
Scalable Particulate Flow Simulations with Boundary

Integral Eqations

by

Matthew James Morse

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 2021

Professor Denis Zorin

© Matthew James Morse

all rights reserved, 2021

For Mom and Dad.

iii

Acknowledgements

I would �rst like to thank my advisor, Denis Zorin, for his advice, support and guidance through-

out my PhD. I also want to thank my committee members, Georg Stadler, Marsha Berger, Michael

O’Neil and Michael Overton, for their valuable feedback on my thesis.

I’m grateful to Leslie Greengard and Alex Barnett for many valuable and insightful discus-

sions. I’m also grateful to Michael Shelley at the Flatiron Institute and and to Harper Langston,

Pierre-David Letourneau, and Rich Lethin at Reservoir Labs, for two wonderful internships and

the opportunity to experience research from a new perspective. Bill Menasco, Nancy Wrinkle

and Joan Birman have been great collaborators and very supportive, with a contagious excite-

ment and passion for mathematics that kept me going. I also must thank Shenglong Wang at

NYU HPC, who has helped me out of many last minute crises.

I have had the great fortune to meet and work with many wonderful people during my time

at NYU: Abhinav Tamaskar, Azam Asl, Chelsea Tymms, Claudia Skok-Gibbs, Daniele Panozzo,

David Stein, Dhairya Malhotra, Dimitri Leggas, Elman Manismov, Francis Williams, Hannah

Lawerence, Ilya Kostrikov, Jérémie Kalfon, Jason Kaye, Julia Wei, Julian Panetta, Karina Koval,

Ludvig af Klinteberg, Mitchell Harris, Naomi Oppenheimer, Nico Shertler, Qingnan Zhou, Reza

Farhadifar, Roberta Raileanu, Shravas Rao, Siddartha Krishna, Wen Yan, Yixin Hu, Zachary Fer-

guson, Zhongshi Jiang, Zvonimir Pavlinovic, and others whom I have forgotten that I hope will

forgive me.

I am deeply thankful for the guidance and support of Abtin Rahimian, for a fruitful collabo-

iv

ration and friendship, and for teaching me to be a pro�cient researcher and engineer. I’m equally

grateful for Libin Lu, who has been not only a great collaborator but a great friend. I’m also in-

debted to Adam Cunningham, Clarence Beutel, Davi Colli Tozoni, and Francisca Gil-Ureta, who

have been very understanding and encouraging throughout this process.

Finally, I am tremendously thankful for my mother, father, sister, and Ioanna, for their uncon-

ditional support and unending patience.

v

Abstract

Numerical simulation of complex particulate �ows, and of red blood cell �ows through capil-

laries in particular, is an important investigational tool in the biological sciences. The ability

to rapidly evaluate the impact of vessel and cell geometries, plasma viscosity, and particulate

densities on macroscopic physiology is crucial to pursuing further biological understanding. Ex-

perimental techniques are costly and time-consuming, while analytical approaches are often of

limited practical use in realistic scenarios, ultimately underscoring the importance of a compu-

tational approach.

In this work, we construct such a simulation, capable of simulating microliters of blood �ow-

ing through realistic vasculature, along with more general particulate suspensions. Due to the

micrometer length scales of typical capillaries, we can model the blood plasma as a Stokesian

�uid and red blood cells as inextensible, deformable membranes. By reformulating the viscous

�ow as a set of boundary integral equations, we are able to produce a method that has optimal

complexity with high-order accuracy that is capable of handling dense particulate suspensions

in complex geometries.

This approach relies on a novel, robust solver for elliptic partial di�erential equations, applied

to Stokes �ow. A core component of the solver is a novel fast algorithm to compute the value of

the solution near and on the domain boundary, which we have named hedgehog . We provide a

set of algorithms to guarantee the accuracy of hedgehog on piecewise smooth surfaces, discuss

the error behavior and complexity of hedgehog , and evaluate its performance.

vi

Leveraging this solver in a con�ned blood �ow simulation involves advecting deformable

particulates along the �ow trajectory. Large timesteps are required for an e�cient simulation,

but can cause collisions among cells and with the vessel wall if performed naively. We present

collision detection and resolution algorithms for the red blood cells and the blood vessel. We

parallelize hedgehog and the collision algorithms and scale the �nal simulation to nearly 35,000

cores.

vii

Contents

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Background . 2

1.2 Challenges . 4

1.3 Overall Approach . 5

1.4 Contributions and Outline . 7

2 Quadrature Methods for Elliptic PDEs in 3D Complex Geometries 9

2.1 Introduction . 10

2.1.1 Contributions . 11

2.1.2 Related Work . 13

2.2 Formulation . 18

2.2.1 Problem Setup . 18

viii

2.2.2 Geometry representation . 20

2.2.3 Problem discretization . 21

2.3 Algorithms . 23

2.3.1 Singular and Near-Singular Evaluation 24

2.3.2 Geometric criteria for accurate quadrature 27

2.3.3 Re�nement algorithm preliminaries . 30

2.3.4 Admissibility algorithm . 33

2.3.5 Adaptive upsampling algorithm . 34

2.3.6 Marking target points for evaluation . 35

2.4 Error Analysis . 40

2.4.1 Quadrature error . 40

2.4.2 Extrapolation error . 42

2.4.3 Geometry approximation error . 45

2.4.4 Limitations . 46

2.5 Complexity Analysis . 47

2.5.1 Admissibility . 50

2.5.2 Upsampling . 52

2.5.3 Point marking . 53

2.5.4 Integral evaluation complexity . 54

2.6 Results . 56

2.6.1 Classical convergence with patch re�nement 56

2.6.2 Comparison with [Ying et al. 2006b] . 61

2.6.3 Requested target precision vs. computed accuracy 63

2.6.4 Full algorithm on interlocking torii . 64

2.6.5 Solution on complex geometry . 66

2.7 Conclusion . 67

ix

3 Scalable Simulation of Realistic Red Blood Cell Flows 69

3.1 Introduction . 70

3.2 Formulation and solver overview . 74

3.2.1 Problem summary . 74

3.2.2 Algorithm Overview . 77

3.3 Boundary Solver . 80

3.3.1 Quadrature for integral equation . 80

3.3.2 Distributing geometry and evaluation parallelization 83

3.3.3 Parallel closest point search . 84

3.4 Parallel collision handling . 85

3.5 Results . 88

3.5.1 Implementation and example setup . 88

3.5.2 Parallel scalability . 93

3.5.3 Veri�cation . 98

3.5.4 High volume fraction . 100

3.6 Conclusion . 101

4 Conclusion 102

4.1 Future Work . 102

A Appendix 105

A.1 Kernels . 105

A.2 Computing the closest point on a patch . 106

A.3 Comparison with [Ying et al. 2006b] . 108

A.3.1 Complexity comparison . 109

A.3.2 Experimental comparison. 110

A.4 Derivation of Heuristic 2.1 . 115

x

Bibliography 118

xi

List of Figures

2.1 Patch Quadrisection . 20

2.2 Schematic of singular/near-singular evaluation . 25

2.3 Possible check point con�gurations . 27

2.4 Relationship between control points and bounding boxes 31

2.5 A 2D schematic of near-patch candidate selection 32

2.6 Diagram of extrapolation setup . 42

2.7 Empirical extrapolation error behavior . 43

2.8 Geometry and singularities used for Green’s Identity convergence tests. 57

2.9 Geometry and singularities used for solver convergence tests. 59

2.10 Comparison of hedgehog on polynomial patches (HH) versus [Ying et al. 2006b]

on the surface representation of [Ying and Zorin 2004] (POU) solving via GMRES

for uc . 62

2.11 Performance of full algorithm . 64

2.12 Absolute error of GMRES solve via hedgehog on interlocking torii 65

2.13 Absolute error of GMRES solve via hedgehog on complex blood vessel geometry

used in [Lu et al. 2019] . 66

3.1 A 2D depiction of the parallel candidate collision pair algorithm 87

xii

3.2 Strong scalability of a simultion with 40960 RBCs on Stampede’s SKX partition for

the vessel network geometry shown in Fig. 3.7. 89

3.3 Weak scalability on Stampede’s SKX partition with node grain size of 4096 RBCs

and 8192 polynomial patches per compute node (each node has 48 cores) for the

vessel geometry shown in Fig. 3.6. 90

3.4 Weak scalability on Stampede’s KNL parition with node grain size of 4096 RBCs

and 8192 polynomial patches per compute node for the vessel geometry shown

in Fig. 3.6 . 91

3.5 High-volume fraction sedimentation due to gravitational force. 92

3.6 Weak scaling vessel geometry . 94

3.7 Strong scaling and long-time simulation vessel geometry 95

3.8 Snapshots of Fig. 3.7 during long-time simulation 96

3.9 Error convergence test solving Eq. (3.18) with hedgehog on the domain Fig. 2.9-

right . 99

3.10 Snapshots of two vesicles in shear �ow . 100

3.11 Temporal error convergence of shear �ow simulation in Fig. 3.10 100

A.1 Comparison of hedgehog (HH) versus [Ying et al. 2006b] (POU) on the surface

representation of [Ying and Zorin 2004] evaluating double-layer potential with

ϕ = 1 . 113

A.2 Comparison of hedgehog versus [Ying et al. 2006b] on the surface representation

of [Ying and Zorin 2004] solving via GMRES for uc 114

xiii

List of Tables

2.1 `∞ Relative error in Green’s Identity versus number of patches 58

2.2 Performance of singular evaluation in Green’s Identity 58

2.3 `∞ Relative error in GMRES solve and solution evaluation versus number of patches 60

2.4 Performance of singular evaluation in GMRES matrix-vector multiply 60

xiv

1 | Introduction

Microscale particulate �ows play a central role in many biophysical settings. Red blood cell �ows

through vasculature in particular can be modeled in this fashion by a suspension of deformable

particles in a Newtonian �uid. A clear understanding blood circulation through capillaries would

shed light on important yet complex phenomena such as vasodilation, vasoconstriction, thrombo-

sis and clotting. The ability to simulate such �ows with modern computers enables computational

investigation of these phenomena with an unprecedented level of control and resolution. This is

a crucial milestone in the next generation of biological innovation.

The computational tools required for blood �ow simulations can also be applied in many

other biological settings. By simulating a deterministic lateral displacement micro�uidic chip

[McGrath et al. 2014], one can optimize the device geometry through simulation and avoid the

typical expensive trial-and-error design process through manufacturing [Kabacaoğlu and Biros

2019]. Researchers simulating intra-cellular dynamics of organelles can gain insights into bio-

physical dynamics by adjusting model formulations and infer biological behaviors by comparing

experimental and computational results [Nazockdast et al. 2017]. Advanced devices like optical

tweezers [Zhong et al. 2013] and techniques like laser ablation [Yu et al. 2014] can be used to

isolate and study single cells or bacteria, but can cost tens of thousands of dollars to purchase.

Better computational tools can simulate such complex systems numerically, which will increase

the pace of biological innovation while reducing cost.

In this work, we present a robust scalable platform to simulate complex �ows of deformable

1

particulates and apply the methodology to red blood cell (RBC) �ows through capillaries. We �rst

construct a solver for elliptic partial di�erential equations (PDEs) that robustly handles complex

geometries. We then parallelize this solver and integrate it with a collision-aware time stepping

scheme to advect RBCs along the �ow trajectory. We scale this solver to nearly 35,000 cores and

millions of RBCs, demonstrating its ability to capture high �delity real-world biological phenom-

ena.

1.1 Background

The methodology presented in this thesis is applicable to a broad range of applications, such as

micro�uidic chip design [McGrath et al. 2014], neurotransmission via synaptic vesicles [Gan and

Watanabe 2018], surfactant laden drops [Schramm et al. 2003; Sorgentone and Tornberg 2018] in

cosmetics [Lourith and Kanlayavattanakul 2009], pharmaceutics [Lourith and Kanlayavattanakul

2009], petroleum engineering [Schramm 2000], among others. Moreover, the model presented

here accurately captures the dynamics of many types of biological cells, such as vacuoles, trans-

port and secretory vesicles, lysosomes [Carreira et al. 2017], enveloped viruses [Barenholz et al.

1976] and gas bubbles released from bacteria to maintain buoyancy [Pfeifer 2012]. We restrict

our focus here to red blood cell �ow [Veerapaneni et al. 2009b] to highlight its applicability.

The �uid dynamics of blood �ow, or hemodynamics, spans several regimes. The �rst regime

is in larger veins and arteries and in regions near the heart, where the blood can be well charac-

terized as a non-viscous continuum that is well-characterized by a Navier-Stokes incompressible

�uid model [Gri�th 2012]. The second �ow regime is at very small length scales (≤ 80µm [Pot-

ter and Groom 1983]) such as capillaries, called microcirculation. In this setting, blood vessel

diameter can equal the length of 1-10 RBCs [Potter and Groom 1983; Linden et al. 2012], so the

overall �ow dynamics are largely determined by RBCs. This also implies that the blood plasma

has negligible inertial �uid forces (Reynolds number Re ≤ 10−3) and can be characterized as a

2

viscous Newtontian �uid [Cortinovis et al. 2006]. The �nal, most complex length scale to study is

the transition between these two regimes. This regime contains length scales varying over three

orders of magnitude, implying variable plasma viscosity and non-trivial RBC �ow contributions.

In the non-viscous regime, there are many platforms to simulate the heart and associated vascu-

lature [Randles et al. 2015; Vigmond et al. 2008; Peskin 1977; Gri�th 2012]. As such, we will focus

on microcirculation in this work, since target applications such as vasoconstriction, thombosis

and clotting occuring in this regime are di�cult to investigate experimentally.

RBCs are somewhat unique cellular structures. They contain no nucleus or mitochondira, in

order to maximize their capacity to transport hemoglobin [Zhang et al. 2011] and have a bicon-

cave shape at rest to maximize large-scale lamniar �ow and minimize platelet scattering [Uzoigwe

2006]. Most importantly, RBCs are highly deformable, allowing them to travel through capillar-

ies much narrower than their resting diameter [Huisjes et al. 2018]. Macroscopic physiological

mutations, such as sickle cell anemia and thalassemia, are known to impact the degree of RBC

deformability [Huisjes et al. 2018], indicated its importance in the overall dynamics. Three pri-

mary forces act on RBC membranes: bending, in-plane shear forces, and extensional forces, with

expansion moduli in an approximate ratio of 1 : 50 : 106 [Lee and Smith 2008]. Together, these

characteristics allow RBC �ow dynamics to be approximated by a thin, deformable, inextensible

membrane �lled with a viscous Newtontian �uid called a vesicle [Sackmann 1996; Kraus et al.

1996]. While modeling an RBC as a vesicle neglects the contribution of in-plane shear forces, they

serve as an e�ective qualitative model of RBC. In some scenarios, shear forces can have a signi�-

cant contribution to the overall �ow dynamics [Mills et al. 2004; Horobin et al. 2019], but in more

typical physiological regimes, their contribution is small.

In summary, in order to model microcirculation through capillaries, our model must:

• represent blood plasma as a viscous Newtontian �uid within a blood vessel

• approximate RBCs as a thin, deformable, �uid-�lled membrane

3

• incorporate RBC membrane inextensibility along with tension and bending forces within

the membrane.

1.2 Challenges

To faithfully simulate complex particulate �ows, there are several outstanding computational

obstacles. The �rst is robustness: can we design a set of algorithms that can handle arbtitrary

�ows? Typical �ows are characterized by complex vascular geometry with rapidly varying cur-

vature, high-volume fraction �ows (>45% in humans) and long simulation times. This will result

in nearly-touching and potentially colliding geometries that causes many standard simulation

approaches to fail; our algorithms need to handle these adversarial cases. Another challenge is

accuracy: can we reliably control the numerical error of our algorithms? We would like accuracy

of our simulation to correspond to the accuracy of our physical model, not to the accuracy of

our algorithms. Ideally, one would hope for a single parameter that can be tuned to control the

overall numerical error.

Constructing accurate and robust numerical algorithms is demanding in its own right, but as

little as a microliter of human blood can contain almost four million RBCs. This imposes a �nal

computational challenge: in order to simulate several microliters of blood, our algorithms must

be fast and scalable. Achieving algorithmic complexity proportional to the number of cells size

while guaranteeing robustness and high accuracy is a tall order. Moreover, the representation of

millions of RBCs and the blood vessel vastly exceeds the memory capcity of a single machine, so

distributed algorithms are needed to complete the simulation with low wallclock times.

There has been a vast amount of literature trying to address these challenges, many success-

fully scaling blood �ow simulations up to hundreds of thousands [Grinberg et al. 2011; Rossinelli

et al. 2015] or even millions [Gounley et al. 2017; Randles et al. 2015] of cores. While these meth-

ods are able to simulate immense, complex geometries, the particle-based simulation approaches

4

taken in these papers, such as Lattice Boltzmann methods and dissipative particle dynamics, nat-

urally incur very high numerical errors. It remains to be seen whether these errors allow such

methods to recover small-scale qualitative behaviors of RBC �ows.

On the other extreme, many recent works have focused on producing highly accurate nu-

merical algorithms of deformable particulate �ows using the boundary integral equation method

[Veerapaneni et al. 2009a, 2011; Rahimian et al. 2015; Sorgentone and Tornberg 2018; Sorgentone

et al. 2019; af Klinteberg and Tornberg 2016; Zhao et al. 2010]. Several works [Lu et al. 2018; Mal-

hotra et al. 2017; Rahimian et al. 2010] have produced scalable parallel versions of these algorithms

applied to RBCs with great success. However, the majority of these works involved free-space or

periodic boundary conditions, which are not relevant in a realistic biophysical setting. Similar

mathematical formulations can be applied to simulating elliptic PDEs [Ying et al. 2006b; Wala

and Klöckner 2018a,c; Bruno and Lintner 2013], providing e�cient, accurate numerical solutions

on complex geometries. A recent paper has leveraged these principles into an exascale parallel

acoustic scattering simulation [Abduljabbar et al. 2019], which along with [Rahimian et al. 2010]

demonstrate that large scale BIE approaches are achievable.

1.3 Overall Approach

Motivated by our discussion of the physical properties of RBC �ows, we approximate the physical

behavior of individual RBCs by vesicles and assume that the surrounding �uid is highly viscous

and Newtonian. We will refer to RBCs and vesicles interchangeably throughout the remainder of

this work. The blood vessel is approximated by a rigid closed �uid-�lled domain. However, such

�ows through arbtitrary vessel geometries are far too complex for analytic solutions and require

numerical simulation to study any large system of biological signi�cance.

We adopt a boundary integral formulation of the �uid �ow through the vessel. In brief, a

boundary integral formulation allows us to express the �uid velocity at a point in the blood vessel

5

as a sum of integrals, each de�ned on the distinct surfaces bounding the �uid. We can evaluate

these integrals on the surface of RBCs and advect them along the �uid’s trajectory.

This approach has many advantages. It avoids discretizing the �uid volume and avoids the

expensive, error-prone process of remeshing at each timestep. We are able to leverage quadrature

methods for smooth functions to integrate with high accuracy, with RBCs and the blood vessel

are de�ned by smooth surfaces. Well-formulated integral equations have favorable conditioning

when discretized, allowing iterative solvers like GMRES to converge in a constant number of steps.

With an appropriate discretization, fast summation methods such as the Fast Multipole Method

(FMM) can compute matrix-vector products of the resulting linear system matrix with optimal

complexity.

The primary di�culty introduced by the boundary integral formulation is the need to evalu-

ate integrals of singular functions or functions with rapidly varying high-order derivatives. These

are call singular and near-singular integrals, respectively. These integrals are well-de�ned math-

ematically, but standard numerical quadrature methods fail to resolve their true value. Special

algorithms are required in order to accurately evaluate such integrals.

Recent work [Barnett 2014; Klöckner et al. 2013a] introduced an elegant and intuitive method

called Quadrature by Expansion, or QBX , which approximates a singular/near-singular integral

with a local expansion, whose coe�cients are de�ned by smooth integrals. QBX has evolved

rapidly since, with target-speci�c [Siegel and Tornberg 2018], adaptive [af Klinteberg and Torn-

berg 2018], kernel-independent [Rahimian et al. 2018], and Stokes [af Klinteberg and Tornberg

2016] variations, analyses [Epstein et al. 2013; af Klinteberg and Tornberg 2017; af Klinteberg et al.

2020] for various PDEs and fast algorithmic accelerations [Rachh et al. 2017; Wala and Klöckner

2019a,b, 2020]. Although several 3D implementations have been developed, [Siegel and Tornberg

2018; Wala and Klöckner 2019b, 2020, 2019a], the large scale nature of realistic problems require

e�cient and scalable parallel implementations to be competitive with state-of-the-art �nite el-

ement implementations. Moreover, in practical engineering scenarios, geometries often come

6

from CAD �les based on splines or Bézier curves that have rapidly varying curvatures and nearly

touching, non-local surface patches, while most current QBX methods rely on less standard rep-

resentations of local geometry.

There is also a rich literature regarding vesicle simulations based on boundary integral for-

mulations [Veerapaneni et al. 2009b,a, 2011; Ghigliotti et al. 2011; Rahimian et al. 2015; Lu et al.

2017; Sorgentone and Tornberg 2018; Sorgentone et al. 2019]. Fast and accurate parallel algo-

rithms have been developed and scaled to thousands of cores [Lu et al. 2018; Rahimian et al. 2010;

Malhotra et al. 2017]. However, much of this work is either in 2D [Veerapaneni et al. 2009b,a, 2011;

Lu et al. 2017] or a free-space or periodic setting in 3D [Rahimian et al. 2010, 2015; Lu et al. 2018;

Malhotra et al. 2017; Sorgentone and Tornberg 2018; Sorgentone et al. 2019]. To recover qualita-

tive properties of RBC �ows, the vesicles need to simulated in a con�ned �ow with representative

vessel geometries (i.e., more complicated than a cylinder/torus).

1.4 Contributions and Outline

This thesis addresses these challenges, resulting in a practical simulation platform for realistic

RBC �ows through capillaries.

In Chapter 2, we introduce an O(N) high-order solver for elliptic PDEs in 3D geometries. The

core component of the solver is hedgehog , a straightforward PDE-independent singular/near-

singular quadrature scheme for layer potentials arising from PDEs de�ned on domains with spline-

based boundaries. We design adaptive geometric preprocessing and query algorithms to gurantee

the accuracy of hedgehogwhile enabling good performance. We evaluate the method on a va-

riety of complex geometries and boundary conditions and stress test it on several challenging

geometries This is based on the work in [Morse et al. 2020a].

In Chapter 3, we present a robust scalable RBC �ow simulation platform. We parallelize the PDE

solver presented in Chapter 2 to scale to thousands of processors. We then integrate this with

7

several parallel RBC simulation libraries. In partiular, we extend a collision-free time-stepping

scheme for deformable bodies to also handle rigid boundaries. We explore strong and weak scal-

ing of our plaform and scale this simulation to thousands of cores. This is based on the work in

[Lu et al. 2019] in collaboration with Libin Lu [Lu 2019].

In Chapter 4, we summarize the thesis and discuss possible future directions of research.

8

2 | �adrature Methods for Elliptic

PDEs in 3D Complex Geometries

This chapter introduces a simple, high-order boundary solver for elliptic partial di�erential equa-

tions (PDEs) in 3D complex geometries called hedgehog . It is based on the joint work [Morse et al.

2020a] with Abtin Rahimian and Denis Zorin.

Boundary integral equation methods have many computational advantages over conven-

tional approaches, but the necessity of evaluating singular/near-singular integrals remains a

complicated challenge. The main contribution of hedgehog is its algorithmic simplicity. The

singular/near-singular quadrature scheme decouples quadrature evaluation from the regulariza-

tion required to accurately evaluate layer potentials. hedgehog only requires values of the solu-

tion at prescribed points, which can be computed with a standard point FMM . This overcomes a

key hurdle in the development of fast singular quadrature methods.

This elliptic PDE solver ultimately allows us to solve Laplace, Stokes and linear elasticity equa-

tions in complex geometries. As will see in the next chapter, by assuming that the �uid �owing

through capillaries behaves like a Stokesian �uid, we can leverage hedgehog as a building block

in a large scale blood �ow simulation.

9

2.1 Introduction

Linear elliptic homogeneous partial di�erential equations (PDEs) play an important role in model-

ing many physical interactions, including electrostatics, elastostatics, acoustic scattering, and vis-

cous �uid �ow. Using ideas from potential theory allow us to reformulate the associated boundary

value problem (BVP) as an integral equation. The solution to the BVP can then be expressed as a

layer potential, i.e., a surface convolution against the PDE’s fundamental solution. Discretizing

the integral equation formulation o�ers several potential advantages over common used direct

PDE discretization methods such as �nite element or �nite volume methods.

First, the system of equations uses asymptotically fewer variables because only the domain

boundary requires discretization. There is no need to discretize the volume, which is often the

most time-consuming and error-prone task in the full simulation pipeline, especially if complex

boundary geometry is involved. This aspect of integral formulations is particularly important for

problems with changing geometries such as particulate �ows, or �ows with deforming bound-

aries, as well as moving boundaries. Second, while the algebraic system resulting from discretiza-

tion is dense, e�cientO(N)methods are available to solve it. A suitable integral formulation can

yield a well-conditioned system that can be solved using an iterative method like GMRES in rela-

tively few iterations. Third, high-order quadrature rules for smooth functions can be leveraged to

dramatically improve the accuracy for a given discretization size over a standard method. In other

words, integral equation solvers can be both more e�cient, usually if high accuracy is desired,

and more robust, as they do not require volume meshing.

For elliptic problems with smooth (or mostly smooth) domain boundaries, high-order meth-

ods have a signi�cant advantage over standard methods, drastically reducing the number of de-

grees of freedom needed to approximate a solution to a given accuracy. However, realizing this

potential presents a signi�cant challenge: for integral equation methods to achieve high-order ac-

curacy, they require a high-order quadrature and a high-order surface approximation to compute

10

the integrals accurately.

One of the main di�culties in constructing high-order boundary integral equation (BIE) solvers

is the need for accurate quadrature rules for singular integrals, as the formulation requires the so-

lution of an integral equation involving the singular fundamental solution of the PDE. Moreover,

if the solution needs to be evaluated arbitrarily close to the boundary, then one must numerically

compute nearly singular integrals with high-order accuracy. In some sense, the near singular

integrals are even more di�cult to handle compared to singular integrals, since simple change

of variable techniques that are often used to eliminate singularities on the boundary are harder

to apply. Precomputing high-order singular/near-singular quadrature weights also presents a

considerable problem, as these necessarily depend on the local surface shape and di�erent sets

of weights are required for each sample point. Furthermore, the sampling density required for

accurate singular/near-singular integration is highly dependent on the boundary geometry. For

example, two nearly touching pieces of the boundary require a sampling density proportional to

the distance between them; applying such a �ne discretization globally will become prohibitively

expensive.

2.1.1 Contributions

We introduce a new, high-order boundary integral solver for non-oscillatory elliptic PDEs. A

preliminary parallel version of this method is used in [Lu et al. 2019] to simulate red blood cell

�ows through complex blood vessel with high numerical accuracy. We describe the singular/near-

singular quadrature scheme for single- and double-layer potentials with the following features:

• Surface representation. We use standard Bézier patches to de�ne the domain boundary,

which simpli�es the use of the solver on CAD geometry, increases the e�ciency of surface

evaluation and simpli�es parallelization. We use a quad-tree of patches that allows us to

approximate complex surfaces with nonuniform curvature distribution e�ciently and to

11

re�ne sampling as required by surface quadrature. Our method extends directly to other

surface representation.

• Singular andnear-singular quadrature. We introduce an approximation-based singular/near-

singular quadrature scheme for single- and double-layer potentials in 3D : after computing

the solution at a set of nearby check points, placed along a line intersecting the target,

we extrapolate the solution to the target point. We have named this scheme hedgehog ,

for reasons that are apparent from Figure 2.2. In order to ensure accuracy of the scheme

for complex geometries, a key component of our scheme is a set of geometric criteria for

surface sampling needed for accurate integration along with fast algorithms to re�ne the

sampling adaptively so that these criteria are satis�ed.

Our approach is originally motivated by the near-singular evaluation scheme of [Ying et al.

2006b; Quaife and Biros 2014], which implements a similar scheme that includes an addi-

tional on-surface singular evaluation to allow for interpolation of the solution. Removing

this interpolation step and directly extrapolating solution values achieves optimal complex-

ity without greatly a�ecting accuracy.

• Re�nement for geometric admissibilty and quadrature accuracy. We present a set of

criteria that allows for accurate integration via hedgehog called geometric admissibilty. This

is similar in spirit to [Rachh et al. 2017] and [Wala and Klöckner 2019a], but adapted to the

geometry of our particular quadrature scheme. To guarantee quadrature accuracy of our

method, we detail an adaptiveh-re�nement approach of the integral equation discretization

based on a simple criteria to enable a fast re�nement pipeline.

• Error convergence and comparisonWe apply hedgehog to a variety of problems on vari-

ous geometries to demonstrate high-order convergence. We also compare our method with

[Ying et al. 2006b] to highlight the di�erences between global and local singular quadrature

schemes. We also solve Laplace and Stokes problems on challenging domain boundaries.

12

2.1.2 Related Work

We will restrict our discussion to elliptic PDE solvers in 3D using boundary integral formulations.

The common schemes to discretize boundary integral equations are the Galerkin method, the col-

location method, and the Nyström method [Atkinson and Han 2009]. After choosing a set of basis

functions to represent the solution, the Galerkin method forms a linear system for the coe�cients

of the solution by computing double integrals of the chosen basis functions multiplied by singular

kernels. The collocation method computes a set of unknown functions that match the solution

at a prescribed set of points. To form the required linear system, it assumes that an accurate

quadrature rule is available for evaluating the layer potential at the discretization points. For a

particular choice of quadratures, collocation and Nyström discretizations can lead to equivalent

algebraic systems [Kress 1999, Chapter 13]. In this paper, we focus on the Nyström discretiza-

tion, which is both simple (the integral in the equation is replaced by the quadrature approxima-

tion) and enables very e�cient methods to solve the discretized integral equation. The Galerkin

and collocation approaches are commonly referred to as boundary element methods (BEM) and

have become very popular. There have been many optimized BEM implementations for elliptic

(Laplace, Helmholtz) and Maxwell problems. One such implementation is BEM ++, presented in

[Śmigaj et al. 2015], with extensions for adaptivity added in [Bespalov et al. 2019; Betcke et al.

2019]. [Chaillat et al. 2017a,b] present iterative solvers for high-frequency scattering problems in

elastodynamics, based on a BEM implementation coupled with fast summation methods to enable

accurate solutions on complex triangle meshes. For a more complete background of BEM , we

refer the reader to [Steinbach 2007].

A signi�cant advancement in the �eld of �nite element methods, called isogeometric anal-

ysis (IGA)[Hughes et al. 2005], has been recently applied to boundary integral formulations.

IGA couples the basis functions de�ning the surface geometry with the analytic approaches for

the �nite element scheme. Most relevant to this work, IGA has recently been applied to singu-

13

lar and hypersingular boundary integral equations with a collocation discretization [Taus et al.

2016] with great success. A Nyström IGA method coupled with a regularized quadrature scheme

is detailed in [Zechner et al. 2016].

In the BIE literature, singular and near-singular integration schemes fall into one of the sev-

eral categories: singularity cancellation, asymptotic correction, singularity subtraction or custom

quadrature schemes. Singularity cancellation schemes apply a change of variables to remove

the singularity in the layer potential, allowing for the application of standard smooth quadrature

rules. The �rst polar change of variables was detailed in the context of acoustic scattering [Bruno

and Kunyansky 2001], which leveraged a partition of unity and a polar quadrature rule to remove

the singularity in the integrand of layer potential. Fast summations were performed with FFT ’s

and the periodic trapezoidal rule enables high-order convergence; the method was extended to

open surfaces in [Bruno and Lintner 2013]. This methodology was applied to general elliptic

PDEs in [Ying et al. 2006b] and coupled with the kernel-independent fast multipole method [Ying

et al. 2004] and a C∞ surface representation for complex geometries [Ying and Zorin 2004]. Re-

cently, [Malhotra et al. 2019] demonstrated that the choice of partition of unity function used

for the change of variables has a dramatic e�ect on overall convergence order, although not in

the context of elliptic PDEs. The �rst singularity cancellation scheme in 3D on general surfaces

composed of piecewise smooth triangles was presented in [Bremer and Gimbutas 2012, 2013]

by splitting a triangle into three subtriangles at the singularity and computing a polar integral

on each new triangle. [Ganesh and Graham 2004] introduced a change of variables method for

acoustic scattering on 3D surfaces parametrized by spherical coordinates by integrating over a ro-

tated coordinate system that cancels out the singularity. [Abduljabbar et al. 2019] outlines a fast

exascale solver for soft body acoustic problems on triangle meshes 3D and using Du�y transforms

as for singular/near-singular quadratures.

Asymptotic correction methods study the inaccuracies due to the singular PDE kernel with

asymtotic analysis and apply a compensating correction. [Beale 2004; Beale et al. 2016; Tlupova

14

and Beale 2019] compute the integral with a regularized kernel and add corrections for regular-

ization and discretization for the single and double layer Laplace kernel in 3D , along with the

Stokeslet and stresslet in 3D . [Carvalho et al. 2018a] computes an asymptotic expansion of the

kernel itself, which is used to remove the aliasing error incurred when applying smooth quadra-

ture rules to near-singular layer potentials. This method is extended to 3D in [Carvalho et al.

2018b] and a complete asymptotic analysis of the double-layer integral is performed in [Khatri

et al. 2020].

Singularity subtraction methods [Järvenpää et al. 2003; Jarvenpaa et al. 2006; Nair et al. 2013]

explicitly subtract the singular component of the integrand, which produces a smooth bounded

integral that can be integrated with standard quadrature rules. Custom quadrature rules aim to

integrate a particular family of functions to high-order accuracy. This can allow for arbitrar-

ily accurate and extremely fast singular integration methods, since the quadrature rules can be

precomputed and stored [Alpert 1999; Xiao and Gimbutas 2010].

The most noteworthy singular quadrature scheme that does not �t into one of the above cat-

egories is that of [Helsing and Ojala 2008]. This method is similar to the second-kind barycentric

interpolation [Berrut and Trefethen 2004]; it forms a rational function whose numerator and de-

nominator compensates for the error as the target point approaches the boundary. [Wu et al.

2020] has implemented an adaptive version of [Helsing and Ojala 2008] for complex Stokes �ows

in 2D and [af Klinteberg and Barnett 2019] have recently produced a remarkable extension to

nearly-singular line integrals in 2D and 3D . While this method performs exceptionally well in

practice, it does not immediately generalize to 3D surfaces in an e�cient manner.

The method of fundamental solutions, which represents the solution as a sum of point charges

on an equivalent surface outside of the PDE domain, removing the need for singular evaluation,

has also seen a great deal of success in 2D [Barnett and Betcke 2008] and in axis-symmetric

3D problems [Liu and Barnett 2016]. Recently, [Gopal and Trefethen 2019] has introduced an

2D approach similar in spirit to the method of fundamental solutions for domains with corners,

15

but formulated as a rational approximation problem in the complex plane rather than as a bound-

ary integral equation. The lack of singular integration makes these methods advantageous, but

placing the point charges robustly can be challenging in practice. General 3D geometries also

remain a challenge.

There has been a great deal of recent work on special analyses of regions with corners [Serkh

and Rokhlin 2016a; Serkh 2017, 2018; Hoskins et al. 2019; Rachh and Serkh 2017; Serkh and

Rokhlin 2016b]. Rather than a dyadic re�nement of the discretization toward corners to han-

dle the arti�cial singularities, these works have shown that the solution can be appropriately

captured with special quadratures for a certain class of functions. Although not yet generalized

to 3D , this work has the potential to vastly improve the performance of 3D Nyström boundary

integral methods on regions with corners and edges.

Our method falls into a �nal category: approximation-based quadrature schemes. The �rst

use of a local expansion to approximate a layer potential near the boundary of a 2D boundary

was presented in [Barnett 2014]. By using an re�ned, or upsampled, global quadrature rule to

accurately compute coe�cients of a Taylor series, the resulting expansion serves as a reasonable

approximation to the solution near the boundary where quadrature rules for smooth functions

are inaccurate. This scheme was then adapted to evaluate the solution both near and on the

boundary, called Quadrature by Expansion (QBX) [Klöckner et al. 2013b]. The �rst rigorous error

analysis of the truncation error of QBX was carried out in [Epstein et al. 2013].

Great progress has been made in this area since [Klöckner et al. 2013b]. A fast implementation

of QBX in 2D , along with a set of geometric constraints required for well-behaved convergence,

was presented in [Rachh et al. 2017]. However, the interaction of the expansions of QBX and

the expansions used in the translation operators of the FMM resulted in a loss of accuracy, which

required an arti�cially high multipole order to compensate. [Wala and Klöckner 2018b] addresses

this shortcoming by enforcing a con�nement criteria on the location of expansion disks relative

to FMM tree boxes. [af Klinteberg and Tornberg 2017] provided extremely tight error heuristics

16

for various kernels and quadrature rules using contour integration and the asymptotic approach

of [Elliott et al. 2008]. [af Klinteberg and Tornberg 2018] then leveraged these estimates in a

QBX algorithm for Laplace and Helmholtz problems in 2D that adaptively selects the amount of

upsampled quadrature and the expansion order for each QBX expansion. In the spirit of [Ying

et al. 2004], [Rahimian et al. 2018] generalizes QBX to any elliptic PDE by using potential theory

to form a local, least-squares solution approximation using only evaluations of the PDE’s Green’s

function.

The �rst extension of QBX to 3D was [Siegel and Tornberg 2018], where the authors present a

local, target-speci�c QBX method on spheroidal geometries. In a local QBX scheme, an upsampled

accurate quadrature is used as a local correction to the expansion coe�cients computed from the

coarse quadrature rule over the boundary. This is in contrast with a global scheme, where the

expansion coe�cients are computed from the upsampled quadrature with no need for correction.

The �rst local QBX scheme appears in [Barnett 2014] in 2D , but the notion of local FMM corrections

dates back to earlier work such as [Alpert 1999; Kapur and Rokhlin 1997]. The expansions in

[Siegel and Tornberg 2018] computed in a target-speci�c QBX scheme can only be used to eval-

uate a single target point, but each expansion can be computed at a lower cost than a regular

expansion valid in a disk. The net e�ect of both these algorithmic variations are greatly improved

constants, which are required for complicated geometries in 3D . In [af Klinteberg and Tornberg

2017], very accurate error heuristics are derived for the tensor product Gauss-Legendre rule on

a surface panel and a simple spheroidal geometry in 3D , which were then leveraged to estimate

QBX quadrature errors. [af Klinteberg and Tornberg 2016] generalized QBX to Stokes problems on

spheroidal geometries in 3D . [Wala and Klöckner 2019a] extends the QBX -FMM coupling detailed

in [Wala and Klöckner 2018b], along with the geometric criteria and algorithms of [Rachh et al.

2017] that guarantees accurate quadrature, to 3D surfaces. [Wala and Klöckner 2019b] improves

upon this by adding target-speci�c expansions to [Wala and Klöckner 2019a], achieving a 40%

speed-up and [Wala and Klöckner 2020] provides a thorough error analysis of the interaction

17

between computing QBX expansions and FMM local expansions.

The rest of the paper is organized as follows: In Section 2.2, we brie�y summarize the problem

formulation, geometry representation and discretization. In Section 2.3, we detail our singular

evaluation scheme and with algorithms to enforce admissibility, adaptively upsample the bound-

ary discretization, and query surface geometry to evaluate singular/near-singular integrals. In

Section 2.4, we provide error estimates for hedgehog . In Section 2.5, we summarize the complex-

ity of each of the algorithms described in Section 2.3. In Section 3.5, we detail convergence tests

of our singular evaluation scheme and compare against other state-of-the-art methods.

2.2 Formulation

2.2.1 Problem Setup

We restrict our focus to interior Dirichlet boundary value problems of the form

Lu(x) = 0, x ∈ Ω, (2.1)

u(x) = f (x), x ∈ ∂Ω = Γ, (2.2)

with multiply- or singly-connected domain Ω of arbitrary genus. Our approach applies directly to

standard integral equation formulations of exterior Dirichlet and Neumann problems; we include

results for an exterior Dirichlet problem in Section 2.6.4. Here L is a linear elliptic operator and

f is at least Ck . While our method can be applied to any non-oscillatory elliptic PDE, we use the

18

following equations in our examples:

Lu =

∆u Laplace

∆u − ∇p, ∇ · u = 0 Stokes

∆u + 1
1−2ν∇∇ · u Navier (linear elasticity)

(2.3)

We follow the approach of [Ying et al. 2006b]. We can express the solution at a point x ∈ Ω

in terms of the double-layer potential

u(x) = D[ϕ](x) =
∫
Γ

∂G(x ,y)
∂n(y) ϕ(y)dyΓ, (2.4)

where G(x ,y) is the fundamental solution or kernel of Eq. (2.2), n(y) is the normal at y on Γ

pointing into the exterior of Ω, and ϕ is an unknown function, or density, de�ned on Γ. We list

the kernels associated with the PDEs in Eq. (2.3) in [Morse et al. 2020b, Section 1]. Using the jump

relations for the interior and exterior limits of u(x) as x tends towards Γ [Kress 1999; Mikhlin

2014; Pozrikidis 1992a; Parton and Perlin 1982], we know that Eq. (2.4) is a solution to Eq. (2.2) if

ϕ satis�es (
1
2 I + D +M

)
[ϕ](x) = f (x),x ∈ Γ (2.5)

with identity operator I . We will refer to ϕ as the density and u(x) as the potential at x . The

double-layer integrals in this equation are singular, due to the singularity in the integrand of

Eq. (2.4). Additionally, as x approaches Γ, Eq. (2.4) becomes a nearly singular integral.

The operator M completes the rank of 1
2 I + D to ensure invertibility of Eq. (2.5). If 1

2 I + D

is full-rank, M = 0. When 1
2 I + D has a non-trivial null space, M accounts for the additional

constraints to complete the rank of the left-hand side of Eq. (2.5). For example, for the exterior

Laplace problem on ` multiply-connected domains, the null space of 1
2 I + D has dimension `

[Siegel and Tornberg 2018]. The full set of cases for each kernel is considered in this work and

19

their corresponding values of M have been detailed in [Ying et al. 2006b].

2.2.2 Geometry representation

Figure 2.1: Patch �adrisection. Right: the standard domain I2 of a single surface or quadrature
patch. Middle: a collection of subdomains Di of Er , produced by quadrisection. Each Di corresponds to
a map ηi such that Di = ηi (I2); a single Di is highlighted in bold. Le�: the image of Er under the patch
γr . The final image of each subdomain is outlined, with the image of Di in bold.

We assume that the smooth domain boundary Γ is given by a quadrilateral mesh consisting

of quadrilateral faces Qr , referred to as quads. Each quad is associated with a parametric domain

I2 = [−1, 1]2 = Er , along with embeddings γr : Er → R3 for each quad such that Qr = γr (Er). We

assume that the quad mesh is conforming, i.e., two non-disjoint faces either share a whole edge or

a single vertex; examples of this are shown in Figures 2.8 and 2.9. We assume that no two images

γr (Er) intersect, except along the shared edge or vertex. The surface Γ is the union of patches

∪rγr (Er) = ∪rQr . We also assume that Γ is su�ciently smooth to recover the solution of Eq. (2.2)

up to the boundary [Kress 1999] and is at least Ck .

To represent the surface geometry, we approximate Γ with a collection of Bézier patches, given

by a linear combination of tensor-product Bernstein polynomials

Pi(s, t) =
n∑̀
=0

n∑
m=0

a(i)
`mB

n
` (s)Bnm(t), (2.6)

where Bn
`
(t) = (n

`

)
tn−`(1 − t)` for each ` are the n-th degree Bernstein polynomials, i denotes

20

the index of a patch in the collection and a(i)
`m ∈ R3. Each patch P is a vector function from I2

to R3, so s, t ∈ [−1, 1]. We will refer to this approximation of Γ as Γ̂. This representation is

advantageous because the Bézier coe�cients provide a direct connection to surface geometry, as

shown in Fig. 2.4.

The domain Er of each embedding function γr is adaptively re�ned using quadrisection, i.e.,

splitting a square domain into four square subdomains of equal size. Quadrisection induces a

quadtree structure on each Er . The root of the quadtree is the original domain I2 and each node

of the tree is related by a single quadrisection of a subdomain of Er . The leaves of the quadtree

form a collection of subdomains Di whose union equals Er , as shown in Fig. 2.1-middle. Given

an indexing scheme of all Di ’s over all Er ’s, we de�ne the function r (i) that maps the leaf node

index i to its root node index r in the quadtree forest, indicating that Di ⊂ Er . For each r , Er can

have a distinct sequence of associated quadrisections and therefore a distinct quadtree structure.

We refer to the process of re�nement or re�ning a patch P as the construction of such quadtrees

for each Er subject to some set of criteria.

On each Di at the quadtree leaves, we de�ne a Bézier patch and reparametrize each patch

over I2 by de�ning the a�ne map ηi : I2 → Er (i) such that ηi(I2) = Di ⊆ Er (i). It follows that

the set of subdomains {ηi(I2) | r (i) = κ} form a cover of Eκ and {γκ(ηi(I2)) | r (i) = κ} likewise

covers γκ(Eκ). We summarize this setup in Figure 2.1; examples of surfaces of this form can be

seen in Figures 2.8, 2.9, 2.12 and 2.13.

2.2.3 Problem discretization

We use two collections of patches in the form described above: Pcoarse and P�ne. The patches in

Pcoarse, called surface patches, determine Γ̂ from Γ and the set of patches P�ne, called quadrature

patches, are obtained by further quadrisection of the surface patches in Pcoarse. The geometry of Γ̂

is not changed by this additional re�nement of Pcoarse, but the total number of subdomains Er (i) is

increased. We will detail the geometric criteria that Pcoarse and P�ne must satisfy in Section 2.3.2.

21

Discretizing Γ̂ with with a quadrature rule based on P�ne results in a denser sampling of Γ̂ than a

similar discretization of Pcoarse. We will refer to Pcoarse as the coarse discretization of Γ̂ and P�ne

as the upsampled or �ne discretization of Γ̂.

We index the patches in Pi ∈ Pcoarse by i = 1, . . .N ; we can then rewrite Eq. (2.4) as a sum of

integrals over surface patches:

u(x) =
N∑
i=1

∫
Pi

∂G(x ,y)
∂n(y) ϕ(y)dyPi . (2.7)

We discretize functions de�ned on Γ̂, such as Eq. (2.7), at q-node composite tensor-product

Clenshaw-Curtis quadrature points on I2 of patches in Pcoarse. We refer to these points and

weights on a single patch Pi as xj and wCC
j respectively, for j = 1 . . .q2. The quadrature point

yij from Pi is de�ned as yij = Pi(ηi(xj)). We assume that the boundary condition f is given by

a black-box evaluator on R3 that can be used to obtain values at yij . For clarity, we reindex the

surface points by a global index I = 1, . . . ,q2N . We discretize the double layer integral Eq. (2.7)

on Pcoarse to approximate the solution u(x):

u(x ,Pcoarse) ≈ û(x ,Pcoarse) =
N∑
i=1

q2∑
j=1

∂G(x ,yij)
∂n(yij) ϕij

√
дijw

CC
j =

q2N∑
I=1

∂G(x ,yI)
∂n(yI) ϕIŵI (2.8)

with дij being the determinant of the metric tensor of Pi at xj and ŵi ·q2+j =
√
дijw

CC
j . In other

words, û(x ,Pcoarse) = D̂[ϕ](x), where D̂[ϕ](x) ≈ D[ϕ](x).
We can also discretize functions with tensor-product Clenshaw-Curtis nodes on the domains

of patches in P�ne. The values of functions on P�ne are interpolated from their values on the

quadrature nodes of Pcoarse rather than being computed directly on P�ne. We call this interpola-

tion from Pcoarse to P�ne upsampling. We denote the quadrature nodes and weights on P�ne by

x̃j and w̃j with a similar global index J and refer to them as the upsampled nodes and weights.

Identical formulas are used for computing quadrature on P�ne with the nodes and weights x̃j , w̃j

22

on P�ne, denoted u(x ,P�ne) and û(x ,P�ne), repsectively.

In the next section, we describe the algorithm to compute an accurate approximation to the

singular/near-singular double-layer integral in Eq. (2.4), using a quadrature rule for smooth func-

tions (Eq. (2.8)) as a building block. This algorithm allows us to compute the matrix-vector prod-

ucts Aϕ, for a vector of values ϕ de�ned at the quadrature points yI , where A is the discrete

operator obtained from the left-hand side of Eq. (2.5) after approximating D[ϕ](y) with the sin-

gular integration scheme. As a result, we can solve the linear system using GMRES, which only

requires a matrix-vector product

Aϕ = f , (2.9)

where f is the boundary condition sampled at the points yI . The evaluation of these integrals

is accelerated in a standard manner using the fast multipole method (FMM)[Malhotra and Biros

2015a; Ying et al. 2004; Greengard and Rokhlin 1987].

2.3 Algorithms

We now detail a set of algorithms to solve the integral equation in Eq. (2.5) and evaluate the so-

lution via the double layer integral in Eq. (2.4) at a given target point x ∈ Ω. As described in

the previous section, both solving Eq. (2.5) and evaluating Eq. (2.4) require accurate evaluation of

singular/near-singular integrals of functions de�ned on the surface Γ̂. We �rst outline our uni-

�ed singular/near-singular integration scheme, hedgehog , its relation to existing approximation-

based quadrature methods and geometric problems that can impede accurate solution evaluation.

We then describe two geometry preprocessing algorithms, admissibility re�nement and adap-

tive upsampling, that address these issues to obtain the sets of patches Pcoarse and P�ne used by

hedgehog .

23

2.3.1 Singular and Near-Singular Evaluation

We begin with an outline of the algorithm. For a point sx ∈ Γ̂ on a patch P from Pcoarse that is

closest to x , we �rst upsample the density ϕ from Pcoarse to P�ne and compute the solution at

a set of points cs , s = 1, . . .p called check points, sampled along the surface normal at sx away

from Γ̂. We use Eq. (2.8) to approximate the solution at the check points. We then extrapolate the

solution to x .

For a given surface or quadrature patch P : I2 → R3, we de�ne the characteristic length

L(P) as the square root of the surface area of P , i.e., L(P) =
√∫

P
dyP . We use L = L(P) or Ly for

y ∈ P(D) to denote the characteristic length when P is clear from context. For a point x ∈ Ω, we

assume that there is a single closest point sx ∈ Γ̂ to x ; all points to which the algorithm is applied

will have this property by construction. Note that n(sx), the vector normal to Γ̂ at sx , is chosen

to point outside of Ω.

We de�ne three zones in Ω for which Eq. (2.4) is evaluated di�erently in terms of Eq. (2.8) and

the desired solution accuracy εtarget . The far �eld ΩF = {x ∈ Ω | ‖u(x) − û(x ;Pcoarse)‖2 ≤ εtarget},
where the quadrature rule corresponding to Pcoarse is su�ciently accurate, and the intermediate

�eld ΩI = {x ∈ Ω | ‖u(x) − û(x ;P�ne)‖2 ≤ εtarget}, where quadrature over P�ne is su�ciently

accurate. The remainder of Ω is the near �eld ΩN = Ω \ ΩI .

Non-singular integration To compute the solution at points x in ΩF , Eq. (2.8) is accurate to

εtarget, so we can simply compute û(x ,Pcoarse) directly. Similarly for points in ΩI \ ΩF , we know

by de�nition that û(x ,P�ne) is su�ciently accurate, so it can also be applied directly.

Singular/near-singular integration algorithm For the remaining points in ΩN , we need

an alternative means of evaluating the solution. In the spirit of the near-singular evaluation

method of [Ying et al. 2006b], we construct a set of check points c0, . . . ,cp in ΩI along a line

intersecting x to approximate the solution near x . However, instead of interpolating the solution

24

upsampled quadrature points

check points

Figure 2.2: Schematic of singular/near-singular evaluation. A small piece of a boundary Γ̂ is shown,
along with the set of patches Pcoarse (patch boundaries are drawn in black). The target point x , in this
case on Γ̂, is shown in green. The solution is evaluated at the check points cs (gray points o�-surface)
using the fine discretization P�ne (small dots on-surface). The distance from the first check point c0 to Γ̂
is R and the distance between consecutive check points ci and ci+1 is r . In this example, P�ne is computed
from Pcoarse with two levels of uniform quadrisection, producing 16 times more patches. The patch length
L is roughly proportional to the average edge length of the patch.

as in [Ying et al. 2006b], we instead extrapolate the solution from the check points to x . We de�ne

two distances relative to sx : R(sx) = bLsx = ‖c0 − sx ‖2, the distance from the �rst check point c0

to Γ̂, and r (sx) = aLsx = ‖ci − ci+1‖2, the distance between consecutive check points. We assume

0 < a,b < 1.

The overall algorithm for the uni�ed singular/near-singular evaluation scheme is as follows.

A schematic for hedgehog is depicted in Figure 2.2.

1. Find the closest point sx on Γ̂ to x .

2. Given values a and b, generate check points C = {c0, . . . ,cp}

cs = sx − (R(sx) + sr (sx))n(sx), s = 0, . . . ,p (2.10)

25

The center of mass of these check points ĉ is called the check center for x . Note that P�ne

must satisfy the condition that cs are in ΩI for a given choice of a and b.

3. Upsample ϕ. We interpolate the density values ϕI at xI on patches in Pcoarse to quadrature

points x̃ J on patches in P�ne with global indices I and J on Pcoarse and P�ne respectively. If

a patch Pi in Pcoarse is split into mi patches in P�ne, we are interpolating from q2 points to

miq
2 points.

4. Evaluate the potential at check points via smooth quadrature with the upsampled density,

i.e. evaluate û(cs) = û(cs ,P�ne) for s = 0, . . . ,p.

5. Compute a Lagrange interpolant ũ through the check pointsc0, . . . ,cp and values û(c0), . . . , û(cp)
and evaluate at the interpolant at x :

ũ(x) =
p∑
s=0

û(cs)`s(tx), (2.11)

where `s(x) is the sth Lagrange basis function through the points c0, . . . ,cp , and tx ∈ R is

such that x = sx − txn(sx) (see Fig. 2.6 for a schematic of the check points). Since x lies

between c0 and Γ̂, we are extrapolating when computing ũ(x).

Ill-conditioning of the discrete integral operator This evaluation scheme can be used

directly to extrapolate all the way to the surface and obtain the values of the singular integral

in Eq. (2.5). However, in practice, due to a distorted eigenspectrum of this approximate operator,

GMRES tends to stagnate at a level of error corresponding to the accuracy of hedgehogwhen it is

used to compute the matrix-vector product. This is a well-known phenomenon of approximation-

based singular quadrature schemes; [Klöckner et al. 2013b, Section 3.5][Rahimian et al. 2018,

Section 4.2] present a more detailed study. To address this, we average the interior and ex-

terior limits of the solution at the quadrature nodes, computed via hedgehog , to compute the

26

on-surface potential and add 1
2 I to produce the interior limit. This shifts the clustering of eigen-

values from around zero to around 1
2 , which is ideal from the perspective of GMRES. We call this

two-sided hedgehog , while the standard version described above is called one-sided hedgehog .

We observe stable and consistent convergence of GMRES when two-sided hedgehog is used to

evaluate the matrix-vector multiply to solve Eq. (2.9). In light of this, we always use two-sided

hedgehogwithin GMRES and set the stopping tolerance for GMRES to εGMRES = 10−12, regardless

of the geometry, boundary condition or quadrature order.

2.3.2 Geometric criteria for accurate qadrature

The accuracy of the method outlined above is controlled by two competing error terms: quadra-

ture error incurred from approximating the layer potential Eq. (2.4) with Eq. (2.8) in Step 4 and

extrapolation error due to approximating the singular integral with an extratpolated value in Step

5. Both errors are determined by the location of check points relative to the patches in Pcoarse

and P�ne (see Heuristic 2.1 and Theorem 2.2).

Figure 2.3: Possible check point configurations. A 2D example depicting three choices of a and b in
Eq. (2.10). Shown is the boundary Γ̂, with black tick marks denoting patch boundaries of Pcoarse, green tick
marks denoting patch boundaries of P�ne, the target point (red dots), its check points (blue dots) along
the normal closest to the target point, and the medial axis of Γ̂ (gray do�ed line). Large (le�) and small
(middle) values of a and b can cause clustering of check points near to Γ̂, which requires large amounts of
upsampling to compute the potential accurately. Using the medial axis as a heuristic to for admissibility
(right), we can minimize the amount of adaptive upsampling required.

In Figure 2.3, we show three examples of di�erent choices of check point locations to evaluate

27

the potential at a point with hedgehog . In Fig. 2.3-left, c0 is placed close to the target point, while

in Fig. 2.3-middle, c0 is far from the target point, but cp is close to a non-local piece of Γ̂. Both

cases will require excessive re�nement of Pcoarse in order to resolve Eq. (2.8) accurately with

P�ne. On the other hand, in Fig. 2.3-right, we can either perform one re�nement step on Pcoarse

or adjust a andb, which will result in fewer patches inP�ne, and therefore provide a faster integral

evaluation, while maintaining accuracy.

In an attempt to strike this balance between speed and accuracy, we need certain constraints

on the geometry of Γ̂ to ensure the e�cient and accurate application of hedgehog , which we

impose on the patch sets Pcoarse and P�ne. We will �rst outline our constraints on the quadrature

patch sets Pcoarse and P�ne which allow for accurate evaluation with hedgehog .

We note here that this is largely a consequence of the global nature of our method. We

compute accurate potentials at each check point with a single large quadrature evaluation over

the boundary. Alternatively, one could use a local approach which performs a local correction

to an inaccurate FMM evaluation of a singular/near-singular integral. The net e�ect of this is

a faster FMM evaluation without much concern for where check points are placed, but many

small quadratic computations on individual patches. We explore this tradeo� by comparing

hedgehogwith a competing approach in Section 2.6.2.

2.3.2.1 Admissibility criteria

A set of patches P is admissibile if the following statements are satis�ed on each quadrature patch

in P:

1 The error of a surface patch Pi approximating an embedding γr is below some absolute

target accuracy εg

2 The interpolation error of the boundary condition f is below some absolute target accuracy

εf

28

3 For each check center ĉj corresponding to the quadrature pointyj on the surface, the closest

point on Γ̂ to ĉj is yj .

Criterion 1 is required to ensure that Γ̂ approximates Γ with su�cient accuracy to solve the

integral equation. We discuss how to choose εg in [Morse et al. 2020b, Section 6]; for the tests

in this paper, we simply choose εg < εtarget. Criterion 2 guarantees that f can be represented

at least as accurately as the desired solution accuracy. We therefore similarly choose εf < εtarget.

Criterion 3 balances the competing geometric constraints of cost and accuracy by �exibly placing

check points as far as possible from Γ̂ without causing too much upsampling on other patches.

If a check point c constructed from a surface patch P is too close to another surface patch P ′,

Criterion 3 will indicate that P is inadmissible. If P is subdivided into its children, new check

points c′ generated from these children of P will be closer to P and further from P ′. Since check

points are placed at distances proportional toL(P), repeated re�nement ofP will eventually satisfy

Criterion 3.

2.3.2.2 Upsampling criteria

Once we have a set of admissible surface patches satisfying Criteria 1 to 3, we need to determine

the upsampled quadrature patches P�ne that ensure that the check points generated from Pcoarse

are in ΩI , i.e., ‖u(c) − û(c,P�ne)‖ < εtarget. To achieve this, we need a criterion to determine

which patches are “too close” to a given check point for the error to be below εtarget. We make

the following assumption about the accuracy of our smooth quadrature rule: Eq. (2.8) is accurate

to εtarget at points further than L(P) from P , for εtarget > 10−12. This is motivated by [af Klinteberg

and Tornberg 2017; Barnett 2014], which demonstrate the rapid convergence of the layer potential

quadrature error with respect to ‖x−sx ‖2. For su�ciently high quadrature orders, such as q = 20,

this assumption seems to hold in practice. We say that a point x is near to P if the distance from

x to P is less than L(P); otherwise, x is far from P . We would like all check points required for

the singular/near-singular evaluation of the discretization of Eq. (2.4) using hedgehog to be far

29

from all patches in P�ne. If this is satis�ed, then we know that the Clenshaw-Curtis quadrature

rule will be accurate to 10−12 at each check point.

2.3.3 Refinement algorithm preliminaries

Computing the distance from a check point to a given patch is a fundamental step in verifying

the constraints on Pcoarse and P�ne from Sections 2.3.2.1 and 2.3.2.2. Before detailing our re�ne-

ment algorithms to enforce these criteria, we introduce several geometric algorithms and data

structures that will be used to compute the closest point on piecewise polynomial surfaces.

2.3.3.1 AABB trees

In order to implement our algorithms to enforce admissibility e�ciently, we use a fast spatial

data structure to �nd the patches that are close to a query point x . In [Rachh et al. 2017; Wala

and Klöckner 2019a], the quadtree and octree within an FMM is extended to support the geometric

queries needed for a fast QBX algorithm. In this work, we use an axis-aligned bounding box (AABB)

tree, which is a type of bounding volume hierarchy [Samet 2006], implemented in geogram [Lévy

2015]. An AABB is a tree with nodes corresponding to bounding boxes and leaves corresponding

to bounding boxes containing single objects. A bounding box B0 is a child of another box B1

if B0 ⊂ B1; the root node is a bounding box of the entire domain of interest. Operations sup-

ported by AABB trees include: (i) �nding all bounding boxes containing a query point, (ii) �nding

all bounding boxes that intersect another query box, (iii) �nding the closest triangle to a query

point (because triangles have trivial bounding boxes). By decoupling geometric queries from fast

summation, the individual algorithms can be more thoroughly optimized, in exchange for the

additional memory overhead of maintaining two distinct data structures. The query algorithm

presented in [Lu et al. 2019] likely has better parallel scalability, but AABB trees are faster for small

to medium problem sizes on a single machine due to less redundant computation.

To de�ne an AABB tree for our patch-based surface Γ̂, we make use of the following fact: the

30

control points of a Bézier surface (a`m’s from Eq. (2.6)) form a convex hull around the surface that

they de�ne [Farin 1988]. As a result, we can compute a bounding box of a surface or quadrature

patch P directly from the Bézier coe�cients simply by computing the maximum and minimum

values of each component of the a`m’s, as shown in Fig. 2.4-middle. This bounding box can then

be inserted into the AABB tree as a proxy for a surface or quadrature patch.

Figure 2.4: Relationship between control points and bounding boxes. Le�: a patch in the tensor
product Bézier basis, with control points (a`m ’s from Eq. (2.6)) plo�ed. The convex hull of the control
points of a patch are guaranteed to contain the patch. Center: The patch bounding box, computed from
the control points. Right: The near-zone bounding box of the patch from Section 2.3.5 computed by
inflating the bounding box by L(P).

2.3.3.2 Computing the closest point to a patch

To �nd a candidate closest patch Pi0 to x , we construct a �ne triangle mesh and bounding boxes

of each patch in Pcoarse and insert them into an AABB tree. We can query the AABB tree for the

nearest triangle to x with the AABB tree, which corresponds to Pi0 . We then compute the accurate

true distance di0 to Pi0 using a constrained Newton method, presented in detail in Appendix A.2.

However, there may be other patches whose distance to x is less than di0 , as shown in Fig. 2.5.

To handle this case, we then query the AABB tree for all patches Pi1, . . . ,Pik that are distance at

most di0 from x . This is achieved by forming a query box centered at x with edge length 2di0 and

querying the AABB tree for all intersection bounding boxes. The precise distance is then computed

for each patch Pi1, . . . ,Pik with Appendix A.2 and the smallest distance is chosen. We summarize

this process in Algorithm 1.

31

Algorithm 1: Compute the closest point to x .
Data: A set of quadrature patches P, a query point x , Newton method tolerance εopt
Result: The closest point sx on P to x

1 Construct an AABB tree TT from a �ne triangle mesh of the quadrature patches of P
2 Construct an AABB tree TB from bounding boxes of quadrature patches in P.
3 τ0 = closest triangle to x computed with TT
4 Pi0 = patch corresponding to τ0
5 Find the closest point sx ,0 on Pi0 to x with [Morse et al. 2020b, Section 2].
6 di0 = ‖x − sx ,0‖2
7 Bdi0 (x) = a box centered a x with edge length 2di0
8 Find the boxes Bi1, . . . Bik in TB that intersect Bdi0 (x)
9 for Bi j ∈ Bi1, . . . Bik do

10 Pi j = quadrature patch corresponding to Bi j
11 Find the closest point sx ,j on Pi j to x with [Morse et al. 2020b, Section 2] to precision

εopt.
12 di j = ‖x − sx ,j ‖2
13 j∗ = argminj{di j }
14 return sx ,j∗

Figure 2.5: A 2D schematic of near-patch candidate selection. A visual depiction of the quantities
defined in lines 3-7 of Algorithm 1 (shown here in 2D for simplicity), with notation matching Algorithm 4.
The triangle-mesh proxy is drawn in as black lines and patches are drawn as gray curves. We have found
an initial closest triangle τ0 to x corresponding to patch Pi0 and computed d(x ,Pi0) = di0 . We then query
the AABB tree for all patches that intersect box Bdi0 with edge length 2di0 , shown in blue. There is clearly
a patch that is closer to x than Pi0 that will be returned from the query, which will be distance dmin from
x .

32

2.3.4 Admissibility algorithm

Our algorithm to enforce Criteria 1 to 3 proceeds as follows:

• To enforce Criterion 1, we adaptively �t a set of surface patches to the embeddingsγr repre-

senting Γ. We construct a bidegree (n,n) piecewise polynomial least-squares approximation

Pi in the form of Eq. (2.6) to γr on I 2. If Pi ’s domain Di is obtained by re�nement of Er , we

�t Pi ◦ηi to γr on I2, using 4n×4n samples on I2. If the pointwise error of Pi and its partial

derivatives is greater than εg, then it is quadrisected and the process is repeated.

• Once the embeddings are resolved, we resolve f on each surface patch produced from the

previous step in a similar fashion to enforce Criterion 2. However, rather than a least-

squares approximation in this stage, we use piecewise polynomial interpolation.

• To enforce Criterion 3, we construct the set of check centers ĉI which correspond to the

check points required to evaluate the solution at the quadrature nodes yI . For each check

center ĉI , we �nd the closest point sĉI ∈ Γ̂. If ‖sĉI − yI ‖ ≥ εopt, we split the quadrature

patch P containing yI . The tolerance εopt is used in the Newton’s method in [Morse et al.

2020b, Section 2]; we usually choose εopt = 10−14. Since d(ĉI , Γ̂) is proportional to LyI , the

new centers ĉI for the re�ned patches will be closer to the surface. We use Algorithm 1 to

compute sĉI . However, in the case of check points, we can skip lines 1-6 to compute di0 ,

since ĉI is R + r (p + 1)/2 away from yI ∈ P(D) by construction. We can apply lines 7-14 of

Algorithm 1 with di0 = R + r (p + 1)/2 to compute sĉI .

We summarize the algorithm to enforce Criterion 3 in Algorithm 2. At each re�nement it-

eration, the o�ending patches are decreased by quadrisection, which reduces the distance from

the quadrature pointyI to its checkpoints. This eventually satis�es Criterion 3 and the algorithm

terminates.

33

Algorithm 2: Enforce admissibility Criterion 3 on a set of qadrature patches.
Data: A set of quadrature patches P, optimization tolerance εopt
Result: An admissible set of quadrature patches P

1 P = Pcoarse
2 Mark all patches in P as inadmissible.
3 while any patch in P is inadmissible do
4 Construct an AABB tree T as described in Section 2.3.3.2 from P
5 for P ∈ P do
6 if P is inadmissible then
7 Construct a set of check centers CP for each yJ ∈ P(D)
8 for ĉ ∈ CP do
9 di0 = R + r (p + 1)/2

10 Compute sĉ with lines 7-14 of Algorithm 1 with precision εopt and di0 .
11 if ‖sĉ −yJ ‖2 < εopt then
12 Mark P as admissible.
13 else
14 Mark P as inadmissible.
15 break // only need one bad check center to mark P for

refinement

16 for P ∈ P do
17 if P is inadmissible then
18 Split P into its four child patches, mark each as inadmissible, and replace P

with its children in P.

19 return P

2.3.5 Adaptive upsampling algorithm

Before detailing our upsampling algorithm to satisfy the criteria outlined in Section 2.3.2.2, we

must de�ne the notion of a near-zone bounding box of a quadrature patch P , denoted Bnear(P).
The near-zone bounding box of P is computed as described in Section 2.3.3.1, but then is in�ated

by 2L(P), as shown in Fig. 2.4-right. This in�ation guarantees that any point x that is near P is

contained in Bnear(P) and, for an admissible set of quadrature patches Pcoarse, that any x ∈ ΩN

must be contained in some quadrature patch’s near-zone bounding box. This means that by

forming Bnear(P) for each quadrature patch in P�ne, a check point is in ΩI if it is not contained in

34

any near-zone bounding boxes.

To compute the upsampled patch set from Pcoarse, we initially set P�ne = Pcoarse, compute

the near-zone bounding boxes of each patch in P�ne and insert them into an AABB tree. We

also construct the set of check points C required to evaluate our discretized layer-potential with

hedgehog (Section 2.3.1). For each check point c ∈ C , we query the AABB tree for all near-zone

bounding boxes that contain c . If there are no such boxes, we know c is far from all quadrature

patches and can continue. If, however, there are near-zone bounding boxes Bi0, . . . ,Bik contain-

ing c , we compute the distances dik from c to Pi1, . . . ,Pik using Appendix A.2. If dik < L(Pik), we

replace Pik in P�ne with its four children produced by quadrisection.

To improve the performance of this re�nement procedure, we allow for the option to skip

the Newton method in Algorithm 1 and immediately re�ne all patches Pi0, . . . Pik . This is advan-

tageous in the early iterations of the algorithm, when most check points are near to patches by

design. We allow for a parameter nskip to indicate the number of iterations to skip the Newton

optimization and trigger re�nement immediately. We typically set nskip = 2. We summarize our

algorithm in Algorithm 3.

2.3.6 Marking target points for evaluation

Once we have solved Eq. (2.9) for ϕ on Γ̂, we need the ability to evaluate Eq. (2.4) at an arbitrary

set of points in the domain. For a target point x , in order apply the algorithm in Section 2.3.1, we

need to determine whether or not x ∈ Ω and, if so, whether x is in ΩN ,ΩI or ΩF . Both of these

questions can be answered by computing the closest point sx on Γ̂ to x . Ifn(sx) · (x−sx) < 0, then

x ∈ Ω. As we have seen in Section 2.3.2.2, the distance ‖x − sx ‖ determines whether x ∈ ΩN ,ΩI

or ΩF . However, for large numbers of target points, a brute force calculation of closest points on

Γ̂ to all target points is prohibitively expensive. We present an accelerated algorithm combining

Algorithm 1 and an FMM evaluation to require only constant work per target point.

35

Algorithm 3: Adaptively upsample to accurately evaluate Eq. (2.8) at check points.

Data: An admissible patch set P, number of iterations nskip before using [Morse et al.
2020b, Section 2]

Result: An upsampled set of quadrature patches
1 Compute in�ated near-zone bounding boxes B1, . . . ,BN of each P ∈ P.
2 Construct an AABB tree T from the near-zone bounding boxes.
3 Construct all check points C required to evaluate the Eq. (2.5) on P.
4 P�ne = P
5 Mark all check points in C as near.
6 i = 0
7 while any c ∈ C is marked near do
8 for c ∈ C do
9 if c is marked near then

10 Query T for all bounding boxes Bi1, . . . Bik containing c .
11 Pi1, . . . Pik = patches corresponding to boxes Bi1, . . . Bik
12 Mark c as far
13 for P ∈ Pi1, . . . Pik do
14 if i > nskip then
15 Find the closest point sc on P to c with Algorithm 1.
16 if ‖sc − c‖2 < L(P) then
17 Split P and replace it in P�ne with its children.
18 Mark c as near
19 else
20 Split P and replace it in P�ne with its children.
21 Mark c as near

22 i = i + 1

36

2.3.6.1 Marking and culling far points

A severe shortcoming of Algorithm 1 is that its performance deteriorates as the distance from x

to Γ̂ increases. Consider the case where Γ̂ is a sphere with radius r with x at its center. The �rst

stage of Algorithm 1 returns a single quadrature patch that is distance r from x ; the next stage

will return all quadrature patches. This will take O(N) time to check the distance to each patch.

Even on more typical geometries, we observe poor performance of Algorithm 1 when x is far

from Γ̂.

To address this, we use an additional FMM -based acceleration step to mark most points far

from Γ̂ before using applying Algorithm 1. Our approach is based on computing the generalized

winding number [Jacobson et al. 2013] of Γ̂ at the evaluation points. For closed curves in R2, the

winding number at a point counts the number of times the curve travels around that point. The

generalized winding number of a surface Γ̂ at a point x ∈ R3 can be written as

ωΓ̂(x) = −
1

4π

∫
Γ̂

(x −y) · n
‖x −y‖3 dyΓ̂ (2.12)

We recognize this integral as the double-layer potential in Eq. (2.4) for a Laplace problem with

ϕ = 1. Its values in R3 are [Kress 1999]:

ωΓ̂(x) =

1 x ∈ Ω \ Γ̂

1/2 x ∈ Γ̂

0 x ∈ R3 \ Ω

(2.13)

Eq. (2.12) can be evaluated using the same surface quadrature in Eq. (2.8) using an FMM in O(N)
time. While the quadrature rule is inaccurate close to the surface, ΩF is de�ned precisely as the

37

zone where the quadrature rule is su�ciently accurate. For this reason, we use

|ωΓ̂(x) − 1| < εtarget (2.14)

to mark points x ∈ ΩF ⊂ Ω and a similar relation

|ωΓ̂(x)| < εtarget (2.15)

to mark points x < Ω. This approach is similar in spirit to the spectrally accurate collision

detection scheme of [Quaife and Biros 2014, Section 3.5]. Unlike [Quaife and Biros 2014], however,

we do not use singular integration to mark all points. This isn’t possible since at this stage since

we do not yet know which target points require singular integration. We use the FMM evaluation

purely as a culling mechanism before applying the full marking algorithm.

Remark: Since the quadrature rule may be highly inaccurate for points close to the surface,

due the near-singular nature of the integrand, ωΓ̂(x) may happen to be close to one or zero. We

highlight that it is possible that points outside ΩF may be mismarked, although we have not

observed this in practice.

2.3.6.2 Full marking algorithm

We combine the algorithms of the previous two sections into a single marking pipeline for a

general set of target points in R3, by �rst applying the algorithm of Section 2.3.6.1 to mark all

points satisfying Eq. (2.14) then passing the remaining points to Algorithm 1. The full marking

algorithm is summarized as Algorithm 4.

38

Algorithm 4: Mark points in regions ΩF , ΩI and ΩN .
Data: An admissible set of quadrature patches P, εtarget, target points X
Result: A marked set of target points X

1 ϕ0 = 1
2 ωΓ̂ = Laplace_FMM(P, X , ϕ0)
3 for x ∈ X do
4 if |ωΓ̂(x) − 1| < εtarget then
5 Mark x as inside Ω.
6 Mark x as in ΩF.
7 else if |ωΓ̂(x)| < εtarget then
8 Mark x as outside Ω.
9 for x ∈ X do

10 if x is unmarked then
11 Compute the closest point sx to x with Algorithm 1
12 dmin = ‖sx − x ‖2
13 if dmin ≤ Lsx then
14 Mark x as in ΩN

15 else
16 Mark x as in ΩI

17 if n(sx) · (x − sx) < 0 then
18 Mark x as inside Ω

19 Mark x as outside Ω

39

2.4 Error Analysis

As with other approximation-based quadrature methods, hedgehog has two primary sources of

error: the quadrature error eQ incurred as a result of evaluating potential at the check points and

the extrapolation error eE due to evaluating the polynomial approximation of the potential at the

target point, assuming Pcoarse is admissible. Let

eQ (x) =
����� p∑
s=0
(u(cs) − û(cs ,P�ne))`s(tx)

����� , (2.16)

eE(x) =
�����u(x) − p∑

s=0
u(cs)`s(tx)

����� , (2.17)

ehedgehog(x) ≤ eQ (x) + eE(x), (2.18)

(2.19)

where u(x) and û(x ,P�ne) are de�ned in Eqs. (2.4) and (2.8) and `s(t) is the s-th Lagrange polyno-

mial de�ned on the points {0, 1, . . . ,p}. We de�ne tx such thatx = −n(y)(R+txr), so tx = ‖x−y‖−Rr .

In this section, we �rst prove that we achieve high-order accuracy with our singular/near-singular

evaluation scheme in Section 2.3.1 with respect to extrapolation order p and quadrature order q.

We then detail the impact of surface approximation on overall solution accuracy.

2.4.1 �adrature error

We brie�y state a tensor-product variation of known Clenshaw-Curtis quadrature error results

as applied to smooth functions in 3D . This estimate is derived based on assumptions detailed in

Appendix A.4 that, in general, are di�cult to verify in practice and may not hold for all functions

we consider. For this reason, we refer to it as a heuristic.

Heuristic 2.1. Let the boundary Γ̂ be discretized by quadrature patches over the domains [−h,h]

40

and the boundary condition f in Eq. (2.2) be at least Ck . Apply the q-th order Clenshaw-Curtis

quadrature rule to the double-layer potential u(x) given in Eq. (2.7) and let x be in the interior of Ω.

Then for all su�ciently large q:

eQ(x) . 128hk+1

15πk(2q + 1 − k)k Ṽ , (2.20)

where

Ṽ = max
i=1,...,N

max
α ,β≤k

 ∂α+β∂uα∂vβ

(
∂G(x ,Pi(s, t))

∂n
ϕ(Pi(s, t))дPi (s, t)

)
T

, (2.21)

дP is the determinant of the metric tensor of a patch P implicit in Eq. (2.7), . means "approximately

less than or equal to," and ‖ζ ‖T = ‖ζ ′/
√

1 − x2‖1.

This heuristic captures the qualitative behavior of the error. We present the derivation of

Heuristic 2.1 in Appendix A.4. The presence of the derivatives ofϕ in heuristic 2.1 largely captures

two troublesome cases for integral equations: (a) when the underlying singularities of f are close

to Γ; and (b) when pieces of non-local are nearly touching. Both of these cases, if not properly

resolved with adaptive re�nement, can induce singularities in the harmonic extension of ϕ and

cause hedgehog to accumulate error. These sources of error are handled by Criteria 2 and 3 in

Section 2.3.2 and the algorithms to enforce them.

As x → Γ̂, the value of k required in Heuristic 2.1 grows rapidly due to growing higher

order derivatives of the integrand. Such large values of q and k imply that smooth quadrature

rules are cost-prohibitive; this is the problem that singular/near-singular quadrature schemes

like hedgehog aim to address. This means that heuristic 2.1 is insu�cient for direct application

to Eq. (2.7), as we know. Moreover, this estimate is too loose to determine whether hedgehog or

smooth quadrature is required to evaluate the potential. The assumption in Section 2.3.2.2 ad-

dresses this problem by providing a cheap, reasonably robust criterion for re�nement that is mo-

tivated by existing analyses [af Klinteberg and Tornberg 2017; Barnett 2014] instead of relying

on Heuristic 2.1.

41

2.4.2 Extrapolation error

A reasonable critique of hedgehog is its reliance on an equispaced polynomial interpolant to

extrapolate values of u to the target point. Despite using the �rst-kind barycentric interpolation

formula [Webb et al. 2012], polynomial interpolation and extrapolation in equispaced points is

well-known for an exponentially growing Lebesgue constant and poor stability properties as

the number of points p increases [Trefethen and Weideman 1991; Platte et al. 2011]. Recently

[Demanet and Townsend 2016] demonstrated stable extrapolation in equispaced p + 1 points

using least-sqaures polynomials of degree √p. However, these results are asymptotic in nature

and don’t tell the full story for small to moderate values of p, as in the hedgehog context.

0 1 2 3 4 5

Figure 2.6: Diagram of extrapolation setup. The toy setup used to study the extrapolation error of a
singular function. We choose a simple point singularity µ(t) = 1

‖t−q ‖ where q = (ρ, 0, 0) (black star) with
ρ = −.1. We choose samples at the points ti = (R + ir , 0, 0) for i = 0, . . . ,p (black dots) and extrapolate
the values µ(t0), . . . , µ(tp) to t = 0 (green dot).

We begin our discussion with a simple representative experiment in equispaced extrapolation.

Figure 2.6 depicts a minimal extrapolation setup in 3D of a simple singular function µ(t) = 1/‖t−q‖
along a line, with q = (ρ, 0, 0) and ρ = −.1. We extrapolate exact values of µ fromp points, located

at ti = (R + ir , 0, 0), to the origin. This closely mimics the worse-case extrapolation error in 1D of

a function analytic in a Bernstein ellipse with a real axis intercept of ρ + R + rp/2. We repeat

this for a large range of values of r and R for various values of p. The log of the relative error is

plotted in Figures 2.7(a) to 2.7(e) as a function of the relative extrapolation interval size rp/R and

42

the scaled extrapolation distance R/ρ.

As mentioned in [Rahimian et al. 2018, Section 3.4], the adaptive re�nement of Pcoarse resolves

the boundary data f , and therefore u and ϕ, on the length scale L of the patch. This means we

can reasonably assume that the distance of the nearest singularity is O(L) from Γ̂, i.e., ρ = λL

for some λ. In the context of hedgehog , we know that R = bL(P) and r = aL(P). Figures 2.7(a)

to 2.7(e) are a study of extrapolation error as a function of a/b, b/λ and p.

(a) (b) (c)

(d) (e)

Figure 2.7: Empirical extrapolation error behavior. We sweep over a range of R and r values to vary
Figure 2.6 and plot the log of the relative error in Figures 2.7(a) to 2.7(e), for values p = 6, 8, 10, 12, 14, in
increasing order, from (a) to (e). In these figures, the x-axis is the extrapolation distance R normalized by
ρ and the y-axis is the ratio rp/R.The top of the y-axis corresponds to r = R; rp/R = 1 corresponds to our
choice of the parameter a. Assuming that ρ = O(L), r/R = a/b and R/ρ = b/λ for some constant λ.

There are several important observations to make from these plots:

• Extrapolation error decreases as R/ρ decreases, as expected.

• For a �xed value of R/ρ, the extrapolation error decreases rapidly as rp decreases, up to a

certain value r ∗p. This is somewhat counterintuitive, since this means placing points closer

43

together and extrapolating a further distance relative to rp. For a �xedp in exact arithmetic,

letting the interpolation interval size tend to zero produces an order p Taylor expansion of

the solution u centered at the interval’s origin, which accounts for this phenomenon.

• Beyond r ∗p, the extrapolation error increases. The e�ects of �nite precision eventually

pollutes the convergence behavior described above. Moreover, the spacing r ∗ appears to be

a function of p. For p = 6, r can be reduced to 1/p without any numerical issues, but by

p = 14, only r > 1
2 is a safe choice for extrapolation.

We do not aim to rigorously analyze these phenomena in this work. We highlight them to provide

empirical evidence that equispaced extrapolation is a reasonable, but not optimal, choice for our

problem of singular/near-singular integration and to provide some intuition for our parameter

choices.

The following simple result describes the behavior of the extrapolation error in Eq. (2.17).

Theorem 2.2. Let u(c(t)) be the solution to Eq. (2.2) given by Eq. (2.4), restricted to the line c(t) in
3D intersecting x , let c(t) be given by

c(t) = sx − (R + tr)n(sx), (2.22)

where sx is the closest point on Γ̂ to x , R = bLsx , r = aLsx , n(sx) is the outward surface normal at sx ,

and let |u(p)(c(t))| be bounded above by Cp on the interval [−R,R + pr]. Let P(t) be the p-th order

polynomial interpolant of u(c(t)) constructed from the check points c0, . . . ,cp , where ci = c(i). Then
the extrapolation error associated with hedgehog behaves according to:

|u(c(tx)) −P(tx)| ≤
Cp

(p + 1)! |R + rp |
p =

Cp

(p + 1)! |b + ap |
p · |L|p, (2.23)

where tx =
‖x−sx ‖−R

r .

44

Proof. We know that for a smooth function f and points x0, . . . xp in a 1D interval I0, for some

ξ ∈ I0, the following relation holds for all x ∈ I0:

f (x) −P(x) = f (p)(ξ)
(p + 1)!

p∏
i=0
(x − xi). (2.24)

LetP be the pth order polynomial interpolating the points x0, . . . xp . In the hedgehog setup, since

R + rp is the distance of the furthest check point to y, we know that x − xi < R + rp for each i .

Since f (t) = u(c(t)) is harmonic, and therefore C∞, in Ω, | f (p)(ξ)| can be uniformly bounded on

I0 by some constant Cp , Noting that R = bL and r = aL yields our result. �

For �xed values of a and b, as we let L → 0, the extrapolation error is bounded by O(Lp).
In practice, however, this means that we can choose a and b to minimize the constant factor

|b + ap |p in Theorem 2.2. Since p > 1, a must be chosen to balance out the contribution of p, yet

our extrapolation study shows that we can’t simply set a = 0. We therefore choose a ≤ 1/p for

p = 6 and 8, motivated by Figs. 2.7(a) and 2.7(b). Moreover, since b < 1, we can choose a ≤ b/p,

which allows a and b to decay at the same rate. The advantage of choosing a ≤ b/p is that b is

a single parameter that controls the accuracy of hedgehog . Since we have �xed the quadrature

order q = 20 to satisfy the assumption in Section 2.3.2.2, a smaller value of b will trigger more

upsampling in Algorithm 3, keeping quadrature error �xed while reducing extrapolation error.

It is important to keep in mind that Theorem 2.2 only provides insight for moderate values

of p; our conclusions are largely irrelevant for large p. We use p = 6 and a = b/6, leaving the

construction of an optimal extrapolation extrapolation scheme to future work.

2.4.3 Geometry approximation error

Let θ be a smooth scalar function de�ned on the surface of ∂Ω with |θ | ≤ 1 and let δ be a small

real constant. Suppose the boundary of the domain Ω is perturbed by δ along the normal �eld of

∂Ω, scaled by θ , to produce the perturbed domain Ωδ with boundary ∂Ωδ . More concretely, for

45

y ∈ ∂Ω and yδ ∈ ∂Ωδ , yδ = y + δθn(y). We can de�ne the Eulerian shape derivative of u with

respect to θ , denoted uθ , at a point x ∈ Ωδ ∩ Ω as the rate of change in u at x as δ → 0. This

quantity is of interest to us because the solution to [Morse et al. 2020a, Equation 2] on Ωδ ∩Ω can

be written as u + δuθ , where u is the solution to [Morse et al. 2020a, Equation 2] on Ω. Moreover,

we can compute the shape derivative by solving a Laplace problem on the unperturbed domain

[Pironneau 1982]:

∆uθ = 0 in Ω, uθ = −θ ∂u
∂n

on ∂Ω. (2.25)

where u is the solution of the [Morse et al. 2020a, Equation 2] on Ω. For small δ , this means that

the error in the solution introduced by a boundary perturbation along the �eld θ can be estimated

by δ supΩ ‖uθ ‖. Assuming the boundary is smooth and the gradient of the solution u is bounded,

then

‖uθ ‖ ≤ Cд sup
∂Ω

����θ ∂u∂n ���� ≤ Cд sup
∂Ω

����∂u∂n ���� (2.26)

for some real constant Cд. The right-hand side of Eq. (2.26) yields a constant C′д, such that if

εg < ζ εtarget/C′д for some ζ < 1, the change in the solution is less than εtarget for a su�ciently

small εg. The constant depends implicitly on the surface geometry: for example, if an area element

of ∂Ω is close to a sharp, concave corner, then ∂u∂n can be arbitrarily large.

2.4.4 Limitations

Our error discussion reveals several limitations of our method. The �rst and most apparent short-

coming is that extrapolation instability fundamentally limits convergence order. However, for

reasonable orders of convergence, up to 14, we have discussed an empirical scheme to choose pa-

rameters to maximize the available convergence behavior. Moreover, low-order surface geome-

tries used in engineering applications will likely limit the convergence rate before it is limited by

the extrapolation order, making this a non-issue in practical scenarios.

Another downside of the chosen extrapolation approach is lack of direct extension of hedgehog to

46

oscillatory problems like the Helmholtz equation. Due to the limitation on the values of p, we

can’t guarantee the ability to resolve high-frequency oscillations in the solution. A new extrap-

olation procedure is required to do so robustly without compromising e�ciency.

In [Wala and Klöckner 2019a], the authors demonstrate a relationship between the truncation

error of a QBX expansion and the local curvature of Γ̂. Our scheme also is susceptible to this form

of error and we do not address nor analyze this in this work. This is a subtle problem that requires

a detailed analysis of the surface geometry with respect to the chosen extrapolation scheme.

Another limitation is the lack of an accurate error estimate to serve as an upsampling criteria

in place of the criteria in Section 2.3.2.2, such as [af Klinteberg and Barnett 2019]. Extending

[af Klinteberg and Barnett 2019] to 3D surfaces is non-trivial and whether the size of P�ne would

be reduced enough to outweigh the added cost of the additional Newton iterations required by

their scheme remains to be seen.

Finally, for certain accuracy targets and geometries, the algorithm above may lead to an im-

practically high number of patches in Pcoarse and P�ne. Geometries with nearly-touching non-

local regions, as shown in Fig. 2.12, will see large amounts of re�nement. If the nearly-touching

embeddings γr are close enough, i.e., less than 10−10 apart, there is little hope of an accurate solu-

tion with a �xed computational budget. We allow the user to enforce a minimal patch size Lmin,

limiting the time and memory consumption at the expense of not reaching the requested target

accuracy.

2.5 Complexity Analysis

In this section, we analyze the complexity of the algorithms required by hedgehog . The input to

our overall algorithm is a domain boundary Γ with Ninit patches and boundary condition f . We

begin with a summary of algorithm parameters that impact complexity:

• The number of patches N after admissibility re�nement. This is a function of Ninit, the

47

geometry of Γ, the de�nition of f , and the choices of parameters a and b in check point

construction.

• Quadrature order q and the degree of smoothness k of Γ and f . We assume that k is su�-

ciently high to obtain optimal error behavior for a given q by letting k = 2q in Eq. (2.21).

• hedgehog interpolation order p.

• The numbers of evaluation points in di�erent zones Nfar, Ninter, and Nnear, with Ntot =

Nfar +Ninter +Nnear.

The complexity is also a�ected by the geometric characteristics of Γ. These include:

• The maximum patch length Lmax = maxP L(P)

• The relative minimal patch length Lmin = β0Lmax, β0 ≤ 1.

• The minimal feature size relative to Lmax, `min = α0Lmax, which is de�ned in terms of the

local feature size and the medial axis of Γ. The medial axis of Γ, denoted M(Γ), is the set of

points in R3 with more than one closest point on Γ. For y ∈ Γ, the local feature size `(y)
is the distance from y to M(Γ). We assume that the local feature size is bounded below by

α0Lmax, i.e., `(y) ≥ α0Lmax = `min for y ∈ Γ.

• The maximum variation of area distortion of the parametrization C J . The variation of the

area distortion of a patch P is C J (P) = max(u,v) |JP (u,v)|/min(u,v) |JP (u,v)|, where JP (u,v)
is the Jacobian of P at the point (u,v). We de�ne C J = maxP∈ΓC J (P). This value is an

indicator of how non-uniform the parametrization of P is and allows us to estimate how

the patch length decreases with re�nement.

We assume that the α0, β0 and C J are independent of Ninit. We also assume that principal

curvatures are bounded globally on Γ and independent of Ninit. We now brie�y summarize the

results of this section:

48

• Admissibility. (Section 2.5.1) The complexity of this step isO(Ninit logNinit), with constants

dependent on α0, β0 andC J . The logarithmic factor is due to use of an AABB tree for closest

surface point queries.

• Upsampling. (Section 2.5.2) The complexity of upsampling isO(mN log(N)), wherem is the

upsampling ratio. The logarithmic factor appears for similar reason to admissibility, with

constants that depend on geometric parameters and the boundary condition through the

error estimate of Section 2.4. We show that the upsampling ratio is independent of N .

• Point marking. (Section 2.5.3) Identifying which zone an evaluation point belongs to (ΩF ,ΩI

or ΩN) depends on N and the total number of points to be classi�ed Ntot = Nfar +Ninter +

Nnear. The complexity isO(Ntot logN)with constants dependent on geometric parameters,

due to the cost of closest surface point queries.

• Far, intermediate and near zone integral evaluation. (Section 2.5.4) The complexity of these

components depends on N and Nfar, Ninter and Nnear respectively, with the general form

O(s1N +s2N
′), where N ′ is the number of evaluation points in the corresponding class. For

the far �eld, s1 = s2 = 1. For the intermediate evaluation, s2 = 1, and s1 = mq2; �nally, for

the near zone, s2 = p, and s1 = mq2, the same as in the intermediate zone. If b is chosen

appropriately, the intermediate and near zone error is εtarget.

• GMRES solve. Due to the favorable conditioning of the double-layer formulation in Eq. (2.5),

GMRES converges rapidly to a solution in a constant number of iterations for a given Γ that

is independent of N . This means that the complexity to solve Eq. (2.5) is asymptotically

equal (up to a constant dependent on Γ) to the complexity equal to a near-zone evaluation

with Nnear = N (q + 1)2.

49

2.5.1 Admissibility

The patch re�nement procedure Section 2.3.2.1 to enforce Criteria 1 and 2 of admissibility and

achieve given approximation errors of the geometry εg and boundary data εf is a local operation

on each patch. If we assume that Lmin, Lmax, the partial derivatives of all patches composing Γ̂,

and the partial derivatives of f are bounded, then errors εg and εf can always be achieved after a

�xed number of re�nement steps. As a consequence, this stage must have complexity O(Ninit).
We focus on the additional re�nement needed to satisfy Criterion 3: ensuring that each check

center ĉ is closest to its corresponding quadrature point y. This can be restated in terms of local

feature size: for a quadrature patch P ∈ Γ and quadrature node x ∈ P with check center ĉ ,

‖x − ĉ ‖2 ≤ `(x) ≤ α0L0. We will �rst relate the number of required re�nement steps η to satisfy

Criterion 3 to the shape parameters α0 and C J , then we will show that this number does not

depend on N under our assumptions.

Recall that the distance from a check center to the surface for a patch P is given by R +

r (p + 1)/2 = (a + (p + 1)b/2)L(P) = KL(P). After η re�nement steps, the area of each child of

P relative to P itself will have decreased by at least by C J (P)(1/4)η . Since the distance from ĉ

to the surface is proportional to L(P), we can estimate the required level of uniform re�nement

to satisfy Criterion 3 by requiring that the check center distance is less than the minimal local

feature size, then taking the maximum value of L(P) over all patches:

KLmax
√
C J (1/2)η ≤ `min = α0Lmax

This yields

η = d− log2
α0

K
√
C J

e, (2.27)

which we note depends only on nondimensional quantities α0, K andC J characterizing the shape

50

of the surface and its parametrization. If we assume these to be independent of N , then the

number of required levels of re�nement η are also independent of N . This means that the number

of patches N generated Algorithm 2 is a linear function of Ninit, bounded by 4ηNinit.

Next, we estimate the complexity of work per patch in Algorithm 2 to determine if a given

patch requires re�nement. As described in Section 2.3.2.1, for each patch, we query the AABB tree

TB for patches that are at the distance R + r (p + 1)/2 = KL(P) from a check center ĉ . The cost of

the query is logarithmic in the number of patches Ninit and proportional to the number of patches

N (ĉ) returned. This means that we need to estimate the number of patches that can be within

the distance KL(P) from ĉ .

Consider an area element dA of Γ̂ at a point x0. The parallel surface ofdA, given by x0+hn(x0)
does not have self-intersections when |h | ≤ `min and has a corresponding area element given by

dAh = (1+hκ1)(1+hκ2)dA [Kress 1999, Section 6.2], where κ1 and κ2 are the principal curvatures

of Γ̂ at x0. The volume of the truncated cone bounded by dA and dAh of height `min can be

computed directly from the integral
∫ `min

0 dAhdh:

dV = dA`min(1 + 1
2 (κ1 + κ2)`min +

1
3κ1κ2`

2
min) = dA`min(1 + 1

2H`min +
1
3K`

2
min)

where K and H are Gaussian and mean curvatures respectively. As principal curvatures satisfy

κi ≥ −1/`min, this expression has minimal value for κ1 = κ2 = −1/`min:

dV ≥ 1
3`mindA (2.28)

In other words, each surface element dA has (at least) a volume 1
3`mindA with no other surface

elements inside associated with it. From this, we can estimate the total area of surface contained

within distance KL(P) from ĉ by equating Eq. (2.28) with the volume of a sphere of raidus KL(P),
producing 4πK3L(P)3/`min. Since the area of each patch is at least L2

min, the number of patches

KL(P) from ĉ is bounded by

51

N (ĉ) ≤ 4πK3 L(P)3
`minL

2
min
≤ 4πK3 L3

max
`minL

2
min
=

4πK3

α0β2
0

(2.29)

This is independent of Ninit, which means that the complexity of nearest patch retrieval is

O(Ninit logNinit), with constant given by the product of (2.29) and 4η , with η given by (2.27).

To complete the complexity estimate of the admissibility re�nement, we need to estimate

the cost of computing the closest point on each patch. The complexity of the Newton’s method

for �nding roots of polynomials in Appendix A.2 depends only on the polynomial degree and

the desired accuracy of the optimization, which we can assume to be bounded by �oating-point

precision [Schleicher and Stoll 2017]. We conclude that the overall complexity of admissibility

re�nement is O(Ninit logNinit) with constants proportional to the patch degree and optimization

accuracy.

2.5.2 Upsampling

We estimate the complexity of the upsampling algorithm in Section 2.3.2.2 in terms of N , the

number of patches produced by admissibility re�nement, and a parameter ε , which is the desired

accuracy achieved by the �nal upsampled patches at the check points. As the distance from the

surface to the check points ci is bounded from below by aLmin, the Ṽ term in Eq. (2.21) is bounded

from above byCL−2q−1
min , for a constantC independent ofq. Furthermore, since Γ̂ and f are assumed

to be smooth, the density and its derivatives can also be assumed to be bounded. The overall form

of the estimate in Eq. (2.21) can then be bounded and written as C̃(q)L−2q−1
min L̃2q for some constant

C̃(q). The maximum patch length obtained by re�nement L̃ is

L̃ = L�ne
max ≤ Lmax2−η̃, (2.30)

52

where η̃ is the maximum amount of required patch re�nement. By settingC(q)L−2q−1
min L̃2q ≤ ε and

using Eq. (2.30), we can obtain an upper bound for η̃ as a function of Lmin, Lmax, and ε :

η̃ ≤ − 1
2q log2

(
ε

L
−2q−1
min L

2q
maxC(q)

)
= log2 ε

−1/(2q) + C̄(q,Lmin,Lmax), (2.31)

for some constant C̄(q,Lmin,Lmax).
The number of points generated by upsampling is O(4η̃N). Taking powers of both sides of

Eq. (2.31) yields an estimate in terms of εtarget: O((2η̃)2N) ≤ O(ε−2/(2q)N) = O(ε−1/qN). As dis-

cussed in Section 2.5.1, the closest point computation needed to determine if a checkpoint is in

ΩI has log(N) cost per point, leading to O(ε−1/qN log(N)) overall complexity and an upsampling

factor of ε−1/q . Since we desire upsampled quadrature with an accuracy of 10−12, we set ε as such

to arrive at the desired complexity.

2.5.3 Point marking

In the point marking algorithm of Section 2.3.6, we �rst use the Laplace FMM to cull points far

from Γ, which requires O(N +Ntot) time. Let L̄ = 1
M

∑
P∈Pcoarse L(P) be the average patch length.

After FMM culling, the remaining unmarked evaluation points are those whose distances from Γ

are approximately L̄ or less. For each unmarked point x , we query the AABB treeTT for the nearest

triangle in the linear approximation of Pcoarse.

Since there areO(N) such triangles inTT , we can perform this query inO(logN) time [Samet

2006]. This triangle provides a candidate closest patch that is distance d0 from x . We then use

to query TB for all bounding boxes at distance d0 from x . This query too can be performed in

O(logN) time [Samet 2006] and returns a bounded number of boxes and that each is processed

in constant time, as discussed in Section 2.5.1. As the number of unmarked points after culling is

bounded above by Ntot, the overall complexity of our marking scheme is O(Ntot logN).

53

2.5.4 Integral evaluation complexity

We assume that geometric admissibility criteria are already satis�ed. All integral evaluation is

accelerated using an FMM with complexity O(N +Ntot).

Far zone The complexity of far evaluation is just the complexity of computing the integrals on

Pcoarse using standard quadrature and FMM acceleration, i.e., O(q2N +Nfar).

Intermediate zone The complexity of the intermediate zone evaluation is similar to that of

the far zone. However the computation is performed on P�ne rather than Pcoarse, which is up

to m times �ner than Pcoarse, with m = O(ε−1/q) and ε = 10−12. The density values must be

interpolated from points in Pcoarse to points in P�ne: this can be computed in O(mq4N) time

using a 2D version of the barycentric interpolation formula [Berrut and Trefethen 2004]. This

yields an overall complexity ofO(mq4N +mq2N +Ninter). Although not asymptotically dominant,

for all practical target errors, the quadrature evaluation is the dominant cost in practice due to

suppressed FMM -related constants, as demonstrated in Section 2.6.2.

Near zone Section 2.3.1 requires a closest point computation, an intermediate-zone evalua-

tion at p check points and an extrapolation for each target point in ΩN . The intermediate zone

calculation is the dominant cost, resulting in a complexity of O(mq4N +mq2N + pNnear).

GMRES solve As a result of the second-kind integral formulation in Section 2.2, the cost of solv-

ing Eq. (2.5) via GMRES is asymptotically equal to the cost of a single singular integral evaluation,

since the low number of iterations are independent of N . In our algorithm, this is a special case

of near-zone evaluation withNnear = q
2N , producing a complexity ofO(mq4N +mq2N +pq2N) =

O((m + p +mq2)q2N).

54

Overall complexity for uniform point distribution We now suppose that we wish to eval-

uate the solution u determined by a density ϕ at a set of uniformly distributed points throughout

Ω. We also assume that Γ̂ is discretized uniformly by N patches, i.e., Lmax = O(N −1/2) and that the

distances between samples in Ω and from samples to Γ̂ are alsoO(N −1/2). Since the total number

of evaluation points is proportional to 1/L3
max, this implies that Ntot = O(N 3/2).

The size of the intermediate zone ΩI is bounded by the estimate discussed in Section 2.5.2.

Letting dI be the shortest distance along a normal vector of Γ̂ which is contained in ΩI , following

the discussion in Section 2.5.2 yields the following relation:

C̃(n)d−2q−1
I L

2q
max ≤ ε . (2.32)

Solving for dI gives us

dI ≤
(
ε

C(n)

)− 1
2q−1
(Lmax)

2q
2q−1 . (2.33)

We are interested in the regime as N → ∞, or Lmax → 0. Since L
2q

2q−1
max ≤

√
Lmax = O(N −1/4), this

gives us

dI ≤
(
ε

C(n)

)− 1
2q−1

N −1/4 = O(ε−1/2qN −1/4) = O(√mN −1/4), (2.34)

after recalling from above that m = O(ε−1/q) is the average upsampling rate to produce P�ne

from Pcoarse. The size of the near zone is, by construction, of the order Lmax. It follows that

Ninter = O(
√
mN 5/4), and Nnear = O(N).

The overall complexity for this evaluation is the sum of the cost of each separate evaluation:

O(q2N +Nfar +mq4N +mq2N +Ninter +mq4N +mq2N + pNnear)

= O
((m +mq2)q2N +Ntot + (p − 1)Nnear

)
Using the estimates forNtot andNnear and dropping dominated terms, we obtainO((m+mq2)q2N+

55

N 3/2) for the overall complexity. This suggests that for a given q and ε , the minimal cost is

obtained from choosing the number of discretization points N = O(m2), i.e., N = O(ε−2/q).

2.6 Results

We now demonstrate the accuracy and performance of hedgehog to evaluate singular/near-singular

layer potentials on various complex geometries to solve the integral equation in Eq. (2.5) and eval-

uate the solution as de�ned in Eq. (2.4).

2.6.1 Classical convergence with patch refinement

We will �rst demonstrate the numerical convergence behavior of hedgehog . As discussed in

[Klöckner et al. 2013b, Section 3.1], approximation-based schemes such as hedgehog do not con-

verge classically but do so up to a controlled precision if r and R scale with proportional to

the patch size. In order to observe classical convergence as we re�ne Pcoarse, we must allow

R and r to decrease slower than O(L), such as with rate O(√L). In this section, we choose the

hedgehog parameters a and b proportional to 1/√L to achieve this and demonstrate numerical

convergence with re�nement of L.

In our examples, we use analytic solutions to Eq. (2.2) obtained as sums of point charge func-

tions of the form

uc(x) =
m∑
i=1

G(x ,yi)ψi (2.35)

where the charge locations yi with strengthsψi are outside of Ω. To construct speci�c solutions,

we sample a sphere of radius one with point charges, as shown in Figures 2.8 and 2.9. We choose

charge strengthsψi randomly from [0, 1]d , where d = 1 for Laplace problems and d = 3 for Stokes

and elasticity problems.

We use the multipole order m = 20 with 5000 points per leaf box for the kernel-independent

56

FMM . This ensures that the FMM error does not dominate; su�ciently large number of points per

leaf box is needed to minimize the additional error due to tree depth. We choose a high quadrature

order q = 20, or 400 quadrature points per patch in Pcoarse, relative to overall convergence order

to satisfy the assumption in Section 2.3.2.2. We also use two levels of uniform upsampling to

demonstrate convergence.

2.6.1.1 Green’s Identity

Figure 2.8: Geometry and singularities used for Green’s Identity convergence tests.. Shown
are polynomial patches defining boundary geometry (black lines) and point singularities placed on the
surface on a sphere of radius one. Singularity strengths are randomly selected values in [0, 1]; shown is the
strength intensity for Laplace problems, which varies from blue to red. We use 96 20th-order polynomial
patches for the spheroid (le�) and 32 cubic patches for the torus (right).

We report the accuracy of the hedgehog evaluation scheme in Table 2.1, where we verify

Green’s Identity for a random known function uc in Eq. (2.35). We evaluate the Dirichlet and

Neumann boundary data due touc at the discretization points of Γ̂ and use one-sided hedgehog to

evaluate the corresponding single- and double-layer potentials at the same discretization points.

With each column of Table 2.1, we subdivide Pcoarse to more accurately resolve the boundary

57

Geometry PDE Relative `∞ error (Number of patches) EOC

Spheroid Laplace 1.06 × 10−4 (96) 4.78 × 10−6 (384) 9.14 × 10−8 (1536) 4.35 × 10−9 (6144) 4.77
(Fig. 2.8-left) Elasticity 1.68 × 10−3 (96) 6.94 × 10−5 (384) 1.53 × 10−6 (1536) 1.33 × 10−8 (6144) 5.74

Stokes 1.92 × 10−3 (96) 7.95 × 10−5 (384) 1.74 × 10−6 (1536) 1.53 × 10−8 (6144) 5.72

Torus Laplace 2.05 × 10−3 (32) 7.52 × 10−5 (128) 3.79 × 10−6 (512) 8.48 × 10−8 (2048) 5.45
(Fig. 2.8-right) Elasticity 4.38 × 10−2 (32) 1.17 × 10−3 (128) 5.08 × 10−5 (512) 1.42 × 10−6 (2048) 5.09

Stokes 5.03 × 10−2 (32) 1.33 × 10−3 (128) 5.81 × 10−5 (512) 1.65 × 10−6 (2048) 5.09

Table 2.1: `∞ Relative error in Green’s Identity versus number of patches. The solution to Eq. (2.2)
due to a known function uc , shown in Fig. 2.8 is computed via Green’s Identity. We evaluate the single-
and double-layer potentials with hedgehog due to the Dirichlet and Neumann boundary data and com-
pare against the known value of uc on the boundary. Each column is the result of an additional level of
uniform quadrisection of the patches in Pcoarse. The final column (EOC) is the estimated convergence
order, computed via least-squares log-log fit of the error as a function of max patch size.

condition. The error shown in Table 2.1 is the `∞-relative error in the solution valueŜ [
∂uc
∂n

]
(x) − D̂ [uc] (x) − uc(x)

∞

‖uc ‖∞ , (2.36)

where Ŝ and D̂ are the single- and double-layer singular integral operators discretized and eval-

uated with hedgehog . In these tests, we choose p = 6, r = .004
√
L (a = .004/√L) and R = .03

√
L

(b = .03/√L). We observe roughly 5th order convergence on both the spheroid and torus test

geometries in Fig. 2.8 for each of the tested PDE’s. In Table 2.2, we present the number of target

points evaluated per second per core with one-sided hedgehog . We see that performance is best

for Laplace and worst for elasticity problems, as expected.

Geometry PDE Target points/second/core

Spheroid Laplace 3684 5438 5077 5629
(Fig. 2.8-left) Elasticity 1325 1731 1687 1790

Stokes 1635 2075 2016 2120

Torus Laplace 2729 3373 4564 5477
(Fig. 2.8-right) Elasticity 984 1171 1347 1502

Stokes 1134 1331 1609 1727

Table 2.2: Performance of singular evaluation in Green’s Identity. For each test in Table 2.1, we
report the number of target points evaluated with one-sided hedgehog per second per core.

58

2.6.1.2 Solution via GMRES

Figure 2.9: Geometry and singularities used for solver convergence tests.. Figures are similar
to Fig. 2.8, but displaying geometries for testing the convergence of hedgehogwithin a GMRES solver.
We use 30 16th-order polynomial patches for the pipe (le�) and 50 20th-order patches for the genus two
surface (right). Note the proximity of the singularities to the domain of the genus two surface; the nearest
singularity is less than .05L from Γ̂.

We report the accuracy of the hedgehog scheme when used to solve Eq. (2.2) via the integral

equation in Eq. (2.5). Two-sided hedgehog is used in the matrix-vector multiply inside GMRES

to solve Eq. (2.5) for the values of the density ϕ at the discretization points. Then one-sided

hedgehog is used to evaluate Eq. (2.8) at a slightly coarser discretization. Since GMRES minimizes

the residual at the original discretization of Eq. (2.5), this �nal step prevents an arti�cially ac-

curate solution by changing discretizations. Table 2.3 lists the `∞ relative error values for the

total solve and evaluation steps using Section 2.3.1 as we re�ne Pcoarse by subdivision as in the

previous section. In these tests, we choose p = 6, r = .005
√
L (a = .005/√L), and R = .03

√
L

(b = .03/√L). As for previous examples, we observe at least 5th order convergence on all tested

geometries in Fig. 2.9 and Fig. 2.8-left and all PDE’s. We include the spheroid example as an ad-

59

Geometry PDE Relative `∞ error (Number of patches) EOC

Spheroid (Fig. 2.8-left) Laplace 2.70 × 10−6 (96) 1.92 × 10−7 (384) 4.47 × 10−9 (1536) 5.13 × 10−11 (6144) 5.35

Pipe Laplace 5.99 × 10−4 (30) 3.03 × 10−5 (120) 6.68 × 10−7 (480) 2.27 × 10−8 (1920) 5.92
(Fig. 2.9-left) Elasticity 7.17 × 10−2 (30) 3.57 × 10−3 (120) 8.90 × 10−5 (480) 4.14 × 10−6 (1920) 5.45

Stokes 8.53 × 10−2 (30) 4.12 × 10−3 (120) 1.03 × 10−4 (480) 4.73 × 10−6 (1920) 5.43

Genus 2 Laplace 4.00 × 10−2 (50) 1.25 × 10−4 (200) 1.54 × 10−6 (800) 5.73 × 10−10 (3200) 8.76
(Fig. 2.9-right) Elasticity 9.20 × 10−2 (50) 1.05 × 10−3 (200) 1.00 × 10−5 (800) 9.44 × 10−8 (3200) 6.89

Stokes 1.03 × 10−1 (50) 1.18 × 10−3 (200) 1.15 × 10−5 (800) 1.03 × 10−7 (3200) 6.88

Table 2.3: `∞ Relative error in GMRES solve and solution evaluation versus number of patches.
We solve Eq. (2.2) by discretizing and evaluating the layer potential in the integral equation in Eq. (2.5) as
described in Section 2.3.1. We use two-sided hedgehog inside of GMRES to solve forϕ, then evaluate Eq. (2.8)
with one-sided hedgehog at a new set of points on Γ̂. Each column is the result of an additional level of
uniform quadrisection of the patches in Pcoarse. The final column (EOC) is the estimated convergence
order, computed via least-squares log-log fit of the error as a function of max patch size.

Geometry PDE Target points/second/core

Spheroid Laplace 2737 3149 2846 2950

Pipe Laplace 3046 2178 2832 2982
(Fig. 2.8-left) Elasticity 991 993 1189 1261

Stokes 1048 1140 1335 1422

Genus 2 Laplace 1862 2886 3122 2879
(Fig. 2.8-right) Elasticity 729 1125 1255 1295

Stokes 929 1304 1450 1504

Table 2.4: Performance of singular evaluation in GMRES matrix-vector multiply. For each test in
Table 2.3, we report the number of target points per second per core evaluated with two-sided hedgehog in
a single GMRES matrix-vector multiplication.

ditional demonstration of a high accuracy solution via GMRES with our approach. We report the

number of target points evaluated per second per core with two-sided hedgehog in Table 2.4.

The results are similar to Table 2.2; the slower performance is because evaluation via two-sided

hedgehog is more expensive than one-sided hedgehog .

60

2.6.2 Comparison with [Ying et al. 2006b]

In this section, we compare our method to [Ying et al. 2006b], a previously proposed high-order,

kernel-independent singular quadrature method in 3D for complex geometries. These charac-

teristics are similar to hedgehog shares these characteristics. Appendix A.3 presents additional

comparisons.

The metric we are interested is cost for a given relative error. Assuming the surface discretiza-

tion is O(N), we measure the cost of a method as its total wall time during execution T divided

by the total wall time of an FMM evaluation on the same O(N) discretization, TFMM. By nor-

malizing by the FMM evaluation cost, we minimize the dependence of the cost on machine- and

implementation-dependent machine-dependent parameters.

We run the tests in this section on the spheroid geometry shown in Fig. 2.8-left. We focus on

the singular quadrature scheme of [Ying et al. 2006b]. The near-singular quadrature of [Ying et al.

2006b] is algorithmically similar to hedgehog , but since an expensive singular quadrature rule is

used as a part of near-singular evaluation, it has a higher total cost. As a result, the accuracy and

cost of near-singular evaluation of [Ying et al. 2006b] is bounded by the accuracy and cost of the

singular integration scheme.

To compare the full hedgehogmethod with [Ying et al. 2006b], we �t polynomial patches

to the C∞ surface of [Ying and Zorin 2004], denoted Γb , to produce Γ̂ during the �rst step of

Section 2.3.4. We apply the remaining geometry preprocessing algorithms of Section 2.3.4 to

Γ̂ to produce Pcoarse. After producing P�ne with two levels of uniform upsampling, we solve

Eq. (2.5) with two-sided hedgehog on Γ̂ and evaluate the solution on the boundary with one-sided

hedgehog . We then solve for the solution to Eq. (2.5) on Γb using [Ying et al. 2006b].

For each of the tests in this section, we choose some initial spacing parameter h0 to discretize

the surface of [Ying and Zorin 2004], as in [Ying et al. 2006b], and use the 16× upsampled grid

and �oating partition of unity radius proportional to O(
√
h), as in the original work. We apply

61

hedgehog to Γ̂ and the scheme of [Ying et al. 2006b] to Γb with spacing h0/2i , for i = 1, . . . 4.

As in the previous section, we choose the parameters r and R of hedgehog to be O(√L). For

both quadrature methods, we use a multipole order of 16 for PVFMM with at most 250 points in

each leaf box. The results are shown in Fig. 2.10. From left to right, each plot details the total

10 9 10 7 10 5 10 3

10 2

10 1

100

101

T/
T F

M
M

10 9 10 7 10 5 10 3

log|u u| /|u|
10 9 10 7 10 5 10 3

HH extrapolation
HH density interpolation

HH total
HH FMM

POU subtraction
POU polar quadrature

POU FFT interpolation
POU total

POU FMM
HH rel. error

h6.0

POU rel. error
h4.4

10 1

h

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

10 110 2

L

10 7 10 6 10 5 10 4 10 3 10 2
10 3

10 2

10 1

100

101

T/
T F

M
M

10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|
10 7 10 6 10 5 10 4 10 3 10 2

HH extrapolation
HH density interpolation

HH total
HH FMM

POU subtraction
POU polar quadrature

POU FFT interpolation
POU total

POU FMM
HH rel. error

h5.6

POU rel. error
h4.9

10 1

h

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

10 110 2

L

Figure 2.10: Comparison of hedgehogon polynomial patches (HH) versus [Ying et al. 2006b] on
the surface representation of [Ying and Zorin 2004] (POU) solving via GMRES for uc . Laplace
(top) and elasticity (bo�om) problems solved on the spheroid shown in Fig. 2.8. From le� to right, we plot
the total cost of each scheme, the cost of each subroutine for hedgehog (blue) and the singular quadrature
scheme of [Ying et al. 2006b] (red), and the relative error as a function of h. We plot error convergence of
[Ying et al. 2006b] as a function of h and hedgehog as a function of L, due to the distinct discretizations.
For hedgehog parameters, we choose r = .013

√
L, R = .075

√
L for the Laplace problem; for the elasticity

problem, we choose r = .013
√
L, R = .08

√
L. We choose p = 6 and q = 15 for both problems. For [Ying

et al. 2006b] the spacing is h0 = .35. Note that in the hedgehog timing breakdown, since the FMM time is
dominant, the FMM cost lies directly on top of the total cost.

62

cost of each scheme, the cost of each subroutine for hedgehog (denoted HH) and the singular

quadrature scheme of [Ying et al. 2006b] (denoted POU), and the relative error as a function of h

and L, respectively, for all re�nement levels. We plot the cost of both schemes the cost of each

algorithmic step as a function of their computed relative error. In each �gure, we present results

for a Laplace problem (top) and an elasticity problem (bottom).

In Fig. 2.10, as expected, we observe a higher convergence rate for hedgehog compared to

[Ying et al. 2006b]. [Ying et al. 2006b] outperforms hedgehog in terms of cost for all tested dis-

cretizations. We observe that the FMM evaluation in Fig. 2.10 accounts for at least 95% of the

hedgehog cost. This means that a local singular quadrature method (based on corrections to an

FMM evaluation, Section 2.1.2) of worse complexity can beat a global method, simply by virtue of

reducing the FMM size. By noting the large di�erence between the hedgehog FMM cost and the

hedgehog density interpolation, we can reasonably infer that a local hedgehog scheme should

narrow this performance gap and outperform [Ying et al. 2006b] for larger problems, assuming

that switching to a local scheme does not dramatically a�ect error convergence.

Remark: A recent novel solver using a local quadrature approach, called FMM3DBIE , [Green-

gard et al. 2021], achieves this performance improvement using an adaptive re�nement approach.

This solver is highly optimized and is O(N) complexity, achieving an order of magnitude speed

up over hedgehog . This further supports our conclusion that a local quadrature approach should

rapidly outpace a global one. It remains to be seen if a local version hedgehogwill outperform

FMM3DBIE and we leave this to future work.

2.6.3 Reqested target precision vs. computed accuracy

In this section, we study the performance of the full algorithm outlined in Section 2.3. We test

hedgehog on the torus domain shown in Fig. 2.8-right. We choose a reference solution of the form

of Eq. (2.35) with a single point charge located at the origin, in the middle of the hole of the torus.

We solve the integral equation with two-sided hedgehog and evaluate the singular integral on a

63

10−8 10−7 10−6 10−5 10−4
10−8

10−6

10−4

εtarget

∞
-n
or
m

re
la
tiv

e
er
ro
r

10−8 10−7 10−6 10−5 10−4

500

1,000

1,500

2,000

εtarget

Ta
rg
et

po
in
ts
/s
ec
on

d/
co
re

10−8 10−7 10−6 10−5 10−4
102

103

104

105

εtarget

N
um

be
ro

fp
at
ch
es

|Pcoarse |
|P�ne |

Figure 2.11: Performance of full algorithm. Le�: ∞-norm relative error in singular integral vs
requested target accuracy (blue). The do�ed line is the ideal behavior y = x . Middle: Performance in
terms of target points evaluated per second per core with hedgehog . Right: Number of patches in Pcoarse
and P�ne computed by the preprocessing algorithms.

distinct discretization with one-sided hedgehog . We choose q = 20, p = 6 and a = b/6. We select

various values for εtarget using the plot in Fig. 2.7(a) to choose b to ensure su�ciently accurate

extrapolation. We plot the results of our tests in Fig. 2.11.

We see in Fig. 2.11-left that we are consistently close to the requested target precision. We

see a decline in target points per second per core as accuracy increases in Fig. 2.11-middle. This

is explained by Fig. 2.11-right, which shows an increase in the size P�ne as Pcoarse remains a �xed

size. The initial 128 patches in Pcoarse are enough to resolve the boundary condition and Γ, but

we need greater quadrature accuracy for lower values of εtarget . Decreasing the number of points

in passed to the FMM , i.e., decreasing the size of P�ne, is the main way to improve performance of

our method. This is further indication that a local version of hedgehogwill outperform a global

approach.

2.6.4 Full algorithm on interlocking torii

We now demonstrate the full algorithm pipeline on an exterior Laplace problem, whose boundary

is de�ned by four interlocking torii shown in Fig. 2.12. The domain boundary is contained in the

box [−3.8, 2.4]×[−1.1, 1.1]×[−1, 1]. The shortest distance between two adjacent torii is less than

10% of a polynomial patch length de�ning the boundary. We again use a boundary condition

64

of the form Eq. (2.35) with a single point charge located at (0, .03, .875), inside the upper half

of the second torus from the right in Fig. 2.12. This problem is challenging due to the nearly

touching geometry of the torii, along with the singularity placed close to the boundary. We run

the admissibility and adaptive upsampling algorithms outlined in Section 2.3, solve Eq. (2.5) using

two-sided hedgehog , and evaluate the solution on the boundary using one-sided hedgehog . The

absolute error in the∞-norm of the singular evaluation is plotted on the boundary surface.

Figure 2.12: Absolute error of GMRES solve via hedgehogon interlocking torii. Le�: The admissi-
ble set of 1128 patches in Pcoarse used to solve Eq. (2.5) is shown (black lines denote patch boundaries). The
point charge generated the boundary condition is located within the second torus from the right. Right:
a cross-section of the torii geometry through the xz-plane, showing the second torus from the right and
the location of the singularity (green point).

Using a = .1, b = .025, p = 6 and q = 20, we achieve a maximum pointwise error of 1.29 ×
10−5. GMRES was able to reduce the residual by a factor of 10−13 over 109 iterations. There are

288768 quadrature points in the coarse discretization, 18235392 quadrature points in the �ne

discretization, and 3465216 check points used in the two-sided hedgehog evaluation inside GMRES.

We evaluate the solved density at 451200 points on the boundary with one-sided hedgehog to

produce the render in Fig. 2.12. On a machine with two Intel Xeon E-2690v2 3.0GHz CPU’s, each

with 10 cores, and 100 GB of RAM, the GMRES solve and interior evaluation required 5.7 hours and

can evaluate the singular integral at a rate of 1709 target points per second per core.

65

2.6.5 Solution on complex geometry

Figure 2.13: Absolute error of GMRES solve via hedgehogon complex blood vessel geometry used
in [Lu et al. 2019]. The blood vessel uses 40,960 8th order polynomial patches (black edges denote patch
boundaries). The geometry is admissible by construction. The point charge is located on le� side of the
figure (green)

We have demonstrated in [Lu et al. 2019] a parallel implementation of Section 2.3.1, applied

to simulating red blood cell �ows. The surface geometry of the blood vessel shown in Fig. 2.13

is complex, with rapidly varying curvatures and geometric distortions due to singular vertices in

the surface mesh. Since the surface is admissible, we are able to apply parallel hedgehog directly

without geometric preprocessing to solve an interior Dirichlet Stokes problem. We use a = .125,

b = .125, p = 6 and q = 16 as simulation parameters.

Using 32 machines each with twenty 2.6 Ghz cores with 100GB of RAM, we achieve a maximum

pointwise error of 3 × 10−6 when solving a Stokes problem with constant density. We then place

a random vector point charge two patch lengths away (relative to the patches in Pcoarse) from the

domain boundary (on the left side of Fig. 2.13, solve Eq. (2.5) using two-sided hedgehog , and eval-

uate the solution on the boundary using one-sided hedgehog . The absolute error in the∞-norm

66

of the singular evaluation is plotted on the boundary surface. There are 10,485,760 quadrature

points in the coarse discretization, 167,772,160 quadrature points in the �ne discretization, and

125,829,120 check points used in the two-sided hedgehog evaluation inside GMRES. We evaluate

the solved density at 209,715,200 points on the boundary with one-sided hedgehog to produce

the render in Fig. 2.12. We achieve a maximum pointwise error of 1.8× 10−2 and can evaluate the

singular integral at rate of 3529 target points per second per core.

2.7 Conclusion

We have presented hedgehog , a fast, high-order, kernel-independent, singular/near-singular quadra-

ture scheme for elliptic boundary value problems in 3D on complex geometries de�ned by piece-

wise tensor-product polynomial surfaces. The primary advantage of our approach is algorithmic

simplicity: the algorithm can implemented easily with an existing smooth quadrature rule, a point

FMM and 1D and 2D interpolation schemes. We presented fast geometry processing algorithms

to guarantee accurate singular/near-singular integration, adaptively upsample the discretization

and query local surface patches. We then evaluated hedgehog in various test cases, for Laplace,

Stokes, and elasticity problems on various patch-based geometries and compared our approach

with [Ying et al. 2006b].

[Lu et al. 2019] demonstrates a parallel implementation of hedgehog , but the geometric pre-

processing and adaptive upsampling algorithms presented in Section 2.3 are not parallelized. This

is a requirement to solve truly large-scale problems that exist in engineering applications. Our

method can also be easily restructured as a local method. The comparison in Section 2.6.2 high-

lights an important point: a local singular quadrature method can outperform a global method for

moderate accuracies, even when the local scheme is asymptotically slower. This simple change can

also dramatically improve both the serial performance and the parallel scalability of hedgehog shown

in [Lu et al. 2019], due to the decreased communication of a smaller parallel FMM evaluation. The

67

most important improvement to be made, however, is the equispaced extrapolation. Construct-

ing a superior extrapolation procedure, optimized for the boundary integral context, is the main

focus of our current investigations.

68

3 | Scalable Simulation of Realistic

Red Blood Cell Flows

In this chapter, we construct a scalable, high-�delity simulation platform for red blood cell �ows

through capillaries. It is based on the joint work [Lu et al. 2019] with Libin Lu, Abtin Rahimian,

Georg Stadler and Denis Zorin.

While there have been many large scale or numerically accurate blood �ow simulations in

the past, there has been little work attempting to handle both numerical regimes simultaneously.

After parallelizing the boundary solver from Chapter 2, we approximate red blood cells as vesicles:

deformable inextensible membranes without in-plane shear forces.

The remaining challenging task of the simulation is robust, cost-e�cient time stepping. Large

timesteps are known to cause interpenetration, or collisions, between discretized bodies. Handling

these collisions without introducing arti�cal errors is critical in long-time �ow simulations. We

use the parallel collision handling framework of [Lu et al. 2018] and extend it to arbitrary static

rigid bodies to allow for large collision-free time steps among the cells and betweeen cells and the

blood vessel wall. We study the strong and weak scaling behavior of our platform up to 34,816

cores with good parallel e�ciency.

Portions of this chapter also appear in [Lu 2019]. RBC collision handling and vesicle mod-

eling are contributed largely from [Lu 2019], the boundary integral solver is contributed from

Chapter 2, and overall parallelization was a joint contribution.

69

3.1 Introduction

Achieving a fast, numerically accurate, and robust blood �ow simulation requires that the system

meets a number of stringent requirements. While previous work has made signi�cant progress

[Malhotra et al. 2017; Lu et al. 2018; Rahimian et al. 2010], we focus on several new infrastruc-

ture components essential for handling con�ned �ows and arbitrarily long-time, high volume

fractions RBC �ows; in particular, our work is able to realize each of these goals.

We formulate the viscous �ow in blood vessels as an integro-di�erential equation and make

use of fast scalable summation algorithms for e�cient implementation, as in prior RBC simulations

[Veerapaneni et al. 2011]. This is the only approach to date that maintains high accuracy at the

microscopic level while avoiding expensive discretization of �uid volume: all degrees of freedom

reside on the surfaces of RBCs and blood vessels.

The most important novel aspects of our system include: (a) handling the RBC-blood vessel in-

teraction with a fully parallel, high-order boundary integral equation solver; (b) explicit handling

of collisions with a parallel constraint-based resolution and detection algorithm. The former is

essential for modeling con�ned �ows, while the latter is essential for handling high-volume frac-

tion �ows at long time scales without excessively small time steps or �ne spatial discretizations.

Our contributions

1. We present a parallel platform for long-time simulations of RBCs through complex blood

vessels. The extension to suspensions of various particulates (�bers, rigid bodies etc.) is

straightforward from the boundary integral formulation. Flows through several compli-

cated geometries are demonstrated.

2. We have parallelized a boundary solver for elliptic PDEs on smooth complex geometries in

3D . By leveraging the parallel fast-multipole method of [Malhotra and Biros 2015b] and the

70

parallel forest of quadtrees of [Burstedde et al. 2011], we are able to achieve good parallel

performance and load balancing.

3. We have extended the parallel collision handling of [Lu et al. 2018] to include rigid 3D boundaries

composed of patches.

4. We present weak and strong scalability results of our simulation on the Skylake cluster and

weak scaling results on the Knights Landing cluster on Stampede2 at the Texas Advanced

Computing Center along with several visualizations of long-time, large-scale blood cell

�ows through vessels. We observe 49% strong scaling e�ciency for a 32-fold increase of

compute cores. In our largest test on 12288 cores, we simulate 1,048,576 RBCs in a blood

vessel composed of 2,097,152 patches with weak scaling e�ciency of 71% compared to 192

cores (Fig. 3.3). In each time step, this test uses over three billion degrees of freedom and

over four billion surface elements (triangles) for collision.

5. We are able to simulate realistic human blood �ows with RBC volume fractions over 47%

(Fig. 3.5).

Limitations. Despite the advantages and contributions of the computational framework pre-

sented here, our work has some limitations. We have made several simpli�cations in our model

for RBCs. We are restricted to the low Reynolds number regime, i.e., small arteries and capillar-

ies. We use a simpli�ed model for RBCs, assuming the cell membranes to be inextensible and

with no in-plane shear rigidity. It has been shown that �ows in arterioles and capillaries with

diameter of <50 µm and RBCs with 5 µm diameter have a Reynolds number of < 5 × 10−3 [Wang

et al. 2013][Caro et al. 2012, Section 5.4] with roughly 2% error in approximating con�ned �ows

[Al Quddus et al. 2008]. This is su�cient for our interest in the qualitative behavior of particulate

�ows, with the possibility of investigating rheological dynamics in larger channels.

Regarding algorithms, each RBC is discretized with an equal number of points, despite the

varied behavior of the velocity through the vessel. Adaptive re�nement is required in order to

71

resolve the velocity accurately. Finally, the blood vessel is constructed to satisfy certain geo-

metric constraints that allow for the solution of Eq. (3.5) via singular integration. This can be

overcome through uniform re�nement, but a parallel adaptive algorithm is required to maintain

good performance.

Related work: blood �ow. Large-scale simulation of RBC �ows typically fall into four cat-

egories: (a) Immersed boundary (IB) and immersed interface methods; (b) particle-based methods

such as dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH) (c) mul-

tiscale network-based approaches and (d) boundary integral equation (BIE) approaches. For a

comprehensive review of general blood �ow simulation methods, see [Freund 2014]. IB meth-

ods can produce high-quality simulations of heterogeneous particulate �ows in complex blood

vessels [Balogh and Bagchi 2017b,a; Xu et al. 2013]. These methods typically require a �nite el-

ement solve for each RBC to compute membrane tensions and use IB to couple the stresses with

the �uid. This approach quickly becomes costly, especially for high-order elements, and although

reasonably large simulation have been achieved [Saadat et al. 2018, 2019], large-scale paralleliza-

tion has remained a challenge. A di�erent approach to simulating blood �ow is with multiscale

reduced-order models. By making simplifying assumptions about the �uid behavior throughout

the domain and transforming the complex �uid system into a simpler �ow problem, the macro-

scopic behaviors of enormous capillary systems can be characterized [Peyrounette et al. 2018;

Perdikaris et al. 2016] and scaled up to thousands of cores [Perdikaris et al. 2015]. This comes at

a cost of local accuracy; by simulating the �ows directly, we are able to accurately resolve local

RBC dynamics that are not captured by such schemes.

Particle-based methods have had the greatest degree of success at large-scale blood �ow sim-

ulations [Gounley et al. 2017; Grinberg et al. 2011; Randles et al. 2015; Rossinelli et al. 2015]. These

types of approaches are extremely �exible in modeling the �uid and immersed particles, but are

computationally demanding and usually su�er from numerical sti�ness that requires very small

time steps for a given target accuracy. For a comprehensive review, see [Ye et al. 2016]. There

72

have also been recent advances in coupling a particle-based DPD-like scheme with IB in parallel

[Ye et al. 2017, 2018], but the number of RBCs simulated and the complexity of the boundary seems

to be limited.

BIE methods have successfully realized large-scale simulations of millions of RBCs [Rahimian

et al. 2010] in free space. Recently, new methods for robust handling of collisions between RBCs in

high-volume fraction simulations have been introduced [Lu et al. 2018; Malhotra et al. 2017]. This

approach is versatile and e�cient due to only requiring discretization of RBCs and blood vessel

surfaces, while achieving high-order convergence and optimal complexity implementation due

to fast summation methods [Veerapaneni et al. 2009a, 2011; Rahimian et al. 2015; Sorgentone and

Tornberg 2018; Sorgentone et al. 2019; af Klinteberg and Tornberg 2016; Zhao et al. 2010]. To solve

elliptic partial di�erential equations, BIE approaches have been successful in several application

domains [Ying et al. 2006b; Wala and Klöckner 2018a,c; Bruno and Lintner 2013]. However, to our

knowledge, there has been no work combining a Stokes boundary solver on arbitrary complex

geometries in 3D with a collision detection and resolution scheme to simulate RBC �ows at large

scale. This work aims to �ll this gap, illustrating that this can be achieved in a scalable manner.

Related work: collisions. Parallel collision detection methods are a well-studied area

in computer graphics for both shared memory and GPU parallelism [Liu et al. 2010; Mazhar

et al. 2011; Kim et al. 2009]. [Iglberger and Rüde 2009; Du et al. 2017] detect collisions between

rigid bodies in a distributed memory architecture via domain decomposition. [Pabst et al. 2010]

constructs a spatial hash to cull collision candidates and explicitly check candidates that hash to

the same value. The parallel geometry and physics-based collision resolution scheme detailed in

[Yan et al. 2019] is most similar to the scheme used in this work. However, such discrete collision

detection schemes require small time steps to guarantee detections which can become costly for

high-volume fraction simulations.

73

3.2 Formulation and solver overview

3.2.1 Problem summary

We simulate the �ow of N cells with deformable boundary surfaces γi , i = 1, . . . ,N in a viscous

Newtonian �uid in a domain Ω ⊂ R3 with a �xed boundary Γ. The governing partial di�erential

equations (PDEs) describing the conservation of momentum and mass are the incompressible

Stokes equations for the velocity u and pressure p, combined with velocity boundary conditions

on Γ. Additionally, we model cell membranes as massless, so the velocity Xt of the points on the

cell surface coincides with the �ow velocity:

−µ∆u(x) + ∇p(x) = F(x) and ∇ · u(x) = 0, x ∈ Ω, (3.1)

u(x) = д(x), x ∈ Γ, (3.2)

Xt = u(X), X ∈ γi(t), (3.3)

where µ is the viscosity of the ambient �uid; in our simulations, we use a simpli�ed model with the

viscosity of the �uid inside the cells also being µ although our code supports arbitrary viscosity

contrast. The right-hand side force in the momentum equation is due to the sum of tension and

bending forces f = fσ + fb ; it is concentrated on the cell surfaces. We assume that cell surfaces

are inextensible, with bending forces determined by the Canham-Helfrich model [Canham 1970;

Helfrich 1973], based on the surface curvature, and surface tension determined by the surface

incompressibility condition ∇γi · u = 0 resulting in

F(x) =
∑
i

∫
γi

f(y)δ (x −y)dy

(see, e.g., [Rahimian et al. 2015] for the expressions for f). Except on in�ow and out�ow regions

of the vascular network, the boundary condition д is zero, modeling no-slip boundary condition

74

on blood vessel walls.

3.2.1.1 Boundary integral formulation

To enforce the boundary conditions on Γ, we use the standard approach of computing u as the

sum of the solutionufr of the free-space equation Eq. (3.1) without boundary conditions but with

non-zero right-hand side F(x), and the second term uΓ obtained by solving the homogeneous

equation with boundary conditions on Γ given by д −ufr.

Following the approach of [Power and Miranda 1987; Pozrikidis 1992b; Lu et al. 2018; Nazock-

dast et al. 2015], we reformulate Eqs. (3.1) and (3.2) in the integral form. The free-space solution

ufr can be written directly as the sum of the single-layer Stokes potentials uγi :

uγi (x) = (Sif)(x) =
∫
γi

S(x ,y)f(y)dy, x ∈ Ω, (3.4)

where S(x ,y) = 1
8πµ

(
1
r +

r⊗r
|r |3

)
for viscosity µ and r = x −y.

To obtainuΓ , we reformulate the homogeneous volumetric PDE with nonzero boundary con-

ditions as a boundary integral equation for an unknown double-layer density ϕ de�ned on the

domain boundary Γ: (
1
2 I + D + N

)
ϕ = D̃Γϕ = д −ufr, x ∈ Γ, (3.5)

where the double-layer operator is Dϕ(x) =
∫
Γ
D(x ,y)ϕ(y)dy with double-layer Stokes kernel

D(x ,y) = 6
8π

(
r⊗r
|r |5 (r · n

)
for outward normal n = n(y). The null-space operator needed to make

the equations full-rank is de�ned as (Nϕ)(x) =
∫
Γ
(n(x) · ϕ(y))n(y)dy (cf. [Lu et al. 2017]). The

favorable eigenspectrum of the integral operator in Eq. (3.5) is well-known and allows GMRES to

rapidly converge to a solution. One of the key di�erences between this work and previous free-

space large-scale simulations is the need to solve this equation in a scalable way due to di�ering

formulations [Grinberg et al. 2011; Balogh and Bagchi 2017b]. Once the density ϕ is computed,

the velocity correction uΓ is evaluated directly as uΓ = Dϕ.

75

The equation for the total velocity u(x) at any point x ∈ Ω is then given by

u = ufr +uΓ =

N∑
i=1

uγi +uΓ . (3.6)

In particular, this determines the update equation for the boundary points of cells; see Eq. (3.3).

Contact formulation . In theory, the contacts between surfaces are prevented by the in-

creasing �uid forces as surfaces approach each other closely. However, ensuring accuracy of

resolving forces may require prohibitively �ne sampling of surfaces and very small time steps,

making large-scale simulations in space and time impractical. At the same time, as shown in [Lu

et al. 2017], interpenetration of surfaces results in a catastrophic loss of accuracy due to singu-

larities in the integrals.

To guarantee that our discretized cells remain interference-free, we augment Eqs. (3.1) and (3.2)

with an explicit inequality constraint preventing collisions. We de�ne a vector functionV (t)with

components becoming strictly negative if any cell surfaces intersect each other, or intersect with

the vessel boundaries Γ. More speci�cally, we use the space-time interference volumes introduced

in [Harmon et al. 2011] and applied to 3D cell �ows in [Lu et al. 2018]. Each component ofV cor-

responds to a single connected overlap. The interference-free constraint at time t is then simply

V (t) ≥ 0.

For this constraint to be satis�ed, the forces f are augmented by an arti�cial collision force,

i.e., f = fb+fσ+fc , fc = ∇uVTλ, where λ is the vector of Lagrange multipliers, which is determined

by the additional complementarity conditions:

λ(t) ≥ 0, V (t) ≥ 0, λ(t) ·V (t) = 0, (3.7)

at time t , where all inequalities are to be understood component-wise.

To summarize, the system that we solve at every time step can be formulated as follows, where

76

we separate equations for di�erent cells and global and local parts of the right-hand side, as it is

important for our time discretization:

Xt =

(∑
j,i

Sjf j + Dϕ

)
+ Sifi , for points on γi , (3.8)

∇γi ·Xt = 0, f j = f(X j ,σj , λ), (3.9)

BΓϕ = д −
∑
j

Sjf j , for points on Γ, (3.10)

λ(t) ≥ 0, V (t) ≥ 0, λ(t) ·V (t) = 0. (3.11)

At every time step, (3.11) results in coupling of all close γi ’s, which requires a non-local com-

putation. We follow the approach detailed in [Lu et al. 2018, 2017] to de�ne and solve the nonlin-

ear complementarity problem (NCP) arising from cell-cell interactions in parallel, and extend it to

prevent intersection of cells with the domain boundary Γ, as detailed in Section 3.4.

3.2.2 Algorithm Overview

Next, we summarize the algorithmic steps used to solve the constrained integral equations needed

to compute cell surface positions and �uid velocities at each time step. In the subsequent sections,

we detail the parallel algorithms we developed to obtain good weak and strong scalability, as

shown in Section 3.5.

Overall Discretization. RBC surfaces are discretized using a spherical harmonic representa-

tion, with surfaces sampled uniformly in the standard latitude-longitude sphere parametrization.

The blood vessel surfaces Γ are discretized using a collection of high-order tensor-product polyno-

mial patches, each sampled at Clenshaw-Curtis quadrature points. The space-time interference

volume function V (t) is computed using a piecewise-linear approximation as described in [Lu

et al. 2018]. For time discretization, we use a locally-implicit �rst order time-stepping (higher-

order time stepping can be easily incorporated). Interactions between RBCs and the blood vessel

77

surfaces are computed explicitly, while the self-interaction of a single RBC is computed implicitly.

The state of the system at every time step is given by a triple of distributed vectors (X ,σ , λ).
The �rst two (cell surface positions and tensions) are de�ned at the discretization points of cells.

The vector λ has variable length and corresponds to connected components of collision volumes.

We use the subscript i to denote the subvectors corresponding to i-the cell. X and σ are solved

as a single system that includes the incompressibility constraint Eq. (3.9). To simplify exposition,

we omit σ in our algorithm summary, which corresponds to dropping fσ in the Stokes equation,

and dropping the surface incompressibility constraint equation.

Algorithm summary. At each step t , we compute the new positions X+i and collision

Lagrange multipliers λ+ at time t+ = t +∆t . We assume that in the initial con�guration there are

no collisions, so the Lagrange multiplier vector λ is zero. Discretizing in time, Eq. (3.8) becomes

X+i = Xi + ∆t

(∑
j,i

Sjf j(X j , λ) + Dϕ(X j , λ)
)
+ ∆tSifi(X+i , λ+).

At each single time step, we perform the following steps to obtain (X+, λ+) from (X , λ). Below

evaluation of integrals implies using appropriate (smooth, near-singular or singular) quadrature

rules on cell or blood vessel surfaces.

1. Compute the explicit part b of the position update (�rst term in Eq. (3.8)).

(a) Evaluate ufr from (X , λ) on Γ with Eq. (3.4).

(b) Solve Eq. (3.5) for the unknown density ϕ on Γ using GMRES.

(c) For each cell, evaluate uΓ
i = Dϕ at all cell points Xi .

(d) For each cell i , compute the contributions of other cells toX+i : bci = ufr−uγi = ∑
j,i Sjf j .

(e) Set bi = uΓ
i + b

c
i .

2. Perform the implicit part of the update: solve the NCP obtained by treating the second (self-

interaction) term in Eq. (3.8) while enforcing the complementarity constraints Eq. (3.7), i.e.,

78

solve

X+i = Xi + ∆t(bi + Si fi(X+i , λ+)), (3.12)

λ(t+) ≥ 0, V (t+) ≥ 0, λ(t+) ·V (t+) = 0. (3.13)

Items 1a to 1d all require evaluation of global integrals, evaluated as sums over quadrature

points; we compute these sums in parallel with PVFMM . In particular, Item 1b uses PVFMM as a

part of each matrix-vector product in the GMRES iteration. These matrix-vector product, as well

as Items 1a, 1c and 1d require near-singular integration to compute the velocity accurately near

RBC and blood vessel surfaces; this requires parallel communication to �nd non-local evaluation

points. Details of these computations are discussed in Section 3.3.

The NCP is solved using a sequence of linear complementarity problems (LCPs). Algorithmi-

cally, this requires parallel searches of collision candidate pairs and the repeated application of

the distributed LCP matrix to distributed vectors. Details of these computations are provided in

Section 3.4.

Other parallel quadrature methods. Various other parallel algorithms are leveraged to

perform boundary integrals for the vessel geometry and RBCs. To compute uγi (X) for X ∈ γi ,
the schemes presented in [Veerapaneni et al. 2011] are used to achieve spectral convergence for

single-layer potentials by performing a spherical harmonic rotation and apply the quadrature

rule of [Graham and Sloan 2002]. We use the improved algorithm in [Malhotra et al. 2017] to

precompute the singular integration operator and substantially improve overall complexity. To

compute uγi (X) for X close to, but not on γi , we follow the approaches of [Sorgentone and Torn-

berg 2018; Malhotra et al. 2017], which use a variation of the high-order near-singular evaluation

scheme of [Ying et al. 2006a]. Rather than extrapolating the velocity from nearby check points

as in Section 3.3, we use [Veerapaneni et al. 2011] to compute the velocity on surface, upsampled

quadrature on γi to compute the velocity at check points and interpolate the velocity between

79

them to the desired location. We mention these schemes for the sake of completeness; they are

not the primary contribution of this work, but are critical components of the overall simulation.

3.3 Boundary Solver

The main challenge in incorporating prescribed �ow boundary conditionsд on the domain bound-

ary Γ is the approximation and solution of the boundary integral problem Eq. (3.5). Upon spatial

discretization, this is an extremely large, dense linear system that must be solved at every time

step due to the changing free space solutionufr on the right hand side. Since we aim at a scalable

implementation, we do not assemble the operator on the left hand side but only implement the

corresponding matrix-vector multiplication, i.e., its application to vectors. Combined with an

iterative solver such as GMRES, this matrix-vector multiply is su�cient to solve Eq. (3.5). Applica-

tion of the double-layer operator D to vectors amounts to a near-singular quadrature for points

close to Γ. Controlling the error in this computation requires a tailored quadrature scheme. This

scheme is detailed below, where we put a particular emphasis on the challenges due to our parallel

implementation.

3.3.1 �adrature for integral eqation

The domain boundary Γ is given by a collection of non-overlapping patches Γ =
⋃

i Pi(Q), where

Pi : Q → R3 is de�ned on Q = [−1, 1]2. We use the Nyström discretization for Eq. (3.5). Since

D(x ,y) is singular, this requires a singular quadrature scheme for the integral on the right-hand

side. We proceed in several steps, starting with the direct non-singular discretization, followed

by a distinct discretization for the singular and near-singular case.

Non-singular integral quadrature. We discretize the integral in Eq. (3.5), for x < Γ,

by rewriting it as an integral over a set of patches and then apply a tensor-product qth order

80

Clenshaw-Curtis rule to each patch:

u(x) =
∑
i

∫
Pi

D(x ,y)ϕ(y)dyPi ≈
∑
i

q2∑
j=0

D(x ,yij)wijϕ(yij), (3.14)

where yij = Pi(tj) and tj ∈ [−1, 1]2 is the jth quadrature point and wij is the corresponding

quadrature weight. We refer to the points yij as the coarse discretization of Γ and introduce a

single global index y` = yij with ` = `(i, j) = (i − 1)q2 + j, ` = 1, . . . ,N , where N is the total

number of quadrature nodes. We can then rewrite the right-hand side of (3.14) compactly as the

vector dot productW (x) ·ϕ, where ϕ` = ϕ(y`) andW`(x) = D(x ,y`)w` are the quadrature weights

in Eq. (3.14).

Asx → Γ forx ∈ Ω, the integrand becomes more singular and the accuracy of this quadrature

rapidly decreases due to the singularity in the kernel D. This requires us to construct a singular

integral discretization for x = y` , ` = 1, . . . ,N , and general points on Γ, which is discussed next.

Note that the same method is used for evaluation of the velocity values at points close to the

surface, once the equation is solved (near-singular integration).

Singular and near-singular integral quadrature. We take an approach similar to [Klöck-

ner et al. 2013c]. The idea is to evaluate the integral su�ciently far from the surface using the

non-singular quadrature rule (3.14) on an upsampled mesh, and then to extrapolate the accurate

values towards the surface. Concretely, to compute the singular integral at a point x near or on

Γ, we use the following steps:

1. Upsample ϕ using qth order interpolation, i.e., ϕup = Uϕ, where ϕup is the vector of Nk

samples of the density andU is the interpolation operator. To be precise, we subdivide each

patch Pi into k square subdomains Pik and use Clenshaw-Curtis nodes in each subdomain.

We subdivide uniformly, i.e., Pi is split into k = 4η patches for an integer η. This is the �ne

discretization of Γ. We useW up to denote the weights for Eq. (3.14) the �ne discretization

quadrature points.

81

2. Find the closest point y = P(u∗,v∗) to x on Γ for some patch P on Γ with u∗,v∗ ∈ [−1, 1]
(y = x if x ∈ Γ).

3. Construct check points cq = cq(x) = y − (R + ir)n(u∗,v∗), i = 0, . . . ,p, where n(u,v) is the

outward normal vector to Γ at P(u,v).

4. Evaluate the velocity at the check points:

u(cq(x)) ≈W up(cq) · ϕup, i = 0, . . . ,p. (3.15)

5. Extrapolate the velocity from the check points to x with 1D polynomial extrapolation:

u(x) ≈
∑
q

equ(cq(x)) =
(∑

q

eqW
up(cq))

)
Uϕ (3.16)

=W s(x) · ϕ, (3.17)

where eq are the extrapolation weights.

In this work, the parameters R,p, r and η are chosen empirically to balance the error in the ac-

curacy of W up(cq) · ϕup and the extrapolation to x . A schematic of this quadrature procedure is

shown in Fig. 2.2.

Discretizing the integral equation. With the singular integration method described above,

we take x = y` , ` = 1 . . .N , and obtain the following discretization of Eq. (3.5):

(
1
2 I +A

)
ϕ = д, A`m =W

s
m(y`) + Nij , (3.18)

where д is the boundary condition evaluated aty` ,W s
m(x) is themth component ofW s(x) and Nij

is the appropriate element of the rank-completing operator in Eq. (3.5).

The dense operator A is never assembled explicitly. We use GMRES to solve Eq. (3.18), which

82

only requires application of A to vectors ϕ. This matrix-vector product is computed using the

steps summarized above.

Extrapolation and upsampling are local computations that are parallelized trivially if all de-

grees of freedom for each patch are on a single processor. The main challenges in parallelization

of the above singular evaluation are 1) initially distributing the patches among processors, 2)

computing the closest point on Γ and 3) evaluating the velocity at the check points. The paral-

lelization of these computations is detailed in the remainder of this section.

Far evaluation. To compute the �uid velocity away from Γ, where Eq. (3.5) is non-singular,

i.e., at the check points, the integral can be directly evaluated using Eq. (3.14). Observing that

Eq. (3.14) has the form of anN -body summation, we use the fast-multipolemethod [Greengard and

Rokhlin 1987] to evaluate it for all target points at once. We use the parallel, kernel-independent

implementation Parallel Volume Fast Multipole Method (PVFMM) [Malhotra and Biros 2015b,

2016], which has been demonstrated to scale to hundreds of thousands of cores. PVFMM handles

all of the parallel communication required to aggregate and distribute the contribution of non-

local patches in O(N) time.

3.3.2 Distributing geometry and evaluation parallelization

We load pieces of the blood vessel geometry, which is provided as a quad mesh, separately on

di�erent processors. Each face of the mesh has a corresponding polynomial Pi de�ning the ith

patch.

The k levels of patch subdivision induce a uniform quadtree structure within each quad. We

use the p4est library [Burstedde et al. 2011] to manage this surface mesh hierarchy, keep track

of neighbor information, distribute patch data and to re�ne and coarsen the discretization in

parallel. The parallel quadtree algorithms provided by p4est are used to distribute the geometry

without replicating the complete surface and polynomial patches across all processors. p4est

also determines parent-child patch relationships between the coarse and �ne discretizations and

83

the coordinates of the child patches to which we interpolate.

Once the geometry is distributed, constructing check points, all necessary information for

upsampling and extrapolation are either available on each processor or communicated by PVFMM .

This allows these operations to be embarassingly parallel.

3.3.3 Parallel closest point search

To evaluate the solution at a point x , we must �nd the closest point y on the boundary to x . The

distance ‖x −y‖2 determines whether or not near-singular integration is required to compute the

velocity at x . If it is, y is used to construct check points.

In the context of this work, the point x is on the surface of an RBC, which may be on a di�erent

processor than the patch containing y. This necessitates a parallel algorithm to search for y. For

that purpose, we extend the spatial sorting algorithm from [Lu et al. 2018, Algorithm 1] to support

our �xed patch-based boundary and detect near pairs of target points and patches.

a. Construct a bounding box BP ,ε for the near-zone of each patch. We choose a distance dε so

that for all points z further away than dε from P , the quadrature error of integration over

P is bounded by ε . The set of points closer to P than dε is the near-zone of P . We in�ate the

bounding box BP of P by dε along the diagonal to obtain BP ,ε to contain all such points.

b. Sample BP ,ε and compute a spatial hash of the samples and x . Let H be the average diagonal

length of all BP ,ε . We sample the volume contained in BP ,ε with equispaced samples of

spacing hP < H . Using a spatial hash function, (such as Morton ordering with a spatial grid

of spacing H), we assign hash values to bounding box samples and x to be used as a sorting

key. This results in a set of hash values that de�ne the near-zone of Γ.

c. Sort all samples by the sorting key. Use the parallel sort of [Sundar et al. 2013] on the sorting

key of bounding box samples and that of x . This collects all points with identical sorting

key (i.e., close positions) and places them on the same processor. If the hash of x matches

84

the hash of a bounding box sample, then x could require near-singular integration, which

we check explicitly. Otherwise, we can assume x is su�ciently far from P and does not

require singular integration.

d. Compute distances ‖x − Pi ‖. For each patch Pi with a bounding box key of x , we locally

solve the minimization problem min(u,v)∈[−1,1]2 ‖x − Pi(u,v)‖ via Newton’s method with a

backtracking line search. This is a local computation since x and Pi were communicated

during the Morton ID sort.

e. Choose the closest patch Pi . We perform a global reduce on the distances ‖x−Pi ‖ to determine

the closest Pi to x and communicate back all the relevant information required for singular

evaluation back to x ’s processor.

3.4 Parallel collision handling

We prevent collisions of RBCs with other RBCs and with the vessel surface Γ by solving the NCP

given in Eqs. (3.19) and (3.20). This is a nonsmooth and non-local problem, whose assembly

and e�cient solution is particularly challenging in parallel.In this section, we summarize our

constraint-based approach and algorithm.

We have integrated piecewise polynomial patches into the framework of [Lu et al. 2018] for

parallel collision handling, to which we refer the reader for a more detailed discussion. The key

step to algorithmically unify RBCs and patches is to form a linear triangle mesh approximation of

both objects. We now want to enforce that these meshes are collision-free subject to the physics

constraints in Eq. (3.19).

We linearize the NCP and solve a sequence of LCPs whose solutions converge to the NCP solu-

tion. At a high-level, the collision algorithm proceeds as follows:

1. Find triangle-vertex pairs of distinct meshes that are candidates for collision.

85

2. ComputeV (t+) = V (t+,0). If any triangle-vertex pairs on distinct meshes collide, the corre-

sponding component of V (t) will be negative.

3. While Vi(t+,k) < 0 for any i:

(a) Supposem components of V (t) are negative

(b) Solve the following linearized version of Eqs. (3.19) and (3.20)

X+,ki = Xi + ∆t(bi + Si(fi(X+,ki , λ
+,k)), (3.19)

λ(t+) ≥ 0, L(t+,k) ≥ 0, λ(t+,k) · L(t+,k) = 0, (3.20)

where L(t) = V (t) + ∇uVT∆Xi(t) (3.21)

for the kth iteration of the loop and X+,ki = Xi + ∆Xi(t+,k).

(c) Find new candidate triangle-vertex pairs and compute V (t+,k).

Here, t+,k is the intermediate time step at which a new candidate position X+,ki occurs. This ap-

proach of iteratively solving an NCP with sequence of LCPs was shown to converge superlinearly

in [Fang 1984]. In [Yan et al. 2019], the authors demonstrate that one LCP linearization can ap-

proximate the NCP accurately; our algorithm uses around seven LCP solves to approximately solve

the NCP. Upon convergence of this algorithm, we are guaranteed that our system is collision-free.

To solve the LCP in Item 3b, we follow the approach detailed in [Lu et al. 2017, Section 3.2.2,

Section 3.3]. We reformulate the problem �rst in standard LCP form with diagonally-dominant

system matrix B, then solve an equivalent root �nding problem by applying a minimum-map

Newton’s method. This can be restructured to use GMRES, so we only need to repeatedly apply B

to vectors to solve the LCP. Each entry Bij is the change in the jth contact volume induced by the

kth contact force, which is explicitly de�ned in [Lu et al. 2018, Algorithm 3]. This means that B

is of sizem ×m, wherem is the number of collisions, but is extremely sparse. We need not store

the entire matrix explicitly; we only compute the non-zero entries and store them in a distributed

86

Figure 3.1: A 2D depiction of the parallel candidate collision pair algorithm.
Shown is the implicit spatial grid (gray), a piece of the blood vessel Γ (open black
curve), an RBC γi at the current time step (closed black curve) and at the next time
step (do�ed closed back curve). Also shown is the space-time bounding box and
bounding box samples of a single patch (red square and red dots) and an RBC (blue
square and blue dots).

hash-map. Computing these matrix elements requires an accumulation of all coupled collision

contributions to the velocity, which requires just a sparse MPI_All_to_Allv to send each local

contribution to the process containing Vi(t+,k).
An important step to ensure good scaling of our collision handling algorithm is to minimize

the number of triangle-vertex pairs that are found in Item 1. One could explicitly compute an

all-to-all collision detection on all meshes in the system, but this requiresO(N 2) work and global

communication. We perform a high-level �ltering �rst to �nd local candidate collision mesh pairs,

then only communicate and compute the required O(m) information. Since spatially-near mesh

pairs may be on di�erent processors, we need a parallel algorithm to compute these collision

candidates.

To address this, we reuse Items a. to c. from Section 3.3.3 and adapt it to this problem. For

each mesh in the system, we form the space-time bounding box of the mesh: the smallest axis-

aligned bounding box containing the mesh at positions Xi and X+i , as shown in Fig. 3.1. For

87

patches Pi , note that P+i = Pi . This means one can reuse the bounding box of Pi constructed in

Section 3.3.3 for this purpose and simply set dε to zero. After forming all space-time bounding

boxes for the meshes of all patches and RBCs, we apply steps Items b. and c. directly to these

boxes. Item c. will communicate meshes with the same spatial sorting key to the same processor;

these meshes are collision candidate pairs. Once the computation is local and candidate collision

pairs are identi�ed, we can proceed with the NCP solution algorithm described above.

3.5 Results

In this section, we present scalability results for our blood �ow simulation framework on various

test geometries, simulations with various volume fractions and demonstrate the convergence

behavior of our numerical methods.

3.5.1 Implementation and example setup

Architecture and software libraries. We use the Stampede2 system at the Texas Advanced

Computing Center (TACC) to study the scalability of our algorithms and implementation. Stam-

pede2 has two types of compute nodes, the Knights Landing (KNL) compute nodes and the Skylake

(SKX) compute nodes. The SKX cluster has 1,736 dual-socket compute nodes, each with two 24-

core 2.1GHZ CPUs and 192GB of memory. The KNL cluster has 4,200 compute nodes, with a 68-core

Intel Xeon Phi 7250 1.4GHZ CPUs and 96GB of memory plus 16GB of high-speed MCDRAM. We

run our simulations in a hybrid distributed-shared memory fashion: we run one MPI process per

node, with one OpenMP thread per hardware core. Our largest simulations use 256 SKX and 512

KNL nodes.

We leverage several high-performance libraries in our implementation. We use PETSC’s [Balay

et al. 2017] parallel matrix and vector operations, and its parallel GMRES solver. Management and

distribution of patches describing the blood vessel geometry uses the p4est library [Burstedde

88

384 768 1536 3072 6144 12288
0

0.2

0.4

0.6

0.8

0.1

·107

CPU cores→

w
al
l-t
im

e
×

CP
U
co
re
s(
ba
r)
→

COL BIE-solve BIE-FMM
Other-FMM Other

cores 384 768 1536 3072 6144 12288
total time (sec) 11257 5751 3268 1887 1116 718

e�ciency 1.00 0.98 0.86 0.75 0.63 0.49
COL+BIE-solve (sec) 3901 1843 1046 596 317 183

e�ciency 1.00 1.05 0.93 0.82 0.77 0.66

Figure 3.2: Strong scalability of a simultion with 40960 RBCs on Stampede’s SKX partition for
the vessel network geometry shown in Fig. 3.7.. The vessel is discretized with 40960 polynomial
patches. Shown in the bar graph is a breakdown of the compute resources (wall-time × CPU cores)
required by the individual components for a simulation with 10 time steps on 384 to 12288 cores. The
compute resources used by the main algorithms presented in this paper are COL (collision handling),
BIE-solve (computation of uΓ , not including FMM calls). Shown in di�erent gray scales are the compute
resources required by FMM (BIE-FMM and Other-FMM) and other operations (Other). Shown in the
table are the compute time and the parallel e�iciency for the overall computation and for the sum of COL
and BIE-solve. For the collision avoidance and the boundary solve we observe a parallel e�iciency of 66%
for a 32-fold increase from 384 to 12288 CPU cores.

et al. 2011], and we use PVFMM [Malhotra and Biros 2015b] for parallel FMM evaluation. We also

heavily leverage Intel MKL for fast dense linear algebra routines at the core of our algorithms

and paraview for our visualizations.

Discretization and example setup. For all test cases we present, we discretize each RBC

89

48 192 768 3072 12288
0

0.5

1

1.5
·104

CPU cores→

w
al
l-t
im

e
→

COL BIE-solve BIE-FMM
Other-FMM other

cores 48 192 768 3072 12288
vol fraction 19% 20% 23% 26% 27%

#collision/ #RBCs 15% 13% 17% 15% 16%
total time (sec) 7070 8892 10032 10869 12446

e�ciency − 1.00 0.88 0.81 0.71
COL+BIE-solve (sec) 1461 2345 2926 3222 3904

e�ciency − 1.00 0.80 0.73 0.60

Figure 3.3: Weak scalability on Stampede’s SKX partition with node grain size of 4096 RBCs and
8192 polynomial patches per compute node (each node has 48 cores) for the vessel geometry
shown in Fig. 3.6.. Increasing the number of RBCs and boundary patches is realized by decreasing the
size of the RBCs as discussed in Section 3.5.2. Shown in the bar graph is a breakdown of wall-time spent
in individual components for a simulation with 10 time steps on 136 to 12288 cores (i.e., 4 to 256 nodes).
The explanation of the labels used in the legend is detailed in Fig. 3.2. Additionally, we show the volume
fraction of RBCs for each simulation, as well as the percentage of vesicles where the RBC-RBC or RBC-
vessel collision prevention is active. We report the parallel scalability with respect to 192 cores, as the
smallest simulation is in a single node and no MPI communication is necessary. The largest simulation
has 1,048,576 RBCs and 2,097,152 polynomial patches and an overall number of 3,042,967,552 unknowns
per time step.

with 544 quadrature points and 2,112 points for collision detection. The blood vessel geometry

is represented with 8th order tensor-product polynomial patches with 121 quadrature points per

patch and 484 equispaced points for collision detection. The parameters chosen for singular/near-

singular integration are p = 8 and η = 1, with R = r = .15L for strong scaling tests and R = r =

90

136 544 2176 8704 34816
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

CPU cores →

w
al
l-t
im

e
→

COL BIE-solve BIE-FMM
Other-FMM other

cores 136 544 2176 8704 34816
vol fraction 17% 19% 20% 23% 26%

#collision/ #RBCs 10% 15% 13% 17% 15%
total time (sec) 2739 3203 3768 4782 5806

e�ciency 1.00 0.86 0.73 0.57 0.47
COL+BIE-solve (sec) 642 808 982 1532 1480

e�ciency 1.00 0.79 0.65 0.42 0.43

Figure 3.4: Weak scalability on Stampede’s KNL parition with node grain size of 4096 RBCs and
8192 polynomial patches per compute node for the vessel geometry shown in Fig. 3.6. Same as
Fig. 3.3 but on Stampede2’s KNL partition with 512 RBCs and 1024 vessel boundary patches per node (each
node has 68 cores). We find an overall parallel scalability of 47% for a 256-fold increase of the problem
size.

.1L for weak scaling tests. The value of L is the square root of the surface area of the patch

containing the closest point to the target, called the patch size; this choice allows for a consistent

extrapolation error over the entirety of Γ.

Since our scaling tests are performed on complex, realistic blood vessel geometries, we must

algorithmically generate our initial simulation con�guration. We prescribe portions of the blood

vessel as in�ow and out�ow regions and appropriately prescribe positive and negative parabolic

�ows (inlet and outlet �ow) as boundary conditions, such that the total �uid �ux is zero. To

91

Figure 3.5: High-volume fraction sedimentation due to gravitational force.. The initial config-
uration (top figures) has a volume fraction of 47%. As the cells sediment to the lower part of the domain
(bo�om figures), the local volume fraction of the final state in this lower part of the domain is around 55%.
Shown on the right side are slices through the center of the domain together with the RBC boundaries in
the initial and final configuration. The full simulation video is available at h�ps://vimeo.com/329509435.

populate the blood vessel with RBCs, we uniformly sample the volume of the bounding box of

the vessel with a spacing h to �nd point locations inside the domain at which we place RBCs

in a random orientation. We then slowly increase the size of each RBC until it collides with the

vessel boundary or another RBC; this determines a single RBC’s size. We continue this process

until all RBCs stop expanding; this means that we are running a simulation of RBCs of various

92

sizes. We refer to this process as �lling the blood vessel with RBCs. This typically produces RBCs

of radius r with r0 < r < 2r0 with r0 chosen proportional to h. This is a precomputation for our

simulation, so we do not include this step in the timings we report for weak and strong scaling.

We emphasize that these simulations are primarily for scaling purposes of our algorithms and

are not expected to represent true blood �ows. The platform can of course be applied to length

scales where viscous �ow is a valid assumption.

Additionally, RBCs in such a con�ned �ow will collide with the blood vessel wall if special care

is not taken near the out�ow part of the boundary. We de�ne regions near the inlet and outlet

�ows where we can safely add and remove RBCs. When an RBC γi is within the outlet region, we

subtract o� the velocity due to γi from the entire system and move γi into an inlet region such

that the arising RBC con�guration is collision-free.

Limiting GMRES iterations. We have observed that the GMRES solver typically requires 30

iterations or less for convergence for almost all time steps, but the number of needed iterations

may vary more in the �rst steps. To simulate the amount of work in a typical simulation time

step, we cap the number of GMRES iterations at 30 and report weak and strong scaling for these

iterations. A more detailed analysis of this behavior is needed.

3.5.2 Parallel scalability

Here, we present strong and weak scalability results for our RBC simulations. We decompose the

time required for a complete simulation into the following categories:

• COL: detection and resolution of collisions among RBCs and between RBCs and the vessel

walls;

• BIE-solve: computinguΓ , not including FMM calls. This includes all of the steps for singular/near-

singular integration in Section 3.3 except the evaluation uΓ at the check points.

• BIE-FMM: FMM calls required to evaluate uΓ at the check points and at points on RBCs

93

Figure 3.6: Weak scaling vessel geometry. For our weak scaling experiments, we use the the vessel
geometry shown above with inflow boundary conditions on the right side and outflow boundary condition
on the two le� sides. To setup the problem, we fill the vessel with nearly-touching RBCs of di�erent sizes
to obtain a desired number, and refine the vessel geometry patches. The figure above shows a setup with
overall 262,144 RBCs at a volume fraction of 26%.

• Other-FMM: FMM calls required by other algorithms

• Other: all other operations

In the discussion below, we focus on COL and BIE-solve, as they are the primary algorithmic

contribution of this work, and discuss how to reduce the computational time required for BIE-

FMM.

Strong scalability.

To study the strong scalability of our algorithms, we use the blood vessel geometry and RBC

con�guration in Fig. 3.7-left. This simulation contains 40,960 RBCs and the blood vessel is rep-

resented with 40,960 patches. With four degrees of freedom per RBC quadrature point and three

per vessel quadrature point, this amounts to 89,128,960 and 14,868,480 degrees for the RBCs and

blood vessel, respectively (103,997,440 in total). As can be seen from Fig. 3.2, we achieve a 15.7-

fold speed-up in total wall-time scaling from 384 to 12288 cores, corresponding to 49% parallel

94

Figure 3.7: Strong scaling and long-time simulation vessel geometry. Simulation results for 40,960
RBCs in a complex vessel geometry. For our strong scaling experiments, we use the vessel geometry shown
on the le�, with inflow-outflow boundary conditions at various regions of the vessel geometry. To setup
the problem, we fill the vessel with nearly-touching RBCs of di�erent sizes. The figure above shows a setup
with overall 40,960 RBCs at a volume fraction of 19%, and 40,960 polynomial patches. The full simulation
video is available at h�ps://vimeo.com/329509229.

e�ciency. This level of parallel e�ciency is partially due to the calls to the fmm library PVFMM .

The strong scalability of PVFMM we observe is largely consistent with the results reported in [Mal-

hotra and Biros 2016]. Neglecting the time for calls to FMM , i.e., only counting the time for the

boundary solver to computeuΓ and for collision prevention, we �nd 66% parallel e�ciency when

scaling strongly from 384 to 12288 cores. We see that the parallel collision handling and integral

equation solver computations, excluding FMM , scale well as the number of cores is increased.

Weak Scalability. Our weak scalability results are shown in Figs. 3.3 and 3.4. Both tests are

performed on the blood vessel displayed in Fig. 3.6. We use an initial boundary composed of a

�xed numberM of polynomial patches and �ll the domain with roughlyM/2 RBCs (which requires

spacing h). To scale up our simulation by a factor of four, we: (1) subdivide the M polynomial

95

Figure 3.8: Snapshots of Fig. 3.7 during long-time simulation.

patches into 4M new but equivalent polynomial patches (via subdivision rules for Bezier curves);

(2) re�ll the domain with RBCs using spacing h/ 3√4. This places 2M RBCs in the domain volume.

We repeat this process each time we increase the number of cores by a factor of four in order to

keep the number of patches and RBCs per core constant. In the tables in Figs. 3.3 and 3.4, we report

parallel e�ciency with respect to the �rst multi-node run on both SKX and KNL architectures, i.e,

with respect to 192 and 136 cores, respectively.

The largest weak scaling test contains 1,048,576 RBCs and 2,097,152 polynomial patches on the

blood vessel; we solve for 3,042,967,552 unknowns at each time step and are able to maintain a

collision-free state between 4,194,304,000 triangular surface elements at each time step. Compar-

ing the weak scalability results for SKX (Fig. 3.3) and KNL (Fig. 3.4), we observe similar qualitative

behavior. Note that the smallest test on the SKX architecture only uses a single node, i.e., no MPI

96

communication was needed. This explains the increased time for the collision prevention algo-

rithms when going from 1 (48 cores) to 4 nodes (192 cores). Note also that the simulation on the

KNL architecture used a signi�cantly lower number of RBCs and geometry patches per node. Thus,

this simulation has a larger ratio of communication to local work. This explains the less perfect

scalability compared to the results obtained on the SKX architecture. As with strong scaling, we

see good parallel scaling of the non-FMM -related parts of the computation ofuΓ and the collision

handling algorithm.

Note that there is a slight variation in the number of collisions for the run on 8704 cores on

KNL. This is an artifact of the RBC �lling algorithm. Since we place RBCs in random orientations

and distribute RBCs randomly among processors, we do not have complete control over the per-

centage of collisions or the volume fraction for each simulation in Figs. 3.3 and 3.4, as can be

seen from the tables under these �gures. This can a�ect the overall scaling: For the run on 8704

cores, the percentage of collisions is larger, explaining the longer time spent in COL. Despite this

phenomenon, we achieve good weak scaling overall.

Discussion. The parts of the algorithm introduced in this paper scale as well as or better than

the FMM implementation we are using. However, our overall run time is diminished by the multi-

ple expensive FMM evaluations required for solving Eq. (3.5). This can be addressed by using a local

singular quadrature scheme, i.e., compute a singular integral using the FMM on Eq. (3.14) directly,

then compute a singular correction locally. This calculation has a three-fold impact on parallel

scalability: (1) the FMM evaluation required is proportional to the size of the coarse discretization

rather than the �ne discretization (O((p + 1)N) vs. O((k +p)N)); (2) after the FMM evaluation, the

local correction is embarrassingly parallel; (3) the linear operator Eq. (3.16) can be precomputed,

making the entire calculation extremely fast with MKL linear algebra routines. These improve-

ments together will allow our algorithm to scale well beyond the computational regime explored

in this work.

97

3.5.3 Verification

There are few analytic results known about RBCs in con�ned Stokes �ows against which we

can verify our simulations. However, exact solutions can be obtained for a part of our setup,

invariants (e.g., surface area) can be considered and solutions for smaller examples can be veri�ed

against solutions with �ne spatial and temporal discretizations. In particular, in this section, we

demonstrate the accuracy of the parallel boundary solver presented in Section 3.3 and numerically

study the collision-free time-stepping in Section 3.4.

Boundary solver. The error of the boundary integral solver is determined by the error of

integration and the GMRES error, the latter not depending on the number of discretization points

due to good conditioning of the equation. The integration error, in turn, can be separated into

smooth quadrature error and interpolation error. The former is high-order accurate [Trefethen

2013]. Although our extrapolation is ill-conditioned, we observe good accuracy for p ≤ 8. The

singular evaluation in Section 3.3 converges with rate O(Lp + Lq) corresponding to pth order ex-

trapolation and qth order quadrature. To con�rm this numerically, we solve an interior Stokes

problem on the surface in Fig. 3.9-right. We evaluate a prescribed analytic solution at the dis-

cretization points to obtain the boundary condition. We then solve Eq. (3.18) and compare the

numerical solution at on-surface samples di�erent from discretization points, evaluated using the

algorithms of Section 3.3. We use η = 2, q = 16, p = 8, R = .04
√
L and r = R/8. In Fig. 3.9-left, we

report the relative error in the in�nity-norm of the velocity. By choosing check point distances

proportional to
√
L, we observe the expected O(L7) convergence.

RBCs with collision resolution and convergence. Our choice of RBC representation and

discretization is spectrally accurate in space for the approximation, di�erentiation and integration

of functions on RBC surfaces, as shown in [Veerapaneni et al. 2011]. Although we use �rst-order

time-stepping in this work, spectral deferred correction (SDC) can be incorporated into the algo-

rithm exactly as in the 2D version described in [Lu et al. 2017]. This present work demonstrates

98

10−1

10−1

10−3

10−5

10−7

Max patch size

M
ax

re
la
tiv

e
er
ro
r

Max rel. error
O(L7)

Figure 3.9: Error convergence test solving Eq. (3.18) with hedgehogon the domain Fig. 2.9-right
.. We evaluate a known solution on the coarse discretization and solve for ϕ. On the le�, we plot the
maximum relative error in the infinity norm of uΓ evaluated on the surface. On the right, we show the
coarse discretization of the domain boundary and patches.

second-order convergence in time; however, SDC can be made arbitrarily high-order accurate.

For collision-resolution accuracy veri�cation, we study the convergence of our contact-free

time-stepping with two RBCs in shear �ow. As shown in Fig. 3.10, at T = 0, two RBCs are placed

in a shear �ow u = [z, 0, 0] in free-space. We �rst compute a reference solution without collision

handling but with expensive adaptive fully implicit time-stepping to ensure accurate resolution

of the lubrication layer between RBCs. This reference simulatation used spherical harmonics of

order 32 and the time step had to be reduced to 6.5 × 10−4 to prevent collisions. In Fig. 3.11, we

show the convergence for the error in the centers of mass of each RBC as a function of the time-

step size. We use spherical harmonic orders 16 and 32 for the spatial discretization to demonstrate

the dominance of the time-stepping error. We observe �rst-order convergence with our locally-

implicit backward Euler scheme which con�rms that our collision resolution algorithm does not

have a signi�cant impact on time-stepping accuracy.

99

Figure 3.10: Snapshots of two vesicles in shear flow. AtT = 0, two vesicles are placed at [−5.5, 0, 0]
and [0, 0, 0] respectively.

102 103 104

10−1

100

Number of time steps (T /∆t)

Er
ro
ri
n
ce
nt
er

of
m
as
s

p = 32
p = 16
O(∆t)

Figure 3.11: Temporal error convergence of shear flow simulation in Fig. 3.10. Shown is the error
in the final (T = 25) centroid location as we decrease the time step size for two spherical harmonic orders
16 and 32. We observe O(∆t) convergence in time and hence the collission detection algorithm converges
at the same order as the time stepper.

3.5.4 High volume fraction

The RBC volume fraction, i.e., the ratio of volume occupied by RBCs compared to the overall blood

volume is 36-48% in healthy women and 40-54% in healthy men [Billett 1990]. As can be seen

in the tables in Figs. 3.3 and 3.4, the volume fraction in our weak scaling simulations is below

these values, which is mostly due to the procedure used to �ll the blood vessel with RBCs (see the

discussion in Section 3.5.1). However, RBC volume fractions in capillaries and small arteries are

known to be be around 10-20% [Wang et al. 2013; Saadat et al. 2019], which our scaling simulations

achieve. To demonstrate that we can simulate even higher volume fraction blood �ows, Fig. 3.5

shows a test of 140 RBCs sedimenting under a gravitational force in a small capsule. The volume

100

fraction for this example is 47%, calculated by dividing the amount of volume occupied by RBCs

by the volume of the capsule. By the end of the simulation, we achieve a volume fraction of 55%

in the lower part of the domain (determined by bounding the RBCs by a tighter cylinder than the

original domain boundary) since the RBCs have become more tightly packed. While such high

volume fractions typically do not occur in capillary �ow on average, in some scenarios (local

�uctuations, sedimentation, micro�uidics) these high concentrations need to be handled.

3.6 Conclusion

We have shown that our parallel platform for the simulation of red blood cell �ows is capable

of accurately resolved long-time simulation of red blood cell �ows in complex vessel networks.

We are able to achieve realistic cell volume fractions of over 47%, while avoiding collisions be-

tween cells or with the blood vessel walls. Incorporating blood vessels into red blood cell sim-

ulations requires solving a boundary integral equation, for which we use GMRES. Each GMRES

iteration computes a matrix-vector product, which in turn involves singular quadrature and an

FMM evaluation; the latter dominates the computation time. To avoid collisions, we solve a non-

linear complementarity problem in the implicit part of each time step. This requires repeated

assembly of sparse matrices that, in principle, couple all cells globally. Nevertheless, solving this

complementarity system yields close-to-optimal strong and weak scaling in our tests.

101

4 | Conclusion

We have a scalable simulation platform with for RBC �ows through capillaries using boundary

integral equations. We �rst presented a robust solver for elliptic PDEs on 3D rigid geometries. We

thoroughly studied the behavior and performance of this solver on a variety of geometries and

compared it with a competitive state-of-the-art solver. We then parallelized the solver, combined

it with boundary integral-based vesicle simulation algorithms and adapted collision-free time

stepping to include rigid boundaries. We have scaled our simulations and the parallel solver

to thousands of cores and demonstrated the practicality of using such simulations to reproduce

qualitatively representative physical RBCs �ows.

4.1 Future Work

The comparison between hedgehog and [Ying et al. 2006b] in Section 2.6.2 demonstrated the ef-

�ciency of a local quadrature scheme compared to a global one. Moreover, the scaling results

in Section 3.5.2 demonstrate that parallel hedgehog is the dominant cost of the simulation. In

order to scale RBC simulations beyond the regime explored here, the parallel boundary solver

needs to be improved. A key improvement will be the adpotion of a local singular quadrature

approach. Parallel scaling is largely determined by communication costs and hedgehog performs

parallel communication entirely through PVFMM . Reducing the number of total points passed

to PVFMM is the best way to improve parallel scaling, since this reduces the overall size of the

102

distributed octree. The local corrections to an inaccurate FMM evaluation can be highly vector-

ized and require no additional parallel communication. Moreover, the local corrections can be

precomputed when solving the integral equation with GMRES. These two facts will dramatically

increase the performance of hedgehog .

Another area for improvement is in extrapolation procedure of hedgehog . Equally spaced

points serve as a fairly bad interpolant, but we have shown that we’re able to use low order

polynomials to extrapolate reliably. An important question in the future of hedgehog is how to

construct an optimal 1D extrapolation procedure for harmonic functions. An equally important

concern is the scheme’s inability to resolve oscillatory PDEs such as the Helmholtz equation, due

to the di�erence in resolution achieved on the boundary by q2 quadrature points and the p check

points. A trigonometric extrapolation procedure, coupled with a sampling rate comensurate with

the solution’s underlying frequency, is one possible approach.

[Wala and Klöckner 2018a, Section 3.3.1] has shown that QBX truncation error is in�uenced

by surface curvature; hedgehog experiences a similar phenomenon. An adaptive placement of

check points, determined by surface curvature and overall extrapolation error, would further in-

crease accuracy without increasing cost. Additionally, an approach like Richardson extrapolation

could further improve accuracy. Placing several sets of check points for decreasing values of r

and evaluating them with a single FMM call would allow for better approximate extrapolation by

merging the individual results. Several algorithms in Section 2.3 can be improved. The closest

point algorithm in Appendix A.2 can be dramatically improved by leveraging subdivision proper-

ties of the Bézier surface representation. We can compute the closest point to the control points of

a patch, subdivide the patch, and recursively repeat the process to arrive at more accurate initial

guess for the closest point for the 2D Newton method in Appendix A.2. This guess can further cull

the 1D optimizations based on the quadrant of the initial guess. Preliminary investigation shows

that this outperforms the method detailed in Section 2.3.6.

The point marking algorithm in Section 2.3.6 and the upsampling algorithm in Section 2.3.5

103

are based on near-zone bounding boxes. A proper quadrature error heuristic similar to [af Klin-

teberg and Tornberg 2017] would dramatically reduce the amount of upsampling required to

guarantee the accuracy of hedgehog . This would improve the third plot in Fig. 2.11 by more

accurately determine which points require evaluation via hedgehog , both of which will reduce

overall cost. The approach taken in [af Klinteberg et al. 2020] shows exceptional promise toward

this end.

The re�nement algorithms in Sections 2.3.4 and 2.3.5 require parallelization for hedgehog to

be a useful computational tool. This requires minor changes to the parallel closest point algorithm

in Section 3.3.3 and the parallel near-pair algorithm in Section 3.4.

Recent work [Wang et al. 2021] has demonstrated that the collision detection scheme in [Har-

mon et al. 2011] used in Chapter 3 and [Lu et al. 2019, 2018] seems to miss collisions with large

separation distances. It appears from [Wang et al. 2021, Section 6] that [Harmon et al. 2011] en-

tirely misses a relatively large number of collisions across all datasets. The collision geometries in

Chapter 3 are quite benign compared to the datasets in [Wang et al. 2021], since RBCs and vessels

are represented by spherical harmonics and high order polynomials, respectively. Though we

verify a collision-free state at each time step in Chapter 3, addressing this shortcoming is crucial.

[Li et al. 2020; Ferguson et al. 2021] presents a viable approach, but currently only operates on a

single compute node. Implementing a scalable parallel version of [Ferguson et al. 2021] is a key

step in simulating more complex geometries or sharp rigid particulates.

Finally, incorporating in-plane shear forces into the RBC model will dramatically improve the

overall model accuracy in Chapter 3. Recent optical tweezer exerpiments [Mills et al. 2004; Li

et al. 2005] have shown that the cytoskeletal structure of RBCs can withstand surprisingly large

amounts of shear force in extreme circumstances. [Fai et al. 2017] could serve as an e�ective

approach. Moreover, quantifying the impact of cytoskeletal modeling on overall RBC �ows would

be of great interest.

104

A | Appendix

A.1 Kernels

Here we list the elliptic PDE’s investigated in this work along with the associated kernels for their

single- and double-layer potentials. In this section, x and y are in R3, x is the point of evaluation

andy is a point on the boundary and r = x −y. Recall thatn is the outward pointing unit normal

aty to the domain boundary Γ. We denote the single layer kernel, also known as the fundamental

solution or Green’s function of the PDE, by S and the double layer kernel by D.

1. Laplace equation:

∆u = 0

S(x ,y) = 1
4π

1
‖r ‖ , D(x ,y) = − 1

4π
r · n
‖r ‖3

2. Stokes equation:

µ∆u − ∇p = 0, ∇ · u = 0

S(x ,y) = 1
8πµ

(
1
‖r ‖ +

r ⊗ r
‖r ‖3

)
, D(x ,y) = − 3

4µπ
r ⊗ r
‖r ‖5 (r · n)

105

3. Elasticity equation:

µ∆u − µ

1 − 2ν ∇(∇ · u) = 0

S(x ,y) = 1
16πµ(1 − ν)

(
3 − 4ν
‖r ‖ +

r ⊗ r
‖r ‖3

)
,

D(x ,y) = − 1 − 2ν
8µ(1 − ν)

(
1
‖r ‖3 (r ⊗ n − (r · n)I − n ⊗ r) −

3
1 − 2ν

(r · n)(r ⊗ r)
‖r ‖5

)

A.2 Computing the closest point on a patch

We include our algorithm to �nd the closest point y on a patch P to a point x ∈ R3 in the section

for completeness. For a surface or quadrature patch P and point x ∈ R3, we need to compute a

point y = P(s∗, t∗) such that

(s∗, t∗) = arg min
(s,t)∈[−1,1]2

‖x − P(s, t)‖22 = arg min
(s,t)∈[−1,1]2

r (s, t) · r (s, t) (A.1)

where r = r (s, t) = x − P(s, t); let д(s, t) = r · r . We �rst consider the unconstrained problem

(s∗, t∗) = arg min
(s,t)∈R2

‖x − P(s, t)‖22 = arg min
(s,t)∈R2

ψ (s, t) (A.2)

We solve this optimization problem with Newton’s method. The �rst and second derivatives ofψ

can be evaluated e�ciently, since they are polynomials of �xed order. The gradient and Hessian

of the objective function are:

∇ψ =
©«
−Ps · r
−Pt · r

ª®®¬ , ∇2ψ =
©«
Ps · Ps − r · Pss Ps · Pt − r · Pst
Ps · Pt − r · Pst Pt · Pt − r · Ptt

ª®®¬ . (A.3)

106

The optimality conditions are

P∗s · r ∗ = 0, P∗t · r ∗ = 0, (u,v) = (s∗, t∗). (A.4)

at a local optimum (s∗, t∗).
Letψi = ψ (si , ti), where (si , ti) is the value of the solution during the ith iteration of Newton’s

method. To solve for the descent direction in Newton’s method, we need to solve

∇2ψi ηi = −∇ψi (A.5)

where ηi = (∆si ,∆ti) is the ith Newton update to (si , ti) such that

si+1 = αi∆si + si , ti+1 = αi∆ti + ti (A.6)

We use four iterations of a backtracking line search with an Armijo condition to compute the

step length αi to ensure an appropriate size step is taken in case the initial guess is outside the

region of quadratic convergence. We compute the solution (s∗, t∗) by iterating

(sn, tn) = (sn−1, tn−1) + αn−1ηn−1, while Ps · r > εopt, Pt · r > εopt, (A.7)

until convergence, i.e.,ψi ≈ εopt, r ≈ n(y).
If (s∗, t∗) ∈ (−1, 1)2, then the solution to the unconstrained problem is also the solution to

the constrained problem. However, if the closest point lies in R \ [−1, 1]2, we need to ensure the

inequality constraints are satis�ed. Additionally, if (s∗, t∗) is on the boundary of [−1, 1]2, either

s∗ or t∗ should be exactly zero; with the optimization scheme above, we can only claim that

|s∗ | < εopt (similarly for t∗). To address both of these troubles, we can solve a one-dimensional

projection of Eq. (A.5) on to the boundary of [−1, 1]2. For example, to �nd the closest point along

107

the edge v = 0, the Newton iteration becomes

sn = sn−1 + αn−1
−Ps · r

Ps · Ps − r · Pss , (A.8)

wherePs , Pss andr are evaluated at sn−1. Since the boundary is composed of [−1, t], [1, t], [s,−1], [s, 1]
for s, t ∈ [−1, 1], we solve Eq. (A.8) once for each interval.

This �nal algorithm to compute the closest point is as follows:

1. We solve Eq. (A.5) on an extended parameter domain [−1 − c, 1 + c]2, and terminate the

Newton iteration if (si , ti) walks outside this boundary. If the Newton iteration terminates

inside [−1, 1]2, then we’ve found the closest point. We typically choose c = .2.

2. If the solution is outside [−1, 1]2, we solve Eq. (A.5) along each component of the boundary

of [−1, 1]2, also on an extended parameter domain [−1−c, 1+c], by choosing an initial guess

contained within the interval. The solution to these four problems that yields a minimal

distance to x to used as the closest point, if the solution is inside [−1, 1].

3. If the closest point on the boundary is still outside of [−1, 1]2, the closest point tox is chosen

from P(−1,−1),P(−1, 1),P(1,−1), and P(1, 1) closest to x .

This gives us an algorithm to compute the closest point on a quadrature patch P to x . The 1D and

2D Newton minimizations converge in ten iterations on average.

A.3 Comparison with [Ying et al. 2006b]

To understand the performance of [Ying et al. 2006b] and hedgehog and see the implications

of this complexity di�erence in practice, we now compare the performance of hedgehogwith

that of [Ying et al. 2006b] on several concrete numerical examples. The metric we are inter-

ested is cost for a given relative error. Assuming the surface discretization is O(N), we measure

108

the cost of a method as its total wall time during execution T divided by the total wall time of

an FMM evaluation on the sameO(N) discretization,TFMM. By normalizing by the FMM evaluation

cost, we minimize the dependence of the cost on machine- and implementation-dependent machine-

dependent parameters, such as clock speed, cache size, performance optimizations, etc. We run

the tests in this section on the sphere geometry shown in [Morse et al. 2020a, Figure 8-left] and

continue to focus on the singular quadrature scheme of [Ying et al. 2006b] as described in [Morse

et al. 2020a, Section 6.2].

A.3.1 Complexity comparison

The algorithm of [Ying et al. 2006b] substantially di�ers from hedgehog in two main ways. First,

on-surface singular integral evaluation is computed in [Ying et al. 2006b] by subtracting the in-

accurate part of the FMM -accelerated smooth quadrature rule using a partition-of-unity (POU)

function, then adding an accurately computed part singular integral close to singularity via polar

quadrature. Second, [Ying et al. 2006b] sets more algorithms parameters a priori rather than de-

termining them adaptively. Speci�c choices used in [Ying et al. 2006b] may be considered optimal

for the uniform volume point distribution described in Section 2.5.4, but need to be adjusted based

on additional analysis for other distribution types. Additionally, [Ying et al. 2006b] has a trade-o�

between accuracy and complexity proportional to the POU radius dP , which hedgehog does not

have.

The intermediate and far zone complexity estimates are similar for both hedgehog and [Ying

et al. 2006b]. The near-zone complexity for the algorithm of [Ying et al. 2006b] has an additional

term of the form O(Nd2
P/L2

max), where dP is the radius of the POU function. For simplicity, we use

Lmax as a measure of surface sampling density as in Sections 2.5.1 and 2.5.2, since Lmax and the h

from [Ying et al. 2006b] di�er by a constant.

The error of [Ying et al. 2006b]’s singular evaluation isO(d−2q−1
P L

2q
max), for an optimally chosen

local quadrature rule. We note that the factor d−2q−1
P is entirely an artifact of using a compactly

109

supported POU function to localize the singular integral computation. As observed in [Ying et al.

2006b], to achieve optimal convergence as the surface is re�ned, dP needs to decrease slower than

Lmax, i.e., slower than N −1/2, under the assumptions on point distribution in Ω from Section 2.5.4.

In [Ying et al. 2006b], dP = O(N −1/2(1+γ)) is suggested. As a result, the overall complexity is

O(N 1+γ) and grows faster than N .

By choosingγ = 1
2 , [Ying et al. 2006b]’s �nal complexity becomesO(N 3/2) in order to produce

an error proportional to N (−2q+1)/4. In other words, the work needed for an error ε is proportional

to ε−6/(2q−1), which is asymptotically higher than hedgehog (with ε from Section 2.5.2). On the

other hand, our method has the disadvantage of requiring p check point evaluations for every

sample point in Nnear. This requires an FMM call that is (m + p)-times larger than [Ying et al.

2006b]. In common use cases, such as solving [Morse et al. 2020a, Equation 5] via GMRES, repeated

hedgehog evaluations through a more expensive FMM can require more work in practice for lower

accuracy than [Ying et al. 2006b].

A.3.2 Experimental comparison.

To understand the performance of these two methods and see the implications of this complexity

di�erence in practice, we now compare the performance of hedgehogwith that of [Ying et al.

2006b] on several concrete numerical examples. The metric we are interested is cost for a given

relative error. Assuming the surface discretization isO(N), we measure the cost of a method as its

total wall time during executionT divided by the total wall time of an FMM evaluation on the same

O(N) discretization, TFMM. By normalizing by the FMM evaluation cost, we minimize the depen-

dence of the cost on machine- and implementation-dependent machine-dependent parameters,

such as clock speed, cache size, performance optimizations, etc.

Comparison on C∞ surface of [Ying and Zorin 2004] An important contribution of [Ying

et al. 2006b] was the use of a C∞ surface representation, �rst introduced in [Ying and Zorin

110

2004], allowing for exponential accuracy via the trapezoidal rule, and easy resampling for singu-

lar quadrature. To fairly compare the two quadrature methods, we have implemented a modi�ed

version of hedgehog on the surface representation of [Ying and Zorin 2004]. The algorithm of

[Morse et al. 2020a, Section 3.1] has the following modi�cations: (i) we discretize the vertex-

centered patches of [Ying and Zorin 2004] with the tensor-product trapezoidal rule for com-

pactly supported functions with spacing parameter h, as in [Ying et al. 2006b]; (ii) the upsampled

quadrature rule uses a trapezoidal rule with spacing h/4; (iii) density interpolation is computed

with FFT ’s, as in [Ying et al. 2006b]; the rest of the algorithm proceeds unchanged. This essen-

tially matches [Morse et al. 2020a, Section 3.1] but uses the discretization scheme of [Ying et al.

2006b] instead of Clenshaw-Curtis.

For each of the tests in this section, we choose some initial spacing parameter h0 to discretize

the surface of [Ying and Zorin 2004] as in [Ying et al. 2006b] and use the same 16× upsampled grid

to evaluate both hedgehog and [Ying et al. 2006b]. We apply the modi�ed hedgehog algorithm

and the scheme of [Ying et al. 2006b] with spacing h0 and compute the relative error and collect

timing statistics. We repeat this test with h0/2i for i = 1, . . . 4 and plot the results. This ensures

that the smooth quadrature rule used by both methods have the same resolution.

We choose the �oating partition of unity size in [Ying et al. 2006b] to be
√
h as in the original

work. As in the previous section, we choose the parameters r and R of hedgehog to be O(
√
h) to

observe standard convergence behavior. For both quadrature methods, we use a multipole order

of 16 for PVFMM with at most 250 points in each leaf box and with the same initial spacing.

In Figs. A.1 and A.2, we summarize our results for two test cases. In Fig. A.1, we evaluate

[Morse et al. 2020a, Equation 8] using one-sided hedgehog and the singular quadrature method

of [Ying et al. 2006b] with the density ϕ = 1, in order to demonstrate their behavior without

interaction with GMRES. In Fig. A.2, we construct a boundary condition using [Morse et al. 2020a,

Equation 25] with random charge values and solve [Morse et al. 2020a, Equation 5] using two-

sided hedgehog and with the singular quadrature method of [Ying et al. 2006b] inside of GMRES.

111

We then evaluate the singular integral at a �ner discretization of the surface using either one-

sided hedgehog or [Ying et al. 2006b], respectively. From left to right, each plot details the total

cost of each scheme, the cost of each subroutine for hedgehog (denoted HH) and the singular

quadrature scheme of [Ying et al. 2006b] (denoted POU), and the relative error as a function of

h. Each data point in the plots, from right to left, is the result of running the method on a dis-

cretization with spacing h0/2i for i = 0, . . . , 4. We plot the cost of both schemes the cost of each

algorithmic step as a function of their computed relative error. In each �gure, we present re-

sults for a Laplace problem (top) and an elasticity problem (bottom), to highlight the di�erence

in performance between scalar and vector kernels.

As expected, the hedgehog total cost curves lie somewhere between 1 and 10, since the re-

quired FMM evaluation is (m + p)-times larger than N . This step is the dominant cost: the next

most expensive step is density interpolation, which is two orders of magnitude faster. Initially,

the main cost of [Ying et al. 2006b] is FMM evaluation time, but eventually the local correction

cost begins to dominant. Note that the hedgehog and [Ying et al. 2006b]-FMM curves are not quite

�at, due to the initial quadratic complexity of a shallow FMM tree.

From Figs. A.1 and A.2, we observe a higher convergence rate for hedgehog than [Ying et al.

2006b], except for the elasticity solve in Fig. A.2-bottom where the methods perform about equally.

This allows the cost of hedgehog to decrease below [Ying et al. 2006b] for errors less than 10−7

for Laplace problems. More importantly, however, [Ying et al. 2006b] outperforms hedgehog for

elasticity problems for all tested discretizations, and also for low and moderate accuracy Laplace

problems. This is due to the greater cost of a vector FMM evaluation compared to a scalar one: the

m+p factor saved in the FMM evaluation of [Ying et al. 2006b] can be accelerated more e�ciently

with the method’s small dense linear algebra computations. This means that a local singular

quadrature method of worse complexity can beat a global method, simply by virtue of reduc-

ing the FMM size. Moreover, our implementation of [Ying et al. 2006b] is not highly optimized,

so we can expect a well-engineered POU singular quadrature implementation such as [Malhotra

112

10 8 10 7 10 6 10 5 10 4 10 3 10 2

10 2

10 1

100

101

T/
T F

M
M

10 8 10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|

HH FMM
HH extrapolation

HH density interpolation
HH total

POU FMM
POU subtraction

POU polar quadrature
POU FFT interpolation

POU total
HH rel. error

h6.4

POU rel. error
h4.3

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

h

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

10 7 10 6 10 5 10 4 10 3 10 2

10 3

10 2

10 1

100

101

T/
T F

M
M

10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|

HH FMM
HH extrapolation

HH density interpolation
HH total

POU FMM
POU subtraction

POU polar quadrature
POU FFT interpolation

POU total
HH rel. error

h6.6

POU rel. error
h4.0

10 7 10 6 10 5 10 4 10 3 10 2 10 1

h

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

Figure A.1: Comparison of hedgehog (HH) versus [Ying et al. 2006b] (POU) on the surface repre-
sentation of [Ying and Zorin 2004] evaluating double-layer potential with ϕ = 1. Laplace (top)
and elasticity (bo�om) problems solved on the sphere shown in [Morse et al. 2020a, Figure 8-le�]. From
le� to right, we plot the total cost of each scheme, the cost of each subroutine for hedgehog (blue) and the
singular quadrature scheme of [Ying et al. 2006b] (red), and the relative error as a function of h. The plots
show the cost and relative error for h0 = .3 representing the right-most data point and each point to the
le� corresponding to a spacing of hi = h0/2i . For the Laplace problem, we choose r = .186

√
h, R = 1.12

√
h

and p = 6 for hedgehog parameters; for the elasticity problem, we choose r = .133
√
h, R = .8

√
h and p = 6.

The initial spacing parameter is h0 = .3.

et al. 2019] to widen this gap. By noting the large di�erence between the hedgehog FMM cost

and the hedgehog density interpolation, we can reasonably infer that a local hedgehog scheme

should narrow this gap and outperform [Ying et al. 2006b], assuming that this transition does not

113

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2

10 2

10 1

100

101

T/
T F

M
M

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|

HH FMM
HH extrapolation

HH density interpolation
HH total

POU FMM
POU subtraction

POU polar quadrature
POU FFT interpolation

POU total
HH rel. error

h6.0

POU rel. error
h4.3

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

h

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

10 7 10 6 10 5 10 4 10 3 10 2

10 3

10 2

10 1

100

101

T/
T F

M
M

10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|

HH FMM
HH extrapolation

HH density interpolation
HH total

POU FMM
POU subtraction

POU polar quadrature
POU FFT interpolation

POU total
HH rel. error

h4.0

POU rel. error
h4.5

10 7 10 6 10 5 10 4 10 3 10 2 10 1

h

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

Figure A.2: Comparison of hedgehog versus [Ying et al. 2006b] on the surface representation of
[Ying and Zorin 2004] solving via GMRES for uc . This figure’s format is similar to Fig. A.1. For the
Laplace problem, we choose r = .028

√
h, R = .172

√
h and p = 6 for hedgehog parameters; for the elasticity

problem, we choose r = .042
√
h, R = .253

√
h and p = 6. The initial spacing parameter is h0 = .3.

dramatically a�ect error convergence.

114

A.4 Derivation of Heuristic 2.1

We are interested in computing the error incurred when approximating a 2D surface integral with

an interpolatory quadrature rule. In 1D on the interval [−1, 1], we’re interested in the quantity

Rq[f] = I [f] −Qq[f] (A.9)

where

I [f] =
∫ 1

−1
f (x)dx (A.10)

Qq[f] =
q∑
i=0

f (xi)wi , (A.11)

(A.12)

for quadrature weights wi for a q-point quadrature rule. For a 2D double integral, we de�ne a

similar relationship between the remainder, the exact integral and the qth order quadrature rule:

R(2)q [f] = I (2)[f] −Q (2)q [f] (A.13)

where

I (2)[f] =
∫ 1

−1

∫ 1

−1
f (s, t)dsdt (A.14)

Q (2)q [f] =
q∑
j=0

q∑
i=0

f (si , tj)wiwj , (A.15)

For a function of two variables f (s, t), we will denote Is[f] =
∫ 1
−1 f (s, ·)ds as integration with

respect to the s variable only, which produces a function of t . The same subscript notation applies

to Rq,s[f] and Qq,s[f] and use similar notation for t : we apply the 1D functional to the variable in

115

the subscript, producing a 1D function in the remaining variable. We observe that

I (2)[f] =
∫ 1

−1

(∫ 1

−1
f (s, t)ds

)
dt =

∫ 1

−1
Is[f]dt = It [Is[f]] (A.16)

Following the discussion in [af Klinteberg and Tornberg 2017], we substitute into Eq. (A.16) and

have

I (2)[f] = It [Rq,s[f] +Qq,s[f]] (A.17)

= Rq,t [Rq,s[f] +Qq,s[f]] +Qq,t [Rq,s[f] +Qq,s[f]] (A.18)

= Rq,t [Rq,s[f]] +Qq,s[Rq,t [f]] +Qq,t [Rq,s[f]] +Qq,t [Qq,s[f]] (A.19)

We assume that the higher-order “remainder of remainder” term contributes negligibly to the

error. Although it has been shown that this term has a non-trivial contribution to a tight error

estimate [Elliott et al. 2015], we are able to provide a su�ciently tight upper bound. For large q,

the quadrature rule approaches the value of the integral, i.e.,Qq,β ≈ Iβ for β = s, t , we’re left with:

I (2)[f] ≈ Is[Rq,t [f]] + It [Rq,s[f]] +Q (2)q [f], (A.20)

and hence:

R(2)q [f] . Is[Rq,t [f]] + It [Rq,s[f]], (A.21)

where .means "approximately less than or equal to." From [Trefethen 2008, Theorem 5.1], we re-

call that for a 1D function θ de�ned on [−1, 1], ifQq[θ] is computed with Clenshaw-Curtis quadra-

ture, θ isCk and ‖θ (k)‖T < V on [−1, 1] for real �niteV , then for su�ciently large q, the following

inequality holds

Rq[θ] ≤ 32V
15πk(2q + 1 − k)k , (A.22)

where ‖α(x)‖T = ‖α ′/
√

1 − x2‖1. We’re interested in integrating a function θ̃ over an interval

116

[−h,h] for various h. If θ̃ is Ck and ‖θ̃ ‖T < V ′ on [−h,h] for a real constant V ′ independent of h,

then we can de�ne θ (x) = θ̃ (hx) on [−1, 1] and apply Eq. (A.22):

Rq[θ̃] ≤ 32hk+1V ′

15πk(2q + 1 − k)k . (A.23)

This follows directly from the proof of [Trefethen 2008, Theorem 4.2] applied to θ by replacing θ

with θ̃ (hx) and noting that θ (k)(x) = hkθ̃ (k)(hx). The change of variables produces the �rst power

of h, while each of the k integration by parts produces an additional power of h. In the context

of hedgehog , the size of h is proportional to the edge length of the subdomain Di outlined in

Section 2.2.2.

Applying Eq. (A.23) to Eq. (A.21), and again letting f (s, t) = Θ(hs,ht), gives us

R(2)q [f] .
32hk+1

15πk(2q + 1 − k)k
[
Is[V ′t (s)] + It [V ′s (t)]

]
(A.24)

where V ′t (s) = maxt ‖Θ(k)(hs,ht)‖T and V ′s (t) = maxs ‖Θ(k)(hs,ht)‖T for �xed values of s, t . If we

can choose a Ṽ that is strictly greater than V ′s (t) and V ′t (s) for any s, t in I(2), we are left with

R(2)q [f] .
128hk+1Ṽ

15πk(2q + 1 − k)k . (A.25)

Applying this to the integration of double layer potentials, we can simply let Ṽ be the largest

variation of the kth partial derivatives of the integrand of any single patch in Eq. (2.7). In fact,

we know that this value is achieved at the projection of x on the patch Pi closest to x , i.e.,

(s∗, t∗) = argminI(2) ‖x − Pi(s, t)‖2. We can also choose h = maxi hi to observe standard high-

order convergence as a function of patch domain size, which we summarize in the following

theorem. The smoothness and bounded variation assumptions required to apply Eq. (A.22) to our

layer potential follow directly from the smoothness of u(x) in Ω. Our heuristic directly follows.

117

Bibliography

Abduljabbar, M., Farhan, M. A., Al-Harthi, N., Chen, R., Yokota, R., Bagci, H., and Keyes, D. (2019).

Extreme scale FMM-accelerated boundary integral equation solver for wave scattering. SIAM

Journal on Scienti�c Computing, 41(3):C245–C268.

af Klinteberg, L. and Barnett, A. H. (2019). Accurate quadrature of nearly singular line integrals

in two and three dimensions by singularity swapping. arXiv preprint arXiv:1910.09899.

af Klinteberg, L., Sorgentone, C., and Tornberg, A.-K. (2020). Quadrature error estimates for layer

potentials evaluated near curved surfaces in three dimensions. arXiv preprint arXiv:2012.06870.

af Klinteberg, L. and Tornberg, A.-K. (2016). A fast integral equation method for solid particles in

viscous �ow using quadrature by expansion. Journal of Computational Physics, 326:420–445.

af Klinteberg, L. and Tornberg, A.-K. (2017). Error estimation for Quadrature by Expansion in

layer potential evaluation. Advances in Computational Mathematics, 43(1):195–234.

af Klinteberg, L. and Tornberg, A.-K. (2018). Adaptive Quadrature by Expansion for layer potential

evaluation in two dimensions. SIAM Journal on Scienti�c Computing, 40(3):A1225–A1249.

Al Quddus, N., Moussa, W. A., and Bhattacharjee, S. (2008). Motion of a spherical particle in a

cylindrical channel using arbitrary lagrangian–eulerian method. Journal of colloid and interface

science, 317(2):620–630.

118

Alpert, B. K. (1999). Hybrid Gauss-trapezoidal quadrature rules. SIAM Journal on Scienti�c Com-

puting, 20(5):1551–1584.

Atkinson, K. and Han, W. (2009). Numerical solution of Fredholm integral equations of the second

kind. In Theoretical Numerical Analysis, pages 473–549. Springer.

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout,

V., Gropp, W., Kaushik, D., et al. (2017). Petsc users manual revision 3.8. Technical report,

Argonne National Lab.(ANL), Argonne, IL (United States).

Balogh, P. and Bagchi, P. (2017a). A computational approach to modeling cellular-scale blood

�ow in complex geometry. Journal of Computational Physics, 334:280–307.

Balogh, P. and Bagchi, P. (2017b). Direct numerical simulation of cellular-scale blood �ow in 3d

microvascular networks. Biophysical journal, 113(12):2815–2826.

Barenholz, Y., Moore, N. F., and Wagner, R. R. (1976). Enveloped viruses as model membrane

systems: microviscosity of vesicular stomatitis virus and host cell membranes. Biochemistry,

15(16):3563–3570.

Barnett, A. H. (2014). Evaluation of layer potentials close to the boundary for Laplace and

Helmholtz problems on analytic planar domains. SIAM Journal on Scienti�c Computing,

36(2):A427–A451.

Barnett, A. H. and Betcke, T. (2008). Stability and convergence of the method of fundamen-

tal solutions for Helmholtz problems on analytic domains. Journal of Computational Physics,

227(14):7003–7026.

Beale, J. T. (2004). A grid-based boundary integral method for elliptic problems in three dimen-

sions. SIAM Journal on Numerical Analysis, 42(2):599–620.

119

Beale, J. T., Ying, W., and Wilson, J. R. (2016). A simple method for computing singular or nearly

singular integrals on closed surfaces. Communications in Computational Physics, 20(3):733–753.

Berrut, J.-P. and Trefethen, L. N. (2004). Barycentric lagrange interpolation. Siam Review,

46(3):501–517.

Bespalov, A., Betcke, T., Haberl, A., and Praetorius, D. (2019). Adaptive BEM with optimal con-

vergence rates for the Helmholtz equation. Computer Methods in Applied Mechanics and Engi-

neering, 346:260–287.

Betcke, T., Haberl, A., and Praetorius, D. (2019). Adaptive boundary element methods for the com-

putation of the electrostatic capacity on complex polyhedra. arXiv preprint arXiv:1901.08393.

Billett, H. H. (1990). Hemoglobin and hematocrit. In Clinical Methods: The History, Physical, and

Laboratory Examinations. 3rd edition. Butterworths.

Bremer, J. and Gimbutas, Z. (2012). A Nyström method for weakly singular integral operators on

surfaces. Journal of computational physics, 231(14):4885–4903.

Bremer, J. and Gimbutas, Z. (2013). On the numerical evaluation of the singular integrals of

scattering theory. Journal of Computational Physics, 251:327–343.

Bruno, O. P. and Kunyansky, L. A. (2001). A fast, high-order algorithm for the solution of surface

scattering problems: basic implementation, tests, and applications. Journal of Computational

Physics, 169(1):80–110.

Bruno, O. P. and Lintner, S. K. (2013). A high-order integral solver for scalar problems of di�rac-

tion by screens and apertures in three-dimensional space. Journal of Computational Physics,

252:250–274.

120

Burstedde, C., Wilcox, L. C., and Ghattas, O. (2011). p4est: Scalable algorithms for parallel adap-

tive mesh re�nement on forests of octrees. SIAM Journal on Scienti�c Computing, 33(3):1103–

1133.

Canham, P. B. (1970). The minimum energy of bending as a possible explanation of the biconcave

shape of the human red blood cell. Journal of theoretical biology, 26(1):61–81.

Caro, C. G., Pedley, T., Schroter, R., and Seed, W. (2012). The mechanics of the circulation. Cam-

bridge University Press.

Carreira, A. C., de Almeida, R. F., and Silva, L. C. (2017). Development of lysosome-mimicking

vesicles to study the e�ect of abnormal accumulation of sphingosine on membrane properties.

Scienti�c reports, 7(1):1–16.

Carvalho, C., Khatri, S., and Kim, A. D. (2018a). Asymptotic analysis for close evaluation of layer

potentials. Journal of Computational Physics, 355:327–341.

Carvalho, C., Khatri, S., and Kim, A. D. (2018b). Asymptotic approximations for the close evalu-

ation of double-layer potentials. arXiv preprint arXiv:1810.02483.

Chaillat, S., Darbas, M., and Le Louër, F. (2017a). Fast iterative boundary element methods for

high-frequency scattering problems in 3D elastodynamics. Journal of Computational Physics,

341:429–446.

Chaillat, S., Desiderio, L., and Ciarlet, P. (2017b). Theory and implementation of H-matrix based

iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels. Journal of

Computational physics, 351:165–186.

Cortinovis, A., Crippa, A., Cavalli, R., Corti, M., and Cattaneo, L. (2006). Capillary blood viscosity

in microcirculation. Clinical hemorheology and microcirculation, 35(1-2):183–192.

121

Demanet, L. and Townsend, A. (2016). Stable extrapolation of analytic functions. arXiv preprint

arXiv:1605.09601.

Du, P., Zhao, J., Cao, W., and Wang, Y. (2017). Dccd: Distributed n-body rigid continuous collision

detection for large-scale virtual environments. Arabian Journal for Science and Engineering,

42(8):3141–3147.

Elliott, D., Johnston, B. M., and Johnston, P. R. (2008). Clenshaw–Curtis and Gauss–Legendre

quadrature for certain boundary element integrals. SIAM Journal on Scienti�c Computing,

31(1):510–530.

Elliott, D., Johnston, B. M., and Johnston, P. R. (2015). A complete error analysis for the evaluation

of a two-dimensional nearly singular boundary element integral. Journal of Computational and

Applied Mathematics, 279:261–276.

Epstein, C. L., Greengard, L., and Klockner, A. (2013). On the convergence of local expansions of

layer potentials. SIAM Journal on Numerical Analysis, 51(5):2660–2679.

Fai, T. G., Leo-Macias, A., Stokes, D. L., and Peskin, C. S. (2017). Image-based model of the spectrin

cytoskeleton for red blood cell simulation. PLoS computational biology, 13(10):e1005790.

Fang, S. (1984). A linearization method for generalized complementarity problems. IEEE transac-

tions on automatic control, 29(10):930–933.

Farin, G. (1988). Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide.

Academic Press Professional, Inc., San Diego, CA, USA.

Ferguson, Z., Li, M., Schneider, T., Gil-Ureta, F., Langlois, T., Jiang, C., Zorin, D., Kaufman, D. M.,

and Panozzo, D. (2021). Intersection-free rigid body dynamics. ACM Transactions on Graphics

(SIGGRAPH), 40(4).

122

Freund, J. B. (2014). Numerical simulation of �owing blood cells. Annual review of �uid mechanics,

46:67–95.

Gan, Q. and Watanabe, S. (2018). Synaptic vesicle endocytosis in di�erent model systems. Frontiers

in cellular neuroscience, 12:171.

Ganesh, M. and Graham, I. G. (2004). A high-order algorithm for obstacle scattering in three

dimensions. Journal of Computational Physics, 198(1):211–242.

Ghigliotti, G., Rahimian, A., Biros, G., and Misbah, C. (2011). Vesicle migration and spatial orga-

nization driven by �ow line curvature. Physical Review Letters, 106(2):028101.

Gopal, A. and Trefethen, L. N. (2019). Solving Laplace problems with corner singularities via

rational functions. arXiv preprint arXiv:1905.02960.

Gounley, J., Vardhan, M., and Randles, A. (2017). A computational framework to assess the in�u-

ence of changes in vascular geometry on blood �ow. In Proceedings of the Platform for Advanced

Scienti�c Computing Conference, page 2. ACM.

Graham, I. G. and Sloan, I. H. (2002). Fully discrete spectral boundary integral methods for

helmholtz problems on smooth closed surfaces in R3. Numerische Mathematik, 92(2):289–323.

Greengard, L., O’Neil, M., Rachh, M., and Vico, F. (2021). Fast multipole methods for the evaluation

of layer potentials with locally-corrected quadratures. Journal of Computational Physics: X,

10:100092.

Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle simulations. Journal of com-

putational physics, 73(2):325–348.

Gri�th, B. E. (2012). Immersed boundary model of aortic heart valve dynamics with physiologi-

cal driving and loading conditions. International Journal for Numerical Methods in Biomedical

Engineering, 28(3):317–345.

123

Grinberg, L., Insley, J. A., Morozov, V., Papka, M. E., Karniadakis, G. E., Fedosov, D., and Kumaran,

K. (2011). A new computational paradigm in multiscale simulations: Application to brain blood

�ow. In Proceedings of 2011 International Conference for High Performance Computing, Network-

ing, Storage and Analysis, page 5. ACM.

Harmon, D., Panozzo, D., Sorkine, O., and Zorin, D. (2011). Interference-aware geometric model-

ing. ACM Transactions on Graphics, 30(6):1.

Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments.

Zeitschrift für Naturforschung C, 28(11-12):693–703.

Helsing, J. and Ojala, R. (2008). On the evaluation of layer potentials close to their sources. Journal

of Computational Physics, 227(5):2899–2921.

Horobin, J. T., Sabapathy, S., and Simmonds, M. J. (2019). Red blood cell tolerance to shear stress

above and below the subhemolytic threshold. Biomechanics and modeling in mechanobiology,

pages 1–10.

Hoskins, J. G., Rokhlin, V., and Serkh, K. (2019). On the numerical solution of elliptic partial dif-

ferential equations on polygonal domains. SIAM Journal on Scienti�c Computing, 41(4):A2552–

A2578.

Hughes, T. J., Cottrell, J. A., and Bazilevs, Y. (2005). Isogeometric analysis: CAD, �nite elements,

NURBS, exact geometry and mesh re�nement. Computer methods in applied mechanics and

engineering, 194(39-41):4135–4195.

Huisjes, R., Bogdanova, A., van Solinge, W. W., Schi�elers, R. M., Kaestner, L., and Van Wijk, R.

(2018). Squeezing for life–properties of red blood cell deformability. Frontiers in physiology,

9:656.

124

Iglberger, K. and Rüde, U. (2009). A parallel rigid body dynamics algorithm. In Sips, H., Epema,

D., and Lin, H.-X., editors, Euro-Par 2009 Parallel Processing, pages 760–771, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Jacobson, A., Kavan, L., and Sorkine-Hornung, O. (2013). Robust inside-outside segmentation

using generalized winding numbers. ACM Transactions on Graphics (TOG), 32(4):33.

Järvenpää, S., Taskinen, M., and Ylä-Oijala, P. (2003). Singularity extraction technique for in-

tegral equation methods with higher order basis functions on plane triangles and tetrahedra.

International journal for numerical methods in engineering, 58(8):1149–1165.

Jarvenpaa, S., Taskinen, M., and Ylä-Oijala, P. (2006). Singularity subtraction technique for high-

order polynomial vector basis functions on planar triangles. IEEE transactions on antennas and

propagation, 54(1):42–49.

Kabacaoğlu, G. and Biros, G. (2019). Sorting same-size red blood cells in deep deterministic lateral

displacement devices. Journal of Fluid Mechanics, 859:433–475.

Kapur, S. and Rokhlin, V. (1997). High-order corrected trapezoidal quadrature rules for singular

functions. SIAM Journal on Numerical Analysis, 34(4):1331–1356.

Khatri, S., Kim, A. D., Cortez, R., and Carvalho, C. (2020). Close evaluation of layer potentials in

three dimensions. Journal of Computational Physics, 423:109798.

Kim, D., Heo, J.-P., Huh, J., Kim, J., and Yoon, S.-e. (2009). HPCCD: Hybrid Parallel Continuous

Collision Detection using CPUs and GPUs. Computer Graphics Forum.

Klöckner, A., Barnett, A., Greengard, L., and O’Neil, M. (2013a). Quadrature by Expansion: A new

method for the evaluation of layer potentials. Journal of Computational Physics, 252:332–349.

Klöckner, A., Barnett, A., Greengard, L., and O’Neil, M. (2013b). Quadrature by Expansion: A new

method for the evaluation of layer potentials. Journal of Computational Physics, 252:332–349.

125

Klöckner, A., Barnett, A., Greengard, L., and O’Neil, M. (2013c). Quadrature by expansion: A new

method for the evaluation of layer potentials. Journal of Computational Physics, 252:332–349.

Kraus, M., Wintz, W., Seifert, U., and Lipowsky, R. (1996). Fluid vesicles in shear �ow. Physical

review letters, 77(17):3685.

Kress, R. (1999). Linear integral equations, volume 82 of applied mathematical sciences.

Lee, J. and Smith, N. P. (2008). Theoretical modeling in hemodynamics of microcirculation. Mi-

crocirculation, 15(8):699–714.

Lévy, B. (2015). Geogram.

Li, J., Dao, M., Lim, C., and Suresh, S. (2005). Spectrin-level modeling of the cytoskeleton and

optical tweezers stretching of the erythrocyte. Biophysical journal, 88(5):3707–3719.

Li, M., Ferguson, Z., Schneider, T., Langlois, T., Zorin, D., Panozzo, D., Jiang, C., and Kaufman,

D. M. (2020). Incremental potential contact: Intersection-and inversion-free, large-deformation

dynamics. ACM transactions on graphics.

Linden, M., Ward, J. M., and Cherian, S. (2012). Hematopoietic and lymphoid tissues. In Compar-

ative Anatomy and Histology, pages 309–338. Elsevier.

Liu, F., Harada, T., Lee, Y., and Kim, Y. J. (2010). Real-time collision culling of a million bodies on

graphics processing units. In ACM SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA ’10, pages

154:1–154:8, New York, NY, USA. ACM.

Liu, Y. and Barnett, A. H. (2016). E�cient numerical solution of acoustic scattering from doubly-

periodic arrays of axisymmetric objects. Journal of Computational Physics, 324:226–245.

Lourith, N. and Kanlayavattanakul, M. (2009). Natural surfactants used in cosmetics: glycolipids.

International journal of cosmetic science, 31(4):255–261.

126

Lu, L. (2019). Parallel Contact-Aware Algorithms for Large-Scale Direct Blood Flow Simulations.

PhD thesis, New York University.

Lu, L., Morse, M. J., Rahimian, A., Stadler, G., and Zorin, D. (2019). Scalable simulation of

realistic volume fraction red blood cell �ows through vascular networks. arXiv preprint

arXiv:1909.11085.

Lu, L., Rahimian, A., and Zorin, D. (2017). Contact-aware simulations of particulate Stokesian

suspensions. Journal of Computational Physics, 347C:160–182.

Lu, L., Rahimian, A., and Zorin, D. (2018). Parallel contact-aware simulations of deformable

particles in 3d stokes �ow. arXiv preprint arXiv:1812.04719.

Malhotra, D. and Biros, G. (2015a). PVFMM: A parallel kernel independent FMM for particle and

volume potentials. Communications in Computational Physics, 18(3):808–830.

Malhotra, D. and Biros, G. (2015b). PVFMM: A Parallel Kernel Independent FMM for Particle and

Volume Potentials. Communications in Computational Physics, 18:808–830.

Malhotra, D. and Biros, G. (2016). Algorithm 967: A distributed-memory fast multipole method

for volume potentials. ACM Transactions on Mathematical Software (TOMS), 43(2):17.

Malhotra, D., Cerfon, A., Imbert-Gérard, L.-M., and O’Neil, M. (2019). Taylor states in stellarators:

A fast high-order boundary integral solver. arXiv preprint arXiv:1902.01205.

Malhotra, D., Rahimian, A., Zorin, D., and Biros, G. (2017). A parallel algorithm for long-timescale

simulation of concentrated vesicle suspensions in three dimensions.

Mazhar, H., Heyn, T., and Negrut, D. (2011). A scalable parallel method for large collision detection

problems. 26:37–55.

127

McGrath, J., Jimenez, M., and Bridle, H. (2014). Deterministic lateral displacement for particle

separation: a review. Lab on a Chip, 14(21):4139–4158.

Mikhlin, S. G. (2014). Integral equations: and their applications to certain problems in mechanics,

mathematical physics and technology, volume 4. Elsevier.

Mills, J., Qie, L., Dao, M., Lim, C., and Suresh, S. (2004). Nonlinear elastic and viscoelastic defor-

mation of the human red blood cell with optical tweezers. Molecular & Cellular Biomechanics,

1(3):169.

Morse, M. J., Rahimian, A., and Zorin, D. (2020a). A robust solver for elliptic pdes in 3d complex

geometries. arXiv preprint arXiv:2002.04143.

Morse, M. J., Rahimian, A., and Zorin, D. (2020b). Supplementary material for: A robust solver

for elliptic PDEs in 3D complex geometries. https://cims.nyu.edu/gcl/papers/2020-qbkix3d-

supplementary.pdf.

Nair, N., Pray, A., Villa-Giron, J., Shanker, B., and Wilton, D. (2013). A singularity cancellation

technique for weakly singular integrals on higher order surface descriptions. IEEE Transactions

on Antennas and Propagation, 61(4):2347–2352.

Nazockdast, E., Rahimian, A., Needleman, D., and Shelley, M. (2017). Cytoplasmic �ows as signa-

tures for the mechanics of mitotic positioning. Molecular biology of the cell, 28(23):3261–3270.

Nazockdast, E., Rahimian, A., Zorin, D., and Shelley, M. (2015). Fast and high-order methods for

simulating �ber suspensions applied to cellular mechanics. preprint.

Pabst, S., Koch, A., and Strasser, W. (2010). Fast and Scalable CPU/GPU Collision Detection for

Rigid and Deformable Surfaces. Computer Graphics Forum.

Parton, V. Z. and Perlin, P. I. (1982). Integral equations in elasticity. Imported Pubn.

128

Perdikaris, P., Grinberg, L., and Karniadakis, G. E. (2015). An e�ective fractal-tree closure

model for simulating blood �ow in large arterial networks. Annals of biomedical engineering,

43(6):1432–1442.

Perdikaris, P., Grinberg, L., and Karniadakis, G. E. (2016). Multiscale modeling and simulation of

brain blood �ow. Physics of Fluids, 28(2):021304.

Peskin, C. S. (1977). Numerical analysis of blood �ow in the heart. Journal of computational

physics, 25(3):220–252.

Peyrounette, M., Davit, Y., Quintard, M., and Lorthois, S. (2018). Multiscale modelling of blood

�ow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the

cortex. PloS one, 13(1):e0189474.

Pfeifer, F. (2012). Distribution, formation and regulation of gas vesicles. Nature Reviews Microbi-

ology, 10(10):705–715.

Pironneau, O. (1982). Optimal shape design for elliptic systems. In System Modeling and Opti-

mization, pages 42–66. Springer.

Platte, R. B., Trefethen, L. N., and Kuijlaars, A. B. (2011). Impossibility of fast stable approximation

of analytic functions from equispaced samples. SIAM review, 53(2):308–318.

Potter, R. and Groom, A. (1983). Capillary diameter and geometry in cardiac and skeletal muscle

studied by means of corrosion casts. Microvascular research, 25(1):68–84.

Power, H. and Miranda, G. (1987). Second kind integral equation formulation of Stokes’ �ows

past a particle of arbitrary shape. SIAM Journal on Applied Mathematics, 47(4):689.

Pozrikidis, C. (1992a). Boundary integral and singularity methods for linearized viscous �ow. Cam-

bridge University Press.

129

Pozrikidis, C. (1992b). Boundary integral and singularity methods for linearized viscous �ow. Cam-

bridge Texts in Applied Mathematics. Cambridge University Press, Cambridge.

Quaife, B. and Biros, G. (2014). High-volume fraction simulations of two-dimensional vesicle

suspensions. Journal of Computational Physics, 274:245–267.

Rachh, M., Klöckner, A., and O’Neil, M. (2017). Fast algorithms for Quadrature by Expansion I:

Globally valid expansions. Journal of Computational Physics, 345:706–731.

Rachh, M. and Serkh, K. (2017). On the solution of Stokes equation on regions with corners. arXiv

preprint arXiv:1711.04072.

Rahimian, A., Barnett, A., and Zorin, D. (2018). Ubiquitous evaluation of layer potentials using

Quadrature by Kernel-Independent Expansion. BIT Numerical Mathematics, 58(2):423–456.

Rahimian, A., Lashuk, I., Veerapaneni, S., Chandramowlishwaran, A., Malhotra, D., Moon, L.,

Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., et al. (2010). Petascale direct numerical

simulation of blood �ow on 200k cores and heterogeneous architectures. In Proceedings of the

2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–11. IEEE Computer Society.

Rahimian, A., Veerapaneni, S. K., Zorin, D., and Biros, G. (2015). Boundary integral method for the

�ow of vesicles with viscosity contrast in three dimensions. Journal of Computational Physics,

298:766–786.

Randles, A., Draeger, E. W., Oppelstrup, T., Krauss, L., and Gunnels, J. A. (2015). Massively parallel

models of the human circulatory system. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, page 1. ACM.

Rossinelli, D., Tang, Y.-H., Lykov, K., Alexeev, D., Bernaschi, M., Hadjidoukas, P., Bisson, M., Jou-

bert, W., Conti, C., Karniadakis, G., et al. (2015). The in-silico lab-on-a-chip: petascale and

130

high-throughput simulations of micro�uidics at cell resolution. In Proceedings of the Interna-

tional Conference for High Performance Computing, Networking, Storage and Analysis, page 2.

ACM.

Saadat, A., Guido, C. J., Iaccarino, G., and Shaqfeh, E. S. (2018). Immersed-�nite-element method

for deformable particle suspensions in viscous and viscoelastic media. Physical Review E,

98(6):063316.

Saadat, A., Guido, C. J., and Shaqfeh, E. S. (2019). Simulation of red blood cell migration in small

arterioles: E�ect of cytoplasmic viscosity. bioRxiv, page 572933.

Sackmann, E. (1996). Supported membranes: scienti�c and practical applications. Science,

271(5245):43–48.

Samet, H. (2006). Foundations of multidimensional and metric data structures. Morgan Kaufmann.

Schleicher, D. and Stoll, R. (2017). Newton’s method in practice: Finding all roots of polynomials

of degree one million e�ciently. Theoretical Computer Science, 681:146–166.

Schramm, L. L. (2000). Surfactants: fundamentals and applications in the petroleum industry. Cam-

bridge university press.

Schramm, L. L., Stasiuk, E. N., and Marangoni, D. G. (2003). Surfactants and their applications.

Annual Reports Section“ C”(Physical Chemistry), 99:3–48.

Serkh, K. (2017). On the solution of elliptic partial di�erential equations on regions with corners

II: Detailed analysis. Applied and Computational Harmonic Analysis.

Serkh, K. (2018). On the solution of elliptic partial di�erential equations on regions with corners

III: curved boundaries. Manuscript in preparation.

131

Serkh, K. and Rokhlin, V. (2016a). On the solution of elliptic partial di�erential equations on

regions with corners. Journal of Computational Physics, 305:150–171.

Serkh, K. and Rokhlin, V. (2016b). On the solution of the Helmholtz equation on regions with

corners. Proceedings of the National Academy of Sciences, 113(33):9171–9176.

Siegel, M. and Tornberg, A.-K. (2018). A local target speci�c quadrature by expansion method for

evaluation of layer potentials in 3D. Journal of Computational Physics, 364:365–392.

Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., and Schweiger, M. (2015). Solving boundary integral

problems with BEM++. ACM Transactions on Mathematical Software (TOMS), 41(2):6.

Sorgentone, C. and Tornberg, A.-K. (2018). A highly accurate boundary integral equation method

for surfactant-laden drops in 3d. Journal of Computational Physics, 360:167–191.

Sorgentone, C., Tornberg, A.-K., and Vlahovska, P. M. (2019). A 3d boundary integral method for

the electrohydrodynamics of surfactant-covered drops. Journal of Computational Physics.

Steinbach, O. (2007). Numerical approximation methods for elliptic boundary value problems: �nite

and boundary elements. Springer Science & Business Media.

Sundar, H., Malhotra, D., and Biros, G. (2013). Hyksort: A new variant of hypercube quicksort

on distributed memory architectures. In Proceedings of the 27th International ACM Conference

on International Conference on Supercomputing, ICS ’13, pages 293–302, New York, NY, USA.

ACM.

Taus, M., Rodin, G. J., and Hughes, T. J. (2016). Isogeometric analysis of boundary integral equa-

tions: High-order collocation methods for the singular and hyper-singular equations. Mathe-

matical Models and Methods in Applied Sciences, 26(08):1447–1480.

Tlupova, S. and Beale, J. T. (2019). Regularized single and double layer integrals in 3D Stokes �ow.

Journal of Computational Physics.

132

Trefethen, L. N. (2008). Is Gauss quadrature better than Clenshaw–Curtis? SIAM review, 50(1):67–

87.

Trefethen, L. N. (2013). Approximation theory and approximation practice, volume 128. Siam.

Trefethen, L. N. and Weideman, J. (1991). Two results on polynomial interpolation in equally

spaced points. Journal of Approximation Theory, 65(3):247–260.

Uzoigwe, C. (2006). The human erythrocyte has developed the biconcave disc shape to optimise

the �ow properties of the blood in the large vessels. Medical hypotheses, 67(5):1159–1163.

Veerapaneni, S. K., Guey�er, D., Biros, G., and Zorin, D. (2009a). A numerical method for simu-

lating the dynamics of 3D axisymmetric vesicles suspended in viscous �ows. Journal of Com-

putational Physics, 228(19):7233–7249.

Veerapaneni, S. K., Guey�er, D., Zorin, D., and Biros, G. (2009b). A boundary integral method for

simulating the dynamics of inextensible vesicles suspended in a viscous �uid in 2D. Journal of

Computational Physics, 228(7):2334–2353.

Veerapaneni, S. K., Rahimian, A., Biros, G., and Zorin, D. (2011). A fast algorithm for simulating

vesicle �ows in three dimensions. Journal of Computational Physics, 230(14):5610–5634.

Vigmond, E. J., Clements, C., McQueen, D. M., and Peskin, C. S. (2008). E�ect of bundle branch

block on cardiac output: a whole heart simulation study. Progress in biophysics and molecular

biology, 97(2-3):520–542.

Wala, M. and Klöckner, A. (2018a). A fast algorithm with error bounds for quadrature by expan-

sion. arXiv preprint arXiv:1801.04070.

Wala, M. and Klöckner, A. (2018b). A fast algorithm with error bounds for Quadrature by Expan-

sion. Journal of Computational Physics, 374:135–162.

133

Wala, M. and Klöckner, A. (2018c). Optimization of fast algorithms for global quadrature by

expansion using target-speci�c expansions. arXiv preprint arXiv:1811.01110.

Wala, M. and Klöckner, A. (2019a). A fast algorithm for Quadrature by Expansion in three dimen-

sions. Journal of Computational Physics, 388:655–689.

Wala, M. and Klöckner, A. (2019b). Optimization of fast algorithms for global Quadrature by

Expansion using target-speci�c expansions. Journal of Computational Physics, page 108976.

Wala, M. and Klöckner, A. (2020). On the approximation of local expansions of laplace potentials

by the fast multipole method. arXiv preprint arXiv:2008.00653.

Wang, B., Ferguson, Z., Schneider, T., Jiang, X., Attene, M., and Panozzo, D. (2021). A large

scale benchmark and an inclusion-based algorithm for continuous collision detection. ACM

Transactions on Graphics.

Wang, W., Diacovo, T. G., Chen, J., Freund, J. B., and King, M. R. (2013). Simulation of platelet,

thrombus and erythrocyte hydrodynamic interactions in a 3d arteriole with in vivo comparison.

PLoS One, 8(10):e76949.

Webb, M., Trefethen, L. N., and Gonnet, P. (2012). Stability of barycentric interpolation formulas

for extrapolation. SIAM Journal on Scienti�c Computing, 34(6):A3009–A3015.

Wu, B., Zhu, H., Barnett, A., and Veerapaneni, S. (2020). Solution of stokes �ow in complex

nonsmooth 2d geometries via a linear-scaling high-order adaptive integral equation scheme.

Journal of Computational Physics, page 109361.

Xiao, H. and Gimbutas, Z. (2010). A numerical algorithm for the construction of e�cient quadra-

ture rules in two and higher dimensions. Computers &mathematics with applications, 59(2):663–

676.

134

Xu, D., Kaliviotis, E., Munjiza, A., Avital, E., Ji, C., and Williams, J. (2013). Large scale simulation

of red blood cell aggregation in shear �ows. Journal of Biomechanics, 46(11):1810–1817.

Yan, W., Zhang, H., and Shelley, M. J. (2019). Computing collision stress in assemblies of active

spherocylinders: Applications of a fast and generic geometric method. The Journal of chemical

physics, 150(6):064109.

Ye, T., Peng, L., and Li, Y. (2018). Three-dimensional motion and deformation of a red blood cell

in bifurcated microvessels. Journal of Applied Physics, 123(6):064701.

Ye, T., Phan-Thien, N., and Lim, C. T. (2016). Particle-based simulations of red blood cells—a

review. Journal of biomechanics, 49(11):2255–2266.

Ye, T., Phan-Thien, N., Lim, C. T., Peng, L., and Shi, H. (2017). Hybrid smoothed dissipative particle

dynamics and immersed boundary method for simulation of red blood cells in �ows. Physical

Review E, 95(6):063314.

Ying, L., Biros, G., and Zorin, D. (2004). A kernel-independent adaptive fast multipole algorithm

in two and three dimensions. Journal of Computational Physics, 196(2):591–626.

Ying, L., Biros, G., and Zorin, D. (2006a). A high-order 3D boundary integral equation solver for

elliptic PDEs in smooth domains. Journal of Computational Physics, 219(1):247–275.

Ying, L., Biros, G., and Zorin, D. (2006b). A high-order 3D boundary integral equation solver for

elliptic PDEs in smooth domains. Journal of Computational Physics, 219(1):247–275.

Ying, L. and Zorin, D. (2004). A simple manifold-based construction of surfaces of arbitrary

smoothness. In ACM Transactions on Graphics (TOG), volume 23, pages 271–275. ACM.

Yu, C.-H., Langowitz, N., Wu, H.-Y., Farhadifar, R., Brugues, J., Yoo, T. Y., and Needleman, D.

(2014). Measuring microtubule polarity in spindles with second-harmonic generation. Bio-

physical journal, 106(8):1578–1587.

135

Zechner, J., Marussig, B., Beer, G., and Fries, T.-P. (2016). The isogeometric Nyström method.

Computer methods in applied mechanics and engineering, 308:212–237.

Zhang, Z.-W., Cheng, J., Xu, F., Chen, Y.-E., Du, J.-B., Yuan, M., Zhu, F., Xu, X.-C., and Yuan, S.

(2011). Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB life,

63(7):560–565.

Zhao, H., Isfahani, A. H., Olson, L. N., and Freund, J. B. (2010). A spectral boundary integral

method for �owing blood cells. Journal of Computational Physics, 229(10):3726–3744.

Zhong, M.-C., Wei, X.-B., Zhou, J.-H., Wang, Z.-Q., and Li, Y.-M. (2013). Trapping red blood cells

in living animals using optical tweezers. Nature communications, 4(1):1–7.

136

