(A)−λ2(A)

= 2ε
ε

= 2, which completes the proof.
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7.6 DISCUSSION

We now briefly discuss the results presented in the previous sections. Let us first emphasize that

our choice of the hypothesis class H (Section 7.2) is strongly justified a posteriori by the learn-

ing guarantees we presented: both our upper and lower bounds on the Rademacher complexity

(Sections 7.4 and 7.5) suggest that the quantities present in the definition of H play an important

role. The regularization parameters we provide can be tuned to directly bound each of these crucial

quantities and thereby limit the risk of over fitting.

Second, the hypothesis set suggested in this paper provides a unified framework for choosing

an optimal dimensionality reduction method. It suggests to specify a set of potential methods

(equivalent to a set of base kernels) and then learn their combination jointly with a projection.

Moreover, the generalization bound is logarithmic in the number of base kernels, which encourages

the use of a very large base set.

Third, we observe that the hypothesis class H clearly motivates the design of a single-stage

coupled algorithm. Such an algorithm would be based on structural risk minimization (SRM) and

seek to minimize the empirical error over increasingly complex hypothesis sets, by varying the

parameters Λ(r) and ν, to trade-off empirical error and model complexity. It is worthwhile to note

that our hypothesis set is constructed in such a way that the search over the choices of parameters

µ does not incur the bottleneck of recomputing the eigendecomposition of operator CU at every

iteration. Instead, we require the computation of the eigendecomposition of the (unweighted)

base kernel matrices once as a preprocessing step. The key to that is the assumption of linearly

independent kernels, which is typically satisfied in practice.

We note that the existing literature has empirically evaluated both learning kernels with KPCA

in an unsupervised (two-stage) fashion [Zhuang et al. 2011; Lin et al. 2011] and applied supervised
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KPCA (single-stage training) with a fixed kernel function [Fukumizu et al. 2004; Gönen 2014].

While these existing algorithms do not directly consider the hypothesis class we motivated, they

can, in certain cases, still select a hypothesis function that is found in our class. In particular,

our learning guarantees are applicable to hypotheses chosen in a two-stage manner, as long as the

regularization constraints are satisfied and the same family of projections are used. Similarly, the

case p = 1, which corresponds to the standard fixed-kernel supervised learning scenario, is covered

by our analysis. Even in such cases, the bounds that we provide would be the first to guarantee the

generalization ability of the algorithm via bounding the sample Rademacher complexity.

7.7 CONCLUSION

We presented a new analysis and generalization guarantees for the scenario of supervised dimen-

sionality reduction with a learned kernel. The hypothesis class is designed with regularization

constraints that are directly motivated by the upper and lower bounds on its Rademacher com-

plexity. Our analysis suggests the design of learning algorithms for selecting hypotheses from this

specifically tailored class, either in a two-stage or a single-stage manner. Our analysis can also

benefit the study of other similar hypothesis sets within the SKP framework.
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8 | CONCLUSION

We presented a unified in-depth analysis of several central problems in large-scale machine learn-

ing. The analysis provided includes principled learning guarantees that connect the generalization

error to the complexity of the underlying learning scenario. For each of the large-scale problems

considered, we have given an algorithm motivated by the learning guarantees and illustrated its

performance on a variety of datasets.

The experiments showed that algorithms based on our theory outperform the baselines. Thus,

this dissertation opens doors for a wide range of applications. For instance, the boosting-related

solutions given in Chapter 3 and Chapter 4 can be generalized to different hypotheses classes

beyond decision trees (e.g. Kernels and Deep Neural Networks). Thus, they can significantly

improve speech, image and video recognition solutions.

The solutions to learning with multiple objectives, presented as the ALMO algorithm in Chap-

ter 5 are proven to build more robust models for a variety of objectives in different machine learn-

ing problems. This framework is directly beneficial to complex learning scenarios that go beyond

supervised learning, where a learner is seeking to combine multiple objectives, such as transfer

learning and domain adaptation. Moreover, ALMO is implemented in state-of-the-art software

libraries, which makes it publicly available to broader communities.

The solution to efficient gradient computation for large-scale structured prediction problems
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presented in Chapter 6 will directly improve sequence-to-sequence machine learning applications,

such as machine translation, grammar correction and speech recognition. Moreover, it’s gradi-

ent computation is implemented in popular gradient-based machine learning libraries. Thus, re-

searchers and practitioners in the relevant fields can quickly benefit from deploying our gradient

computation framework in their applications.

The supervised dimensionality reduction theory in Chapter 7 should serve as a principled and

general instrumental framework to any application with a large number of input features. More-

over, it suggests a coupled dimensionality reduction algorithm based on the Structural Risk Mini-

mization principle, where the kernel family regularization is varied to achieve an optimal trade-off

between the empirical error and model complexity. The applications of our solution include, but

not limited to high-dimensional tabular data, time series analysis, text and image classification.
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A | APPENDIX TO CHAPTER 3.

A.0.1 PROOF OF THEOREM 3.1

Theorem 1. For any sample S = (x1, . . . , xm), the empirical Rademacher complexity of a hy-

pothesis set H is defined by R̂S(H) = Eσ
[

suph∈H
∑m

i=1 σih(xi)
]
, where, σis, i ∈ [m], are in-

dependent uniformly distributed random variables taking values in {−1, 1}. The following upper

bound holds for the empirical Rademacher complexity of Hn,λ,q:

R̂S(Hn,λ,q) ≤ λ

√
(4n+ 2) log2(d+ 2) log(m+ 1)

m
,

where d is input data dimension.

Proof. For the purpose of this proof, let Hn be the family of binary decision trees with leaf values

wj ∈ {−1,+1}. We use the regularization in the family Hn,λ,q and the connection to the family

Hn in the proof below. Additionally, let r ≥ 1 such that 1
r

+ 1
q

= 1, meaning that the r−norm

is the dual to the q−norm. To aid the presentation in the proof, we are going to define a vector σ̂

s.t. [σ̂]j =
∑

xi∈leafj σi, the j-th coordinate of which contains the sum of the Rademacher variables

that correspond to the sample points that fall within j-th leaf of a tree h.
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R̂S(Hn,λ,q) =
1

m
E
σ

[
sup

h∈Hn,λ,q

[ m∑
n=1

σnh(xn)

]]
(A.1)

=
1

m
E
σ

[
sup

h∈Hn,λ,q

[
σ̂ ·w

]]
(A.2)

≤ 1

m
E
σ

[
sup

h∈Hn,λ,q
‖σ̂‖r‖w‖q

]
(A.3)

≤ λ

m
E
σ

[
sup
h∈Hn

‖σ̂‖r
]

(A.4)

≤ λ

m
E
σ

[
sup
h∈Hn

‖σ̂‖1

]
(A.5)

=
λ

m
E
σ

[
sup
h∈Hn

n∑
i=1

|[σ̂]i|
]

(A.6)

=
λ

m
E
σ

[
sup
h∈Hn

∑
l∈leaves(h)

∣∣ m∑
i=1

σi1{xi∈l}
∣∣] (A.7)

≤ λ

m
E
σ

[
sup

h∈Hn,sl∈{+1,−1}

∑
l∈leaves(h)

sl

m∑
i=1

σi1{xi∈l}

]
(A.8)

=
λ

m
E
σ

[
sup

h∈Hn,sl∈{+1,−1}

m∑
i=1

σi
∑

l∈leaves(h)

sl1{xi∈l}

]
(A.9)

≤ λ

√
(4n+ 2) log2(d+ 2) log(m+ 1)

m
(A.10)

Where n is the number of internal nodes, and d is the input data dimension. The inequality

(14) is a direct application of the Hölder’s inequality for dual norms. The inequality (16) uses

‖ · ‖r ≤ ‖ · ‖1. The equality (18) directly follows from the definition of σ̂. The last inequality

(21) follows from the fact that the VC-dimension of binary classification trees can be bounded by

(2n+ 1) log2(d+ 2) [Mohri et al. 2012] and a direct application of Massart’s lemma [Massart and

Picard 2007].
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A.0.2 PROOF OF THEOREM 3.2

Theorem 2. Fix ρ > 0. Let Hk = Hnk,λk,qk , where (nk), (λk) are sequences of constraints on the

number of internal nodes n and the leaf vector norm ‖w‖q. Define F = conv(∪Kk=1Hk). Then, for

any δ > 0, with probability at least 1 − δ over the draw of a sample S of size m, the following

inequality holds for all f =
∑T

t=1 αtht ∈ F :

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtλIt

√
(4nIt + 2) log2(d+ 2) log(m+ 1)

m
+ C(m,K),

where It is the index of the subclass selected at time t and C(m,K) = O

(√
log(K)
ρ2m

log
[
ρ2m

log(K)

])
.

Proof. For this proof we are going to make use of the generalization bounds for broad families of

real-valued functions given in Theorem 1 of [Cortes et al. 2014]. Adapted to our notation, it states

that for any f from a family of real-valued functions F that is equal to the convex hull of ∪Kk=1Hk,

for any δ > 0 with probability at least 1 − δ over the choice of sample S ∼ Dm, the following

generalization bound holds:

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtRm(Ht) +
2

ρ

√
logK

m
+

√⌈
4

ρ2
log

(
ρm2

logK

)⌉
logK

m
+

log(2
δ
)

2m
.

where αt is are the weights that represent f in the convex hull of∪Kk=1Hk, that is f =
∑T

t=1 αtht

s.t. α = [α1, . . . , αT ] is in the simplex ∆. This bound is directly applicable to the Regularized

Gradient Boosting that we define, since at each boosting round, the algorithm selects a base pre-

dictor ht ∈ Ht, and multiplies it by a coefficient αt. Thus, after T boosting rounds, we will have

obtained an ensemble f such that f =
∑T

t=1 αtht ∈ conv(∪Kk=1Hk) and α directly in the simplex
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∆.

Applying the Rademacher complexity bound on the regularized families of regression trees

Hn,λ,q that we derived in Theorem 3.1 and noting that

2

ρ

√
logK

m
+

√⌈
4

ρ2
log

(
ρm2

logK

)⌉
logK

m
+

log(2
δ
)

2m
= O

(√
log(K)

ρ2m
log
[ ρ2m

log(K)

])
(A.11)

We obtain the expression for the bound in Theorem 3.2.

A.0.3 PROOF OF LEMMA 3.3

Lemma 3. Assume that Φ(y, h) is differentiable with respect to the second argument, and that

∂Φ
∂h

CΦ(y)-Lipschitz with respect to the second argument, for any fixed value y of the first argu-

ment. for all k ∈ [0, K], define L′k(α) = ∂L
∂αk

. Then, L′k(α) is Lipschitz-continuous with the

corresponding Lipschitz constants Ck bounded as follows:

Ck ≤
1

m

m∑
i=1

h2
k(xi)CΦ(yi). (A.12)

Proof. The k-th derivative of L(α) is equal to (except αk = 0):

L′k(α) =
1

m

m∑
i=1

∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
hk(xi) + ck, (A.13)

where ck = βλk

√
(4nk+2) log2(d+2) log(m+1)

m
. Let ek be the k-th standard basis vector and define the

following: ∆L′k(α) = L′k(α)− L′k(α+ δek).
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∣∣∣∣∆L′k(α)

∣∣∣∣ =

∣∣∣∣ 1

m

m∑
i=1

hk(xi)

[
∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
− ∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi) + δhk(xi)

)]∣∣∣∣
≤ 1

m

m∑
i=1

|hk(xi)|
∣∣∣∣∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
− ∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi) + δhk(xi)

)∣∣∣∣
=

1

m

m∑
i=1

|hk(xi)|
∣∣∣∣∂Φ

∂h

(
yi, f

)
− ∂Φ

∂h

(
yi, f + δhk(xi)

)∣∣∣∣
≤ 1

m

m∑
i=1

|hk(xi)|CΦ(yi)
∣∣hk(xi)∣∣|δ|

=
1

m

m∑
i=1

h2
k(xi)CΦ(yi)|δ|

Thus, L′k(α) is Lipschitz-continuous with the corresponding Lipschitz constant bounded by

1
m

∑m
i=1 h

2
k(xi)CΦ(yi).

A.0.4 PROOF OF LEMMA A.1

Lemma A.1. For each k ∈ [0, K] let Hnk,λk,2 be the family of regularized regression trees with

‖w‖2 ≤ λk and the number of internal nodes bounded by nk. The regularized objective L(α) as

in Equation 3.7 has Lipschitz-continuous derivatives with the coordinate-wise Lipschitz constants

Ck bounded as follows:

Ck ≤ λk

[
max

1≤i≤m
CΦ(yi)

]
. (A.14)

Proof. For a sample S and a fixed tree h let ηl be the number of sample points falling within the
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leaf l.

Ck ≤
1

m

[
max

1≤i≤m
CΦ(yi)

] m∑
i=1

h2
k(xi)

≤ 1

m

[
max

1≤i≤m
CΦ(yi)

] ∑
l∈leaves(hk)

ηlw
2
l

≤ 1

m

[
max

1≤i≤m
CΦ(yi)

]
‖w‖2 max

l∈leaves(hk)
ηl

≤ ‖w‖2

[
max

1≤i≤m
CΦ(yi)

]
≤ λk

[
max

1≤i≤m
CΦ(yi)

]

This results in the coordinate sampling distribution for the Randomized Coordinate Descent.

pk =
λk∑K
j=1 λj

(A.15)

A.0.5 DESCRIPTIVE STATISTICS OF THE UCI DATASETS

Table A.1: Dataset statistics

sonar cancer diabetes ocr17 ocr49 mnist17 mnist49 higgs
Examples 208 699 768 2000 2000 15170 13782 98050
Features 60 9 8 196 196 400 400 29

Note that mnist17 and mnist49 refer to the original 20-by-20 pixel datasets, where only two

digits (1,7 and 4,9 respectively) were sampled. The cancer dataset refers to the breastcancer

dataset in the UCI repository. The higgs dataset refers to the preprocessed Higgs boson dataset
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from the OpenML challenge, 2016.
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B | APPENDIX TO CHAPTER 4.

B.1 PREVIOUS WORK: MORE DETAILED DISCUSSION

Domain adaptation with a single source domain and a target domain has been widely studied [Ben-

David et al. 2007; Blitzer et al. 2008; Mansour et al. 2009a; Ben-David et al. 2010; Cortes and

Mohri 2014; Cortes et al. 2015b; Wang et al. 2019b] and has applications to several fields ranging

from acoustic modelling [Liao 2013] to object recognition [Torralba and Efros 2011]. It has been

studied in unsupervised settings with unlabeled target domain examples [Gong et al. 2012; Long

et al. 2015; Ganin and Lempitsky 2015], in supervised settings with the aid of labeled target domain

examples [Yang et al. 2007; Hoffman et al. 2013; Girshick et al. 2014; Motiian et al. 2017b], and

in semi-supervised settings where both labeled and unlabeled target examples are available [Tzeng

et al. 2015; Saito et al. 2019].

In a wide variety of applications, the learner has access to information from multiple sources.

Such problems are often referred to as multiple-source adaptation. Multiple-source adaptation

problems, where the learner has access to unlabeled source data together with predictors that are

trained for each particular domain has been formalized in [Mansour et al. 2008, 2009b; Hoffman

et al. 2018a]. There are other multiple-source adaptation scenarios, where labeled examples are

available from multiple sources and unlabeled or labeled examples are available from the target
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domain. This includes adversarial training, which has been studied by [Motiian et al. 2017a; Pei

et al. 2018; Zhao et al. 2018; Xu et al. 2018]. Algorithms for learning from multiple untrusted

sources have been proposed by [Konstantinov and Lampert 2019]. Another related problem is do-

main generalization [Pan and Yang 2009; Muandet et al. 2013; Xu et al. 2014], where information

from multiple sources is used to obtain a predictor that generalizes to a previously unseen domain.

There are various algorithms, successfully applying boosting with multiple sources to domain

adaptation and transfer learning problems, that have inspired our analysis. The TRADABOOST

[Dai et al. 2007] algorithm, having a set of weak learners trained on the source domain, at every

boosting round selects those that minimize the error on the target domain. In case of multiple

sources and a single target, [Yao and Doretto 2010] developed MULTISOURCETRADABOOST

algorithm that trains weak learners on the union of each of the sources and the target, thus reducing

the negative knowledge transfer effect. These algorithms have been further improved and widely

adopted in practice [Yuan et al. 2017; Cheng et al. 2013; Zhang et al. 2014]. Another approach that

uses multi-view ADABOOST for single and multi-source domain adaptation was proposed by [Xu

and Sun 2012, 2011]. They divide the feature space into two views based on the source and target;

at each boosting step, two weak learners are trained on these views and the sample distribution is

updated according to the errors on the target domain.

A number of experimental studies have shown the benefits of having an ensemble of weak

learners for multi-task learning and domain adaptation problems. Moreover, in certain cases the

boosting approach can outperform traditional methods. For example, [Huang et al. 2010, 2012]

showed that by selecting a weak learner jointly with a feature that is predictive across multiple

domains at every boosting step, one can achieve higher accuracy than standard transfer learning

methods. Moreover, the margin provided by boosting-style algorithms can aid in transfer learning

where target domain is unlabelled. [Habrard et al. 2013] have developed an algorithm that jointly

148



minimizes the the source domain error and margin violation proportion on the target domain.

[Wang et al. 2019a] have demonstrated that boosting classifiers from different domains can be

done online and showed efficient algorithm for the ADABOOST-style sample distribution updates.

For certain types of high-dimensional data, such as images and text, boosting may be not as effi-

cient as other multi-task learning methods. However, a number of works such as [Taherkhani et al.

2020] and [Becker et al. 2013] have shown that multi-source boosting can be combined with Deep

Neural Networks for multi-task learning on large scale datasets.

In the context of neural networks, the idea of using domain probabilities when combining

experts, also termed gating networks, goes back to [Hampshire and Waibel 1992] and [Jacobs

et al. 1991].

Agnostic loss has been used in several machine learning problems. [Namkoong and Duchi

2016; Levy et al. 2020] proposed efficient algorithms to minimize agnostic loss in the context

of distributionally robust optimization. Agnostic loss in federated learning has been studied by

[Mohri et al. 2019b; Hamer et al. 2020; Ro et al. 2021], who provided theoretical guarantees and

algorithms. [Lahoti et al. 2020] used agnostic loss to achieve fairness in machine learning models.

B.2 PROOF OF THE PROPOSITIONS 4.1 AND 4.2

This section contains the proofs for Proposition 4.1 and Proposition 4.2 discussed in Section 4.2.

Proposition 4.1. There exist distributions D1 and D2 and hypotheses h1 and h2 with L(D1, h1) =

0 and L(D2, h2) = 0 such that L
(

1
2
(D1 + D2), αh1 + (1− α)h2

)
≥ 1

2
for any α ∈ [0, 1],

Proof. Consider the case where X is reduced to two elements, X = {a1, a2}, where D1 is the

point mass on a1, D2 the point mass on a2, and where the target labeling function is f defined
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by f(a1) = +1, f(a2) = −1. Let h1 be defined by h1(a1) = h1(a2) = +1 and and h2 by

h2(a1) = h2(a2) = −1.

Then, h1 is a perfect predictor for the first domain since L(D1, h1) = I(h1(a1)f(a1) ≤ 0) = 0,

and h2 is a perfect predictor for the second domain since L(D2, h2) = I(h2(a2)f(a2) ≤ 0) = 0.

However, for any α ∈ [0, 1], we have

L
(

1

2
(D1 + D2), αh1 + (1− α)h2

)
=

1

2
I(2α− 1 ≤ 0) +

1

2
I(1− 2α ≤ 0) ≥ 1

2
.

This concludes the proof of Proposition 4.1.

Proposition 4.2. For the same distributions D1 and D2 and hypotheses h1 and h2 as in Proposi-

tion 4.1, the equality L(Dλ, (αQ(1|·)h1 + (1− α)Q(2|·)h2)) = 0 holds for any λ ∈ ∆ and any

α ∈ (0, 1),

Proof. For the counterexample of Proposition 4.1, for any α ∈ (0, 1), the Q-ensemble f(x) =

(αQ(1|x)h1(x) + (1− α)Q(2|x)h2(x)) admits no loss with respect to any target distribution Dλ:

L(Dλ, f) = (λ I(f(a1) ≤ 0) + (1− λ) I(−f(a2) ≤ 0))

= λ(I(α ≤ 0) + (1− λ) I((1− α) ≤ 0)) = 0,

since Q(1|a1) = Q(2|a2) = 1 and Q(2|a1) = Q(1|a2) = 0.

This concludes the proof of Proposition 4.2.

B.3 PROOF OF LEMMA 4.3

Lemma 4.3. For any k ∈ [p], the following upper bound holds when Φ is the exponential or the

logistic function:
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F (αt−1 + ηek,r) ≤ max
l∈[p]

Zt,l
ml

[
(1− εt,l,k,r)e−η + εt,l,k,re

η
]
,

where εt,l,k,r = 1
2

[
1− Ei∼Dt(l,·)[yl,iQ(k|xl,i)hk,r(xl,i)]

]
.

Proof. In the special case where Φ = exp, we have:

Φ(−yl,ift−1(xl,i)− η yl,iQ(k|xl,i)hk,r(xl,i))

≤ 1 + yl,iQ(k|xl,i)hk,r(xl,i)
2

e−yl,ift−1(xl,i)e−η +
1− yl,iQ(k|xl,i)hk,r(xl,i)

2
e−yl,ift−1(xl,i)eη

=
1 + yl,iQ(k|xl,i)hk,r(xl,i)

2
Dt(l, i)Zt,le

−η +
1− yl,iQ(k|xl,i)hk,r(xl,i)

2
Dt(l, i)Zt,le

η.

Thus, we have:

F (αt−1 + ηek,r) = max
l∈[p]

1

ml

ml∑
i=1

Φ(−yl,ift−1(xl,i)− η yl,iQ(k|xl,i)hk,r(xl,i))

≤ max
l∈[p]

Zt,l
ml

ml∑
i=1

1

ml

ml∑
i=1

1 + yl,iQ(k|xl,i)hk,r(xl,i)
2

Dt(l, i)e
−η

+
1− yl,iQ(k|xl,i)hk,r(xl,i)

2
Dt(l, i)e

η

= max
l∈[p]

Zt,l
ml

[
(1− εt,l,k,r)e−η + εt,l,k,re

η
]
.

The proof is similar in the case of the logistic function.

B.4 OTHER VARIANTS OF MULTIBOOST

Other variants of MULTIBOOST. As already mentioned, instead of the maximum, the softmax

function (x1, . . . , xk) 7→ 1
µ

log(
∑p

k=1 e
µxk) can be used in the definition of the algorithm, modulo

an approximation that can be controlled via the parameter µ > 0. Using the softmax not only
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leads to a differentiable objective, but also makes the algorithm focus on several top most difficult

domains instead of the single most difficult one, thereby offering a useful trade-off in some appli-

cations. Another variant of the algorithm with also a differentiable objective function consists of

simply upper-bounding the maximum by a sum:

Fsum(α) =

p∑
k=1

1

mk

mk∑
i=1

Φ

(
−yk,i

p∑
l=1

Nl∑
j=1

αl,jQ(l|xk,i)hl,j(xk,i)

)
. (B.1)

In the following, we present convergence guarantees for the Fsum objective. A similar guarantee

with the same proof holds for the softmax variant of MULTIBOOST.

Theorem B.1. Assume that Φ is twice differentiable and Φ′′(u) ≥ 0 for all u ∈ R. Let F =

Fsum, then, projected coordinate descent applied to F (α) converges to the optimal solution α∗ of

minα≥0 F (α). If further Φ is strongly convex on the path of the iterates αt, then there exist τ > 0

and γ > 0 such that for all t > τ :

F (αt+1)− F (α∗) ≤
(

1− 1
γ

)
(F (αt)− F (α∗)). (B.2)

Proof. We show that Fsum can be represented as Fsum(α) = G(Hα), such that ∇2G(Hα) is

positive definite for all α and apply Theorem 2.1 in [Luo and Tseng 1992] to obtain the con-

vergence guarantees. Let H be the matrix whose row indexes are {(k, i) : k ∈ [p], i ∈ [mk]}

and whose column indexes are {(l, j) : l ∈ [p], j ∈ [Nk]}. Define matrix H by H(k,i),(l,j) =

−yk,iQ(l|xk,i)hl,j(xk,i). Let e(k,i) be the (k, i)-th unit vector, then for any α:

e>(k,i)Hα = −yk,i
p∑
l=1

Nl∑
j=1

αl,jQ(l|xk,i)hl,j(xk,i). (B.3)
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Define the function G as follows for all u:

G(u) =

p∑
k=1

1

mk

mk∑
i=1

Φ
(
−e>(k,i)u

)
. (B.4)

By definition, we have Fsum(α) = G(Hα). Moreover, G is twice differentiable and ∇2G(u) is a

diagonal matrix with diagonal entries 1
mk

Φ′′(−e>(k,i)u) ≥ 0. Thus, ∇2G(u) is positive definite for

all α ≥ 0. Thus, Theorem 2.1 in [Luo and Tseng 1992] holds for the optimization problem

min
α≥0

G(Hα), (B.5)

which guarantees the convergence rate of the coordinate descent for Fsum. If further F is is strongly

convex over the sequence of αts, then, by [Luo and Tseng 1992][page 26], the inequality:

F (αt+1)− F (α∗) ≤
(

1− 1
γ

)
(F (αt)− F (α∗))

holds for the projected coordinate method based on the best direction at each round, as with the

Gauss-Southwell method.

Note, that the proof can be extended straightforwardly to a regularized Fsum objective, simply

by considering Fsum(α) = G(Hα) + β>α in the proof for some β ≥ 0.

B.5 PROOFS OF THEOREM 4.4 AND THEOREM B.2

Theorem 4.4. Fix ρ > 0. Then, for any δ > 0, with probability at least 1 − δ over the draw of

a sample S = (S1, . . . , Sp) ∼ Dm1
1 ⊗ · · · ⊗D

mp
p , the following inequality holds for all ensemble

functions f =
∑T

t=1 αtQ(kt|·)ht ∈ F and all λ ∈ ∆:
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L(Dλ, f) ≤ Lρ(Dλ, f) +

p∑
k=1

λk

2

ρ
max
l∈[p]

Rmk(Hl) +

√
log p

δ

2mk

. (4.5)

Proof. Fix λ ∈ ∆ and δ > 0. For any k ∈ [p], by the standard Rademacher complexity margin

bound for F [Mohri et al. 2018b][Theorem 5.8], with probability at least 1 − δ, the following

inequality holds for all f ∈ F:

L(Dk, f) ≤ Lρ(D̂k, f) +
2

ρ
Rmk(F) +

√
log 1

δ

2mk

.

By the union bound, the following inequalities hold simultaneously for all k ∈ [p]:

L(Dk, f) ≤ Lρ(D̂k, f) +
2

ρ
Rmk(F) +

√
log p

δ

2mk

.

Multiplying each by λk and summing them up yields:

L(Dλ, f) ≤ Lρ(Dλ, f) +

p∑
k=1

λk

2

ρ
Rmk(F) +

√
log p

δ

2mk

.
Since the Rademacher of a family coincides with that of its convex hull [Mohri et al. 2018b], we

have Rmk(F) = Rmk(
⋃p
k=1 Gk) ≤ maxl∈[p] Rmk(Gl). We will show that the following inequality

holds for any k ∈ p: Rmk(Gl) ≤ 2Rmk(Hl). Note that we can write for any h ∈ Hk: Q(l|·)h =

1
4
[(Q(l|·) + h)2 − (Q(l|·)− h)2]. Thus, since the Rademacher complexity of a sum can be bounded

by the sum of the Rademacher complexities, we have:

Rmk(Gl) ≤
1

4
Rmk

({
(Q(l|·) + h)2 : h ∈ Hl

})
+

1

4
Rmk

({
(Q(l|·)− h)2 : h ∈ Hl

})
.
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Now, functions Q(l|·) + h and Q(l|·) − h both take values in [−1, 2] and the function x 7→ 1
4
x2 is

1-Lipschitz on [−1, 2] since the absolute value of its derivative |x|/2 reaches it maximum at x = 2.

Thus, by Talagrand’s contraction lemma [Ledoux and Talagrand 1991b], we have

Rmk(Gl) ≤ Rmk({(Q(l|·) + h) : h ∈ Hl}) + Rmk({(Q(l|·)− h) : h ∈ Hl}).

Now, these Rademacher complexities can be straightforwardly analyzed as follows:

Rmk({(Q(l|·) + h) : h ∈ Hl}) = E
S∼Dm
σ

[
sup
h∈Hl

mk∑
i=1

σi[h(xi) + Q(l|xi)]

]

= E
S∼Dm
σ

[
sup
h∈Hl

mk∑
i=1

σih(xi)

]
+ E

S∼Dm
σ

[
mk∑
i=1

σiQ(l|xi)

]

= E
S∼Dm
σ

[
sup
h∈Hl

mk∑
i=1

σih(xi)

]
+ E

S∼Dm

[
mk∑
i=1

E
σ

[σi]Q(l|xi)

]

= E
S∼Dm
σ

[
sup
h∈Hl

mk∑
i=1

σih(xi)

]
= Rmk(Hl).

Similarly, we have Rmk({(Q(l|·)− h) : h ∈ Hl}) = Rmk(Hl). This completes the proof.

Theorem B.2. For any δ > 0, with probability at least 1 − δ over the draw of a sample S =

(S1, . . . , Sp) ∼ Dm1
1 ⊗ · · · ⊗D

mp
p , the following inequality holds for all ensemble functions f =∑T

t=1 αtQ(kt|·)ht ∈ F and all ρ ∈ (0, 1) and λ ∈ ∆:

L(Dλ, f) ≤ Lρ(Dλ, f) +

p∑
k=1

λk

2

ρ
max
l∈[p]

Rmk(Hl) +

√
log log2

2
ρ

mk

+

√
log p

δ

2mk

. (B.6)

Proof. By the uniform margin bound [Mohri et al. 2018b, Theorem 5.9], for any k ∈ [p], with
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Figure B.1: Illustration of the set Λ, vertices of simplices (in blue). The area in green represents
the set Λ. The small area in pink shows an ε-ball in l1-distance (and hence a lozenge) around a
vertex.

probability at least 1− δ the following inequality holds for all f ∈ F and ρ ∈ (0, 1]:

L(Dk, f) ≤ Lρ(D̂k, f) +
2

ρ
Rmk(F) +

√
log log2

2
ρ

mk

+

√
log 1

δ

2mk

.

The rest of the proof is similar to that of Theorem 4.4.

B.6 FINER MARGIN-BASED LEARNING GUARANTEES

In this section, we give finer margin-based generalization bounds for the family of ensemble F .

These learning bounds are particularly more relevant in the case where Λ is a strict subset of the

simplex ∆. Λ may be in fact a much smaller set, motivated by prior knowledge about the task and

thus possible target mixtures. In some instances, it may even be a finite subset, which corresponds

to only a finite set of mixtures.

For any family of real-valued functions G, define the weighted Rademacher complexity of G for

the vector of samples Sk = (zk,1, . . . , zk,mk) of sizes m = (m1, . . . ,mp) as follows:

Rm(G, λ) = E
Sk∼D

mk
k ,σ

[
sup
g∈G

p∑
k=1

λk
mk

mk∑
i=1

σk,i g(zk,i)

]
. (B.7)
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Fix λ ∈ Λ and define Ψ(S) for the vector of training samples S = (S1, . . . , Sp) as follows:

Ψ(S) = sup
h∈G

{
E

z∼Dλ
[g(z)]− E

z∼Dλ
[g(z)]

}
,

where Dλ =
∑p

k=1 λkD̂k, with D̂k the empirical distribution associated with the sample Sk. As-

sume that functions in G take values in [0, 1]. For any vector of samples S ′ differing from S only

by point z′k,i in S ′k and zk,i in Sk, we have

Ψ(S ′)−Ψ(S) ≤ sup
g∈G

{{
E

z∼Dλ
[g(z)]− E

z∼D′λ
[g(z)]

}
−
{

E
z∼Dλ

[g(z)]− E
z∼Dλ

[g(z)]

}}

= sup
g∈G

{
E

z∼Dλ
[g(z)]− E

z∼D′λ
[g(z)]

}
= sup

g∈G

λk
mk

[
g(zk,i)− g(z′k,i)

]
≤ λk
mk

.

Furthermore, as with the standard Rademacher complexity [Mohri et al. 2018b], the expectation

can be upper bounded in terms of the weighted Rademacher complexity:

E
Sk∼D

mk
k

[
sup
g∈G

E
z∼Dλ

[g(z)]− E
z∼Dλ

[g(z)]

]
≤ 2Rm(G, λ).

Thus, by McDiarmid’s inequality, for any δ > 0, with probability at least 1− δ,

E
z∼Dλ

[g(z)] ≤ E
z∼Dλ

[g(z)] + 2Rm(G, λ) +

√√√√ p∑
k=1

λ2
k

2mk

log
1

δ
.

Let Λ be the set of vertices of a subsimplicial cover of Λ, that is a decomposition of a cover of

Λ into subsimplices. When the subsimples are formed by vertices that are ε-close in `1-distance,

then Λ is an ε-cover of Λ for the `1-distance. Figure B.1 illustrates the sets λ and Λ. By the union
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bound, with probability at least 1− δ, the following holds for all λ ∈ Λ:

E
z∼Dλ

[g(z)] ≤ E
z∼Dλ

[g(z)] + 2Rm(G, λ) +

√√√√ p∑
k=1

λ2
k

2mk

log
|Λ|
δ
.

Now, fix ρ > 0. Let H be a hypothesis set of real-valued functions and let φρ denote the ρ-ramp

loss. Let G be the family of ρ-ramp losses of functions in H:

G = {z = (x, y) 7→ φρ(yh(x)) : h ∈ H}.

Then, proceeding as with the derivation of margin-based Rademacher complexity bounds in the

standard case and using the 1
ρ
-Lipschitzness of the ρ-ramp loss [Mohri et al. 2018b], we obtained

that, with probability at least 1− δ, the following holds for all λ ∈ Λ:

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ
Rm(H, λ) +

√√√√ p∑
k=1

λ2
k

2mk

log
|Λ|
δ
.
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Now, for any λ, λ′ ∈ ∆ with ‖λ− λ′‖1 ≤ ε, we have:

p∑
k=1

λ
′2
k

2mk

=

p∑
k=1

(λ′k − λk + λk)
2

2mk

=

p∑
k=1

λ2
k + 2(λ′k − λk)λk + (λ′k − λk)2

2mk

=

p∑
k=1

λ2
k

2mk

+

p∑
k=1

2|λ′k − λk|λk + (λ′k − λk)2

2mk

≤
p∑

k=1

λ2
k

2mk

+ εmax
k∈[p]

λk
mk

+
ε2

2
max
k∈[p]

1

mk

(Hölder’s inequality)

≤
p∑

k=1

λ2
k

2mk

+
3ε

2
.

Let Λε denote the family of λs that are ε-close to Λ in `1-distance, then, for any λ ∈ Λε we have:

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ
Rm(H, λ) +

3ε

2
+

√√√√ p∑
k=1

λ2
k

2mk

log
|Λ|
δ
.

Also, for any λ in a subsimplex formed by elements of Λ, there exist µ = (µ1, . . . , µp) and

β1, . . . , βp in Λ such that λ =
∑p

k=1 µkβk. Thus, for any such λ, we have

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ

p∑
l=1

µkRm(H, βl) +

p∑
k=1

µk

√√√√ p∑
l=1

β2
l,k

2mk

log
|Λ|
δ
.

Applying these results to the analysis of the Q-ensembles we are interested yields the following

margin-based generalization bounds.

Theorem 4.5. Fix ρ > 0 and ε > 0. Then, for any δ > 0, with probability at least 1 − δ over the

draw of a sample S = (S1, . . . , Sp) ∼ Dm1
1 ⊗ · · · ⊗D

mp
p , each of the following inequalities holds:
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1. for all ensemble functions f =
∑T

t=1 αtQ(kt|·)ht ∈ F and all λ ∈ Λε:

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ
max
r∈[p]

Rm(Hr, λ) +
3ε

2
+

√√√√ p∑
k=1

λ2
k

2mk

log
|Λ|
δ
. (4.6)

2. for all ensemble functions f =
∑T

t=1 αtQ(kt|·)ht ∈ F and all λ =
∑p

k=1 µkβk ∈ conv(Λ):

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ

p∑
l=1

µk max
r∈[p]

Rm(Hr, βl) +

p∑
k=1

µk

√√√√ p∑
l=1

β2
l,k

2mk

log
|Λ|
δ
. (4.7)

Note that, for a given λ ∈ Λ, the most favorable of the two statements of the theorem can

be used. Observe also that the second learning bound coincides with that of Theorem 4.4 when

Λ is chosen to be the vertices of the simplex ∆ since in that case |Λ| = p, conv(Λ) = ∆, and

since Rm(Hr, βl) = Rm(Hr, βl) then coincides with Rml(Hr). Choosing the best statement of

the theorem therefore always provides a finer guarantee than that of Theorem 4.4.

When Λ is a small set, for example the set of λs ε-close to a finite set of discrete elements

Λ, then the last term of the learning bound of the first statement can be more favorable that of

Theorem 4.4 since |Λ| can then be in the same order as p or smaller while, by the sub-additivity of

the square-root, the following inequality holds:
√∑p

k=1

λ2
k

mk
≤
∑p

k=1

√
λ2
k

mk
=
∑p

k=1 λk
√

1
mk

.

The theorem suggests a regularization term of the form
∑p

k=1

λ2
k

mk
, especially in the case where

Λ is a small subset of the simplex, which can lead to better algorithms in that case.

B.7 FEDMULTIBOOST: RELATED WORK AND EXPERIMENTS

Following MULTIBOOST, we propose a boosting-style approach with the agnostic loss. Boosting

in federated learning was first studied by [Hamer et al. 2020]. The authors proposed an efficient
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algorithm for minimizing the standard empirical risk and agnostic loss, based on mirror descent.

However, their algorithm is optimal only for density estimation [Hamer et al. 2020, Section 3.2]

and is sub-optimal for general classification tasks such as in Proposition 4.1. Furthermore, their

mirror descent solution is inadequate for the boosting framework in this paper, where a (block) co-

ordinate descent approach for learning sparser solutions is critical. Recently, [Shen et al. 2021] pro-

posed a functional gradient boosting algorithm for federated learning. Their algorithm iteratively

determines base classifiers and mixing weights to compute a convex combination in a distributed

manner. However, their algorithm minimizes the uniform loss over all samples. In contrast, we

propose to minimize the agnostic loss over multiple domains, which is more risk-averse, and seek

Q-ensembles which are more adequate than convex combinations in a multiple-source scenario.

Federated learning experiments. We used the EMNIST dataset [Caldas et al. 2018; Bonawitz

et al. 2019], which contains 32x32 pixel handwritten digits images annotated by users. The images

are divided into p = 2 sources based on the group of writers that provided the annotation: high

school (k = 1) and census (k = 2). We compared algorithms on two binary classification prob-

lems: digits 4 vs. 9 and digits 1 vs. 7. The results are presented in Table B.1. The error bars are

obtained from breaking the set of clients into 10 random folds.

We compared FEDMULTIBOOST with three benchmarks, FEDADABOOST-k for k ∈ [p] and

FEDADABOOST-all. The former is a federated version of ADABOOST algorithm trained only on a

single source k and the latter is federated ADABOOST trained on both the sources. In the federated

ADABOOST versions, at each boosting step we randomly select 20 clients and train weak learners

on each of those clients, next, the server selects the weak learner with the smallest weighted error

and adds it to the ensemble. For the FEDMULTIBOOST algorithm, we randomly select 20 clients

per round. Since the number of clients sampled at each round is small, we run each algorithm for

500 boosting steps.
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Table B.1: Test errors for multiple benchmarks in the federated setting.

Algorithm Error-1 Error-2 Error-Uniform Error-Agnostic

EMNIST (4 vs. 9)

FEDADABOOST-1 0.075 ± 0.008 0.133 ± 0.014 0.104 ± 0.009 0.133 ± 0.014
FEDADABOOST-2 0.095 ± 0.009 0.096 ± 0.014 0.095 ± 0.012 0.096 ± 0.014
FEDADABOOST-all 0.076 ± 0.006 0.125 ± 0.016 0.101 ± 0.011 0.125 ± 0.007
FEDMULTIBOOST 0.064 ± 0.013 0.076 ± 0.008 0.070 ± 0.009 0.076 ± 0.016

EMNIST (1 vs. 7)

FEDADABOOST-1 0.029 ± 0.010 0.050 ± 0.009 0.039 ± 0.011 0.050 ± 0.009
FEDADABOOST-2 0.062 ± 0.014 0.030 ± 0.007 0.046 ± 0.014 0.062 ± 0.007
FEDADABOOST-all 0.032 ± 0.007 0.043 ± 0.006 0.037 ± 0.007 0.043 ± 0.014
FEDMULTIBOOST 0.030 ± 0.008 0.035 ± 0.006 0.032 ± 0.008 0.035 ± 0.010

As can be seen from Table B.1, FEDMULTIBOOST provides agnostic and uniform errors that

are significantly better than the baselines on both the datasets.

B.8 DATASET REFERENCES AND DETAILS

• MNIST: http://yann.lecun.com/exdb/mnist/

• SVHN: http://ufldl.stanford.edu/housenumbers/

• MNIST-M: http://yaroslav.ganin.net/

• SENTIMENT: https://www.cs.jhu.edu/~mdredze/datasets/sentiment

• FASHION-MNIST: https://github.com/zalandoresearch/fashion-mnist

• ADULT: https://archive.ics.uci.edu/ml/datasets/adult
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Table B.2: Number of examples per domain for each classification problem.

Problem Source k=1 Source k=2 Source k=3 Total

Sentiment Analysis 2,000 2,000 2,000 6,000
Digit Classification (1 vs 7) 15,170 26,574 14,728 56,472
Digit Classification (4 vs 9) 13,782 16,235 13,406 43,423
Object Recognition 21,000 21,000 28,000 70,000
Tabular Data (Adult Data) 10,628 14,783 19,811 45,222

B.9 SUPPLEMENTARY PLOTS

This section contains additional plots illustrating the performance of the proposed MULTIBOOST

algorithm. We illustrate convergence characteristics, Figure B.4, Q(k|·k) functions, Figure B.2,

and α-mass distributions over the domains and Q(k|·k) functions, Figure B.3.
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Figure B.2: Mean values of Q(k|·k) for the three domains of the data projected on the first princi-
pal component of the joint data.
Top, left: Adult data. Source k = 1 consists of individuals with a university degree (BSc, MS or
PhD), source k = 2 those with only a High School diploma, and source k = 3, none of the above.
Top, right: Fashion-MNIST data. Source k = 1 consists of t-shirts, pullovers,
trousers; k = 2 consists of dresses, coats, sandals; k = 3 consists of shirts, bags,
sneakers, ankle boots.
Bottom, left: Digits (4 vs. 9), where pixel handwritten digits images are taken from sources:
MNIST (k = 1), SVHN (k = 2), MNIST-M (k = 3).
Bottom, right: Digits (1 vs. 7), where pixel handwritten digits images are taken from sources:
MNIST (k = 1), SVHN (k = 2), MNIST-M (k = 3).
Note that for the two bottom plots domain k = 1 is significantly further separated from the other
two domains, since the pixels for k = 1 are black and white and those for k = 2, 3 are grayscale.

164



Figure B.3: The ratio of ensemble weights αk,j after training that corresponds to each source
k = 1, 2, 3. For each dataset and fixed k, the bar corresponds to the ratio of

∑Nk
j=1 αk,j to∑p

k=1

∑Nk
j=1 αk,j .

Figure B.4: Left: The evolution of surrogate losses Φ for sources k = 1, 2, 3 during the train-
ing of MULTIBOOST on object recognition problem (Fashion-MNIST ). Line k corresponds to

1
mk

∑mk
i=1 Φ(yi, ft(xi)) as a function of t, where ft is the MULTIBOOST ensemble of weak learn-

ers obtained at round t. Right: The evolution of the step size ηt during MULTIBOOST training on
object recognition problem (Fashion-MNIST ).
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C | APPENDIX TO CHAPTER 5.

C.1 LOSSES

Table C.1 lists the losses used for training.
Table C.1: Base loss functions used for experiments.

Base loss function `(h(x), y)

Zero-One l1 =

{
0, if yh(x) ≥ 0

1, if yh(x) < 0

Hinge l2 =

{
0, if yh(x) ≥ 1

max(0, 1− yh(x)), if yh(x) > 1

Norm q l3 = ‖h(x)− y‖qq
Cross-Entropy l5 = log(1 + exp(−yh(x)))
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C.2 PROOF OF THEOREMS

C.2.1 PROOF OF THEOREM 5.2

If the loss functions `k are Mk-Lipschitz and bounded by M , then for any ε > 0 and δ > 0, with

probability at least 1− δ, the following inequality holds for ∀h ∈ H and ∀λ ∈ Λ:

Lλ(h) ≤ L̂λ(h) + 2R̂S(G, λ) +Mε+ DH

p∑
k=1

λkMk

√
1

2m
log

[
|Λ|ε
δ

]
, (C.1)

where Λε is an minimum ε-cover of Λ.

Proof. For any λ ∈ Λ and sample S = {(x1, y1), . . . , (xm, ym)}, let Ψ(S) = suph∈H Lλ(h) −
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L̂λ(h). Let S ′ be a sample different from S by only one point (x′, y′), then

Ψ(S ′)−Ψ(S) = sup
h∈H

[
Lλ(h)− L̂′λ(h)

]
− sup

h∈H

[
Lλ(h)− L̂λ(h)

]
≤ sup

h∈H

[
Lλ(h)− L̂′λ(h)− Lλ(h) + L̂λ(h)

]
= sup

h∈H

[
L̂λ(h)− L̂′λ(h)

]
= sup

h∈H

[ p∑
k=1

λk
1

m

m∑
i=1

`k(h(x′i), y
′
i)−

p∑
k=1

λk
1

m

m∑
i=1

`k(h(xi), yi)
]

=
1

m
sup
h∈H

p∑
k=1

λk
(
`k(h(x′i, y

′
i))− `k(h(xi), yi)

)
≤ 1

m
sup
h∈H

p∑
k=1

λkMk||[h(x′i), y
′
i]− [h(xi), yi]||

≤ 1

m
sup
h∈H

p∑
k=1

λkMkDH

≤ DH

m

p∑
k=1

λkMk.

By McDiarmid’s inequality, for any δ > 0 with probability at least 1− δ for any h ∈ H:

Lλ(h) ≤ L̂λ(h) + E
[

sup
h∈H
Lλ(h)− L̂λ(h)

]
+ DH

p∑
k=1

λkMk

√
1

2m
log

1

δ
.

The inequality above holds for a particular value of λ fixed in advance. Using the union over the

minimum ε-cover Λε, with probability at least 1− δ for any λ ∈ Λε and h ∈ H:

Lλ(h) ≤ L̂λ(h) + E
[

sup
h∈H
Lλ(h)− L̂λ(h)

]
+ DH

p∑
k=1

λkMk

√
1

2m
log
|Λε|
δ
.

Using the definition of the minimum ε-cover, and also recalling that E
[

suph∈H Lλ(h)−L̂λ(h)
]
≤
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R̂S(G, λ), with probability at least 1− δ for any λ ∈ Λ and h ∈ H:

Lλ(h) ≤ L̂λ(h) + E
[

sup
h∈H
Lλ(h)− L̂λ(h)

]
+Mε+ DH

p∑
k=1

λkMk

√
1

2m
log
|Λε|
δ

≤ R̂S(G, λ) +Mε+ DH

p∑
k=1

λkMk

√
1

2m
log
|Λε|
δ
.

C.2.2 PROOF OF THEOREM 5.4

For L(w,λ) convex in the first argument, assume ∀w ∈ W ,∀λ ∈ Λ : ‖w‖2 ≤ DW , ‖λ‖2 ≤

DΛ, ‖∇wL(w,λ)‖2 ≤ Gw, ‖∇λL(w,λ)‖2 ≤ Gλ. Let the variance of unbiased stochastic gradi-

ents be bounded by σ2
w and σ2

λ respectively. If the step sizes are γw = 1√
T

2DW√
σ2
w+G2

w

and γλ =

1√
T

2DΛ√
σ2
λ+G2

λ

, then the following convergence guarantees apply for the ALMO algorithm:

E
[

max
λ∈Λ

L(wT , λ)− min
w∈W

max
λ∈Λ

L(w,λ)

]
≤ 1√

T

(
3DW

√
σ2

w + G2
w + 3DΛ

√
σ2
λ + G2

λ

)
. (C.2)

Proof.

max
λ∈Λ

L(wT , λ)− min
w∈W

max
λ∈Λ

L(w,λ) = max
λ∈Λ

L(wT , λ)−max
λ∈Λ

min
w∈W

L(w,λ)

≤ max
λ∈Λ

[
L(wT , λ)− min

w∈W
L(w,λT )

]
= max

λ∈Λ,w∈W

[
L(wT , λ)− L(w,λT )

]
≤ 1

T
max

λ∈Λ,w∈W

[ T∑
t=1

L(wt, λ)− L(w,λt)

]
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The last inequality follows from the convexity in w. Given the resulting inequality above, the

next step is to bound the difference L(wt, λ) − L(w,λt) for each t ∈ [1, T ], using the standard

techniques in convex optimization proofs.

L(wt,λ)− L(w,λt) = L(wt,λ)− L(wt,λt) + L(wt,λt)− L(w,λt)

≤ (λ− λt)∇λL(wt,λt) + (wt −w)∇wL(wt,λt)

≤ (λ− λt)δλL(wt,λt) + (wt −w)δwL(wt,λt)

+ (λ− λt)(∇λL(wt,λt)− δλL(wt,λt))

+ (wt −w)(∇wL(wt,λt)− δwL(wt,λt))

Given the bound on L(wt,λ)− L(w,λt) we can obtain the following series of inequalities:

max
λ∈Λ,w∈W

[ T∑
t=1

L(wt, λ)− L(w,λt)

]

≤ max
λ∈Λ,w∈W

T∑
t=1

(λ− λt)δλL(wt,λt) + (wt −w)δwL(wt,λt)︸ ︷︷ ︸
A

+ max
λ∈Λ,w∈W

T∑
t=1

λ(∇λL(wt,λt)− δλL(wt,λt))−w(∇wL(wt,λt)− δwL(wt,λt))︸ ︷︷ ︸
B

+
T∑
t=1

λt(∇λL(wt,λt)− δλL(wt,λt))−wt(∇wL(wt,λt)− δwL(wt,λt))︸ ︷︷ ︸
C

170



To complete the proof, we need to bound each of the terms A,B,C in the sum above and take

expectation. First, we show the bounds on A as follows:

E
[

max
λ∈Λ,w∈W

T∑
t=1

(λ− λt)δλL(wt,λt)

]

and

E
[

max
λ∈Λ,w∈W

T∑
t=1

(wt −w)δwL(wt,λt)

]
,

which can be obtained in a similar way. Consider the following series of inequalities:

(wt −w)δwL(wt,λt)

=
1

2γw

T∑
t=1

‖w −wt‖2
2 + γ2

w‖δwL(wt,λt)‖2
2 − ‖wt − γwδwL(wt,λt)−w‖2

2

≤ 1

2γw

T∑
t=1

‖w −wt‖2
2 + γ2

w‖δwL(wt,λt)‖2
2 − ‖wt+1 −w‖2

2

=
1

2γw

‖w1 −w‖2
2 − ‖wT+1 −w‖2

2 +
γw

2

T∑
t=1

‖δwL(wt,λt)‖2
2

≤ 1

2γw

‖w1 −w‖2
2 +

γw

2

T∑
t=1

‖δwL(wt,λt)‖2
2

≤ 2RW
γw

+
γw

2

T∑
t=1

‖δwL(wt,λt)‖2
2

≤ 2RW
γw

+
γw

2

T∑
t=1

‖δwL(wt,λt)−∇wL(wt,λt) +∇wL(wt,λt)‖2
2
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Taking the maximum of both sides with respect to w and the expectation yields

E
[

max
λ∈Λ,w∈W

T∑
t=1

(wt −w)δwL(wt,λt)

]
≤ 1

2

(
4D2
W

γw

+ γwTσ
2
w + γwTG2

w

)

and a repeating the same steps for λ we obtain

E
[

max
λ∈Λ,w∈W

T∑
t=1

(λ− λt)δλL(wt,λt)

]
≤ 1

2

(
4D2

Λ

γλ
+ γλTσ

2
λ + γλTG2

λ

)

Next, we bound B in the following way:

max
λ∈Λ,w∈W

T∑
t=1

λ(∇λL(wt,λt)− δλL(wt,λt)) ≤ RΛ‖
T∑
t=1

λ(∇λL(wt,λt)− δλL(wt,λt)‖2

After we take expectation of both sides, we get

E
[

max
λ∈Λ,w∈W

T∑
t=1

λ(∇λL(wt,λt)− δλL(wt,λt))

]
≤ DΛ

√
Tσλ

and in a completely similar way we can derive that

E
[

max
λ∈Λ,w∈W

T∑
t=1

w(∇wL(wt,λt)− δwL(wt,λt))

]
≤ DW

√
Tσw (C.3)

For the term C, it directly follows from the unbiased stochastic gradients that E[C] = 0. If we

combine the bounds on A,B,C that we derived above and let the step sizes be γw = 1√
T

2DW√
σ2
w+G2

w

and γλ = 1√
T

2DΛ√
σ2
λ+G2

λ

, we immediately obtain the final result.
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Table C.2: Comparison of logistic regression models trained with individual losses for the MNIST
dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

One Loss 0.0747 - - -
(std) (0.0001) - - -
Hinge - 0.0656 - -
(std) - (0.0002) - -
Uniform 0.1187 0.5550 0.0911 0.9859
(std) (0.0020) (0.0005) (0.0005) (0.0004)
ALMO 0.1030 0.9228 0.0489 0.9905
(std) (0.0020) (0.0050) (0.0005) (0.0002)
λ 0.0000 0.0478 0.8042 -

C.3 ADDITIONAL EXPERIMENTS

In this section, we present additional baseline studies to further highlight the benefits of the pro-

posed ALMO algorithm. As baselines, we train with just one loss at a time and compare the

ALMO performance to this per-loss optimal performance. This experimental setup is the same

as the one detailed in the main section, but the realizations of the split of the data differs, which

accounts for the small performance differences as compared to the tables in the main section.

In these tables, the boldfaced numbers indicate the performance of a classifier trained just

for that loss. The ALMO algorithm often achieves a performance close to these values, without

sacrificing any loss significantly. The mean values of the corresponding (un-normalized) λ-s are

also reported to illustrate the weight ALMO assigns to the given loss. In a few cases, especially

on the Adult dataset, the ALMO algorithm appears to be performing even slightly better than the

baseline. We attribute this discrepancy to the non-convexity of the optimization problem and the

small size of the Adult dataset.
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Table C.3: Comparison of logistic regression models trained with individual losses for the Fashion-
MNIST dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.1603 - - -
(std) (0.0005) - - -
Hinge - 0.0958 - -
(std) - (0.0006) - -
Uniform 0.1814 0.5431 0.0932 0.9786
(std) (0.0005) (0.0035) (0.0002) (0.0003)
ALMO 0.1774 0.4078 0.0683 0.9800
(std) (0.0008) (0.0011) (0.0002) (0.0001)
λ 0.0000 0.1043 0.6410 -

Table C.4: Comparison of logistic regression models trained with individual losses for the Adult
dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.1849 - - -
(std) (0.0007) - - -
Hinge - 0.4146 - -
(std) - (0.0001) - -
Uniform 0.2001 0.8624 0.6320 0.8378
(std) (0.0008) (0.0067) (0.0033) (0.0004)
ALMO 0.1938 0.4085 0.4232 0.8409
(std) (0.0020) (0.0021) (0.0080) (0.0003)
λ 0.0000 0.1317 0.0000 -

Table C.5: Comparison of DNN models trained with individual losses for the MNIST dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.0215 - - -
(std) (0.0022) - - -
Hinge - 0.0132 - -
(std) - (0.0002) - -
Uniform 0.0168 0.6255 0.0437 0.9984
(std) (0.0013) (0.0031) (0.0008) (0.0004)
ALMO 0.0143 0.0092 0.0397 0.9996
(std) (0.0001) (0.0001) (0.0040) (0.0001)
λ 0.0001 0.3893 0.1905 -
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Table C.6: Comparison of DNN models trained with individual losses for the Fashion-MNIST
dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.1137 - - -
(std) (0.0010) - - -
Hinge - 0.0595 - -
(std) - (0.0016) - -
Uniform 0.1111 0.6603 0.0695 0.9889
(std) (0.0025) (0.0030) (0.0005) (0.0006)
ALMO 0.1077 0.1085 0.0374 0.9908
(std) (0.0035) (0.0030) (0.0008) (0.0005)
λ 0.0000 0.1779 0.5199 -

Table C.7: Comparison of DNN models trained with individual losses for the Adult dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.1564 - - -
(std) (0.0018) - - -
Hinge - 0.5349 - -
(std) - (0.0176) - -
Uniform 0.1483 0.9123 0.6707 0.8093
(std) 0.0003 0.0001 0.0005 (0.0108)
ALMO 0.1450 0.3043 0.4437 0.8716
(std) 0.0020 0.0000 0.0000 (0.0021)
λ 0.0000 0.0000 0.0000 -
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D | APPENDIX TO CHAPTER 6.

D.1 WEIGHTED AUTOMATA AND TRANSDUCERS OPERATIONS

This section provides further details on the concepts of weighted automata and transducers that

were introduced in Section 6.3.

Recall that we have defined a weighted finite-state transducer T over a semiring (S,⊕,⊗, 0, 1)

as an 8-tuple (Σ,∆, Q, I, F, E, λ, ρ), where Σ is a finite input alphabet, ∆ is a finite output alpha-

bet, Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,

E is a finite multiset of transitions, which are elements of Q × (Σ ∪ {ε}) × (∆ ∪ {ε}) × S × Q,

λ : I → S is an initial weight function, and ρ : F → S is a final weight function. Moreover, we

defined a weighted finite automaton to be a weighted finite-state transducer where the input and

output labels are the same.

A tuple (S,⊕,⊗, 0, 1) is a semiring if (S,⊕, 0) is a commutative monoid with identity element

0, (S,⊗, 1) is a monoid with identity element 1, ⊗ distributes over ⊕, and 0 is an annihilator for

⊗. In other words, a semiring is a ring that may lack negation.

The construction of weighted transducers and automata used in Sections 6.4 and 6.5 required

the following operations: inverse (T−1), projection (Π(T)), composition (T1◦T2), and determiniza-

tion (Det(A)). We provide precise definitions of these operations below.
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The inverse of a WFST T is denoted by T−1 and defined as the transducer obtained by swapping

the input and output labels of every transition of T, that is, T−1(x, y) = T(y, x) for all (x, y).

The projection of a WFST T is the weighted automaton denoted by Π(T) obtained from T by

omitting the input label of each transition and keeping only the output label.

The composition of two WFSTs T1 with output alphabet ∆ and T2 with a matching input

alphabet ∆ is a weighted transducer defined for all x, y by:

(T1 ◦ T2)(x, y) =
⊕
z∈∆∗

(
T1(x, z)⊗ T2(z, y)

)
, (D.1)

where the sum runs over all strings z labeling a path of T1 on the output side and a path of T2 on

the input side. The worst case complexity of computing (T1 ◦ T2) is quadratic, that is O(|T1||T2|),

assuming that the ⊗-operation can be computed in constant time. The composition operation

can also be used with WFAs by viewing a WFA as a WFST with equal input and output labels

at every transition. Thus, for two WFAs A1 and A2, (A1 ◦ A2) is a WFA defined for all x by

(A1 ◦A2)(x) = A1(x)⊗A2(x).

A weighted automaton is said to be deterministic iff it has a unique initial state and if no

two transitions leaving any state share the same input label. As for (unweighted) finite automata,

there exists a determinization algorithm for WFAs. The algorithm returns a deterministic WFA

equivalent to its input WFA [Mohri 1997]. Unlike the unweighted case, weighted determinization

is not defined for all input WFAs but it can be applied to any acyclic WFA, which is the case of

interest for us. When it can be applied to A, we will denote by Det(A) the deterministic WFA

returned by determinization.
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D.2 SEQUENCE-TO-SEQUENCE MODEL TRAINING WITH

RATIONAL AND TROPICAL LOSSES

In this section, we describe how our algorithms can be incorporated into standard procedures for

training modern neural network architectures for structured prediction tasks, particularly sequence-

to-sequence models [Sutskever et al. 2014]. Sequence-to-sequence models for structured predic-

tion, such as RNNs and LSTMs, typically consist of an encoder network, which maps input data

from X to abstract representations and a decoder network, which models a conditional distribution

over the output space Y. The decoder returns a l|∆|-dimensional vector of scores or logits w(x) =

(wy,s(x)). We define ψ(x, ys, s) to be a vector of dimension l|∆| such that the coordinate corre-

sponding to (ys, s) is equal to one and zero otherwise. Then, setting Ψ(x, y) =
∑l

s=1ψ(x, ys, s)

defines Markovian features of order q = 0 as in Section 6.2. This allows us to use w and Ψ to

compute F (w) in (6.1) along wtih its gradient ∇wF (w) in both the forward and backward pass,

using techniques presented in Sections 6.4 and 6.5. In particular,∇F (w) can be propagated down

to lower layers of the neural network model using the chain rule.

Note that, in practice, the generation of scores from the decoder to construct these features

for each y ∈ Y is expensive, and the common solution [Ranzato et al. 2015; Prabhavalkar et al.

2017] is to restrict the output vocabulary of ∆ to a subset ∆s of size k at each position s. This

is often accomplished via the beam search algorithm. In our framework, we run the beam search

to construct the features automata A, the topology of which is equal to the topology of the beam

search tree.
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D.3 PSEUDOCODE FOR GRAD-NAÏVE

GRAD-NAÏVE(xi, yi,w)

1 Zw ←
∑

y∈Y e
L(y,yi)+w·Ψ(xi,y)

2 for (z, s) ∈ ∆q × [l] do

3 Qw(z, s)←
∑

y : ys−q+1:s=z e
L(y,yi)+w·Ψ(xi,y)

4 Qw(z, s)← Qw(z, s)/Zw

Figure D.1: Computation of the key term of the gradient using the naïve direct method.
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E | APPENDIX TO CHAPTER 7.

E.1 PROOF OF LEMMA 7.2

Proof. For the first part of the proof, let Ek = E
[
CS,k

]
= E

[
CU,k

]
be the population covari-

ance operator of kernel µkKk. We will show a concentration bound on CS,k and CU,k that holds

uniformly over k ∈ [1, p]. Using the union bound, Lemma 1 from [Zwald and Blanchard 2005]

(equivalently Corollary 5 from [Shawe-Taylor and Cristianini 2003]), and assuming u > m, with

probability at least 1− δ, the following holds for all k ∈ [1, p],

max

[
‖Ek − CS,k‖Hk , ‖Ek − CU,k‖Hk

]
≤ µkκ

2
√
m
, (E.1)

where κ = 4
(

1 +

√
log ( 2p

δ
)

2

)
.

Let Πk be the orthogonal projection onto the top r eigenfunctions of Ek. By decomposing

over orthogonal subspaces of H =
⊕p

k=1 Hk as well as adding and subtracting Πk, we can bound

‖ΠS − ΠU‖ by
∑p

k=1 ‖Πk − ΠS‖Hk +
∑p

k=1 ‖Πk − ΠU‖Hk . Now, since CS,k is the restriction of

CS to Hk, the following inequality holds for all k ∈ [1, p]:

‖Πk − ΠS‖Hk ≤
8‖Ek − CS‖Hk

λr(Ek)− λr+1(Ek)
=

8‖Ek − CS,k‖Hk
λr(Ek)− λr+1(Ek)

. (E.2)
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A similar statement holds for the projection with respect to sample U . To obtain the bound above

we consider two cases, either 8‖Ek − CS‖Hk/(λr(Ek) − λr+1(Ek)) ≤ 1/4, which is a sufficient

condition for Theorem 3 of [Zwald and Blanchard 2005] that directly implies (E.2). Otherwise, if

the condition does not hold, then the right-hand side of (E.2) will be larger than 2, which is a trivial

bound on the difference of two projections.

Next, we use the constraint ‖µ‖1 ≤ 1 to upper bound (E.1) by κ/(2
√
m) and lower bound

λr(Ek) − λr+1(Ek) = µk
(
λr(Ck) − λr+1(Ck)

)
≥ µk∆r, where Ck is the population covariance

operator of kernel Kk and ∆r = mink∈[1,p]

(
λr(Ck) − λr+1(Ck)

)
. Now 4κ/(

√
mµk∆r) is the

uniform bound on the norm of projections in (E.2). Summing up ‖Πk − ΠS‖Hk + ‖Πk − ΠU‖Hk
over k and applying the uniform bound 4κ/(

√
mµk∆r), which holds for both samples U and S,

we conclude that the following holds:

‖ΠS − ΠU‖ ≤
p∑

k=1

1

µk

8κ

∆r

√
m
≤ 8κν

∆r

√
m
. (E.3)

For the second portion of the proof, we use a series of inequalities to show

|‖CU‖(r) − ‖CS‖(r)| ≤
r∑
i=1

|λi(CU)− λi(CS)| ≤
√
r

( r∑
i=1

|λi(CU)− λi(CS)|2
)1/2

,

which is in turn bounded by
√
r‖CU − CS‖ using the Hoffman-Wielandt inequality. Next, by

decomposing over orthogonal subspaces of H =
⊕p

k=1 Hk together with adding and subtracting

Ek, we bound ‖CU −CS‖ by
∑p

k=1 ‖Ek −CS,k‖Hk +
∑p

k=1 ‖Ek −CU,k‖Hk . If we again apply the

uniform bound from (E.1) in the form µkκ/2
√
m, we obtain that with probability at least 1 − δ,

the following holds:

|‖CU‖(r) − ‖CS‖(r)| ≤
p∑

k=1

√
rµkκ√
m
≤ κ . (E.4)
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Combining (E.3) and (E.4) yields

sup
µ∈M
‖ΠUu‖ ≤ sup

µ∈N
‖ΠUu‖ ≤ sup

µ∈N

(
‖ΠSu‖+

8κν

∆r

√
m
‖u‖
)
, (E.5)

with probability 1− δ.

E.2 PROOF OF LEMMA 7.3

We will use the following lemma to give the proof of Lemma 7.3.

Lemma E.1. For each k ∈ [1, p] let λ1(Kk) ≥ · · · ≥ λm(Kk) be the eigenvalues of Kk with

corresponding orthonormal eigenvectors vk,1, · · · ,vk,m. For µ ∈ N , let Iµ denote the set of

indices (k, j) corresponding to the largest r elements of the set {µkλj(Kk)}k,j , then the following

equality holds: ∥∥∥∥ΠS

m∑
i=1

σiΦ(xi)

∥∥∥∥ =

√
m

∑
(k,j)∈Iµ

µkλj(Kk)(v>k,jσ)2 , (E.6)

where σ = (σ1, · · · , σm)>.

Proof. Recall from Section 7.3 that when H =
⊕p

k=1 Hk, the eigenvalues of CS take the form

µkλj(Kk) with orthonormal eigenfunctions uk,j , where, for each k ∈ [1, p], the given func-

tions uk,1, . . . , uk,m belong to the orthogonal component Hk. Thus, we can write ‖ΠSf‖2 =∑
(k,j)∈Iµ〈uk,j, f〉

2, for any f ∈ H. When f = Φ(xi), it suffices to take the inner product of

uk,j and f in Hk, which, by the reproducing property, is equal to uk,j(xi). By [Blanchard and

Zwald 2008, Equation (8)], uk,j(xi) takes the form

uk,j(xi) =

√
µk

λj(Kk)m

m∑
n=1

Kk(xi, xn)[vk,j]n . (E.7)
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Since vk,j is an eigenvector of Kk, we see that

m∑
n=1

Kk(xi, xn)[vk,j]n = m
m∑
n=1

[Kk]i,n[vk,j]n = mλj(Kk)[vk,j]i , (E.8)

which means that uk,j(xi) =
√
mµkλj(Kk)[vk,j]i. In view of this expression, we can write

〈uk,j,
m∑
i=1

σiΦ(xi)〉 =
m∑
i=1

σiuk,j(xi) =

√
mµkλj(Kk)v

>
k,jσ. (E.9)

Squaring the terms above and summing them over the set of indices Iµ completes the proof.

The following gives the proof of Lemma 7.3.

Lemma 7.3. The term ‖ΠS

∑m
i=1 σiΦ(xi)‖ can be directly bounded using only the Ky-Fan norm

constraint on ‖CS‖(r), since it controls the spectrum of the projection. Thus, we will simplify the

problem to analyze the supremum over choices of µ that satisfy ‖CS‖(r) ≤ ε, where ε = Λ(r) + κ.

This clearly includes all elements in N as well.

For this proof, we will use the representation of ‖ΠS

∑m
i=1 σiΦ(xi)‖ from Lemma E.1, which

will be upper bounded by the supremum over the choice of all size-r sets in order to remove the

dependence of the set of indices on the identity of the top eigenvalues:

sup
‖CS‖(r)≤ε

∑
(k,j)∈Iµ

µkλj(Kk)(v
>
k,jσ)2 ≤ sup

|I|=r
sup

‖CS‖(r)≤ε

∑
(k,j)∈I

µkλj(Kk)(v
>
k,jσ)2 , (E.10)

where sup|I|=r indicates the supremum over all indexing sets. We can express the sum above as

an inner product uµ · uσ, where uµ is an r−dimensional vector with entries µkλj(Kk) and uσ has

entries (v>k,jσ)2 such that (k, j) ∈ I . By construction, we have ‖CS‖(r) = ‖uµ‖1, thus, we will

reduce the problem to that of analyzing sup‖uµ‖1≤ε. Then, by definition of the dual norm, we can
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write:

sup
|I|=r

sup
‖uµ‖1≤ε

uµ · uσ = sup
|I|=r

ε‖uσ‖∞ = εmax
k,j

(v>k,jσ)2 . (E.11)

Thus, ‖ΠS

∑m
i=1 σiΦ(xi)‖ is bounded by the following:

max
k,j

√
mε(v>k,jσ)2 =

√
mεmax

k,j
|v>k,jσ| =

√
mεmax

k,j
max

st∈{−1,1}
stv
>
k,jσ .

By Massart’s lemma [Massart 2000], we can write

E
σ

[
max
k,j

max
st∈{−1,1}

stv
>
k,jσ

]
≤
√

2 log (2pm) . (E.12)

This follows since the norm of stvk,j is bounded by 1 and since the cardinality of the set over

which the maximum is taken is bounded by 2pm. Combining all the intermediate results leads to

the following:
1

m
E
σ

[
sup

‖CS‖(r)≤ε
‖ΠS

m∑
i=1

σiΦ(xi)‖

]
≤
√

2ε log (2pm)

m
. (E.13)

The final result is obtained by setting ε = Λ(r) + κ.

E.3 PROOF OF THEOREM 7.6

Proof. First we let S and U be any two samples, both of sizem, such that U is simply an unlabeled

version of S. Now, assume that p = 1 and that the sample kernel matrix K1 of kernel K1 admits

exactly r distinct non-zero simple eigenvalues. Finally, select Λ(r) such that Λ(r)/λ1(K1) ≤ 1.

As calculated in Section 7.4, sup‖w‖≤1

∑m
i=1 σih(xi) = ‖ΠU

∑m
i=1 σiΦ(xi)‖ and in this par-

ticular scenario ‖CU‖(r) = ‖CS‖(r). Thus, the empirical Rademacher complexity simplifies to

R̂S(H) = 1
m
Eσ
[

sup‖CS‖(r)≤Λ(r)
‖ΠS

∑m
i=1 σiΦ(xi)‖

]
, where the projection can be written di-
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rectly in terms of the sample S. Here, the L1 constraint on µ is not needed, since it is satisfied by

the Ky-Fan r-norm constraint when Λ(r) ≤ λ1(K1).

Now, following the steps from Lemma E.1, we can express the norm of the projection as

follows: ∥∥∥∥∥ΠS

m∑
i=1

σiΦ(xi)

∥∥∥∥∥ =

√√√√m

r∑
j=1

µ1λj(K1)(σ>v1,j)2 . (E.14)

Note that here, unlike the general statement of Lemma E.1, the choice of the r entries that appear

in the sum is not effected by the value of µ, since there are in fact only r non-zero eigenvalues

in total, by construction (i.e. there is one base kernel of rank r). The choice of µ, however, still

affects the scale of the r eigenvalues.

The expression is furthermore simplified by introducing the vectors uµ with entries µ1λj(K1)

and uσ with entries (v>1,jσ)2, which is similar to the proof of Lemma 7.3. By the monotonicity of

the square-root function and using the definition of uµ as well as the dual norm we have

sup
‖CS‖(r)≤Λ(r)

√
uµ · uσ =

√
sup

‖uµ‖1≤Λ(r)

uµ · uσ =
√

Λ(r)‖uσ‖∞ . (E.15)

Thus, the Rademacher complexity is reduced to

R̂S(H) =

√
Λ(r)

m
E
σ

[√
max
j∈[1,r]

(v>1,jσ)2
]

=

√
Λ(r)

m
E
σ

[
max
j∈[1,r]

|v>1,jσ|
]
. (E.16)

Finally, we use Jensen’s inequality and Khintchine’s inequality to show

E
σ

[
max
j∈[1,r]

|v>1,jσ|
]
≥ max

j∈[1,r]
E
σ

[
|v>1,jσ|

]
≥ max

j∈[1,r]
2−1/2‖v1,j‖ = 2−1/2, (E.17)

where the tight constant 2−1/2 used in Khintchine’s inequality can be found in [Nazarov and Pod-
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korytov 2000][Chapter II]. Plugging this constant back into equation (E.16) completes the proof

of the theorem.
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