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Abstract

In a typical modeling setting we have prior notions of what types of functions we want to learn.

For example, in regression we may want to learn a smooth function or a periodic function and in

image classi�cation we may want to learn a function that is invariant to rotations. While function

space provides us the bene�t of being able to reason about traits like invariance or smoothness,

it is often di�cult to directly quantify the functional properties of models.

In this thesis we leverage our ability to reason about function space to build more powerful

models in both Gaussian processes (GPs) and neural networks. By generating GP kernels as

functions themselves of latent processes, we introduce methods for providing uncertainty over

what types of functions we produce, not just over the functions themselves in GP models. We

also introduce methods for learning levels of invariance and equivariance in neural networks,

enabling us to imbue the functions our models produce with soft inductive biases as opposed to

hard constraints. Finally, we show how we can leverage our understanding of parameter space in

neural networks to e�ciently ensemble diverse collections of functions to improve the accuracy

and robustness of our models. Through the introduction of these methods we show that by

carefully considering the types of functions we are producing we can describe models with a

range of desirable properties. These properties include more �exible models, models that better

align with domain knowledge, and models that are both accurate and robust. We demonstrate

these results on a broad range of problems, including time series forecasting, image classi�cation,

and reinforcement learning.
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1 | Introduction

In many modeling contexts it is far easier to be prescriptive about what types of functions we

want to produce than it is to reason about the parametric forms or the parameters of the func-

tions themselves. For instance, with time series we may be able to simply look at our data and

determine we want, e.g., some sort of quasi-periodic function with an upward trend. Conversely

given a su�ciently complex parametric regression model and the same data, absent some nu-

merical optimization routine it may be a priori impossible to determine reasonable values for the

parameters in order to �t the data. Although it can be easier to reason about the types of func-

tions we want to produce, in practice it is challenging to directly produce these functions, and

our e�orts instead become focused on learning parameters.

While a function space perspective provides us more direct contact with the data we aim to

model than the parameter space perspective, it also introduces a number of new and exciting

challenges. Although Gaussian processes (GPs) provide a method for modeling functions and

even performing Bayesian inference in function space, there are limited methods for accounting

for uncertainty over the GP models themselves. For example, in kernel learning we may wish to

marginalize over a distribution of kernels, each of which may produce a di�erent type of function.

By placing function space priors over the kernels themselves, we are able to provide uncertainty

over the types of functions our GP models produce, not just over the functions themselves.

Another growing area of interest that deals directly in function space is equivariance and in-

variance in neural networks. If, for example, we are seeking to model a function that is invariant
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or to only a subset of rotations, meaning our predictions should not change as the inputs are

rotated, then we may aim to learn a distribution over rotations that re�ects the range of rotations

to which we expect our function to be invariant. Through simple distributional assumptions over

transformations we enable models to learn approximate invariances to both the correct transfor-

mations, and at the correct amount of the those transformations.

This thesis is composed of three parts, each concerned with a distinct component of function

space modeling focused on either Gaussian processes models or neural networks. In Chapter

2 we discuss methods for forming distributions over covariance functions in Gaussian process

models. First from a spectral representation perspective by modeling the Fourier transform of

a kernel function with a latent GP, then via stochastic volatility models by using a latent GP to

model a time varying volatility term.

In Chapter 3 we introduce methods for building distributions over symmetries in neural net-

works. We �rst examine approximate symmetries to a limited range of transformations, such as

invariance to only a subset of rotations. Then we examine learning distributions over symmetries

that are only approximately satis�ed, such as physical systems where re�ections about an axis

may nearly, but not perfectly, preserve quantities like energy and momentum.

Finally, in Chapter 4, we explore the connections between parameter space and function space

in neural networks. We conclude by describing a general approach for aggregating and ensem-

bling collections of training solutions in neural networks. This approach is centered around cases

where we cannot directly address function space quantities like symmetries and instead wish to

ensemble diverse sets of functions. In these cases where we cannot e�ciently measure func-

tional diversity, we rely on loss surface inference to collect diverse sets of parameters as proxy

for collecting diverse functions.

In aggregate, these approaches re�ect the strength of modeling with a function space per-

spective, or with a viewpoint that enables us to establish a connection between the parameters

in our models and the functions they produce.
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1.1 Background: The Function Space Perspective

In this section we provide an introduction to general Gaussian process models, and the function

space perspective of modeling both with Gaussian processes and neural networks as it is seen

throughout the thesis. For a complete introduction to GPs and the function space perspective of

modeling, we refer the reader to Chapter 2 of Rasmussen and Williams [2006].

Gaussian Processes

In Chapter 2 we focus on Gaussian processes. Simply put, a Gaussian process (GP) is a collection of

random variables, any �nite number of which are multivariate normal. Since the joint distribution

of a Gaussian process observed at a �nite number of points is multivariate normal, in order to

fully specify the distribution of a Gaussian process we need only specify the mean and covariance

functions of the process. Given a mean function µ(x) and a covariance function k(x, x′), we say

f (x) is a Gaussian process:

f (x) ∼ GP (µ(x),k(x, x′)) . (1.1)

With the mean and covariance speci�ed, given some observations we can compute a posterior

distribution at any input test points through an application of conditional multivariate normal

identities [Bishop and Nasrabadi 2006]. For a set of input points x = {x1, . . . , xn}, the correspond-

ing observations f (x), and some test inputs x∗, we can compute the posterior distribution over

the test values as

f (x∗)|x, f (x) ∼ N(µ(x∗) + k(x∗, x∗)k(x, x)−1(f (x) − µ(x)), (1.2)

k(x∗, x∗) − k(x∗, x)k(x, x)−1k(x, x∗)).
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For clarity, if we consider a partitioned multivariate normal distribution,


ya

yb

 ∼ N
©«

ma

mb

 ,

Σaa Σab

Σba Σbb


ª®®¬ , (1.3)

we �nd that the posterior distribution of yb given ya is simply a new multivariate normal dis-

tribution with mean mb + ΣbaΣ
−1
aa (xa − ma) and covariance Σbb − ΣbaΣ

−1
aaΣab . Recognizing the

correspondence between µ(·) in Equation 1.2 and the mean terms in Equation 1.3, and k(·, ·) and

the covariance terms, we can see that the posterior distribution in Equation 1.2 is simply the

conditional form of a partitioned multivariate normal distribution.

Typically, when building predictive models with Gaussian processes we select a straightfor-

ward mean, such as a constant or a linear function, and it is the covariance function, or kernel,

that dictates the generalization properties. In Figure 1.1 we show examples of Gaussian processes

posteriors with various kernels. Despite these kernels all being relatively simple covariance func-

tions controlled by a small number of hyperparameters, they lead to GP models with very di�erent

behavior. Given the importance of the kernel function, the bulk of the e�orts in Gaussian process

research have been focused on developing increasingly expressive kernels that can model a wide

range of functions [Rasmussen and Williams 2006; Wilson 2014a].
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Figure 1.1: A Gaussian process on simple sinusoidal data with various kernels. Despite these kernels all
being simple stationary covariance functions, they produce very di�erent functions.

One key trait of GPs is that they provide a function space perspective. Rather than forming a
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distribution over parameters which induces a distribution over functions, as we do in parametric

modeling, GPs directly model a distribution over functions themselves. Through providing func-

tion space distributions, with GPs we can directly reason about the types of functions we want

to produce, and through careful choice of kernels we can directly control the inductive biases of

our models. Furthermore, since GPs provide closed form distributions in function space, we can

easily perform Bayesian inference over the functions themselves.

In Chapter 2 we leverage the function space perspective of GPs to induce distributions over

kernels. Since a GP provides a distribution over functions, and a kernel is itself just a function, we

are able to use transformations of GPs as kernels themselves. Such approaches take the Bayesian

framework of GPs one step further, enabling us to perform inference not just over the functions

our GP models, but over the structure of the GP itself.

Neural Networks

As opposed to GPs, in neural network modeling we are generally concerned with parameter space.

The prior distributions, the learning algorithms, and the posteriors (or their approximations)

are usually all centered around the values of the parameters. We consider the functions as a

consequence of those parameters and their combination with the architecture of the network.

For a neural network f (x ;w) with parameters w, even with a closed form approximation of

a posterior in parameter space, p(w|D), such as a Laplace approximation, the posterior induced

over functions p(f (x ;w)|D) is still intractable [MacKay 2003].

While the functional distributions of neural networks are typically intractable and can only

be approximated, there have been increasing e�orts to connect the networks we build with the

types of functions they produce. Such e�orts can be seen with the wide adoption of convolu-

tional neural networks, which encode translation invariance into our models, or recurrent neural

networks, which encode temporal dependence structure into our models.

In Chapter 3 we consider equivariant and invariant neural networks. Equivariance and in-
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variance, informally, are functional properties related to how our models change under transfor-

mations to the inputs [Cohen and Welling 2016a]. Where f (x ;w) is a neural network function,

and д is a transformation, we can describe equivariance and invariance of the network to д as:

д f (x ;w) = f (дx ;w) Equivariance,

f (x ;w) = f (дx ;w) Invariance.

Equivariant functions change accordingly to transformations of the inputs, and invariant func-

tions are una�ected by the transformation. Equivariance and invariance are special cases of func-

tional constraints that allows us to reason about the functions our models generate and, with

appropriate parameterizations, allow us to control the functional inductive biases of our models.

In cases lacking speci�c functional constraints like equivariance and invariance, neural net-

works are often treated as black boxes and little can be said about the function f (·;w) without

querying that function at speci�c inputs. Chapter 4 explores these cases more fully, focusing

on what we can say about the functions produced by neural networks under speci�c perturba-

tions to the parameters. Namely, through understanding the how the training loss changes as a

function of the parameters, what can be said about functions of the form f (·;w + ∆w), where w

are the parameters found through standard training procedures and ∆w is perturbation to those

parameters.

We show that many conclusions about the functions produced under a parameter pertur-

bation can be made by the curvature of training loss in the direction of that perturbation. The

connections between loss surface curvature and the functional properties of neural networks help

us better understand the connections between parameter and function space in neural networks,

and give prescriptive guidance on how to build neural networks that produce accurate functions.
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2 | Function-Space Kernels in Gaussian

Processes

In practice modeling typically follows a two-step procedure: (1) choosing the functional form of

a model, such as a neural network; (2) focusing learning e�orts on training the parameters of that

model. While inference of these parameters consume our e�orts, they are rarely interpretable,

and are only of interest insomuch as they combine with the functional form of the model to

make predictions. Gaussian processes (GPs) provide an alternative function space approach to

machine learning, directly placing a distribution over functions that could �t data [Rasmussen and

Williams 2006]. This approach enables great �exibility, and also provides a compelling framework

for controlling the inductive biases of the model, such as whether we expect the solutions to be

smooth, periodic, or have conditional independence properties.

These inductive biases, and thus the generalization properties of the GP, are determined by

a kernel function. The performance of the GP, and what representations it can learn, therefore

crucially depend on what we can learn about the kernel function itself. Accordingly, kernel func-

tions are becoming increasingly expressive and parametrized [Jang et al. 2017; Tobar et al. 2015;

Wilson and Adams 2013].

In many modeling cases we have no a priori reason to believe that the data are generated

from a single parametric family of kernels. In other cases, particularly those explored starting

in Section 2.6, we may have good reason to believe that the data are generated from a family of
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kernels, but we do not know which kernel is the correct one. In either setting, we should aim

to take a Bayesian approach to kernel learning itself, and marginalize over a distribution over

kernels, rather than try to estimate a single kernel with which to generate all of our predictions.

This chapter is adapted from the papers “Function-Space Distributions over Kernels”, which

originally appeared at Neurips 2019 and is joint work with Wesley Maddox, Jayson Salkey, Julio

Albinati, and Andrew Gordon Wilson, and “Volatility Based Kernels and Moving Average Means

for Accurate Forecasting with Gaussian Processes”, which originally appeared at ICML 2022 and

is joint work with Wesley Maddox, and Andrew Gordon Wilson.

2.1 Function-Space Distributions over Kernels

In the following sections we propose a method extending the function-space view to kernel learn-

ing itself – to represent uncertainty over the kernel function, and to re�ect the belief that the

kernel does not have a simple parametric form. Just as one uses GPs to directly specify a prior

and infer a posterior over functions that can �t data, we propose to directly reason about priors

and posteriors over kernels. In Figure 2.1, we illustrate the shift from standard function-space GP

regression, to a function-space view of kernel learning.

Speci�cally, our contributions are as follows:

• We model a spectral density as a transformed Gaussian process, providing a non-parametric

function-space distribution over kernels. Our approach, functional kernel learning (FKL),

has several key properties: (1) it is highly �exible, with support for any stationary covari-

ance function; (2) it naturally represents uncertainty over all values of the kernel; (3) it

can easily be used to incorporate intuitions about what types of kernels are a priori likely;

(4) despite its �exibility, it does not require sophisticated initialization or manual interven-

tion; (5) it provides a conceptually appealing approach to kernel learning, where we reason

directly about prior and posterior kernels, rather than about parameters of these kernels.
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Figure 2.1: Above: A function-space view of regression on data. We show draws from a GP prior and
posterior over functions in the le� and right panels, respectively. Below: With FKL, we apply the function-
space view to kernels, showing prior kernel draws on the le�, and posterior kernel draws on the right. In
both cases, prior and posterior means are in thick black, two standard deviations about the mean in grey
shade, and data points given by crosses. With FKL, one can specify the prior mean over kernels to be any
parametric family, such an RBF kernel, to provide a useful inductive bias, while still containing support for
any stationary kernel.

• We further develop FKL to handle multidimensional and irregularly spaced data, and multi-

task learning.

• We demonstrate the e�ectiveness of FKL in a wide range of settings, including interpola-

tion, extrapolation, and kernel recovery experiments, demonstrating strong performance

compared to state-of-the-art methods.

Our work is intended as a step towards developing Gaussian processes for representation learn-

ing. By pursuing a function-space approach to kernel learning, we can discover rich represen-

tations of data, enabling strong predictive performance, and new interpretable insights into our

modeling problems.
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2.2 Functional Kernel Learning Related Work

We assume some familiarity with Gaussian processes [e.g., Rasmussen and Williams 2006]. A

vast majority of kernels and kernel learning methods are parametric. Popular kernels include the

parametric RBF, Matérn, and periodic kernels. The standard multiple kernel learning [Genton

2001; Gönen and Alpaydın 2011; Lanckriet et al. 2004; Rakotomamonjy et al. 2007] approaches

typically involve additive compositions of RBF kernels with di�erent bandwidths. More recent

methods model the spectral density (the Fourier transform) of stationary kernels to construct ker-

nel learning procedures. Lázaro-Gredilla et al. [2010] models the spectrum as independent point

masses. Wilson and Adams [2013] models the spectrum as a scale-location mixture of Gaussians,

referred to as a spectral mixture kernel (SM). Yang et al. [2015] combine these approaches, us-

ing a random feature expansion for a spectral mixture kernel, for scalability. Oliva et al. [2016]

consider a Bayesian non-parametric extension of Yang et al. [2015], using a random feature ex-

pansion for a Dirichlet process mixture. Alternatively, Jang et al. [2017] model the parameters of

a SM kernel with prior distributions, and infer the number of mixture components. While these

approaches provide strong performance improvements over standard kernels, they often strug-

gle with di�culty specifying a prior expectation over the value of the kernel, and multi-modal

learning objectives, requiring sophisticated manual intervention and initialization procedures

[Herlands et al. 2018].

A small collection of pioneering works [Tobar 2018; Tobar et al. 2015; Wilson 2014b] have

considered various approaches to modeling the spectral density of a kernel with a Gaussian pro-

cess. Unlike FKL, these methods are constrained to one-dimensional time series, and still require

signi�cant intervention to achieve strong performance, such as choices of windows for convo-

lutional kernels. Moreover, we demonstrate that even in this constrained setting, FKL provides

improved performance over these state-of-the-art methods.
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2.3 Functional Kernel Learning

In this section, we introduce the prior model for functional kernel learning (FKL). FKL induces

a distribution over kernels by modeling a spectral density (Section 2.3.1) with a transformed

Gaussian process (Section 2.3.2). Initially we consider one dimensional inputs x and outputs y,

and then generalize the approach to multiple input dimensions (Section 2.3.3), and multiple output

dimensions (multi-task) (Section 2.3.4). We consider inference within this model in Section 2.8.2.

2.3.1 Spectral Transformations of Kernel Functions

Bochner’s Theorem [Bochner 1959; Rasmussen and Williams 2006] speci�es that k(·) is the co-

variance of a stationary process on R if and only if

k(τ ) =

∫
R
e2πiωτS(ω)dω, (2.1)

where τ = |x − x′| is the di�erence between any pair of inputs x and x′, for a positive, �nite

spectral density S(ω). This relationship is reversible: if S(ω) is known, k(τ ) can be computed via

inverse Fourier transformation.
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For k(τ ) to be real-valued, S(ω)must be symmetric. Furthermore, for �nitely sampled τ we are

only able to identify angular frequencies up to 2π/∆ where ∆ is the minimum absolute di�erence

between any two inputs. Equation 2.1 simpli�es to

k(τ ) =

∫
[0,2π/∆)

cos(2πτω)S(ω)dω, (2.2)

by expanding the complex exponential and using the oddness of sine (see Eqs. 4.7 and 4.8 in

Rasmussen and Williams [2006]) and then truncating the integral to the point of identi�ability.

For an arbitrary function, S(ω), Fourier inversion does not produce an analytic form for k(τ ),

however we can use simple numerical integration schemes like the trapezoid rule to approximate

the integral in Equation 2.2 as

k(τ ) ≈
∆ω
2

I∑
i=1

cos(2πτωi)S(ωi) + cos(2πτωi−1)S(ωi−1), (2.3)

where the spectrum is sampled at I evenly spaced frequencies ωi that are ∆ω units apart in the

frequency domain.

The covariance k(τ ) in Equation (2.3) is periodic. In practice, frequencies can be chosen such

that the period is beyond the bounds that would need to be evaluated in τ . As a simple heuristic

we choose P to be 8τmax , where τmax is the maximum distance between training inputs. We then

choose frequencies so that ωn = 2πn/P to ensure k(τ ) is P-periodic. We have found choosing 100

frequencies (n = 0, . . . , 99) in this way leads to good performance over a range of experiments in

Section 2.5.
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2.3.2 Specification of Latent Density Model

Uniqueness of the relationship in Equation 2.1 is guaranteed by the Wiener-Khintchine Theorem

(see Eq. 4.6 of Rasmussen and Williams [2006]), thus learning the spectral density of a kernel

is su�cient to learn the kernel. We propose modeling the log-spectral density of kernels using

GPs. The log-transformation ensures that the spectral representation is non-negative. We let

ϕ = {θ ,γ } be the set of all hyper-parameters (including those in both the data, γ , and latent

spaces, θ ), to simplify the notation of Section 2.8.2.

Using Equation 2.3 to produce a kernel k(τ ) through S(ω), the hierarchical model over the

data is
{Hyperprior} p(ϕ) = p(θ ,γ )

{Latent GP} д(ω)|θ ∼ GP
(
µ(ω;θ ),kд(ω,ω′;θ )

)
{Spectral Density} S(ω) = exp{д(ω)}

{Data GP} f (xn)|S(ω),γ ∼ GP(γ0,k(τ ; S(ω))).

(2.4)

We let f (x) be a noise free function that forms part of an observation model. For regression,

we can let y(x) = f (x) + ϵ(x), ϵ ∼ N(0,α2) (in future equations we implicitly condition on

hyper-parameters of the noise model, e.g., α2, for succinctness, but learn these as part of ϕ).

The approach can easily be adapted to classi�cation through a di�erent observation model; e.g.,

p(y(x)) = σ (y(x)f (x)) for binary classi�cation with labelsy ∈ {−1, 1}. Full hyper-parameter prior

speci�cation is given in Appendix A.1.2. Note that unlike logistic Gaussian process density esti-

mators [Adams et al. 2009; Tokdar and Ghosh 2007] we need not worry about the normalization

factor of S(ω), since it is absorbed by the scale of the kernel over data, k(0). The hierarchical model

in Equation 2.4 de�nes the functional kernel learning (FKL) prior, with corresponding graphical

model in Figure 2.2. Figure 2.3 displays the hierarchical model, showing the connection between

spectral and data spaces.

A compelling feature of FKL is the ability to conveniently specify a prior expectation for the
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Figure 2.3: Forward sampling from the hierarchical FKL model of Equation (2.4). Le�: Using randomly
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kernel by specifying a mean function for д(ω), and to encode smoothness assumptions by the

choice of covariance function. For example, if we choose the mean of the latent process д(ω)

to be negative quadratic, then prior kernels are concentrated around RBF kernels, encoding the

inductive bias that function values close in input space are likely to have high covariance. In

many cases the spectral density contains sharp peaks around dominant frequencies, so we choose

a Matérn 3/2 kernel for the covariance of д(ω) to capture this behaviour.

2.3.3 Multiple Input Dimensions

We extend FKL to multiple input dimensions by either corresponding each one-dimensional ker-

nel in a product of kernels with its own latent GP with distinct hyper-parameters (FKL separate)

or having all one-dimensional kernels be draws from a single latent process with one set of hyper-

parameters (FKL shared). The hierarchical Bayesian model over the d dimensions is described in

the following manner:
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{Hyperprior} p(ϕ) = p(θ ,γ )

{Latent GP ∀d ∈ {1, ...D}} дd(ωd)|θ ∼ GP
(
µ(ωd ;θ ),kдd (ωd,ω

′
d ;θ )

)
{Product Kernel GP} f (x)|{дd(ωd)}

D
d=1,γ ∼ GP(γ0,

D∏
d=1

k(τd ; S(ωd)))

(2.5)

Tying the kernels over each dimension while considering their spectral densities to be draws

from the same latent process (FKL shared) provides multiple bene�ts. Under these assumptions,

we have more information to learn the underlying latent GP д(ω). We also have the helpful

inductive bias that the covariance functions across each dimension have some shared high-order

properties, and enables linear time scaling with dimensionality.

2.3.4 Multiple Output Dimensions

FKL additionally provides a natural way to view multi-task GPs. We assume that each task (or

output), indexed by t ∈ {1, . . . ,T }, is generated by a GP with a distinct kernel. The kernels are tied

together by assuming each of thoseT kernels are constructed from realizations of a single shared

latent GP. Notationally, we let д(ω) denote the latent GP, and use subscripts дt (ω) to indicate

independent realizations of this latent GP. The hierarchical model can then be described in the

following manner:

{Hyperprior} p(ϕ) = p(θ,γ )

{Latent GP} д(ω)|θ ∼ GP
(
µ(ω;θ ),kд(ω,ω′;θ )

)
{Task GP ∀t ∈ {1, ...T }} ft (x)|дt (ω),γ ∼ GP(γ0,t ,k(τ ; St (ω)))

(2.6)

In this setup, rather than having to learn the kernel from a single realization of a process (a single

task), we can learn the kernel from multiple realizations, which provides a wealth of information

for kernel learning [Wilson et al. 2015]. While sharing individual hyper-parameters across mul-

tiple tasks is standard (see e.g. Section 9.2 of MacKay [1998]), these approaches can only learn
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limited structure. The information provided by multiple tasks is distinctly amenable to FKL,

which shares a �exible process over kernels across tasks. FKL can use this information to discover

unconventional structure in data, while retaining computational e�ciency (see Appendix A.1.1).

2.4 Inference and Prediction

When considering the hierarchical model de�ned in Equation 2.4, one needs to learn both the

hyper-parameters, ϕ, and an instance of the latent Gaussian process, д(ω).We employ alternating

updates in which the hyper-parameters ϕ and draws of the latent GP are updated separately. A

full description of the method is in Algorithm 2 in Appendix A.1.2.

Updating Hyper-Parameters: Considering the model speci�cation in Eq. 2.4, we can de�ne

a loss as a function of ϕ = {θ ,γ } for an observation of the density, д̃(ω), and data observations

y(x). This loss corresponds to the entropy, marginal log-likelihood of the latent GP with �xed

data GP, and the marginal log-likelihood of the data GP.

L(ϕ) = − (logp(ϕ) + logp(д̃(ω)|θ,ω) + logp(y(x)|д̃(ω),γ , x)) . (2.7)

This objective can be optimized using any procedure; we use the AMSGRAD variant of Adam as

implemented in PyTorch [Reddi et al. 2019]. For GPs with D input dimensions (and similarly for

D output dimensions), we extend Eq. 2.7 as

L(ϕ) = −

(
logp(ϕ) +

D∑
d=1
[logp(д̃d(ωd)|θ ,ω)] + logp(y(x)|{д̃d(ωd)}

D
d=1,γ , x)

)
. (2.8)

Updating Latent Gaussian Process: With �xed hyper-parameters ϕ, the posterior of the la-

tent GP is

p(д(ω)|ϕ, x,y(x), f (x)) ∝ N(µ(ω;θ ),kд(ω;θ ))p(f (x)|д(ω),γ ). (2.9)
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We sample from this posterior using elliptical slice sampling (ESS) [Murray et al. 2010; Murray

and Adams 2010], which is speci�cally designed to sample from posteriors with highly correlated

Gaussian priors. Note that we must reparametrize the prior by removing the mean before using

ESS; we then consider it part of the likelihood afterwards.

Taken together, these two updates can be viewed as a single sample Monte Carlo expectation

maximization (EM) algorithm [Wei and Tanner 1990] where only the �nal д(ω) sample is used in

the Monte Carlo expectation. Using the alternating updates (following Algorithm 2) and trans-

forming the spectral densities into kernels, samples of predictions on the training and testing data

can be taken. We generate posterior estimates of kernels by �xing ϕ after updating and drawing

samples from the posterior distribution, p(д(ω)| f ,y,ϕ), taken from ESS (using y as short for y(x),

the training data indexed by inputs x ).

Prediction: The predictive distribution for any test input x∗ is given by

p(f ∗ |x∗, x,y,ϕ) =

∫
p(f ∗ |x∗, x,y,ϕ,k)p(k |x∗, x,y,ϕ)dk (2.10)

where we are only conditioning on data x,y, and hyper-parameters ϕ determined from opti-

mization, by marginalizing the whole posterior distribution over kernels k given by FKL. We use

simple Monte Carlo to approximate this integral as

p(f ∗ |x∗, x,y,ϕ) ≈
1
J

J∑
j=1

p(f ∗ |x∗, x,y,ϕ,kj) , kj ∼ p(k |x
∗, x,y,ϕ). (2.11)

We sample from the posterior over д(ω) using elliptical slice sampling as above. We then trans-

form these samples S(ω) = exp{д(ω)} to form posterior samples from the spectral density. We

then sample kj ∼ p(k |x∗, x,y,ϕ) by evaluating the trapezoidal approximation in Eq. (2.3) (at a

collection of frequencies ω) for each sample of the spectral density. For regression with Gaussian
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noise p(f ∗ |x∗, x,y,ϕ,k) is Gaussian, and our expression for the predictive distribution becomes

p(f ∗ |x∗, x,y,ϕ,ω) =
1
J

J∑
j=1
N( f̄ ∗(x∗)j,Cov(f ∗)j)

f̄ ∗(x∗)j = k fj (x
∗, x ;γ )k fj (x, x ;θ )−1y

Cov(f ∗)j = k fj (x
∗, x∗;γ ) − k fj (x

∗, x ;γ )k fj (x, x ;θ )−1k fj (x, x
∗;γ ),

(2.12)

where k fj is the kernel associated with sample дj from the posterior over д after transformation

to a spectral density and then evaluation of the trapezoidal approximation (suppressing depen-

dence on ω used in Eq. (2.3)). y is an n × 1 vector of training data. k fj (x, x ;θ ) is an n × n matrix

formed by evaluating k fj at all pairs of n training inputs x . Similarly k fj (x
∗, x∗;θ ) is a scalar and

k fj (x
∗, x) is 1 × n for a single test input x∗. This distribution is a mixture of Gaussians with J

components. Following the above procedure, we obtain J samples from the unconditional distri-

bution in Eq. (2.12). We can compute the sample mean for point predictions and twice the sample

standard deviation for a credible set. Alternatively, we can use the mixture of Gaussians repre-

sentation in conjunction with the laws of total mean and variance to approximate the moments

of the predictive distribution in Eq. (2.12), which is what we do for the experiments.

2.5 Experiments

We demonstrate the practicality of FKL over a wide range of experiments: (1) recovering known

kernels from data (Section 2.5.1); (2) extrapolation (Section 2.5.2); (3) multi-dimensional inputs

and irregularly spaced data (section 2.5.3); (4) multi-task precipitation data (Section 2.5.4); and

(5) multidimensional pattern extrapolation (Section 2.5.5). We compare to the standard RBF and

Matérn kernels, as well as spectral mixture kernels [Wilson and Adams 2013], and the Bayesian

nonparametric spectral estimation (BNSE) of Tobar [2018].

For FKL experiments, we use д(ω) with a negative quadratic mean function (to induce an
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RBF-like prior mean in the distribution over kernels), and a Matérn kernel with ν = 3
2 (to capture

the typical sharpness of spectral densities). We use the heuristic for frequencies in the trapezoid

rule described in Section 2.3.1. Using J = 10 samples from the posterior over kernels, we evalu-

ate the sample mean and twice the sample standard deviation from the unconditional predictive

distribution in Eq. (2.12) for point predictions and credible sets. We perform all experiments in

GPyTorch [Gardner et al. 2018a].

2.5.1 Recovery of Spectral Mixture Kernels

Here we test the ability of FKL to recover known ground truth kernels. We generate 150 data

points, xi ∼ U (−7., 7) randomly and then draw a random function from a GP with a two compo-

nent spectral mixture kernel with weights 1 and 0.5, spectral means of 0.2 and 0.9 and standard

deviations of 0.05. As shown in Figure 2.4, FKL accurately reconstructs the underlying spectral

density, which enables accurate in-�lling of data in a held out test region, alongside reliable cred-

ible sets. A GP with a spectral mixture kernel is suited for this task and closely matches with

withheld data. GP regression with the RBF or Matérn kernels is unable to predict accurately

very far from the training points. BNSE similarly interpolates the training data well but performs

poorly on the extrapolation region away from the data. In Appendix A.1.5.1 we illustrate an

additional kernel recovery experiment, with similar results.

2.5.2 Interpolation and Extrapolation

Airline Passenger Data We next consider the airline passenger dataset [Hyndman 2005] con-

sisting of 96 monthly observations of numbers of airline passengers from 1949 to 1961, and at-

tempt to extrapolate the next 48 observations. We standardize the dataset to have zero mean

and unit standard deviation before modeling. The dataset is di�cult for Gaussian processes with

standard stationary kernels, due to the rising trend, and di�culty in extrapolating quasi-periodic
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structure.

Sinc We model a pattern of three sinc functions replicating the experiment of Wilson and

Adams [2013]. Here y(x) = sinc(x +10)+ sinc(x)+ sinc(x −10)with sinc(x) = sin(πx)/(πx). This

has been shown previously [Wilson and Adams 2013] to be a case for which parametric kernels

fail to pick up on the correct periodic structure of the data.

Figures 2.5(a) and 2.5(b) show that FKL outperforms simple parametric kernels on complex

datasets. Performance of FKL is on par with that of SM kernels while requiring less manual tuning

and being more robust to initialization.

2.5.3 Multiple Dimensions: Interpolation on UCI datasets

We use the product kernel described in Section 2.5.3 with both separate and shared latent GPs

for regression tasks on UCI datasets. Figure 2.6 visually depicts the model with respect to prior

and posterior products of kernels. We standardize the data to zero mean and unit variance and

randomly split the training and test sets, corresponding to 90% and 10% of the full data, respec-

tively. We conduct experiments over 10 random splits and show the average RMSE and standard
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deviation. We compare to the RBF, ARD, and ARD Matérn. Furthermore, we compare the re-

sults of sharing a single latent GP across the kernels of the product decomposition(Eq. 2.5) with

independent latent GPs for each kernel in the decomposition.

2.5.4 Multi-Task Extrapolation

We use the multi-task version of FKL in Section 2.3.4 to model precipitation data sourced from

the United States Historical Climatology Network [Menne et al. 2015]. The data contain daily

precipitation measurements over 115 years collected at 1218 locations in the US. Average positive

precipitation by day of the year is taken for three climatologically similar recording locations in
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in the Appendix.

Colorado: Boulder, Telluride, and Steamboat Springs, as shown in Figure 2.8. The data for these

locations have similar seasonal variations, motivating a shared latent GP across tasks, with a

�exible kernel process capable of learning this structure. Following the procedure outlined in

Section 2.8.2 and detailed in Algorithm 3 in the Appendix, FKL provides predictive distributions

that accurately interpolates and extrapolates the data with appropriate credible sets. In Appendix

A.1.6 we extend these multi-task precipitation results to large scale experimentation with datasets

containing tens of thousands of points.
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Figure 2.8: Posterior predictions generated using latent GP samples. 10 samples of the latent GP for each
site are used to construct covariance matrices and posterior predictions of the GPs over the data.
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Training Data and RBF Extrapolation Training Data and FKL Extrapolation

Figure 2.9: Texture Extrapolation: training data is shown to the le� of the blue line and predicted extrap-
olations according to each model are to the right.

2.5.5 Scalability and Texture Extrapolation

Large datasets typically provide additional information to learn rich covariance structure. Fol-

lowing the setup in [Wilson et al. 2014], we exploit the underlying structure in images and

scale FKL to learn such a rich covariance — enabling extrapolation on textures. When the in-

puts, X , form a Cartesian product multidimensional grid, the covariance matrix decomposes as

the Kronecker product of the covariance matrices over each input dimension, i.e. K(X ,X ) =

K(X1,X1) ⊗K(X2,X2) ⊗ · · · ⊗K(XP ,XP )where Xi are the elements of the grid in the ith dimension

[Saatçi 2012]. Using the eigendecompositions of Kronecker matrices, solutions to linear systems

and log determinants of covariance matrices that have Kronecker structure can be computed

exactly in O(PN P/2) time, instead of the standard cubic scaling in N [Wilson et al. 2014].

We train FKL on a 10, 000 pixel image of a steel tread-plate and extrapolate the pattern beyond

the training domain. As shown in Figure 2.9, FKL uncovers the underlying structure, with no

sophisticated initialization procedure. While the spectral mixture kernel performs well on these

tasks [Wilson et al. 2014], it requires involved initialization procedures. By contrast, standard

kernels, such as the RBF kernel, are unable to discover the covariance structure to extrapolate on

these tasks.
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2.6 Volatility Based Kernels and Moving Average Means

for Accurate Forecasting with Gaussian Processes

With Functional Kernel Learning we introduced one method for forming distributions over kernel

functions in Gaussian process (GP) models. While FKL is an e�ective method for GP prediction

problems, it relies on making minimal assumptions regarding the kernel and instead opts for

providing support over all stationary covariance functions. In the following sections we introduce

Volt as a method for forming distributions over GP kernels, but rather than begin with the highly

�exible and kernel-agnostic approach of FKL, with Volt we begin with widely used stochastic

volatility models and work backwards to derive an associated Gaussian process model to be used

for prediction. In this way, Volt provides a principled approach to GP modeling that is grounded

in the underlying stochastic volatility model.

Both �nancial and climatological time series are nonstationary, and are characterized by hav-
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ing time-varying and stochastic volatilities, or degrees of variation, making them compelling use

cases for Volt. Volt uses forecasts of volatility to specify the covariance structure over future data

observations. By considering not only a single volatility forecast, but a distribution of volatility

forecasts, we induce a distribution over covariance functions in the data domain. Accounting

for uncertainty in volatility and propagating it to our data forecasts yields projected distribu-

tions that are well calibrated to the data, providing critical tools for understanding risk levels

and simulating potential outcomes. For further information on stochastic volatility see Appendix

A.2.1.

Figure 2.10 provides a graphical representation of the hierarchical GP model described by

Volt. Given a set of observations (top row) we infer a volatility path over those returns (middle

row), and form a hierarchical GP model where the �rst GP models volatility, and the second GP

is used to forecast distributions over the data given samples from the volatility GP (bottom row).

The covariance structure described by Volt provides a faithful representation of the uncer-

tainty in forecasts, but overlooks the mean function of the data space GP, which is a powerful

tool for capturing trends in data. To that end, we jointly introduce Moving Average Gaussian

Processes, or Magpie, in which we replace the standard parametric mean function in GPs with

a moving average. Moving averages are a widely used technique in domains such as climatol-

ogy and �nance [Nau 2014]. By joining the trend �tting capabilities of moving averages with

the probabilistic framework of GPs we can produce forecasts that are both accurate and have

calibrated uncertainties.

While Volt and Magpie can be used separately, we present them as a single work because it

is speci�cally their combination that solves challenging forecasting problems. In time evolving

domains like stock prices or wind speeds, the inherent randomness of the processes prevents

us from producing accurate point estimates far out into the future, and we need just accuracy,

but uncertainty that is faithful to the stochasticity of the data. For this reason one needs both the

accurate trend capture provided by Magpie, and the accurate uncertainty representation provided
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by Volt

Our key contributions are as follows:

• Deriving a hierarchical GP model, Volt, inspired by stochastic volatility models that pro-

duces calibrated forecasts of stochastic time series (Section 2.8).

• Describing a simple but powerful mean function, Magpie, that enables Gaussian process

models to accurately forecast trends (Section 2.8).

• Using Volt and Magpie to produce highly calibrated forecasts in �nancial and climatological

domains (Section 2.9).

• Extending our procedure to multitask problems by accounting for correlations in both

volatility and price across di�erent �nancial assets and di�erent spatial locations (Section

2.10).

2.7 Volt Related Work

Early autoregressive approaches to modeling the volatility of time series returns such as GARCH

have seen widespread success [Bollerslev 1986]. These approaches typically view the volatility

process as a time-evolving series, and are e�ective for inferring and forecasting volatility, but do

not typically interface directly with a model over data as we have with Volt.

Volatility models have been extended to use both neural networks or Gaussian processes

as their base components. For example, Cao et al. [2020] use a multi-layer perceptron to es-

timate volatility surfaces while Luo et al. [2018] use RNNs with rollouts to forecast volatility

into the future but only considered one-step lookahead price forecasts. Wilson and Ghahra-

mani [2010] use Gaussian processes to parameterize the volatility using Laplace approximations

and MCMC sampling introducing the Gaussian process copula volatility model (GPCV), while

Wu et al. [2014] used GP state space models and particle �lters to estimate volatility. Similar to
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Wilson and Ghahramani [2010], Lázaro-Gredilla and Titsias [2011] used Gaussian processes to

parameterize volatility models with an exponential link, but used a highly structured variational

approximation for inference. Liu et al. [2020a] used multi-task Gaussian processes to forecast

volatility into the future, applying their models to foreign exchange currency returns, again with

one-step lookahead forecasts in price. Crucially, predicting volatility alone does yield a straight-

forward path to forecast data, which is our central aim with Volt. Furthermore, Volt builds o� of

the GPCV, but other volatility estimation methods such as the ones described here could also be

used.

Stochastic volatility models such as the Heston model [Heston 1993] and SABR [Hagan et al.

2002], treat the evolution of the price of a security and the associated volatility as a coupled

system of SDEs. Such SDEs are commonly used as methods for pricing �nancial derivatives.

Di�ering from our viewpoint, these models are typically used to price stock options under risk-

neutral measures, with Volt and Magpie we are focused on performing predictive inference by

conditioning on observations.

The connection between Gaussian processes and SDEs has been extensively studied by Särkkä

and Solin [2019] who suggest Kalman �ltering based approaches for estimating GP hyperparam-

eters in SDE-inspired GP models, which we do not consider here, preferring simply marginal

likelihood based estimation. Systems of linear di�erential equations have been integrated into

GP models previously via latent force models both for ordinary di�erential equations [Alvarez

et al. 2009] and partial di�erential equations [Särkkä 2011]. To perform inference, Alvarez et al.

[2009] derive covariances corresponding to the linear projection of the di�erential operator onto

a speci�c kernel, while Särkkä [2011]; Särkkä and Solin [2019] use the projection operator explic-

itly to develop kernel functions to emulate systems of SDEs. Similarly, Zhu and Dunson [2013]

use SDEs to derive a nested GP, but their approach produces a standard GP with a non-deep, but

structured, covariance function. Autoregressive mean functions for GPs have been explored in

Gonzalvez et al. [2019], however in their approach they use autoregressive features as inputs to

27



a GP model, rather than as a way to specify the prior functions.

While many of the references above are focused speci�cally on �nance, Volt and Magpie are

applicable to a broad set of domains including climate modeling. Autoregressive and volatility

models have successfully been applied to domains such as wind and precipitation forecasting as

in Mehdizadeh et al. [2020]; Liu et al. [2011] and Tian et al. [2018].

The Gaussian process autoregressive model [Requeima et al. 2019b] stacks Gaussian processes

of di�erent tasks, using the GP for one task as the mean function for the next. It thus bears

only slight resemblance to our moving average or multi-task approaches. Furthermore, many

well-studied autoregressive models, e.g. the AR(p) family, can be written as Gaussian processes

[Whilliams 2010]. As an alternative to developing domai n speci�c kernel functions, one could

alternatively construct manual combinations of generic kernels, which either requires signi�-

cant amounts of hand-tuning as in Rasmussen and Williams [2008, Ch 5.4,] or solving discrete

optimization problems [Lloyd et al. 2014; Sun et al. 2018]. As we wish to develop our models

e�ciently and succinctly, we also do not consider these models.

2.8 Methods

We �rst begin with a brief overview of Gaussian process regression models, before deriving the

Volt kernel and Magpie mean functions in Section 2.8.1. After deriving the Volt kernel and Magpie

mean, we explain the inference procedure in Section 2.8.2 and how we perform forecasting in

Section 2.8.3.

Gaussian Processes Please see Rasmussen and Williams [2008] for a more detailed introduc-

tion to Gaussian processes (GPs). We assume noisy observations y(t) ∼ N(f (t),σ 2), where

f ∼ GP(µ(t),k(t, t ′)), so thatσ is the observation noise and f is drawn from a GP with mean func-

tion µ(t) and k(t, t ′) as the covariance function. When using GPs, we can compute the posterior
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predictive distribution,p(f (t∗)|D),D := {t, y}, over new data points t∗ is given byp(f (t∗)|D, θ ) =

N(µ∗
f |D
, Σ∗

f |D
)where µ∗

f |D
= Kt∗t(Ktt+σ

2I )−1(y−µ(t))+µ(t∗) and Σ∗
f |D
= Kt∗t∗−Kt∗t(Ktt+σ

2I )−1Ktt∗

with KA,B := k(A,B).

2.8.1 Volt and Magpie

We make the common assumption that both the data S(t), and volatility V (t), have paths with

log-normal marginal distributions. We therefore place the following joint SDE structure over

s(t) = log S(t) and v(t) = logV (t),

ds(t) = µsdt +V (t)dW (t)

dv(t) = −
σ 2

2
dt + σdZ (t).

(2.13)

The drift term in Equation (2.13), −σ
2

2 dt , arises from the log-transformation of the volatility, and

ensures that forecast distributions over volatility have a constant mean (for further details see

Appendix A.2.2.2). Furthermore, this structure allows us to derive closed form expressions for

and auto-covariance functions associated with both log-data and log-volatility, allowing us to

de�ne the Volt model.

Equation (2.13) gives a relationship between the log-price and log-volatility that is mirrored

by many stochastic volatility models, including GARCH and SABR, where the volatility of the

price is itself governed by an SDE [Bollerslev 1986; Hagan et al. 2002]. By recasting Equation

(2.13) as a system of GPs we can move from an SDE sampling approach to a proper forecasting

system based on historical observations.

A Gaussian Process Perspective Since for any �nite collection of time points, t = {ti}Ni=1, the

observations v = v(t) and s = s(t) each have a multivariate normal distribution, v and s now

correspond to Gaussian processes. Therefore we only need to derive the mean and covariance
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functions of the two processes to fully cast our problem as one of forming predictive distributions

from GPs.

As v(t) is a scaled Wiener process with constant drift term, the autocovariance function is

Kv(t, t
′) = σ 2 min {t, t ′} (2.14)

and the mean is µv(t) = −t σ
2

2 so that, v(t) ∼ GP (µv(t),Kv(t, t ′)). Conditional on a realization of

V (t) = expv(t), s(t) is also described by a Gaussian process with E[s(t)] =
∫ t

0 µsdt = tµs and ,

Cov(s(t), s(t ′)) =

∫ min{t,t ′}

0
V (t)2dt = Ks(t, t

′;V (t)), (2.15)

producing our model over log-data:

s(t) ∼ GP (tµs + s(0),Ks(t, t
′;V (t))) . (2.16)

The �nal Volt model is then a hierarchical composition of Gaussian processes:

v(t) ∼ GP(mv(t),Kv(t, t
′))

V (t) = exp (v(t))

s(t) ∼ GP(ms(t),Ks(t, t
′;V (t)))

S(t) = exp (s(t)) ,

(2.17)

The log-volatility is distributed as a Gaussian process dependent on the the time inputs, the mean

mv , and the volvol hyperparameter σ and has a Brownian motion covariance (Eq. 2.14). Given

a realization of a volatility path over time and the parameters of the log-linear mean, the log-

price is also distributed as a Gaussian process with covariance given by Eq. 2.15. To generate

predictions using the log-volatility and log-price GPs we �rst must infer both a volatility path
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from the observed time series, S = S(t), and the hyperparameters of both the data and volatility

models. A complete derivation of the GPs in Equation (2.17) is in Appendix A.2.2.2.

Magpie For the sake of deriving the covariance functions associated with the log-data and log-

volatility processes, we have left the mean functions of the data GP in Equation (2.17) as a simple

linear function. While we may believe that there are nontrivial trends in the data over time, we

also believe that these trends may be more complex than simple polynomial or periodic functions,

and in the context of applications like �nance and climatology are likely to change over time with

evolving market or climatological conditions.

To address these de�ciencies in using simple mean functions in modeling nonstationary sig-

nals we replace the simple mean functions typically found in GP models with exponential moving

averages (EMA) [Nau 2014]. We use the EMA with a limited number of terms, de�ned as

EMA(s)i+1 =α[si + (1 − α)si−1 + (1 − α)2si−2

+ · · · + (1 − α)k−1si−(k−1)]

(2.18)

where α = 2/(k + 1) is a hyperparameter governing the smoothing of the moving average.

A smaller value of k uses only more recent observations, enabling a closer match of the data,

whereas a larger value of k uses more data and smooths the data more.

While we focus on the EMA in Equation (2.18), Magpie naturally extends to alternate moving

averages, such as lag-corrected moving averages. We provide comparisons of these alternate

moving averages, as well as the e�ect of the k hyperparamter in Appendix Figure A.11 and in the

extended results of Section 2.9. With Equation (2.18) we can de�ne the Magpie mean function as

mEMA(ti+1, s) = EMA(s)i+1.

We close this section by noting that moving from a linear to a exponential moving average

mean for the GPs breaks the connection with the SDEs described in Section 2.8.1, making the

combination of Volt and Magpie necessarily a practical approach, rather than an entirely theo-
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retically motivated approach.

2.8.2 Inference

Here we outline the procedure for using a series of price observations to train the hyperparam-

eters of the GPs in Equation 2.17, and form the associated posterior predictive distributions. In

general the training procedure can be thought of as a three step process: a) use a Gaussian Process

Copula Volatility (GPCV) model to infer a volatility path, V , given a sequence of observations S ,

b) learn the hyperparameters of the GP in log-volatility space by maximizing the Marginal Log-

Likelihood (MLL) with respect to the GPCV inferred volatility, c) learn the hyperparameters of

the GP in log-data space by maximizing the MLL with respect to the observed prices, using the

kernel generated by the GPCV inferred volatility path. Note that our use of the GPCV to esti-

mate volatility is a modelling choice and we could alternatively have used any other volatility

estimation model such as GARCH.

Inferring Volatility from Training Data One challenge in formulating the model outlined

in Equation (2.17) is the need to have both data and volatility observations for some range of

training observations. To estimate the volatility, we use a variant of Gaussian copula process

volatility (GPCV) model �rst proposed by Wilson and Ghahramani [2010]. Our GPCV model

uses a warped Gaussian process to model the variability of the responses, w(t), according to:

f (t) ∼ GP(c,Kv(t, t
′))

γ (f (t)) = exp{ f (t)}

w(t) ∼ N(0,γ 2(f (t))).

(2.19)

We use the kernel derived from log-volatility SDE in Equation (2.17) to infer the latent function

f (t), and use variational inference [Hensman et al. 2013, 2015] to train the model. See Appendix

A.2.2.3 for further details.
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Following Wilson and Ghahramani [2010], we consider the responses as the log-returns of the

data, that is: w(ti) = log S(ti)−log S(ti−1).We construct a volatility prediction over times 0, · · · , t−

1 by drawing posterior samples from f (t) and passing them through the warping function σ (·);

so our estimate for V (t) is

V̂ (t) :=
1
J

J∑
j=1

γ (fj(t)), fj(t) ∼ q(f (t)|w(t),v, θ ), (2.20)

where q(f (t)|w(t),v, θ ) is our approximate posterior distribution over the latent function f (t).

We demonstrate that our approach is able to correctly estimate the true volatility in Figure 2.10,

where the volatility and price are drawn from a SABR volatility model [Hagan et al. 2002].

Training the Gaussian Processes Given the volatility path associated with the training data

learned using a GPCV, we assume a Gaussian process priors over the log-volatility and log-data

according to Equation (2.17). Given the volatility over the training data, the single hyperparam-

eter of the log-volatility model is the σ 2 term describing the volvol. The hyperparameters of

the log-data model are just the parameters of the mean in Equation (2.17), of which there are

none if we are using a non-parametric mean like Magpie. To train we maximize the MLL of the

models with respect to their hyperparameters using gradient based optimization [Rasmussen and

Williams 2008, Chapter 5]. The total computational cost for inference in Volt, regardless of the

use of a Magpie mean, is just the cost of training one variational GP and two standard GP models

on evenly spaced data, which can be done e�ciently via exploiting the (Toeplitz) structure of the

data [Wilson and Nickisch 2015].

2.8.3 Predictions

In Volt, we condition the log-volatility GP on a log-path inferred by GPCV and the log-data GP on

historical observations of log-price and draw samples from the posterior distributions, producing
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Figure 2.11: Simulations and forecasts showing the mean and 95% confidence region for various model
choices. Probabilistic LSTMs perform well on the training data, but do not extrapolate far from observed
data well. Matérn forecasts quickly revert to constant level of uncertainty which leads to overconfidence
far away from observations, whereas Volt’s increase in uncertainty as we move away from training data
produces well calibrated to the data. The constant mean forecasts in both Matérn and Volt fail to pick up
the long term trend in the data, which Magpie means accurately capture. The combination of Volt and
Magpie, with correct inductive biases in both the kernel and mean functions produces forecasts consistent
with trends in the data and with well calibrated uncertainty.

a mixture of log-normal distributions over data. Sampling the posterior requires sample Nv log-

volatility paths, v∗, over the test inputs and for each of these we generate a kernel Ks(t, t
′,V ∗),

and sample Ns data paths, S∗ = exp(s∗), producing Nv × Ns samples.

In the Gaussian process viewpoint of Section 2.8.1, standard Monte Carlo simulation of an SDE

procedure is equivalent to sampling log-volatility paths, v∗ = v(t∗), from the prior distributions

of Equation (2.17) up to timeT rather than the posterior distribution [Sauer 2012]. With the prior

samples of S∗T = exp(s∗T ), we can form a Monte Carlo estimate of future distributions over price.

However, the distinction between this type of approach and our approach for sampling with

Volt is that Volt samples from the posterior distributions over volatility and data conditional on

observations, while the SDE based approaches sample from the prior distribution over volatility.

Rollout Predictions The Magpie mean only allows for predictions one step ahead, so we do

our forecasting in a rollout fashion. That is, we use observations s0, . . . , st to sample ŝt+1 from

the GP posterior p(st+1 |s0, . . . , st ), then condition our GP (and Magpie mean) on ŝt+1 in order to

sample ŝt+2 from the updated GP posteriorp(st+2 |s0, . . . , st , ŝt+1), and so on. These rollout forecasts

are critical to the Magpie framework. By sequentially sampling the price forecasts and updating

the GP with each observation we allow for trend reversals in the moving average mean in a way
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Figure 2.12: Calibration of various approaches on the 2 years of data from the NASDAQ 100. The forecasts
generated by standard kernels and probabilistic LSTMs are significantly overconfident, leading to very
poor calibration.

that is not possible with other GPs. Rollouts are unnecessary for traditional means because the

conditional means over each time step factorize into a single multivariate Gaussian distribution.

2.9 Forecasting

In both �nancial and climatological applications we are considering the data as stochastically

evolving and are thus interested in forecasting distributions over outcomes, rather than point

estimates. For this reason we use calibration and negative log likelihood as our primary measures

of interest, rather than an accuracy metric like mean squared error.

We compute the calibration at percentile p by computing the frequency with which the true

observation is less than the empirically computed pth quantile of the forecast distribution. More

speci�cally, for a forecast of the price stock S at timeT and percentile p we compute the empirical

quantile of the forecast qT where P̂(ST < qT ) = p. We can then compute the calibration at p as

the empirically observed frequency of the event ST < qT by calculating Cp =
1
K

∑
k I{STk <qTk } as

the average frequency of ST < qT over K di�erent forecasts. If our forecasts are well calibrated

then this empirical frequency will be close to p for each value of p; therefore by computing the

calibration of our forecasts at a range of percentiles, p, we can determine the overall calibration

of the forecast distribution. Such a calibration metric is similar to those explored for regression
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in Kuleshov et al. [2018].

Note that for accurate calibration to occur in this setting our forecast distribution must match

the empirical observations at all quantiles. We could not, for example, just forecast that a price

increases some �xed percentage of the time that matches the observed frequency of the price

increased and expect to achieve accurate calibration.

2.9.1 Stock Price and Foreign Exchange Rate Forecasting

As Volt and Magpie are primarily inspired by �nancial time series models, forecasting distribu-

tions over stock prices is a core application of our approach. We compare Volt and Magpie to

baseline models of GPs with standard kernel and mean functions. Along with these GP mod-

els, we include probabilistic LSTMs where we optimize a predicted mean and variance at each

time step with respect to the negative log-likelihood (NLL) which have been previously used in a

quantitative �nance setting [Chauhan et al. 2020]. All models assume the marginal distributions

of the observations are normally distributed, thus we model the log-price of stocks in each case.

Figure 2.11 provides a representative comparison of forecasts generated by GPs both with and

without Volt and Magpie, and the probabilistic LSTMs used here. Simpler probabilistic models

like standard GPs and probabilistic neural networks generally provide overcon�dent forecasts,

and more traditional mean functions in GP models do not capture the long range trends that are

commonly present in �nancial time-series data.

Figure 2.12 shows the calibration of the compared methods aggregated over thousands of

forecasts. We consider stocks in the NASDAQ 100 collection, and a history of two years of daily

observations leading up to January 2022. For 25 evenly spaced days we forecast 1000 paths 100

days into the future and compute the calibration curves of the forecasts for the days 75 to 100

days out.

We see in Figure 2.12 that Volt is able to remedy a signi�cant overcon�dence that is present

in alternative methods such as standard GP kernels or probabilistic LSTMs. Furthermore, it is
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Stock Prices Wind Speeds
Volt + Magpie 5.88 ± 0.02 4.28 ± 0.16

Volt + Con. 4.69 ± 0.03 3.38 ± 0.05
Matérn + Magpie 9.80 ± 0.27 12.13 ± 0.81

Matérn + Con. 7.74 ± 0.21 18.03 ± 1.90
SM + Magpie 147.84 ± 1.84 110.07 ± 7.81

SM + Con. 80.43 ± 0.57 70.14 ± 5.03
LSTM 49.95 ± 0.59 45.13 ± 1.82

Volt-VHGP + Con. 4.76 ± 3.05 5.75 ± 0.44
Volt-VHGP + Magpie 6.97 ± 1.24 5.91 ± 0.34

GPCV 5.45 ± 1.51 4.89 ± 0.04

Table 2.1: Negative log likelihoods (NLLs) per test point with 2 standard deviations for the methods
compared on both the stock forecasting and wind speed tasks. By accounting for uncertainty in both
the volatility and the data forecasts, Volt provides highly accurate test distributions relative to baseline
approaches. Volt-VHGP indicates a Volt model where we use variational heteroscedastic GPs from Lázaro-
Gredilla and Titsias [2011] in place of GPCV. We provide expanded results including foreign exchange
data in Appendix A.2.3. In each case the mean and standard deviation are computed over approximately 2
thousand time series 75 to 100 time steps into the future, yielding tens of thousands of individual forecasts.

the Magpie mean function that enables the distributions to be centered at the correct values,

which is why we see the LSTMs and constant mean GPs showing bias in the calibration plots.

Note that for accurate calibration to occur in this setting our forecast distribution must match

the empirical observations at all quantiles. We could not, for example, just forecast that a price

increases some �xed percentage of the time that matches the observed frequency of the price

increased and expect to achieve accurate calibration.

Table 2.1 gives the average test negative log likelihood (NLL) values on the stock forecasting

task and on the foreign exchange data from Lai et al. [2018]. Both variants of the Volt model

outperform competing methods such as LSTMs, and GPs with Matérn and Spectral Mixture (SM)

kernels [Wilson and Nickisch 2015]. Volt with a constant mean is slightly better than with a

Magpie mean in terms of NLL, the Magpie mean is key to achieving high calibration, as we see

in Figure 2.12. SM kernels are a highly class of �exible kernel, but rely on there being frequency

components in the data, with non-stationary data such as those studied here, the lack of regularity

in the data leads to weak performance.
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2.9.2 Wind Speed Forecasting

Probabilistic forecasting models play an important role in statistical climatology in providing

forecast distributions over quantities of interest, such as rainfall or wind speed, that can be used

to generate synthetic data or estimate the risk of extreme events. Stochastic volatility models

have a history of use in modeling wind speed, but typically these models have been limited to

GARCH based approaches [Liu et al. 2011; Tian et al. 2018], and are thus focused on the volatility

of wind, rather than forecasting distributions of wind speed itself.

Here we apply Volt and Magpie to the problem of developing a stochastic weather model for

wind speed. We source historical wind data from the U.S. Climate Reference Network (USCRN),

with observations taken at 5 minute intervals over the 2021 calendar year at 154 spatial locations

in the United States [Diamond et al. 2013]. Figure 2.13 provides an example of what the wind

speed observations look like, as well as example Volt forecasts in comparison to ground truth

held out data. Each forecast path represents a realistic scenario drawn from a distribution over

paths from which the true data would, hypothetically, be a representative candidate. By sampling

paths from the forecast distribution over wind speeds we can simulate future observations with

accurate probability enabling us to estimate statistics of interest, such as expected wind speed or

the probability of extreme events.

As with stock price forecasting, we are interested in producing forecast distributions that

match the ground truth of the data, rather than attempting to generate point predictions. In Figure

2.14 we compare the calibration of forecasts against the ground truth wind speeds in the forecast

windows. Table 2.1 provides the NLL values of the various approaches. As with stock forecasting,

we see that constant means do provide slightly better NLL values than Magpie means, but Volt

models are key to producing accurate forecasts. Distinct from stock price forecasting however,

is the bounded nature of wind speed. As we do not expect wind speed to grow inde�nitely

(as we may see with stocks) we forecast with a small amount of mean reversion applied to the
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Figure 2.13: A representative example of observed wind speed and samples of multitask Volt forecasts for
two related observation stations. While none of the Volt forecasts perfectly fit the true future observations
of wind, each individual roll is a realistic potential realization of wind speed. By generating many plausible
outcomes we are able to forecast distributions over wind speed that are highly calibrated to held out test
observations.

GP models. Experimental details, including a sensitivity to the mean reversion can be found in

Appendix A.2.3.2.

2.10 Multi-Task Volatility Modelling

Finally, we extend Volt to model several asset prices at once by using multi-task Gaussian pro-

cesses with the goal of jointly modelling di�erent time series at once, such as the wind speeds

for the continental United States.

First, we extend the GPCV of Wilson and Ghahramani [2010] to several tasks before then

placing a multi-task model over volatility in the hierarchical GP formulation. Our approach en-

ables simultaneous estimation of the time series, its volatility, and the relationships between the

time series themselves.

39



0.2 0.4 0.6 0.8
Percentile

0.2
0.4
0.6
0.8

Ca
lib

ra
tio

n
LSTM
Matérn + Magpie
Volt + Magpie
Matérn
Volt

Figure 2.14: A calibration plot for wind speed, aggregated over hundreds of thousands of distinct fore-
casts. While probabilistic LSTMs and standard GP models provide competitive baselines, the Volt and
Magpie model generates wind speed distribution forecasts that are extremely well calibrated. These cali-
brated distributions enable us to quickly simulate thousands of scenarios that can be trusted to faithfully
represent potential outcomes.

0 20 40 60 80 100
Days Ahead

0.00

0.01

0.02

0.03

Ca
lib

ra
tio

n 
Er

ro
r

Ind + Constant
Ind + Magpie

MT + Constant
MT + Magpie

B
A

C

G
S

JP
M

M
S

W
FC

C
O

P

C
V

X

E
O

G

S
LB

X
O

M

BAC

GS

JPM

MS

WFC

COP

CVX

EOG

SLB

XOM
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

0

0.2

0.4

0.6

0.8

Covariance

Figure 2.15: Le� panel: Calibration error of both Volt and MT Volt at the 95% confidence level as a
function of time step lookahead over 30 stocks from an entire sector ETF (XLF). While both are well-
calibrated, MT Volt preserves well-calibration to longer time steps. Center panel: Estimated correlation
matrix of stocks from two di�erent sectors. MT-Volt successfully learns the high volatility correlation
amongst the finance sector stocks (first five) with lower correlations between the energy sector stocks
(second five). Right panel: Estimated volatility covariance with Boulder, CO. Correlations decrease as
the stations go further away.
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2.10.1 A Multitask GPCV

We extend the Gaussian process copula volatility model (GPCV) described in Section 2.8.2 to

model several jointly related volatilities at once by using multi-task Gaussian processes [Bonilla

et al. 2007; Alvarez et al. 2012]. We assume that all returns and volatilities are observed at once,

with P di�erent responses, so that the covariance between the pth and p′th latent Gaussian pro-

cess is given by: k([t,p], [t ′,p′]) = Kv(t, t
′)Ki(p,p

′) where Ki(p,p
′) is a lookup table describing

the intertask covariance. The intertask covariance is a P × P matrix; we can regularize it with

a LKJ prior [Lewandowski et al. 2009] or to incorporate side information such as geographic

coordinates.

We have the multi-task probabilistic model:

fp(t) ∼ GP(c,Kv(t, t
′)Ki(p,p

′))

wp(t) ∼ N(0, exp2(fp(t)).

(2.21)

Again, we use variational inference to infer the latent posterior distribution over each price’s

latent Gaussian process, see Appendix A.2.2.3 for more details. We also use posterior samples

from this multi-task GPCV to estimate volatility, V̂p(t), for each stock price p by following Eq.

2.20.

In Appendix Figure A.14, we simulate price data from a correlated SABR volatility model and

use our multi-task GPCV to recover both the volatility as well as the latent correlation structures.

This suggests that our inference scheme enables us to accurately recover latent correlations.

2.10.2 Multi-Task Stock Modeling

After using a multi-task GPCV to estimate the volatility for us, we then use a multi-task Gaussian

process model [Bonilla et al. 2007] to estimate volatility, producing the following probabilistic
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model:
vp(t) ∼ GP(mv,Kv(t, t

′)Kp(t, t
′))

Vp(t) = exp
(
vp(t)

)
sp(t) ∼ GP(ms,p(t),Ks,p(t, t

′;Vp(t)))

Sp(t) = exp
(
sp(t)

)
.

(2.22)

Conditional on the correlated volatility paths, the prices themselves are independent, so we use P

independent Gaussian process models to model the prices. Intuitively, this dependency structure

makes sense as we expect exogenous shocks (for example, large scale macroeconomic trends) to

a�ect variability in an asset prices, rather than just directly producing an increase or decrease.

2.10.3 Multitask Stock Price Prediction

In Figure 2.15 left panel, we consider the calibration of both Volt and MT Volt on predictions

across �ve di�erent groupings of stocks each with between 5 and 30 di�erent stocks in each

group, �nding that all models are fairly well calibrated in terms of the calibration error, which

is the squared error of the average calibration across bins of the empirical observed calibration

of the foreast [Kuleshov et al. 2018]. The mult-task models tend to improve calibration over

independent models, especially when using Magpie means. We display the results for calibration

across time steps, mean absolute error (MAE) and negative log likelihood (NLL) in Appendix

A.2.4.

In Figure 2.15 center, we showcase how the multi-task Volt model of volatility can be used

to measure the relationships between assets. We considered 10 stocks, �ve from the �nancial

sector and �ve from the energy sector. Volt learns strong correlations amongst the stocks in the

�nancial sector and much weaker cross-correlations with the energy stocks.
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2.10.4 Spatiotemporal Wind Modelling

Finally, we consider multi-task modelling for stochastic weather generation. Here, as we have

longitude and latitude coordinates for each of the weather locations, we can incorporate this in-

formation into the inter-task covariance matrix by using a geodesic exponential kernel, which is

given as k(x,y) = exp{− arccos(x>y)/2σ 2} for x,y ∈ S2, that is points on the unit sphere [Jaya-

sumana et al. 2013]. Note that we have no restrictions on kernel choice and could alternatively

consider non-stationary kernels here instead.

We model 110 stations across the United States in the year 2021 again at 5 minute intervals,

estimating the relationship between each station using the geodesic exponential kernel described

above, and learning the lengthscale. We display the results in Figure 2.15 right panel with the

stations described on a map of the United States. Further experimental results are shown in

Appendix A.2.4.

2.11 Discussion

In this chapter we have proposed both Functional Kernel learning, as well as Volt and Magpie,

for building accurate Gaussian process models. Underlying both of these methods is the use

of a latent GP to imply distributions over covariance functions. While FKL and Volt approach

this modeling perspective from di�erent angles, both methods are capable of producing accurate

forecasts with well calibrated predictive uncertainties.

FKL relies on the use of Bochner’s theorem to learn a functional distribution over kernels,

providing support for any stationary kernel. With this property we have shown that FKL is

capable of high performance extrapolation in a range of domains, and is capable of recovering

the underlying kernel structure from data when the generative process is known.

Volt deviates from the usual assumptions of stochastic di�erential equation (SDE) models for
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�nancial and climatological models, and incorporates historical data through GPs, allowing us

to better estimate expectations and forecast distributions. Magpie allows us to replace the often

over-simpli�ed mean functions in Gaussian process models with a nonstationary mean leading

to forecasts that more closely represent the data.

Both FKL and Volt lead to novel multitask GP models, where rather than modeling the rela-

tionship between tasks in dataspace, we share information in the latent space (the spectral domain

in FKL, and the volatility domain in Volt). These multitask approaches are particularly compelling

in cases like wind speed or precipitation forecasting, where the highly stochastic nature of the

data make it such that relationships in data space themselves may be weak. However, for these

same cases the relationships in the latent space may be much stronger, and thus we can leverage

this information to produce more accurate multitask forecasts.

The potential applications of our approach are broad, with potential uses in �nancial domains

such as automated trading and strategy development, and climatological research in which Volt

and Magpie could serve as a backbone for large spatiotemporal climate models. In the future, it

would be useful to extend both the single and multi-task models to use online variational infer-

ence [Bui et al. 2017; Maddox et al. 2021b] to enable online deployment of scalable forecasting

strategies. We hope our work will catalyze further development of kernel distributions for Gaus-

sian processes, as well as applications of probabilistic machine learning to �nancial climatological

data.
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3 | Approximate Eqivariance and

Invariance in Neural Networks

In the previous chapters we examined solutions for learning distributions over covariance func-

tions in Gaussian processes. In this chapter we shift our focus to function space considerations in

neural networks, with particular focus on invariance and equivariance. Invariance and equivari-

ance are functional properties that help us in formalizing the idea of symmetries in our models. In

equivariant models we can use symmetries when the outputs of our models change in the same

way as our inputs. For example if we are modeling the momentum of a pendulum, our model

should be equivariant to rotations — rotating the pendulum should also rotate the momentum.

Invariance merely represents the other side of the coin, where the outputs of our model do not

change with respect to the inputs. For example, if we are labeling images of cars, our model

should be invariant to re�ections — re�ecting the image should not change the label.

The ability to learn these constraints or symmetries is a foundational property of intelligent

systems. Humans are able to discover patterns and regularities in data that provide compressed

representations of reality, such as translation, rotation, intensity, or scale symmetries. Indeed, we

see the value of such constraints in deep learning. Fully connected networks are more �exible

than convolutional networks, but convolutional networks are more broadly impactful because

they enforce the translation equivariance symmetry: when we translate an image, the outputs of

a convolutional layer translate in the same way [LeCun et al. 1998a; Cohen and Welling 2016a].
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Further gains have been achieved by recent work hard-coding additional symmetries, such as

rotation equivariance, into convolutional neural networks (CNNs) [e.g., Cohen and Welling 2016a;

Worrall et al. 2017; Zhou et al. 2017; Marcos et al. 2017].

While hard constraints like perfect invariance and equivariance are conceptually appealing

and have proven success, they are not always appropriate for a world that is frequently more

complex than we imagine. For example, a pendulum may have rotational symmetry, but adding

wind breaks the symmetry, or a robot may have translational symmetry, but bumpy or tilted

terrain breaks the symmetry. Similarly, in handwriting recognition if we rotate a 6 too far it

becomes indistinguishable from a 9. To accurately engage with problems like these, we require

models where equivariances are limited, either in their scope, where equivariance holds only to

limited ranges of transformations, or in their strength, where equivariance is only approximate.

Since equivariance and invariance are functional properties of a model, to address either the

scope or strength of these constraints we �rst require a model construction that allows us to

engage with the function space properties of the model. Through this chapter we explore two

distinct avenues for controlling the functional properties of neural networks. In the beginning

sections of this chapter we focus on the strength of equivariance in neural networks, and control

the types of functions we produce in a theoretically motivated way by incorporating and modi-

fying equivariant layers into our models. The result is a model where the prior provably favors

more equivariant solutions, but is not strictly constrained.

In the later portion of the chapter, beginning in Section 3.8, we address the issue of scope in

invariant models, and rather than use a theoretical construction, we instead take a well moti-

vated empirical approach through the use of carefully designed data augmentation procedures.

By augmenting inputs with transformations sampled from just a range of transformations, and

averaging the model outputs over these transformed inputs, we are able to produce models that

are invariant over just that range of transformations.

The two approaches discussed in this chapter are distinct, but highly complementary. Both
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allow to control the functional properties of our models, free us from the use of hard constraints,

and incorporate a prior that biases us towards more equivariant or invariant functions either in

scope or strength. These functional priors not only encode our beliefs about the world, that equiv-

ariance is desirable but possibly overly restrictive, but also allow us to learn levels of equivariance

from the data alone.

This chapter is adapted from the papers “Residual Pathway Priors for Soft Equvariance Con-

straints” which originally appeared at Neurips 2021, and “Learning Invariances in Neural Net-

works” which originally appeared at Neurips 2020. “Residual Pathway Priors for Soft Equvariance

Constraints” is joint work with Marc Finzi and Andrew Gordon Wilson, and “Learning Invari-

ances in Neural Networks” is joint work with Marc Finzi, Pavel Izmailov, and Andrew Gordon

Wilson.

3.1 Residual Pathway Priors

In addressing the strength of equivariance in neural networks, we can think about a prior over

the types of functions that our model produces. A highly �exible and unconstrained prior will

have no preference for equivariant functions over non-equivariant functions, while a highly con-

strained prior will only produce equivariant functions and place no prior mass on non-equivariant

functions. In this section we explore a prior that is �exible enough to allow for non-equivariant

functions, but is biased towards equivariant functions.

To address the need for more interpretable priors we introduce Residual Pathway Priors (RPPs),

a method for converting hard architectural constraints into soft priors. Practically, RPPs allow us

to tackle problems in which perfect symmetry has been violated, but approximate symmetry is

still present, as is the case for most real world physical systems. By favoring functions that are

more equivariant, RPPs will automatically tune the strength of equivariance to match the data.

We use the schematic in Figure 3.1(a) as an approach to model construction [Wilson and Iz-
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(a) Priors over Equivariant Solutions

Inputs

Restrictive Layer
• Strong inductive 

biases
• Constrained 

solutions

Outputs

Flexible Layer
• Weak inductive 

biases
• Unconstrained 

solutions

(b) Structure of RPP Models

Figure 3.1: Le�: RPPs encode an Occam’s razor approach to modeling. Highly flexible models like MLPs
lack the inductive biases to assign high prior mass to relevant solutions for a given problem, while models
with strict constraints are not flexible enough to support solutions with only approximate symmetry. For a
given problem, we want to use the most constrained model that is consistent with our observations. Right:
The structure of RPPs. Expanding the layers into a sum of the constrained and unconstrained solutions,
while se�ing the prior to favor the constrained solution, leads to the more flexible layer explaining only
the residual of what is already explained by the constrained layer.

mailov 2020; MacKay 2003]. The �exibility of our model is described by what solutions have

non-zero prior probability density. The inductive biases are described by the distribution of sup-

port over solutions. We wish to construct models with inductive biases that assign signi�cant

prior mass for solutions we believe to be a priori likely, but without ruling out other solutions we

believe to be possible. For example, models constrained to exact symmetries could not fully rep-

resent many problems, such as the motion of a pendulum in the presence of wind. Flexible models

with poor inductive biases, spread thinly across possible solutions, could express an approximate

symmetry, but such solutions are unlikely to be found because of the low prior density. In this

sense, we wish to embrace a notion of Occam’s razor such that “everything should be made as

simple as possible, but no simpler”.

As we �nd with problems in which symmetries exist, highly �exible models with weak induc-

tive biases like MLPs fail to concentrate prior mass around solutions that exhibit any symmetry.

On the other hand when symmetries are only approximate, the strong restriction biases of con-

strained models like Equivariant Multi-Layer Perceptrons (EMLP) [Finzi et al. 2021] fail to provide
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support for the observations. As a middle ground between these two extremes, RPPs combine the

inductive biases of constrained models with the �exibility of MLPs to de�ne a model class which

excels when data show approximate symmetries, as shown in Figure 3.1(b).

In the following sections we introduce our method and show results across a variety of do-

mains. We list our contributions and the accompanying sections below:

1. We propose Residual Pathway Priors as a mechanism to imbue models with soft inductive

biases, without constraining �exibility.

2. While our approach is general, we use RPPs to show how to turn hard architectural con-

straints into soft equivariance priors (Section 3.4).

3. We demonstrate that RPPs are robust to varying degrees of symmetry (Section 3.5). RPPs

perform well under exact, approximate, or misspeci�ed symmetries.

4. Using RPP on the approximate symmetries in the complex state spaces of the Mujoco lo-

comotion tasks, we improve the performance of model free RL agents (Section 3.6).

3.2 Residual Pathway Priors Related Work

The challenge of equivariant models not being able to fully �t the data has been identi�ed in a

number of di�erent contexts, and with di�erent application speci�c adjustments to mitigate the

problem. Liu et al. [2018b] observe that convolutional networks can be extremely poor at tasks

that require identifying or outputting spatial locations in an image as a result of the translation

symmetry. The authors solve the problem by concatenating a coordinate grid to the input of the

convolution layer. Constructing translation and rotation equivariant GCNNs, Weiler and Cesa

[2019] �nd that in order to get the best performance on CIFAR-10 and STL-10 datasets which

have a preferred camera orientation, they must break the symmetry, which they do by using

equivariance to progressively smaller subgroups in the later layers. Bogatskiy et al. [2020] go to
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great lengths to construct Lorentz group equivariant networks for tagging collisions in particle

colliders only to break the symmetry by introducing dummy inputs that identify the collision

axis. van der Wilk et al. [2018] use the marginal likelihood to learn approximate invariances in

Gaussian processes from data. In a related procedure, Benton et al. [2020] learn the extent of

symmetries in neural networks using the reparametrization trick and test time augmentation.

While sharing some commonalities with RPP, this method is not aimed at achieving approximate

equivariance and cannot bake equivariance into the model architecture.

A separate line of work has attempted to combine the extreme �exibility of the Vision Trans-

former (ViT) [Dosovitskiy et al. 2021] with the better sample e�ciency of convolutional networks,

by incorporating convolutions at early layers [Xiao et al. 2021] or making the self attention layer

more like a convolution [d’Ascoli et al. 2021; Dai et al. 2021]. Most similar to our work, ConViT

[d’Ascoli et al. 2021] uses a gating mechanism for adding a soft locality bias to the self atten-

tion mechanism in Vision Transformers. ConViT and RPP share the same motivation, but while

ConViT is designed speci�cally for biasing towards locality in the self attention layer, RPP is a

general approach that we can apply broadly with other kinds of layers, symmetries, or architec-

tural constraints.

Outside of equivariance, adding model outputs to a much more restrictive base model has been

a fruitful idea employed in multiple contexts. The original ResNet [He et al. 2016a,b] drew on this

motivation, with shortcut connections. Johannink et al. [2019] and Silver et al. [2018] proposed

Residual Reinforcement Learning, whereby the RL problem is split into a user designed controller

using engineering principles and a �exible neural network policy learned with RL. Similarly, in

modeling dynamical systems, one approach is to incorporate a base parametric form informed

by models from physics or biology, and only learn a neural network to �t the delta between the

simple model and reality [Kashinath et al. 2021; Liu et al. 2021].

There have been several works tackling symmetries and equivariance in RL, such as permuta-

tion equivariance for multi-agent RL [Sukhbaatar et al. 2016; Jiang et al. 2018; Liu et al. 2020b], as
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well exploring re�ection symmetry for continuous control tasks [Abdolhosseini et al. 2019], and

discrete symmetries in the more general framework of MDP homomorphisms [van der Pol et al.

2020b]. However, in each of these applications the symmetries need to be exact, and the complex-

ities of real data often require violating those symmetries. Although not constructed with this

purpose, some methods which use regularizers to enforce equivariance [van der Pol et al. 2020a]

could be used for approximate symmetries. Interestingly, the value of approximate symmetries of

MDPs has been explored in some theoretical work [Ravindran and Barto 2004; Taylor et al. 2008],

but without architectures that can make use of it. Additionally, data augmentation, while not able

to bake in architectural equivariance, has been successfully applied to encouraging equivariance

on image tasks [Kostrikov et al. 2020] and recently even on tabular state vectors [Lin et al. 2020;

Mavalankar 2020].

3.3 Background

In order develop our method, we �rst review the concept of group symmetries, how representa-

tions formalize the way these symmetries act on di�erent objects.

Group Symmetries In the machine learning context, a symmetry group G can be understood

as a set of invertible transformations under which an object is the same, such as re�ections or

rotations. These symmetries can act on many di�erent kinds of objects. A rotation could act on

a simple vector, a 2d array like an image, a complex collection objects like the state space of a

robot, or more abstractly on an entire classi�cation problem or Markov Decision Process (MDP).

Representations The way that symmetries act on objects is described by a representation.

Given an object in an n-dimensional vector space V , a group representation is a mapping ρ :

G → Rn×n, yielding a matrix which acts onV . Vectorsv ∈ V are transformedv 7→ ρ(д)v . In deep

learning, each of the inputs and outputs to our models can be embedded in some vector space:
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an m ×m sized rgb image exists in R3m2 , and a node valued function on a graph of m elements

exists within Rm. The representation ρ speci�es how each of these objects transform under the

symmetry group G.

These representations can be composed of multiple simpler subrepresentations, describing

how each object within a collection transforms. For example given the representation ρ1 of rota-

tions acting on a vector in R3, and a representation ρ2 of how rotations act on a 3× 3 matrix, the

two objects concatenated together have a representation given by ρ1(д) ⊕ ρ2(д) =


ρ1(д) 0

0 ρ2(д)

 ,

where the two matrices are concatenated along the diagonal. Practically this means we can rep-

resent intricate and multifaceted structures by breaking them down into their component parts

and de�ning how each part transforms. For example, we may know that the velocity vector, an

orientation quaternion, a joint angle, and a control torque all transform in di�erent ways under

a left-right re�ection, and one can accommodate this information into the representation.

Eqivariance Given some data X with representation ρin, and Y with representation ρout, we

may wish to learn some mapping f : X → Y . A model f is equivariant [Cohen and Welling

2016a], if applying the symmetry transformation to the input is equivalent to applying it to the

output

f (ρin(д)x) = ρout(д)f (x).

In other words, it is not the symmetry ofX orY that is relevant, but the symmetry of the function

f mapping fromX toY . If the true relationship in the data has a symmetry, then constraining the

hypothesis space to functions f that also have the symmetry makes learning easier and improves

generalization [Elesedy and Zaidi 2021]. Equivariant models have been developed for a wide

variety of symmetries and data types like images [Cohen and Welling 2016a; Worrall et al. 2017;

Zhou et al. 2017; Weiler and Cesa 2019], sets [Zaheer et al. 2017; Maron et al. 2020], graphs [Maron

et al. 2018], point clouds [Anderson et al. 2019; Fuchs et al. 2020; Satorras et al. 2021], dynamical
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systems [Finzi et al. 2020], jets [Bogatskiy et al. 2020], and other objects [Wang et al. 2020; Finzi

et al. 2021].

3.4 Residual Pathway Priors Methodology

In this section, we introduce Residual Pathway Priors (RPPs). The core implementation of the

RPP is to expand each layer in model into a sum of both a restrictive layer that encodes the hard

architectural constraints and a generic more �exible layer, but penalize the more �exible path via

a lower prior probability. Through the di�erence in prior probability, explanations of the data

using only the constrained solutions are prioritized by the model; however, if the data are more

complex the residual between the target and the constrained layer will be explained using the

�exible layer. We can apply this procedure to any restriction priors, such as linearity, locality,

Markovian structure, and, of course, equivariance.

Provided we can represent the r dimensional orthogonal basis of the k weights (A) in a con-

strained model as Q ∈ Rk×r , then we can de�ne a Gaussian prior over the weights in that

basis as A ∼ N(0,σ 2
aQQ

>). Since Q is orthogonal we can de�ne it’s orthogonal complement

as P , then a Gaussian prior over unconstrained weights (B) can be written B ∼ N(0,σ 2
b
I ) =

N(0,σ 2
b
QQ> + σ 2

b
PP>). Thus the prior over the sum of the weights of the constrained and un-

constrained layers is

A + B ∼ N(0, (σ 2
a + σ

2
b )QQ

T + σ 2
b PP

T ). (3.1)

Regardless of the values of the prior variances σ 2
a and σ 2

b
, solutions in the constrained subspace

QQ> are automatically favored by the model and assigned higher prior probability mass than

those in the subspace PP> that violate the constraint. Even if σb > σa , the model still favors

equivariance because the equivariance solutions are contained in the more �exible layer A. We

show in Section 3.5.2 that RPPs are insensitive to the choice of σa and σb , provided that σa is large

enough to be able to �t the data.
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The Residual Pathway Prior draws inspiration from the residual connections in ResNets [He

et al. 2016a,b], whereby training stability and generalization improves by providing multiple paths

for gradients to �ow through the network that have di�erent properties. One way of interpreting

a residual block and shortcut connection f (x) = x + h(x) in combination with l2 regularization,

either explicitly from weight decay or implicitly from the training dynamics [Neyshabur et al.

2014], is as a prior that places higher prior likelihood on the much simpler identity mapping than

on the more �exible function h(x). In this way, h(x) need only explain the the di�erence between

what is explained in the previous layer (passed through by I ) and the target.

Under the prior of Equation 3.2, a MAP optimized model will favor explanations of the data

using the more structured layer A, and only resort to using layer B to explain the di�erence be-

tween the target and what is already explained by the more structured model A. Adding these

unconstrained residual pathways to each layer of an constrained model, we have a model that

has the same expressivity of a network formed entirely of B layers, but with the inductive bias

towards a model formed entirely with the constrained A layers. We term this model a Residual

Pathway Prior.

To make the approach concrete, we �rst consider constructing equivariance priors using the

constraint solving approach known as Equivariant Multi-Layer Perceptrons (EMLP) from Finzi

et al. [2021].

Eqivariant MLPs EMLPs provide a method for automatically constructing exactly equivari-

ant layers for any given group and representation by solving a set of constraints. The way in

which the vectors are equivariant is given by a formal speci�cation of the types of the input and

output through de�ning their representations. Given some input vector spaceVin with represen-

tation ρin and some output space Vout with representation ρout the space of all equivariant linear
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layers mapping Vin → Vout satis�es

∀д ∈ G : ρout(д)W =W ρin(д).

These solutions to the constraint form a subspace of matrices Rnout×nin which can be solved for

and described by a r dimensional orthonormal basis Q ∈ Rnoutnin×r . Linear layers can then be

parametrized in this equivariant basis. The elements ofW can be parametrized vec(W ) = Qβ for

β ∈ Rr for the linear layer v 7→Wv , and symmetric biases can be parametrized similarly.

Eqivariance Priors with EMLP In order to convert the hard equivariance constraints in

EMLP into a soft prior over equivariance that can accommodate approximate symmetries, we

can apply the RPP procedure from above to each these linear layers in the network. Instead of

parametrizing the weightsW directly in the equivariant basis vec(W ) = Qβ , we can instead de�ne

W as the sumW = A+ B of an equivariant weight matrix vec(A) = Qβ an unconstrained weight

matrix B. Placing Gaussian priors over both A and B yields the RPP prior in Equation (3.1) with

A + B =W ∼ N(0, (σ 2
a + σ

2
b
)QQ> + σ 2

b
PP>).

By replacing each of the equivariant linear layers in an EMLP with a sum of an equivariant

layer and an unconstrained layer and adding in the negative prior likelihood to the loss function,

we produce an RPP-EMLP that can accommodate approximate or incorrectly speci�ed symme-

tries. 1

RPPs With Other Eqivariant Models While in EMLP equivariant bases are solved for ex-

plicitly, the RPP can be applied to the linear layers in other equivariant networks in precisely

the same way. A good example is the translationally equivariant convolutional neural network

(CNN), which can be viewed as a restricted subset of a fully connected network. Though the lay-

ers are parametrized as convolutions, the convolution operation can be expressed as a Toeplitz
1For the EMLP that uses gated nonlinearities which do not always reduce to a standard Swish, we likewise add

a more general Swish weighted by a parameter with prior variance σ 2
b .
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matrix residing within the space of dense matrices. Adding the convolution to a fully connected

layer and choosing a prior variance σ 2
a and σ 2

b
over each, we have the same RPP prior

W ∼ N (0,σ 2
aQQ

> + σ 2
b I ) (3.2)

whereQ is the basis of (bi-)Toeplitz matrices corresponding to 3×3 �lters. This RPP CNN has the

biases of convolution but can readily �t non translationally equivariant data. We can similarly

create priors with the biases of other equivariant models like GCNNs [Cohen and Welling 2016a],

without any hard constraints. We can even apply the RPP principle to the breaking of a given

symmetry group to a subgroup.

3.5 How and Why RPPs Work

We explore how and why RPPs work on a variety of domains, applying RPPs where (1) constraints

are known to be helpful, (2) cannot fully describe the problem, and (3) are misspeci�ed.

3.5.1 Dynamical Systems and Levels of Eqivariance

In order to better understand how and why residual pathway priors interact with the symmetries

of the problem we move to settings in which we can directly control both the type of symmetry

and the level to which the symmetries are violated. We examine how RPPs coupled with EMLP

networks (RPP-EMLP) perform on the inertia and double pendulum datasets featured in Finzi

et al. [2021] in 3 experimental settings: (i) the original inertia and double pendulum datasets

which preserve exact symmetries with respect to the to O(3) and O(2) groups respectively; (ii)

modi�ed versions of these datasets with additional factors (such as wind on the double pendulum)

that lead to approximate symmetries; and (iii) versions with misspeci�ed symmetry groups that

break the symmetries entirely (described in subsection A.3.3).
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Figure 3.2: A comparison of test performance over 10 independent trials using RPP-EMLP and equivalent
EMLP and MLP models on the inertia (top) and double pendulum (bo�om) datasets in which we have
three varying levels of symmetries. The boxes represent the interquartile range, and the whiskers the
remainder of the distribution. Le�: perfect symmetries in which EMLP and the equivariant components
of RPP-EMLP exactly capture the symmetries in the data. Center: approximate symmetries in which the
perfectly symmetric systems have been modified to include some non-equivariant components. Right:
mis-specified symmetries in which the symmetric components of EMLP and RPP-EMLP do not reflect the
symmetries present in the data.

The results for these 3 settings are given in Figure 3.4. Across all settings RPP-EMLP match

the performance of EMLP when symmetries are exact, perform as well as an MLP when the

symmetry is misspeci�ed and better than both when the symmetry is approximate. For these

experiments we use a prior variance of σ 2
a = 105 on the EMLP weights and σ 2

b
= 1 on the MLP

weights.

Exact Symmetries As part of the motivation, RPPs should properly allocate prior mass to both

constrained and unconstrained solutions, we test cases in which symmetries are exact, and show

that RPP-EMLP is capable of performing on par with EMLP which only admits solutions with

perfect symmetry. The results in Figure 3.4(a) show that although the prior over models as de-

scribed RPP-EMLP is broader than that of EMLP (as we can admit non-equivariant solutions) in

the presence of perfectly equivariant data RPP-EMLP do not hinder performance, and we are able

to generalize nearly as well as the perfectly prescribed EMLP model.
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Approximate symmetries To better showcase the ideas of Figure 3.1 we compare RPP-EMLPs

to EMLPs and MLPs on the modi�ed inertia and windy pendulum datasets. In these datasets we

can think about the systems as primarily equivariant but containing non-equivariant contribu-

tions. As shown in 3.4(b) these problems are best suited for RPP-EMLP as MLPs have no bias

towards the approximately symmetry present in the data, and EMLPs are overly constrained in

this setting.

Misspecified symmetries In contrast to working with perfect symmetries and showing that

RPP-EMLPs are competitive with EMLPs, we also show that when symmetries are misspeci�ed

the bias towards equivariant solutions does not hinder the performance of RPP-EMLPs. For the

inertia dataset we substitute the group equivariance in EMLP from O(3) to the overly large group

SL(3) consisting of all volume and orientation preserving linear transformations, not just the

orthogonal ones. For the double pendulum dataset, we substitute O(2) symmetry acting on R3

with the larger SO(3) rotation group that contains it but is not a symmetry of the dataset.

By purposefully misspecifying the symmetry in these datasets we intentionally construct

EMLP and RPP-EMLP models with incorrect inductive biases. In this setting EMLP is incapable

of making accurate predictions as it has a hard constraint on an incorrect symmetry. Figure 3.4(c)

shows that even in cases where the model is intentionally mis-speci�ed that RPPs can overcome

a poorly aligned inductive bias and recover solutions that perform as well as standard MLPs, even

where EMLPs fail.

3.5.2 Prior Levels of Eqivariance

To test the e�ect of prior variances we use the modi�ed inertia dataset, which represents a version

of a problem in which perfect equivariance has been broken by adding new external forces to the

dynamical system. Shown in Figure 3.3 (right) is a comparison of mean squared error on test data

as a function of the prior precision terms on both the equivariance and basic weights. As a general
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Figure 3.3: Le�: Kernel density estimators of log equivariance error across training epochs for 10 inde-
pendently trained networks. Here the color denotes the dataset these models were trained on. Treating
these samples as a proxy for posterior density, we see that on the non-equivariant Modified Inertia dataset,
the posterior is shi�ed upward to match the level of equivariance in the data during training. Right: Test
MSE as a function of the weight decay parameters on the equivariant and basic weights on the modified
inertia dataset. We observe that so long as the prior in the basis of equivariant weights is broad enough,
we can achieve low test error with RPPs.

trend we see that when the regularization on the equivariant weights is too high (equivalent to a

concentrated prior around 0) we �nd instability in test performance, yet when we apply a broad

prior to the equivariant weights performance is typically both better in terms of MSE, and more

stable to the choice of prior on the basic model weights.

As the prior variances over the equivariant basis Q and the non-equivariant basis P describe

our bias towards or away from equivariant solutions we investigate how the choice of prior vari-

ance relates to the level of symmetry present in a given dataset. In the windy pendulum dataset

we have control over the level of wind and thus how far our system is from perfect equivariance.

3.5.3 Posterior Levels of Eqivariance

RPPs describe a method for setting a prior over equivariance, and in the presence of new data we

expect the posterior distribution over equivariance to change accordingly. Using samples from a

deep ensemble to query points of high density in the posterior we estimate how the distribution

over equivariance error progresses through training. Recalling that with an equivariant function
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f we have ρ2(д)f (x) = f (ρ1(д)x), we compute equivariance error as

EquivErr(f , x) = RelErr(ρ2(д)f (x), f (ρ1(д)x)) where RelErr(a,b) =
‖a − b‖

‖a‖ + ‖b‖
. (3.3)

We train one deep ensemble on the inertia dataset which exhibits perfect symmetry, and an-

other on the modi�ed inertia dataset which has only partial symmetry, with each deep ensemble

being comprised of 10 individual models using the same procedure as in Section 3.5.1. In Figure

3.3 (left) we see that throughout training the models trained on the modi�ed inertia concentrate

around solutions with substantially higher equivariance error than models trained on the dataset

with the exact symmetry. This �gure demonstrates one of the core desiderata of RPPs: that we

are able to converge to solutions with an appropriate level of equivariance for the data.

3.5.4 RPPs and Convolutional Structure

Using the RPP-Conv speci�ed by the prior in Eqn 3.2 we apply the model to CIFAR-10 classi�-

cation and UCI regression tasks where the inputs are reshaped to zero-padded two dimensional

arrays and treated as images. Notably, the model is still an MLP and merely has larger prior vari-

ance in the convolutional subspace. As a result it can perform well on image datasets where the

inductive bias is aligned, as well as on the UCI data despite not being an image dataset as shown

in Table 3.1. While retaining the �exibility of an MLP, the RPP performs better than the locally

connected MLPs trained with β-lasso in Neyshabur [2020] which get 14% error on CIFAR-10. The

full details for the architectures and training procedure are given in Appendix A.3.3.

3.6 Approximate Symmetries in Reinforcement Learning

Both model free and model based reinforcement learning present opportunities to take advantage

of structure in the data for predictive power and data e�ciency. On the one hand stands the
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CIFAR-10 Energy Fertility Pendulum Wine

MLP 37.61 ± 0.56 0.39 ± 0.48 0.049 ± 0.0044 4.65 ± 0.50 0.66 ± 0.058
RPP 12.62 ± 0.34 0.73 ± 0.44 0.060 ± 0.0097 4.25 ± 0.50 0.69 ± 0.031

Conv 12.03 ± 0.46 1.34 ± 0.38 0.076 ± 0.0157 4.63 ± 0.36 0.79 ± 0.092

Table 3.1: Mean test classification error on CIFAR-10 and MSE on 4 UCI regression tasks, with one
standard deviation errors taken over 10 trials. Similar to Figure 3.4, we find that whether the constrained
convolutional structure is helpful (CIFAR) or not (UCI), RPP-Conv performs similarly to the model with
the correct level of complexity.

use of model predictive control in the engineering community where �nely speci�ed dynamics

models are constructed by engineers and only a small number of parameters are �t with system

identi�cation to determine mass, inertia, joint sti�ness, etc. On the other side of things stands the

hands o� approach taken in the RL community, where general and unstructured neural networks

are used for both transition models [Chua et al. 2018; Wang and Ba 2019; Janner et al. 2019] as

well as policies and value functions [Haarnoja et al. 2018a]. The state and action spaces for

these systems are highly complex with many diverse inputs like quaternions, joint angles, forces,

torques that each transform in di�erent ways under a symmetry transformation like a left-right

re�ection or a rotation. As a result, most RL methods treat these spaces a black box ignoring all of

this structure, and as a result they tend to require tremendous amounts of training data, making

it di�cult to apply to real systems without the use of simulators.

We can make use of this information about what kinds of objects populate the state and ac-

tion spaces to encode approximate symmetries of the RL environments. As shown in van der Pol

et al. [2020b], exploiting symmetries in MDPs by using equivariant networks can yield substan-

tial improvements in data e�ciency. But symmetries are brittle, and minor e�ects like rewards

for moving in one direction, gravity, or even perturbations like wind, a minor tilt angle in Cart-

Pole, or other environment imperfections can break otherwise perfectly good symmetries. As

shown in Table 3.2, broadening the scope to approximate symmetries allows for leveraging a lot

more structure in the data which we can exploit with RPP. While Walker2d, Swimmer, Ant, and
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Figure 3.4: Example illustrations of symmetries and representations from the Mujoco environments.
Le�: le�-right symmetry in the Walker2d environment, center: front-back symmetry in the Swimmer
environment, and right: In-out similarity in the HalfCheetah environment
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Humanoid have exact left/right re�ection symmetries, Hopper, HalfCheetah, and Swimmer have

approximate front/back re�ection symmetries. Ant and Humanoid have an even more diverse

set, with the D4 dihedral symmetry by re�ecting and cyclicly permuting the legs of the ant, as

well as continuous rotations of the Ant and Humanoid within the environment which can be

broken by external forces or rewards. Identifying this structure in the data, we are able to use the

generality of EMLP to construct an equivariant model for this data, and then turn it into a soft

prior using RPP.

Symmetries Walker2d Hopper HalfCheetah Swimmer Ant Humanoid

Exact Z2 7 7 Z2 Z2 Z2
Approximate Z2 Z2 Z2 Z2 × Z2 D4 × O(2) Z2 × O(2)

This work Z2 Z2 Z2 Z2 × Z2 Z4 SO(2)

Table 3.2: Exact and approximate symmetries of Mujoco locomotion environments of which we use the
subgroups in the bo�om row, see subsection A.3.4 for the detailed action and state representations.

3.6.1 Approximate Symmetries in Model Free Reinforcement Learning

We evaluate RPPs on the standard suite of Mujoco continuous control tasks in the context of

model-free reinforcement learning. With the appropriately speci�ed action and state represen-

tations detailed in subsection A.3.4, we construct RPP-EMLPs which we use as a drop-in replace-

ment for both the policy and Q-function in the Soft Actor Critic (SAC) algorithm [Haarnoja et al.

2018a], using the same number of layers and channels. In contrast with van der Pol et al. [2020b]

where equivariance is used just for policies, we �nd that using RPP-EMLP for the policy function

alone is not very helpful with Actor Critic (see Figure 3.5). With the exception of the Humanoid-

v2 environment where the RPP-EMLP destabilizes SAC, we �nd that incorporating the exact and

approximate equivariance with RPP yields consistent improvements in the data e�ciency of the

RL agent as shown in Figure 3.5.
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Figure 3.5: Average reward curve of RPP-SAC and SAC trained on Mujoco locomotion environments
(max average reward a�ained at each step). Mean and one standard deviation taken over 4 trials shown
in the shaded region. Incorporating approximate symmetries in the environments improves the e�iciency
of the model free RL agents.
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3.6.2 Better Transition Models for Model Based Reinforcement

Learning

Swimmer-v2 Hopper-v2 Ant-v2
Rollout MLP RPP MLP RPP MLP RPP

10 Steps 0.51 ± 0.02 0.40 ± 0.04 1.1 ± 0.1 0.9 ± 0.1 4.2 ± 0.1 5.2 ± 0.3
30 Steps 1.6 ± 0.2 1.26 ± 0.14 3.8 ± 0.3 3.1 ± 0.5 11.3 ± 0.2 13.9 ± 0.7
100 Steps 3.9 ± 1.0 2.75 ± 0.31 9.8 ± 0.5 7.0 ± 0.7 16.0 ± 0.3 20.0 ± 1.1

Equiv Err 46% 19% 98% 32% 36% 31%

Table 3.3: Transition model rollout relative error in percent % averaged over 10, 30, and 100 step roll-
outs (geometric mean over trajectory). Errorbars are 1 standard deviation taken over 3 random seeds.
Equivariance error is computed from as the geometric mean averaged over the 100 step rollout.

We also investigate whether the equivariance prior of RPP can improve the quality of the

predictions for transition models in the context of model based RL. To evaluate this in a way

decoupled from the complex interactions between policy, model, and value function in MBRL, we

instead construct a static dataset of 50, 000 state transitions sampled uniformly from the replay

bu�er of a trained SAC agent. Since the trajectories in the replay bu�er come from di�erent times,

they capture the varied dynamics MBRL transition models often encounter during training.

State of the art model based approaches on Mujoco tend to use an ensemble of small MLPs that

predict the state transitions [Chua et al. 2018; Wang and Ba 2019; Janner et al. 2019; Amos et al.

2020], without exploiting any structure of the state space. We evaluate test rollout predictions

via the relative error of the state over di�erent length horizons for the RPP model against an

MLP, the method of choice. As shown in Table 3.3, RPP transition models outperform MLPs on

the Swimmer and Hopper environments, especially for long rollouts showing promise for use in

MBRL. On these environments, RPP learns a smaller but non-negligible equivariance error that

still enables it to �t the data.
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3.7 RPP Limitations

Using RPP-EMLP for the state and action spaces of the Mujoco environments required identifying

the meaning of each of the components in terms of whether they are scalars, velocity vectors,

joint angles, or orientation quaternions, and also which part of the robot they correspond to.

This can be an error-prone process. While RPPs are fairly robust to such mistakes, the need to

identify components makes using RPP more challenging than standard MLP. Additionally, due

to the bilinear layers within EMLP, the Lipschitz constant of the network is unbounded which

can lead to training instabilities when the inputs are not well normalized. We hypothesize these

factors may contribute to the training instability we experienced using RPP-EMLP on Humanoid-

v2.

3.8 Learning Invariances in Neural Networks: Augerino

With Residual Pathway Priors we examined cases where equivariance is only held approximately.

Namely, we developed a model which yields functions such that д f (x) ≈ f (дx) for some trans-

formation д. In the following sections we explore a highly related approach, but rather than

approximate equivariances we focus on limited invariances, where f (x) = f (дx) for some д ⊆ G.

For these cases we aim to learn functions where the invariance is held as close to exactly as pos-

sible, but where the transformations д are restricted to a subset of the full symmetry group G.

Such limited symmetries are important for many visual tasks, especially where labels depend not

only on image content but also pose. For example, 6’s can be rotated to become 9’s, or an n can

become a u if the image is rotated. In these cases invariance to some rotation is present, but not

to the full range of rotations.

This approach is driven by training with data augmentations, leading to the name Augerino.

Since the approach relies on data augmentation during training, rather than the underlying ar-
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chitecture of the model, Augerino is compatible with any standard neural network architecture.

This reliance on augmentations, not architectures, means that Augerino is able to in�uence the

functional properties of the model while still treating the base architecture as a black box.

Augerino (1) can learn both invariances and equivariances over a wide range of symmetry

groups, including translations, rotations, scalings, and shears; (2) can discover partial symmetries,

such as rotations not spanning the full range from [−π , π ]; (3) can be combined with any standard

architectures, loss functions, or optimization algorithm with little overhead; (4) performs well on

regression, classi�cation, and segmentation tasks, for both image and molecular data.

3.9 Augerino Related Work

There is a large body of work constructing convolutional neural networks that have hard-coded

invariance or equivariance to a set of transformations, such as rotation [Cohen and Welling 2016a;

Worrall et al. 2017; Zhou et al. 2017; Marcos et al. 2017] and scaling [Worrall and Welling 2019;

Sosnovik et al. 2019]. While recent methods use a representation theoretic approach to �nd a

basis of equivariant convolutional kernels [Cohen and Welling 2016b; Worrall et al. 2017; Weiler

and Cesa 2019], the older method of Laptev et al. [2016] pools network outputs over many hard-

coded transformations of the input for �xed invariances, but does not consider equivariances or

learning the transformations.

van der Wilk et al. [2018] learn transformations for learning invariances in kernel methods

from training data, using the marginal likelihood of a Gaussian process. The marginal likelihood,

which is the integral of the product of the likelihood with a parameter prior, automatically selects

for constraints [e.g., MacKay 2003]. They propose a similar pipeline of learning the parameters of

a transformation directly by backpropagation and the reparametrization trick. In contrast to their

work, we develop a framework that can be easily applied to deep neural networks with standard

loss functions, without needing to compute a marginal likelihood (which is typically intractable).
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Our framework can also learn more general transformations through the exponential map, as

well as equivariant models.

With a desire to automate the machine learning pipeline, Cubuk et al. [2019] introduced Au-

toAugment in which reinforcement learning is used to �nd an optimal augmentation policy within

a discrete search space. At the expense of a massive computational budget for the search, Au-

toAugment brought substantial gains in image classi�cation performance, including state-of-the-

art results on ImageNet. The AutoAugment framework was extended �rst to Fast AutoAugment

in Lim et al. [2019], improving both the speed and accuracy of AutoAugment by using Bayesian

data augmentation [Tran et al. 2017]. Both Cubuk et al. [2019] and Lim et al. [2019] apply a re-

inforcement learning approach to searching the space of augmentations, signi�cantly di�ering

from our work which directly optimizes distributions over augmentations with respect to the

training loss.

Faster AutoAugment [Hataya et al. 2019], which uses a GAN framework to match augmen-

tations to the data distribution, and Di�erentiable Automatic Data Augmentation [Li et al. 2020]

which applies a DARTS [Liu et al. 2018a] bi-level optimization procedure to learn augmenta-

tion from the validation loss are most similar to Augerino in the discovery of distributions over

augmentations. Both methods learn augmentations from data using the reparametrization trick;

however unlike Li et al. [2020] and Liu et al. [2018a], we learn augmentations directly from the

training loss without need for GAN training or the complex DARTS procedure [Liu et al. 2018a;

Xu et al. 2019; Liang et al. 2019], and are speci�cally learning degrees of invariances and equiv-

ariances.

To the best of our knowledge, Augerino is the �rst work to learn invariances and equivariances

in neural networks from training data alone. The ability to automatically discover symmetries

enables us to uncover interpretable salient structure in data, and provide better generalization.
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Figure 3.6: The Augerino framework. Augmentations are sampled from a distribution governed by pa-
rameters θ , and applied to an input to produce multiple augmented inputs. These augmented inputs are
then passed to a neural network with weights w , and the final prediction is generated by averaging over
the multiple outputs. Augerino discovers invariances by learning θ from training data alone.

3.10 Augerino: Learning Invariances through

Augmentation

A simple way of constructing a model invariant to a given group of transformations is to average

the outputs of an arbitrary model for the inputs transformed with all the transformations in the

group. For example, if we wish to make a given image classi�er invariant to horizontal re�ections,

we can average the predictions of the network for the original and re�ected input.

Augerino functions by sampling multiple augmentations from a parametrized distribution

then applying these augmentations to an input to acquire multiple augmented samples of the

input. The augmented input samples are each then passed through the model, with the �nal

prediction being generated by averaging over the individual outputs. We present the Augerino

framework in Figure 3.6.

Now, suppose we are working with a set S of transformations. Relevant transformations may

not always form a group structure, such as rotations Rϕ by limited angles in the range ϕ ∈ [−θ , θ ].

Given a neural network fw , with parameters w , we can make a new model f̄ which is approxi-

mately invariant to transformations S by averaging the outputs over a uniform distribution µθ (·)

over the transformations д ∈ S with supp(µθ ) = S2 [e.g., Laptev et al. 2016; Raj et al. 2017; van der
2See Appendix A.4.1 for further discussion on forming the invariant model.
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Wilk et al. 2018] :

f̄w (x) = Eд∼µθ fw (дx). (3.4)

For cross-entropy loss we can use Jensen’s inequality to bound the loss of f̄ by the expected

loss of f :

`( f̄w (x)) = `(Eд∼µθ fw (дx)) ≤ Eд∼µθ `(fw (дx)). (3.5)

Note that here we are considering fw (x) to be the log-probabilities of the classes, i.e. the post-

softmax outputs of the network. We then train the augmentation averaged model f̄ by minimiz-

ing the upper bound on the `( f̄w (x)), the loss of fw (дx) averaged over a �nite number of samples

from д ∼ µθ at training time, using a Monte Carlo estimator.

To learn the invariances we can also backpropagate through to the parameters θ of the dis-

tribution µθ by using the reparametrization trick [Kingma and Welling 2013]. For example, for a

uniform distribution over rotations with angles U [−θ , θ ], we can parametrize the rotation angle

by ϕ = θϵ with ϵ ∼ U [−1, 1]. The loss L(·) for the augmentation-averaged model on an input x

can be computed as

Lx (θ,w) = Eϕ∼U [−θ ,θ ]`
(
fw (Rϕx)

)
= Eϵ∼U [−1,1]`

(
fw (Rϵθx)

)
. (3.6)

Speci�cally, during training we can use a single sample from the augmentation distribution

to estimate the gradients. The learned range of rotations [−θ , θ ] would correspond to the extent

rotational invariance is present in the data. With a more general set of k transformations, we can

similarly de�ne a distribution µθ (·) over the transformation elements using the reparametrization

trick д = дϵ = ϵ � θ , with ϵ ∼ U [−1, 1]k and θ ∈ Rk . The reparametrized loss is then

Lx (θ ,w) = Eϵ∼U [−1,1]k `
(
fw (дϵx)

)
. (3.7)

In Section 3.10.2 we describe a parameterization of the set of a�ne transformations which in-
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cludes translations, rotations, and scalings of the input as special cases. In this fashion, we can

train both the parameters of the augmentation averaged model f̄ consisting both of the weights

w of fw and the parameters θ of the augmentation distribution µθ .

Test-time Augmentation At test time we sample multiple transformations д ∼ µθ and make

a prediction by averaging over the predictions generated for each transformed input, approxi-

mating the expectation in Equation (3.4). We further discuss train and test time augmentation in

Appendix A.4.4.

Regularized Loss Invariances correspond to constraints on the model, and in general the most

unconstrained model may be able to achieve the lowest training loss. However, we have a prior

belief that a model should preserve some level of invariance, even if standard losses cannot ac-

count for this preference. To bias training towards solutions that incorporate invariances, we

add a regularization penalty to the network loss function that promotes broader distributions

over augmentations. Our �nal loss function is given by

Lx (θ ,w) = Eд∼µθ `
(
fw (дx)

)
+ λR(θ ), (3.8)

where R is a regularization function encouraging coverage of a larger volume of transformations

and λ is the regularization weight (the form of R(θ ) is discussed in Section 3.10.2). In practice we

�nd that the choice of λ is largely unimportant; the insensitivity to the choice of λ is demonstrated

throughout Sections 3.11 and 3.13 in which performance is consistent for various values of λ. This

is due to the fact that there is essentially no gradient signal for θ over the range of augmentations

consistent with the data, so even a small push is su�cient. We discuss further why Augerino is

able to learn the correct level of invariance — without sensitivity to λ, and from training data alone

— in Section 3.12.
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We refer to the introduced method as Augerino. We summarize the method in Algorithm 1.
Algorithm 1: Learning Invariances with Augerino
Inputs:

Dataset D; parametric family д of data augmentations and a distribution µθ over the

parameters θ ; neural network fw with parameters w ; number ncopies of augmented

inputs to use during training; number of training steps N .

for i = 1, . . . ,N do
Sample a mini-batch x̃ from D;

For each datapoint in x̃ sample ncopies transformations from µθ ;

Average predictions of the network fw over ncopies data transformations of x̃ ;

Compute the loss (3.8), Lx̃ (θ ,w) using the averaged predictions;

Take the gradient step to update the parameters w and θ ;

end

3.10.1 Extension to Eqivariant Predictions

We now generalize Augerino to problems where the targets are equivariant rather than invariant

to a certain set of transformations. We say that target values are equivariant to a set of input

transformations if the targets for a transformed input are transformed in the same way as the

input. Formally, a function f is equivariant to a symmetry transformation д, if applying д to

the input of the function is the same as applying д to the output, such that f (дx) = д f (x). For

example, in image segmentation if the input image is rotated the target segmentation mask should

also be rotated by the same angle, rather than being unchanged.

To make the Augerino model equivariant to transformations sampled from µθ (·), we can av-

erage the inversely transformed outputs of the network for transformed inputs:

faug-eq(x) = Eд∼µθд
−1 f (дx). (3.9)
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Supposing that д acts linearly on the image then the model is equivariant:

faug-eq(hx) = Eд∼µθд
−1 f (дhx) = Eд∼µθh(дh)

−1 f (дhx) = hEu∼µθu
−1 f (ux) (3.10)

= hfaug-eq(x) (3.11)

where u = дh and the distribution is right invariant: for any measurable set S , ∀h ∈ G : µθ (S) =

µθ (hS). If the distribution over the transformations is uniform then the model is equivariant.

3.10.2 Parameterizing Affine Transformations

We now show how to parametrize a distribution over the set of a�ne transformations of 2d data

(e.g. images). With this parameterization, Augerino can learn from a broad variety of augmenta-

tions including translations, rotations, scalings and shears.

The set of a�ne transformations form an algebraic structure known as a Lie Group. To apply

the reparametrization trick, we can parametrize elements of this Lie Group in terms of its Lie

Algebra via the exponential map [Falorsi et al. 2019]. With a very simple approach, we can

de�ne bounds θi on a uniform distribution over the di�erent exponential generatorsGi in the Lie

Algebra:

дϵ = exp

(∑
i

ϵiθiGi

)
ϵ ∼ U [−1, 1]k, (3.12)

where exp is the matrix exponential function: exp(A) =
∑∞

n=0
1
n!A

n. 3

The generators of the a�ne transformations in 2d ,G1, . . . ,G6, correspond to translation in x ,

translation iny, rotation, scaling in x , scaling iny, and shearing; we write out these generators in

Appendix A.4.2. The exponential map of each generating matrix produces an a�ne matrix that

can be used to transform the coordinate grid points of the input like in Jaderberg et al. [2015]. To

ensure that the parameters θi are positive, we learn parameters θ̃i where θi = log(1 + exp θ̃i). In
3Mathematically speaking, this distribution is a pushforward by the exp map of a scaled cube with side lengths

θi of a cube µθ (·) = exp∗Cubeθ (·).
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maximizing the volume of transformations covered, it would be geometrically sensible to maxi-

mize the Haar measure µH (S) of the set of transformations S = exp(Cubeθ ) that are covered by

Augerino, which is similar to the volume covered in the Lie Algebra Vol(Cubeθ ) = Πk
i=1θi . How-

ever, we �nd that even the negative L2 regularization R(θ ) = −‖θ ‖2 on the bounds θi is su�cient

to bias the model towards invariance. More intuitively, the regularization penalty biases solutions

towards values of θ which induce broad distributions over a�ne transformations, µθ .

We apply the L2 regularization penalty on both classi�cation and regression problems, using

cross entropy and mean squared error loss, respectively. This regularization method is e�ective,

interpretable, and leads to the discovery of the correct level of invariance for a wide range of λ.

3.11 Shades of Invariance

We can broadly classify invariances in three distinct ways: �rst there are cases in which we wish

to be completely invariant to transformations in the data, such as to rotations on the rotMNIST

dataset. There are also cases in which we want to be only partially invariant to transformations,

i.e. soft invariance, such as if we are asking if a picture is right side up or upside down. Lastly,

there are cases in which we wish there to be no invariance to transformations, such as when we

wish to predict the rotations themselves. We show that Augerino can learn full invariance, soft

invariance, and no invariance to rotations. We then explain in Section 3.12 why Augerino is able

to discover the correct level of invariance from training data alone. Incidentally, soft invariances

are the most representative of real-world problems, and also the most di�cult to correctly encode

a priori — where we most need to learn invariances.

For the experiments in this and all following sections we use a 13-layer CNN architecture from

Laine and Aila [2016]. We compare Augerino trained with three values of λ from Equation 3.8;

λ = {0.01, 0.05, 0.1} corresponding to low, standard, and high levels of regularization. To further

emphasize the need for invariance to be learned as opposed to just embedded in a model we
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Figure 3.7: Le�: Samples of the rotated digits in the data. Center: The initial and learned distributions
over rotations. Right: The prediction probabilities of the correct class label over rotated versions of an
image; the model learns to be approximately invariant to rotations under all levels of regularization.

also show predictions generated from an invariant E(2)-steerable network [Cohen and Welling

2016b]. Speci�c experimental and training details are in Appendix A.4.4.

3.11.1 Full Rotational Invariance: rotMNIST

The rotated MNIST dataset (rotMNIST) consists of the MNIST dataset with the input images

randomly rotated. As the dataset has an inherent augmentation present (random rotations), we

desire a model that is invariant to such augmentations. With Augerino, we aim to approximate

invariance to rotations by learning an augmentation distribution that is uniform over all rotations

in [0, 2π ].

Figure 3.7 shows the learned distribution over rotations to apply to images input into the

model. On top of learning the correct augmentation through automatic di�erentiation using

only the training data, we achieve 98.9% test accuracy. We also see the level of regularization

has little e�ect on performance. To our knowledge, only Weiler and Cesa [2019] achieve better

performance on the rotMNIST dataset, using the correct equivariance already hard-coded into

the network.
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Figure 3.8: Le�: Example data from the constructed Mario dataset. Labels are dependent on both the
character, Mario or Iggy, and the rotation, upper half- or lower half-plane. Center: The initial and learned
distribution over rotations. Rotations in the data are limited to [−π/4, π/4] and [−π ,−3π/4] ∪ [3π/4, π ],
meaning that augmenting an image by no more than π/4 radians will keep the rotation in the same half
of the plane as where it started. The learned distributions approximate the invariance to rotations in
[−π/4, π/4] that is present in the data. Right: The predicted probability of label 1 for input images of
Mario rotated at various angles. E2-steerable model is invariant, and incapable of distinguishing between
inputs of di�erent rotations.

3.11.2 Soft Invariance: Mario & Iggy

We show that Augerino can learn soft invariances — e.g. invariance to a subset of transformations

such as only partial rotations. To this end, we consider a dataset in which the labels are dependent

on both image and pose. We use the sprites for the characters Mario and Iggy from Super Mario

World, randomly rotated in the intervals of [−π/4, π/4] and [−π ,−3π/4] ∪ [3π/4, π ] [Nintendo

1990]. There are 4 labels in the dataset, one for the Mario sprite in the upper half plane, one for

the Mario sprite in the lower half plane, one for the Iggy sprite in the upper half plane, and one

for the Iggy sprite in the lower half plane; we show an example demonstrating each potential

label in Figure 3.8.

In Figure 3.8, the limited rotations present in the data give that the labels are invariant to

rotations of up to π/4 radians. Augerino learns the correct augmentation distribution, and the

predicted labels follow the desired invariances to rotations in [−π/4, π/4].
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Figure 3.9: Le�: The data generating process for the Olive�i faces dataset. The labels correspond to the
rotation of the input image. Center: The initialized and learned distributions over rotations. Right: The
predictions generated as an input is rotated. Here we see that there is no invariance present for any level
of regularization - as the image rotates the predicted label changes accordingly. The E2-steerable network
fails for this task, as the invariance to rotations prevents us from being able to predict the rotation of the
image.

3.11.3 Avoiding Invariance: Olivetti Faces

To test that Augerino can avoid unwanted invariances we train the model on the rotated Olivetti

faces dataset [Hinton and Salakhutdinov 2008]. This dataset consists of 10 distinct images of 40

di�erent people. We select the images of 30 people to generate the training set, randomly rotating

each image in [−π/2, π/2], retaining the angle of rotation as the new label. We then crop the

result to 45 × 45 pixel square images. We repeat the process 30 times for each image, generating

9000 training images. Figure 3.9 shows the data generating process and the corresponding label.

Augmenting the image with any rotation would make it impossible to learn the angle by which

the original image was rotated.

We �nd experimentally in Figure 3.9 that when we initialize the Augerino model such that

the distribution over the rotation generating matrix G3 is uniform [0, 1], training for 200 epochs

reduces the distribution on the rotational augmentation to have domain of support 0.003 radians

wide. The model learns a nearly �xed transformation in each of the 5 other spaces of a�ne

transformation, all with domains of support for the weights wi under 0.1 units wide.
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Figure 3.10: (a): A visualization of the space of possible transformations. Augerino expands to fill out
the invariances in the dataset but is halted at the boundary where harmful transformations increase the
training loss like rotating a 6 to a 9. (b): Loss value as a function of the rotation range applied to the input
on the Mario and Iggy classification problem of Section 3.11.2 and its derivative. Without regularization
the loss is flat for augmentations within the range [0, π/2] corresponding to the true rotational invariance
range in the data, and grows sharply beyond this range.

3.12 Why Augerino Works

The conventional wisdom is that it is impossible to learn invariances directly from the training

loss as invariances are constraints on the model which make it harder to �t the data. Given data

that has invariance to some augmentation, the training loss will not be improved by widening

our distribution over this augmentation, even if it helps generalization: we would want a model

to be invariant to rotations of a ‘6’ up until it looks more like a ‘9’, but no invariance will achieve

the same training loss. However, it is su�cient to add a simple regularization term to encourage

the model to discover invariances. In practice we �nd that the �nal distribution over augmenta-

tions is insensitive to the level of regularization, and that even a small amount of regularization

will enable Augerino to �nd wide distributions over augmentations that are consistent with the

precise level of invariances in the data.

We illustrate the learning of invariances with Augerino in panel (a) of Figure 3.10. Suppose

only a limited degree of invariance is present in the data, as in Section 3.11.2. Then the training

loss for the augmentation parameters will be �at for augmentations within the range of invari-

ance present in the data (shown in white), and then will increase sharply beyond this range
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Figure 3.11: The distribution over rotation augmentations for the Mario and Iggy dataset over train-
ing iterations for various initializations. Regardless of whether we start with too wide, too narrow, or
approximately the correct distribution over rotations, Augerino converges to the appropriate width.

(corresponding region of Augerino parameters is shown in blue). The regularized loss in Eq. (3.8)

will push the model to increase the level of invariance within the �at region of the training loss,

but will not push it beyond the degree of invariance present in the data unless the regularization

strength is extreme.

We demonstrate the e�ect described above for the Mario and Iggy classi�cation problem of

Section 3.11.2 in panel (b) of Figure 3.10. We use a network trained with Augerino and visualize

the loss and gradient with respect to the range of rotations applied to the input with and without

regularization. Without regularization, the loss is almost completely �at until the value of π/2

which is the true degree of rotational invariance in the data. With regularization we add an in-

centive for the model to learn larger values of the rotation range. Consequently, the loss achieves

its optimum close to the optimal value of the parameter at π/2 and then quickly grows beyond

that value. Figure 3.11 displays the results of panel (b) of Figure 3.10 in action; gradient signals

push augmentation distributions that are too wide down and too narrow up to the correct width.

Incidentally, the Augerino solutions are substantially �atter than those obtained by standard

training, as shown in Appendix A.4.7, Figure A.22, which may also make them more easily dis-

coverable by procedures such as SGD. We also see that these solutions indeed provide better

generalization. We provide further discussion of learning partial invariances with Augerino in

Appendix A.4.1.
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3.13 Image Recognition

As Augerino learns a set of augmentations speci�c to a given dataset, we expect to see that

Augerino is capable of boosting performance over applying any level of �xed augmentation. Us-

ing the CIFAR-10 dataset, we compare Augerino to training on data with i) no augmentation, ii)

�xed, commonly applied augmentations, and iii) the augmentations as given by Fast AutoAug-

ment Lim et al. [2019].

Table 3.4: Test accuracy for models trained on CIFAR-10 with di�erent augmentations applied to the
training data.

No Aug. Fixed Aug. Augerino (4 copies) Augerino (1 copy) Fast AA

Test Accuracy 90.60 92.64 93.81 ± 0.002 92.22 ± 0.002 92.65
We compare models trained with no augmentation, a fixed commonly applied set of augmentations (in-
cluding flipping, cropping, and color-standardization), Augerino, and Fast AutoAugment [Lim et al. 2019].
Augerino with ncopies = 4 provides a boost in performance with minimal increased training time. Error
bars are reported as the standard deviation in accuracy for Augerino trained over 10 trials.

Table 3.4 shows that Augerino is competitive with advanced models that seek data-based

augmentation schemes. The gains in performance are accompanied by notable simpli�cations in

setup: we do not require a validation set and the augmentation is learned concurrently with train-

ing (there is no pre-processing to search for an augmentation policy). In Appendix A.4.7 we show

that Augerino �nd �atter solutions in the loss surface, which are known to generalize [Maddox

et al. 2020]. To further address the choice of regularization parameter, we train a number of mod-

els on CIFAR-10 with varying levels of regularization. In Figure A.22 we present the test accuracy

of models for di�erent regularization parameters along with the corresponding e�ective dimen-

sionalities of the networks as a measure of the �atness of the optimum found through training.

[Maddox et al. 2020] shows that e�ective dimensionality can capture the �atness of optima in

parameter space and is strongly correlated to generalization, with lower e�ective dimensionality

implying �atter optima and better generalization.
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The results of the experiment presented in Figure A.22 solidify Augerino’s capability to boost

performance on image recognition tasks as well as demonstrate that the inclusion of regular-

ization is helpful, but not necessary to train accurate models. If the regularization parameter

becomes too large, as can be seen in the rightmost violins of Figure A.22, training can become

unstable with more variance in the accuracy achieved. We observe that while it is possible to

achieve good results with no regularization, the inclusion of an inductive bias that we ought to

include some invariances (by adding a regularization penalty) improves performance.

3.14 Molecular Property Prediction

We test out our method on the molecular property prediction dataset QM9 [Blum and Reymond

2009; Rupp et al. 2012] which consists of small inorganic molecules with features given by the

coordinates of the atoms in 3D space and their charges. We focus on the HOMO task of predicting

the energy of the highest occupied molecular orbital, and we learn Augerino augmentations in

the space of a�ne transformations of the atomic coordinates in R3. We parametrize the trans-

formation as before with a uniform distribution for each of the generators listed in Appendix

A.4.2. We use the LieConv model introduced in Finzi et al. [2020], both with no equivariance

(LieConv-Trivial) and 3D translational equivariance (LieConv-T(3)). We train the models for 500

epochs on MAE (additional training details are given in A.4.4) and report the test performance in

Table 3.5. Augerino performs much better than using no augmentations and is competitive with

the hand chosen random rotation and translation augmentation (SE(3)) that incorporates domain

knowledge about the problem. We detail the learned distribution over a�ne transformations in

Appendix A.4.6. Augerino is useful both for the non equivariant LieConv-Trivial model as well as

the translationally equivariant LieConv-T(3) model, suggesting that Augerino can complement

architectural equivariance.
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Table 3.5: Test MAE (in meV) on QM9 tasks trained with specified augmentation.

HOMO (meV) LUMO (meV)

No Aug. Augerino SE(3) No Aug. Augerino SE(3)

LieConv-Trivial 52.7 38.3 36.5 43.5 33.7 29.8
LieConv-T(3) 34.2 33.2 30.2 30.1 26.9 25.1

3.15 Semantic Segmentation

In Section 3.10.1 we showed how Augerino can be extended to equivariant problems. In Semantic

Segmentation the targets are perfectly aligned with the inputs and the network should be equiv-

ariant to any transformations present in the data. To test Augerino in equivariant learning setting

we construct rotCamVid, a variation of the CamVid dataset [Brostow et al. 2008b,a] where all the

training and test points are rotated by a random angle (see Appendix Figure A.20). For any �xed

image we always use the same rotation angle, so no two copies of the same image with di�erent

rotations are present in the data. We use the FC-Densenet segmentation architecture [Jégou et al.

2017]. We train Augerino with a Gaussian distribution over random rotations and translations.

In Appendix Figure A.20 we visualize the training data and learned augmentations for Augerino.

Augerino is able to successfully recover rotational augmentation while matching the performance

of the baseline. For further details, please see Appendix A.4.3.

3.16 Color-Space Augmentations

In the previous sections we have focused on learning spatial invariances with Augerino. Augerino

is general and can be applied to arbitrary di�erentiable input transformations. In this section, we

demonstrate that Augerino can learn color-space invariances.

We consider two color-space augmentations: brightness adjustments and contrast adjust-

ments. Each of these can be implemented as simple di�erentiable transformations to the RGB

values of the input image (for details, see Appendix A.4.5). We use Augerino to learn a uniform
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distribution over the brightness and contrast adjustments on STL-10 [Coates et al. 2011] using

the 13-layer CNN architecture (see Section 3.11). For both Augerino and the baseline model,

we use standard spatial data augmentation: random translations, �ips and cutout [DeVries and

Taylor 2017]. The baseline model achieves 89.0 ± 0.35% accuracy where the mean and standard

deviation are computed over 3 independent runs. The Augerino model achieves a slightly higher

89.7 ± 0.3% accuracy and learns to be invariant to noticeable brightness and contrast changes in

the input image (see Appendix Figure A.21).

3.17 Discussion

The world is rife with equivariance and invariance, especially in real world settings where sym-

metries are not always perfectly preserved or present over a full range of transformations. In

this chapter we have introduced Residual Prior Priors (RPPs), and Augerino, two frameworks for

controlling the invariance and equivariance properties of neural network functions. RPPs and

Augerino convert restrictive priors with hard constraints into priors that favor partially equiv-

ariant or invariant functions. With these functional inductive biases, Augerino and RPP allow us

to utilize equivariance and invariance in a broader range of settings, including those where the

exact symmetries are either unknown a priori, or only approximately held.

We have shown that RPPs and Augerino can improve the performance of neural networks in

a variety of settings, including image recognition, regression, and reinforcement learning, while

requiring little modi�cation to the overall training procedure or optimization routine. The hope

of this chapter is to explore further methods for engaging with the functional properties of neural

networks, both through modifying the architecture of the network itself, as we do with RPPs, or

through modifying the training procedure as we do with Augerino.
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4 | Connecting Parameter and

Function Spaces in Neural Networks

Chapter 3 explored methods for functional reasoning in neural networks to develop models with

soft equivariance and invariance constraints. Equivariance and invariance represent a special

case in which we are explicitly concerned with a functional property of our models. A more

general case for neural networks is one where we are not concerned with a speci�c functional

property, but rather with constructing a model that leads to accurate predictions and have limited

insight into the functional form of the model.

Residual pathway priors and Augerino allowed us to specify priors that lead to desired func-

tional properties, like equivariance, and posteriors that were interpretable with respect to those

functional properties. The more general case, however, usually involves reasoning about param-

eter space priors and posteriors that are not interpretable with respect to functional properties. In

this chapter we will expand on the connections between parameter and function space in neural

networks, and explore how we can use these connections to build more accurate models.

By �rst exploring the types of solutions typically found in parameter space, and measuring

the posterior contraction of these solutions, we can gain insight into how both parameter distribu-

tions, and the implied functional distributions, change through training. With this insight about

parameter space, can then explore how we can use these connections to build more accurate

models.
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This chapter is adapted from the papers “Rethinking Parameter Counting in Deep Models: Ef-

fective Dimensionality Revisited” which was originally made available in 2020 and is joint work

with Wesley Maddox, and Andrew Gordon Wilson, and “Loss Surface Simplexes for Mode Con-

necting Volumes and Fast Ensembling” which was originally published at ICML in 2021 and is

joint work with Wesley Maddox, Sanae Lot�, and Andrew Gordon Wilson.

4.1 Flatness and Functions in Neural Network Loss

Landscapes

Parameter counting is often used as a proxy for model complexity to reason about generalization

[e.g., Zhang et al. 2017; Shazeer et al. 2017; Belkin et al. 2019a], but it can be a poor descrip-

tion of both model �exibility and inductive biases. One can easily construct degenerate cases,

such as predictions being generated by a sum of parameters, where the number of parameters

is divorced from the statistical properties of the model. When reasoning about generalization,

overparametrization is besides the point: what matters is how the parameters combine with the

functional form of the model.

Indeed, the practical success of convolutional neural networks (CNNs) for image recognition

tasks is almost entirely about the inductive biases of convolutional �lters, depth, and sparsity, for

extracting local similarities and hierarchical representations, rather than �exibility [LeCun et al.

1989; Szegedy et al. 2015]. Convolutional neural networks have far fewer parameters than fully

connected networks, yet can provide much better generalization. Moreover, width can provide

�exibility, but it is depth that has made neural networks distinctive in their generalization abilities.

In the following sections, we move beyond simple parameter counting, and show how the

functional properties of neural networks become interpretable through the lens of e�ective di-

mensionality [MacKay 1992b]. E�ective dimensionality was originally proposed to measure how

many directions in parameter space had been determined in a Bayesian neural network, by com-
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puting the eigenspectrum of the Hessian on the training loss (Eq. (4.3), Section 4.2). We provide

explicit connections between e�ective dimensionality, posterior contraction, and loss surfaces in

modern deep learning.

4.2 Posterior Contraction, Effective Dimensionality, and

the Hessian

We consider a model, typically a neural network, f (x ;θ ), with inputs x and parameters θ ∈ Rk .

We de�ne the Hessian as the k × k matrix of second derivatives of the loss,Hθ = −∇∇θL(θ ,D).

Often the loss used to train a model by optimization is taken to be the negative log posterior

L = − logp(θ |D).

To begin, we describe posterior contraction, e�ective dimensionality, and connections to the

Hessian.

4.2.1 Posterior Contraction

De�nition 4.1. We de�ne posterior contraction of a set of parameters, θ , as the di�erence in the

trace of prior and posterior covariance.

∆post (θ ) = tr (Covp(θ )(θ )) − tr (Covp(θ |D)(θ )), (4.1)

where p(θ ) is the prior distribution and p(θ |D) is the posterior distribution given data, D.

With increases in data the posterior distribution of parameters becomes increasingly concen-

trated around a single value [e.g., van der Vaart 1998, Chapter 10]. Therefore Eq. (4.1) serves to

measure the increase in certainty about the parameters under the posterior as compared to the

prior.
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4.2.2 Parameter Space and Function Space

When combined with the functional form of a model, a distribution over parameters p(θ ) induces

a distribution over functionsp(f (x ;θ )). The parameters are of little direct interest — what matters

for generalization is the distribution over functions. Figure 4.1 provides both parameter- and

function-space viewpoints. As parameter distributions concentrate around speci�c values, we

expect to generate less diverse functions.

We show in Appendix A.5.3 that the posterior contraction for Bayesian linear regression,

y ∼ N(f = Φ>β,σ 2I ), with isotropic Gaussian prior, β ∼ N(0,α2IN ), is given by

∆post (θ ) = α
2

N∑
i=1

λi
λi + α−2 , (4.2)

where λi are the eigenvalues of Φ>Φ. This quantity is distinct from the posterior contraction in

function space (also shown in Appendix A.5.3). We refer to the summation in Eq. (4.2) as the

e�ective dimensionality of Φ>Φ.

4.2.3 Effective Dimensionality

De�nition 4.2. The e�ective dimensionality of a symmetric matrix A ∈ Rk×k is de�ned as

Ne f f (A, z) =
k∑
i=1

λi
λi + z

, (4.3)

in which λi are the eigenvalues of A and z > 0 is a regularization constant [MacKay 1992b].

Typically as neural networks are trained we observe a gap in the eigenspectrum of the Hessian

of the loss [Sagun et al. 2017]; a small number of eigenvalues become large while the rest take

on values near 0. In this de�nition of e�ective dimensionality, eigenvalues much larger than z

contribute a value of approximately 1 to the summation, and eigenvalues much smaller than z
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contribute a value of approximately 0.

4.2.4 The Hessian and the Posterior Distribution

We provide a simple example involving posterior contraction, e�ective dimensionality, and their

connections to the Hessian. Figure 4.1 shows the prior and posterior distribution for a Bayesian

linear regression model with a single parameter, with predictions generated by parameters drawn

from these distributions. As expected from Sections 4.2.1 and 4.2.3, we see that the variance of

the posterior distribution is signi�cantly reduced from that of the prior — what we refer to here

as posterior contraction.

We can see from Figure 4.1 that the arrival of data increases the curvature of the loss (negative

log posterior) at the optimum. This increase in curvature of the loss that accompanies certainty

about the parameters leads to an increase in the eigenvalues of the Hessian of the loss in the

multivariate case. Thus, growth in eigenvalues of the Hessian of the loss corresponds to increased

certainty about parameters, leading to the use of the e�ective dimensionality of the Hessian of

the loss as a proxy for the number of parameters that have been determined.1

We often desire models that are both consistent with data, but as simple as possible in function

space, embodying Occam’s razor and avoiding over�tting. The e�ective dimensionality explains

the number of parameters that have been determined by the data, which corresponds to the

number of parameters the model is using to make predictions. Therefore in comparing models

of the same parameterization that achieve low loss on the training data, we expect models with

lower e�ective dimensionality to generalize better, which is empirically veri�ed in Maddox et al.

[2020].

We can further connect the Hessian and the posterior distribution by considering a Laplace

approximation as in MacKay [1992b,a]. Here we assume that the distribution of parameters θ is

multivariate normal around the maximum a posteriori (MAP) estimate, θMAP = argmaxθp(θ |D),
1Empirically described in Appendix A.5.1.
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Figure 4.1: Le�: A comparison of prior and posterior distributions in a Bayesian linear regression se�ing,
demonstrating the decrease in variance referred to as posterior contraction. Right: Functions sampled
from the prior and posterior distributions, along with the training data.

and the Hessian of the negative log posterior, Hθ + A,2 serves as the precision matrix. The ap-

proximating distribution is thenN(θMAP, (Hθ +A)
−1). The intuition built using Figure 4.1 carries

through to this approximation: as the eigenvalues of the Hessian increase, the eigenvalues of the

covariance matrix in our approximation to the posterior distribution shrink, further indicating

contraction around the MAP estimate. We demonstrate this property algebraically in Appendix

A.5.2, where we also connect the e�ective dimensionality to the bias-variance tradeo� [Dobriban

and Wager 2018] and to the Hilbert space norm [Rasmussen and Williams 2008].

4.3 Effective Dimensionality Related Work

Cleveland [1979] introduced e�ective dimensionality into the splines literature as a measure of

goodness of �t, while Hastie and Tibshirani [1990, Chapter 3] used it to assess generalized addi-

tive models. Gull [1989] �rst applied e�ective dimensionality in a Bayesian setting for an image

reconstruction task, while MacKay [1992b,a] used it to compute posterior contraction in Bayesian

neural networks. Moody [1992] argued for the usage of the e�ective dimensionality as a proxy for
2A = −∇∇θ logp(θ ) is the Hessian of the log prior.

89



generalization error, while Moody [1991] suggested that e�ective dimensionality could be used

for neural network architecture selection. Zhang [2005] and Caponnetto and Vito [2007] studied

the generalization abilities of kernel methods in terms of the e�ective dimensionality.

Friedman et al. [2001, Chapter 7] use the e�ective dimensionality (calling it the e�ective de-

grees of freedom) to compute the expected generalization gap for regularized linear models. Do-

briban and Wager [2018] speci�cally tied the bias variance decomposition of predictive risk in

ridge regression (e.g. the �nite sample predictive risk under Gaussian priors) to the e�ective di-

mensionality of the feature matrix, Φ>Φ. Hastie et al. [2019], Muthukumar et al. [2019], Bartlett

et al. [2019], Mei and Montanari [2019], and Belkin et al. [2019b] studied risk and generaliza-

tion in over-parameterized linear models, including under model misspeci�cation. Bartlett et al.

[2019] also introduced the concept of e�ective rank of the feature matrix, which has a similar

interpretation to e�ective dimensionality.

Sagun et al. [2017] found that the eigenvalues of the Hessian increase through training, while

Papyan [2018] and Ghorbani et al. [2019] studied the eigenvalues of the Hessian for a range of

modern neural networks. Suzuki [2018] produced generalization bounds on neural networks via

the e�ective dimensionality of the covariance of the functions at each hidden layer. Fukumizu

et al. [2019] embedded narrow neural networks into wider neural networks and studied the �at-

ness of the resulting minima in terms of their Hessian via a PAC-Bayesian approach. Achille

and Soatto [2018] argue that �at minima have low information content (many small magnitude

eigenvalues of the Hessian) by connecting PAC-Bayesian approaches to information theoretic

arguments, before demonstrating that low information functions learn invariant representations

of the data. Dziugaite and Roy [2017] optimize a PAC-Bayesian bound to both encourage �atness

and to compute non-vacuous generalization bounds, while Jiang et al. [2019] recently found that

PAC-Bayesian measures of �atness, in the sense of insensitivity to random perturbations, perform

well relative to other generalization bounds. Zhou et al. [2018] used PAC-Bayesian compression

arguments to construct non-vacuous generalization bounds at the ImageNet scale.
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Moreover, MacKay [2003] and Smith and Le [2017] provide an Occam factor perspective link-

ing �atness and generalization. Related minimum description length perspectives can be found in

MacKay [2003] and Hinton and Van Camp [1993]. Other works also link �atness and generaliza-

tion [e.g., Hochreiter and Schmidhuber 1997a; Keskar et al. 2017; Chaudhari et al. 2019; Izmailov

et al. 2018], with Izmailov et al. [2018] and Chaudhari et al. [2019] developing optimization pro-

cedures to select for �at regions of the loss.

4.4 Posterior Contraction and Function-Space

Homogeneity in Bayesian Models

In this section, we demonstrate that e�ective dimensionality of both the posterior parameter co-

variance and the Hessian of the loss provides insights into how a model adapts to data during

training. We derive an analytic relationship between e�ective dimensionality and posterior con-

traction for models where inference is exact, and demonstrate this relationship experimentally

for deep neural networks.

4.4.1 Posterior Contraction of Bayesian Linear Models

Theorem 4.3 (Posterior Contraction in Bayesian Linear Models). Let Φ = Φ(x) ∈ Rn×k be a

feature map of n data observations, x , with n < k and assign isotropic prior β ∼ N(0k,α2Ik) for

parameters β ∈ Rk . Assuming a model of the form y ∼ N(Φβ,σ 2In) the posterior distribution of β

has a k − n directional subspace in which the variance is identical to the prior variance.

We prove Theorem 4.3 in Appendix A.5.4.1, in addition to an equivalent result for generalized

linear models. Theorem 4.3 demonstrates why parameter counting often makes little sense: for a

�xed data set of size n, only min(n,k) parameters can be determined, leaving many dimensions

in which the posterior is unchanged from the prior when k � n.
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Empirical Demonstration for Theorem 4.3. We construct Φ(x)with each row as an instance

of a 200 dimensional feature vector consisting of sinusoidal terms for each of 500 observations:

Φ(x) = [cos(πx), sin(πx), cos(2πx), sin(2πx), . . . ]. We assign the coe�cient vector β a prior β ∼

N(0, I ), and draw ground truth parameters β∗ from this distribution. The model takes the form

β ∼ N(0, I ) and y ∼ N
(
Φβ,σ 2I

)
.

We randomly add data points one at a time, tracking the posterior covariance matrix at each

step. We compute the e�ective dimensionality, Ne f f
(
Σβ |D,σ ,α

)
, where Σβ |D,σ is the posterior

covariance of β .3

In Figure 4.2 we see that the e�ective dimensionality of the posterior covariance decreases

linearly with an increase in available data until the model becomes overparameterized, at which

point the e�ective dimensionality of the posterior covariance of the parameters slowly approaches

0, while the e�ective dimensionality of the Hessian of the loss increases towards an asymptotic

limit. As the parameters become more determined (e.g. the e�ective dimensionality of the pos-

terior covariance decreases), the curvature of the loss increases (the e�ective of the Hessian in-

creases). In the Bayesian linear model setting, the Hessian of the loss is the inverse covariance

matrix and the trade-o� between the e�ective dimensionality of the Hessian and the parameter

covariance can be determined algebraically (see Appendix A.5.2.1).

4.4.2 Posterior Contraction of Bayesian Neural Networks

While much e�ort has been spent grappling with the challenges of marginalizing a high dimen-

sional parameter space for Bayesian neural networks, the practical existence of subspaces where

the posterior variance has not collapsed from the prior suggests that both computational and

approximation gains can be made from ignoring directions in which the posterior variance is un-

changed from the prior. This observation helps explain the success of subspace based techniques

that examine the loss in a lower dimensional space such as Izmailov et al. [2019a]. Alternatively,
3Here we use α = 5, however the results remain qualitatively the same as this parameter changes.
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Figure 4.2: Le�: Bayesian linear regression. Right: Bayesian neural network. Both: The e�ective di-
mensionality of the posterior covariance over parameters and the function-space posterior covariance.
Red indicates the under-parameterized se�ing, yellow the critical regime with p ≈ n, and green the over-
parameterized regime. In both models we see the expected increase in e�ective dimensionality in param-
eter space and decrease in e�ective dimensionality of the Hessian.

by working directly in function space, as in Sun et al. [2019], the redundancy of many parameters

could be avoided.

For Bayesian linear models, the e�ective dimensionality of the parameter covariance is the

inverse of the Hessian, and as the e�ective dimensionality of the parameter covariance decreases

the e�ective dimensionality of the Hessian increases. We hypothesize that a similar statement

holds for Bayesian neural networks — as the number of data points grows, the e�ective dimen-

sionality of the posterior covariance should decrease while the e�ective dimensionality of the

Hessian should increase.

To test this hypothesis, we generate a nonlinear function of the form, y = w1x+w2x
2+w3x

3+

(0.5+x2)2+ sin(4x2)+ϵ, withwi ∼ N(0, I ) and ϵ ∼ N(0, 0.052), and de-mean and standardize the

inputs.4 We then construct a Bayesian neural network with two hidden layers each with 20 units,
4From the Bayesian neural network example in NumPyro [Phan et al. 2019; Bingham et al. 2019]: https://

github.com/pyro-ppl/numpyro/blob/master/examples/bnn.py.
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no biases, and tanh activations, placing independent Gaussian priors with variance 1 on all model

parameters. We then run the No-U-Turn sampler [Ho�man and Gelman 2014] for 2000 burn-

in iterations before saving the �nal 2000 samples from the approximated posterior distribution.

Using these samples, we compute the e�ective dimensionality of the sample posterior covariance,

Covp(θ |D)(θ ), and Hessian of the loss at the MAP estimate in Figure 4.2. The trends of e�ective

dimensionality for Bayesian neural networks are aligned with Bayesian linear regression, with

the e�ective dimensionality of the Hessian (corresponding to function space) increasing while

the e�ective dimensionality of the parameter space decreases.

4.4.3 Function-Space Homogeneity

In order to understand how the function-space representation varies as parameters are changed

in directions undetermined by the data, we �rst consider Bayesian linear models.

Theorem 4.4 (Function-Space Homogeneity in Linear Models). Let Φ = Φ(x) ∈ Rn×k be a feature

map of n data observations, x , with n < k , and assign isotropic prior β ∼ N(0k,α2Ik) for parameters

β ∈ Rk . The minimal eigenvectors of the Hessian de�ne a k − n dimensional subspace in which

parameters can be perturbed without changing the training predictions in function space.

We prove Theorem 4.4 and its extension to generalized linear models in Appendix A.5.4.2.

This theorem suggests that although there may be large regions in parameter-space that lead to

low-loss models, many of these models may be homogeneous in function space.

We can interpret Theorem 4.4 in terms of the eigenvectors of the Hessian indicating which di-

rections in parameter space have and have not been determined by the data. The dominant eigen-

vectors of the Hessian (those with the largest eigenvalues) correspond to the directions in which

the parameters have been determined from the data and the posterior has contracted signi�cantly

from the prior. The minimal eigenvectors (those with the smallest eigenvalues) correspond to the

directions in parameter space in which the data has not determined the parameters.
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Figure 4.3: Le�: The predictions on training data for a simple Bayesian linear regression model with
sinusoidal features for various parameter se�ings. Right: The predictions over the entire test domain.
Both: Blue represents the MAP estimate as well as the training points, orange represents the model
a�er the parameters have been perturbed in a direction in which the posterior has not contracted, and
green represents the model a�er parameters have been perturbed in a direction in which the posterior
has contracted. Perturbing parameters in directions that have not been determined by the data gives not
only identical predictions on training data, but the functions produced on the test set are nearly the same.

Figure 4.3 demonstrates the result of Theorem 4.4 for a Bayesian linear model with sinu-

soidal features. We compare predictions made using the MAP estimate of the parameters, θ ∗ =

argmaxθp(θ |D), to predictions generated using perturbed parameters. As parameters are per-

turbed in directions that have not been determined by the data (minimal eigenvectors of the

Hessian), the predictions on both train and test remain nearly identical to those generated using

the MAP estimate. Perturbations in determined directions (dominant eigenvectors of the Hes-

sian) yield models that perform poorly on the training data and signi�cantly deviate from the

MAP estimate on the test set.

4.5 Loss Surfaces and Function Space Representations

Recent works have discussed the desirability of �nding solutions corresponding to �at optima

in the loss surface, arguing that such parameter settings lead to better generalization [Izmailov

et al. 2018; Keskar et al. 2017]. There are multiple notions of �atness in loss surfaces, relating

to both the volume of the basin in which the solution resides and the rate of increase in loss as
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one moves away from the found solution. As both de�nitions correspond to low curvature in the

loss surface, it is standard to use the Hessian of the loss to examine structure in the loss surface

[Madras et al. 2019; Keskar et al. 2017].

The e�ective dimensionality of the Hessian of the loss indicates the number of parameters that

have been determined by the data. In highly over-parameterized models we hypothesize that the

e�ective dimensionality is substantially less than the number of parameters, i.e. Ne f f (Hθ ,α) � p,

since we should be unable to determine many more parameters than we have data observations.

Recall from Section 4.2.3 the large eigenvalues of the Hessian have eigenvectors correspond-

ing to directions in which parameters are determined. Eq. (4.3) dictates that low e�ective dimen-

sionality (in comparison to the total number of parameters) would imply that there are many

directions in which parameters are not determined, and the Hessian has eigenvalues that are

near zero, meaning that in many directions the loss surface is constant. We refer to directions in

parameter space that have not been determined as degenerate for two reasons: (1) degenerate di-

rections in parameter space provide minimal structure in the loss surface, shown in Section 4.5.1;

(2) parameter perturbations in degenerate directions do not provide diversity in the function-

space representation of the model, shown in Section 4.5.2. We refer to the directions in which

parameters have been determined, directions of high curvature, as determined.

To empirically test our hypotheses regarding degenerate directions in loss surfaces and func-

tion space diversity, we train a neural network classi�er on 1000 points generated from the two-

dimensional Swiss roll data, with a similar setup to Huang et al. [2019], using Adam with a learn-

ing rate of 0.01 [Kingma and Ba 2014]. The network is fully connected, consisting of 5 hidden

layers each 20 units wide (plus a bias term), and uses ELU activations with a total of 2181 pa-

rameters. We choose a small model with two-dimensional inputs so that we can both tractably

compute all the eigenvectors and eigenvalues of the Hessian and visualize the functional form of

the model. To demonstrate the breadth of these results, we provide comparable visualizations in

the Appendix A.5.5, but for a convolutional network trained on CIFAR-10.
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4.5.1 Loss Surfaces as Determined by the Hessian

To examine the loss surface more closely, we visualize low dimensional projections. To create the

visualizations, we �rst de�ne a basis given by a set of vectors, then choose a two random vectors,

u and ṽ , within the span of the basis. We use Gram-Schmidt to orthogonalize ṽ with respect to

u, ultimately giving u and v with u ⊥ v . We then compute the loss at parameter settings θ on a

grid surrounding the optimal parameter set, θ ∗, which are given by

θ ← θ ∗ + αu + βv (4.4)

for various α and β values such that all points on the grid are evaluated.

By selecting the basis in which u andv are de�ned we can speci�cally examine the loss in de-

termined and degenerate directions. Figure 4.4 shows that in determined directions, the optimum

appears extremely sharp. Conversely, in all but the most determined directions, the loss surface

loses all structure and appears constant. Even in degenerate directions, if we deviate from the

optimum far enough the loss will eventually become large. However to observe this increase in

loss requires perturbations to the parameters that are signi�cantly larger in norm than θ ∗.
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4.5.2 Degenerate Parameters Lead to Homogeneous Models

In this section we show that degenerate parameter directions do not contain diverse models. This

result is not at odds with the notion that �at regions in the loss surface can lead to diverse but high

performing models. Rather, we �nd that there is a subspace in which the loss is constant and one

cannot �nd model diversity, noting that this subspace is distinct from those employed by works

such as Izmailov et al. [2019a] and Huang et al. [2019]. This �nding leads to an interpretation of

e�ective dimensionality as model compression, since the undetermined directions do not contain

additional functional information.

We wish to examine the functional form of models obtained by perturbing the parameters

found through training, θ ∗. Perturbed parameters are computed as

θ ← θ ∗ + s
Bv

| |Bv | |2
(4.5)

where B ∈ Rk×d is a d dimensional basis in which we wish to perturb θ ∗, and v ∼ N(0, Id), giving

Bv as a random vector from within the span of some speci�ed basis (i.e. the dominant or minimal

eigenvectors). The value s is chosen to determine the scale of the perturbation, i.e. the length of

the random vector by which the parameters are perturbed.

Experimentally, we �nd that in a region near the optimal parameters θ ∗, i.e. s ≤ ||θ ∗ | |2/2 the

function-space diversity of the model is contained within the subspace of determined directions.

While the degenerate directions contain wide ranges of parameter settings with low loss, the

models are equivalent in function space.

Figure 4.5 shows the trained classi�er and the di�erences in function-space between the

trained classi�er and those generated from parameter perturbations. We compare perturbations

of size | |θ ∗ | |2/2 ≈ 10 in the direction of the 500 minimal eigenvectors and perturbations of size

0.1 in the directions of the 3 maximum eigenvectors. A perturbation from the trained parameters

in the directions of low curvature (center plot in Figure 4.5) still leads to a classi�er that labels
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Figure 4.5: Swiss roll data. Le�: Adam trained feed-forward, fully connected classifier. Center: Di�er-
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that of the plot on the right.

all points identically. A perturbation roughly 100 times smaller the size in directions in which

parameters have been determined leads to a substantial change in the decision boundary of the

classi�er.

However, the change in the decision boundary resulting from perturbations in determined

directions is not necessarily desirable. One need not perturb parameters in either determined or

degenerate directions to perform a downstream task such as ensembling. Here, we are showcas-

ing the degeneracy of the subspace of parameter directions that have not been determined by the

data. This result highlights that despite having many parameters the network could be described

by a relatively low dimensional subspace.

4.6 Loss Surface Simplexes for Mode Connecting Volumes

and Fast Ensembling

So far in this chapter we have explored the ways that neural network parameter distributions

contract through training, and how we can relate the axes of posterior contraction to stability
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Figure 4.6: A progressive understanding of the loss surfaces of neural networks. Le�: The traditional
view of loss in parameter space, in which regions of low loss are disconnected [Goodfellow et al. 2015;
Choromanska et al. 2015]. Center: The revised view of loss surfaces provided by work on mode connec-
tivity; multiple SGD training solutions are connected by narrow tunnels of low loss [Garipov et al. 2018;
Draxler et al. 2018; Fort and Jastrzebski 2019]. Right: The viewpoint introduced in this work; SGD training
converges to di�erent points on a connected volume of low loss. Paths between di�erent training solutions
exist within a large multi-dimensional manifold of low loss. We provide a two dimensional representation
of these loss surfaces in Figure A.27.

in function space. Key to the �ndings in the previous sections are that in standard training we

typically �nd �at optima in the loss surface. In the following sections we exploit this �atness

to show that there are in fact large multi-dimensional simplicial complexes of low loss in the

parameter space of neural networks that contain arbitrarily many modes independently trained

SGD solutions.

The ability to �nd these large volumes of low loss that can connect any number of independent

training solutions represents a natural progression in how we understand the loss landscapes of

neural networks, as shown in Figure 4.6. In the left of Figure 4.6, we see the classical view of

loss surface structure in neural networks, where there are many isolated low loss modes that

can be found through training randomly initialized networks. In the center we have a more

contemporary view, showing that there are paths that connect these modes. On the right we

present a new view — that all modes found through standard training converge to points within

a single connected multi-dimensional volume of low loss.

We introduce Simplicial Pointwise Random Optimization (SPRO) as a method of �nding sim-
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plexes and simplicial complexes that bound volumes of low loss in parameter space. With SPRO

we are able to �nd mode connecting spaces that simultaneously connect many independently

trained models through a a single well-de�ned multi-dimensional manifold. Furthermore, SPRO

is able to explicitly de�ne a space of low loss solutions through determining the bounding ver-

tices of the simplicial complex, meaning that computing the dimensionality and volume of the

space become straightforward, as does sampling models within the complex.

This enhanced understanding of loss surface structure enables practical methodological ad-

vances. Through the ability to rapidly sample models from within the simplex we can form

Ensembled SPRO (ESPRO) models. ESPRO works by generating a simplicial complex around in-

dependently trained models and ensembling from within the simplexes, outperforming the gold

standard deep ensemble combination of independently trained models [Lakshminarayanan et al.

2017]. We can view this ensemble as an approximation to a Bayesian model average, where the

posterior is uniformly distributed over a simplicial complex.

The remaining sections of this chapter are structured as follows: in Section 4.8, we introduce

a method to discover multi-dimensional mode connecting simplexes in the neural network loss

surface. In Section 4.9, we show the existence of mode connecting volumes and provide a lower

bound on the dimensionality of these volumes. Building on these insights, in Section 4.10 we in-

troduce ESPRO, a state-of-the-art approach to ensembling with neural networks, which e�ciently

averages over simplexes. In Section 4.11, we show that ESPRO also provides well-calibrated repre-

sentations of uncertainty. We emphasize that ESPRO can be used as a simple drop-in replacement

for deep ensembles, with improvements in accuracy and uncertainty representations.

4.7 SPRO Related Work

The study of neural network loss surfaces has long been intertwined with an understanding of

neural network generalization. Hochreiter and Schmidhuber [1997b] argued that �at minima
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provide better generalization, and proposed an optimization algorithm to �nd such solutions.

Keskar et al. [2017] and Li et al. [2018] reinvigorated this argument by visualizing loss surfaces

and studying the geometric properties of deep neural networks at their minima. Izmailov et al.

[2018] found that averaging SGD iterates with a modi�ed learning rate �nds �atter solutions that

generalize better. Maddox et al. [2019a] leveraged these insights in the context of Bayesian deep

learning to form posteriors in �at regions of the loss landscape. Moreover, Maddox et al. [2020]

found many directions in parameter space that can be perturbed without changing the training

or test loss.

Freeman and Bruna [2017] demonstrated that single layer ReLU neural networks can be con-

nected along a low loss curves. Garipov et al. [2018] and Draxler et al. [2018] simultaneously

demonstrated that it is possible to �nd low loss curves for ResNets and other deep networks.

Skorokhodov and Burtsev [2019] used multi-point optimization to parameterize wider varieties

of shapes in loss surfaces, when visualizing the value of the loss, including exotic shapes such as

cows. Czarnecki et al. [2019] then showed that low dimensional spaces of nearly constant loss

theoretically exist in the loss surfaces of deep ReLU networks, but did not provide an algorithm

to �nd these loss surfaces.

Fort and Jastrzebski [2019] propose viewing the loss landscape as a series of potentially con-

nected low-dimensional wedges in the much higher dimensional parameter space. They then

demonstrate that sets of optima can be connected via low-loss connectors that are generaliza-

tions of Garipov et al. [2018]’s procedure. Our work generalizes these �ndings by discovering

higher dimensional mode connecting volumes, which we then leverage for a highly e�cient and

practical ensembling procedure.

Also appearing at the same conference as this work, Wortsman et al. [2021] concurrently

proposed a closely related technique to learning low dimensional neural network subspaces by

extending the methods of Fort et al. [2019] and Garipov et al. [2018]. Wortsman et al. [2021] pro-

pose learning simplexes in parameter space with a regularization penalty to encourage diversity
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in weight space.

4.8 Mode Connecting Volumes

We now show how to generalize the procedure of Garipov et al. [2018] to discover simplices of

mode connecting volumes, containing in�nitely many mode connecting curves. In Section 4.8, we

then show how to use our procedure to demonstrate the existence of these volumes in modern

neural networks, revising our understanding about the structure of their loss landscapes. In Sec-

tions 4.10 and 4.11 we show how to we can use these discoveries to build practical new methods

which provide state of the art performance for both accuracy and uncertainty representation. We

refer to our approach as SPRO (Simplicial Pointwise Random Optimization).

4.8.1 Simplicial Complexes of Low Loss

To �nd mode connecting volumes we seek simplexes and simplicial complexes of low loss. Two

primary reasons we seek simplexes of low loss are that (i) simplexes are de�ned by only a few

points, and (ii) simplexes are easily sampled. The �rst point means that to de�ne a mode con-

necting simplicial complex of low loss we need only �nd a small number of vertices to fully

determine the simplexes in the complex. The second point means that we have easy access to the

models contained within the simplex, leading to the practical simplex-based ensembling methods

presented later in the paper.

We consider dataD, and training objective L. We refer to S(a0,a1,...,ak ) as the k-simplex formed

by vertices a0,a1, . . . ,ak , and V(S(a0,...,ak )) as the volume of the simplex.5 Simplicial complexes are

denotedK(S(a0,a1,...,aNa ), S(b0,b1,...,bNb )
, . . . , S(m0,m1,...,mNm )

), and their volume is computed as the sum

of the volume of their components. We use wj to denote modes, or SGD training solutions, and

θj to denote mode connecting points. For example, we could train two independent models to
5We use Cayley-Menger determinants to compute the volume of simplexes; for more information see Appendix

A.6.2.
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�nd parameter settings w0 and w1, and then �nd mode connecting point θ0 such that the path

w0 → θ0 → w1 traversed low loss parameter settings as in Fort and Jastrzebski [2019] and

Garipov et al. [2018].

4.8.2 Simplicial Complexes With SPRO

To �nd a simplicial complex of low loss solutions, we �rst �nd a collection of modes w0, . . . ,wk

through standard training. This procedure gives the trivial simplicial complexK(S(w0), . . . , S(wk ))

(or K), a complex containing k disjoint 0-simplexes. With these modes we can then iteratively

add connecting points, θj , to join any number of the 0-simplexes in the complex, and train the

parameters in θj such that the loss within the simplicial complex,K , remains low. The procedure

to train these connecting θj forms the core of the SPRO algorithm, given here.

To gain intuition, we �rst consider some examples before presenting the full SPRO training

procedure. As we have discussed, we can take modes w0 and w1 and train θ0 to �nd a complex

K(S(w0,θ0), S(w1,θ0)), which recovers a mode connecting path as in Garipov et al. [2018]. Alterna-

tively, we could connectθ0 with more than two modes and build the complexK(S(w0,θ0), . . . , S(w4,θ0)),

connecting 5 modes through a single point, similar to the m-tunnels presented in Fort and Jas-

trzebski [2019]. SPRO can be taken further, however, and we could train (one at a time) a sequence

of θj ’s to �nd the complex K(S(w0,θ0,θ1,θ2), S(w1,θ0,θ1,θ2), S(w2,θ0,θ1,θ2)), describing a multi-dimensional

volume that simultaneously connects 3 modes through 3 shared points.

We aim to train the θj ’s inK such that the expected loss for models in the simplicial complex

is low and the volume of the simplicial complex is as large as possible. That is, as we train the jth

connecting point, θj , we wish to minimize Eϕ∼KL(D,ϕ) while maximizing V(K), using ϕ ∼ K

to indicate ϕ follows a uniform distribution over the simplicial complex K .

Following Garipov et al. [2018], we use H parameter vectors randomly sampled from the

simplex, ϕH
h=1 ∼ K , to compute 1

H

∑H
h=1 L(D,ϕh) as an estimate of Eϕ∼KL(D,ϕ).6 In practice we

6We discuss the exact method for sampling, and the implications on bias in the loss estimate in Appendix A.6.2.
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only need a small number of samples, H , and for all experiments use H = 5 to balance between

avoiding signi�cant slowdowns in the loss function and ensuring we have reasonable estimates

of the loss over the simplex. Using this estimate we train θj by minimizing the regularized loss,

Lreд(K) =
1
H

∑
ϕh∼K

L(D,ϕh) − λj log(V(K)). (4.6)

The regularization penalty λj balances the objective between seeking a smaller simplicial complex

that contains strictly low loss parameter settings (small λj), and a larger complex that that may

contain less accurate solutions but encompasses more volume in parameter space (large λj). In

general only a small amount of regularization is needed, and results are not sensitive to the choice

of λj . In Section 4.10 we explain how to adapt Eq. 4.6 to train simplexes of low loss using single

independetly trained models.... We provide details about how we choose λj in Appendix A.6.2.1.

4.9 Volume Finding Experiments

In this section, we �nd volumes of low loss in a variety of settings. First, we show that the mode

�nding procedure of Garipov et al. [2018] can be extended to �nd distributions of modes. Then,

we explore mode connecting simplicial complexes of low loss in a variety of settings, and �nally

provide an empirical upper bound on the dimensionality of the mode connecting spaces.

Loss Surface Plots. Throughout this section and the remainder of the paper we display two-

dimensional visualizations of loss surfaces of neural networks. These plots represent the loss

within the plane de�ned by the three points (representing parameter vectors) in each plot. More

speci�cally, if the three points in question are, e.g., w0, w1, and w2 then we de�ne c = 1
3
∑2

i=0wi

as the center of the points and use Gram-Schmidt to construct u and v , an orthonormal basis for

the plane de�ned by the points. With the center and the basis chosen, we can sample the loss at

parameter vectors of the form w = c + ruu + rvv where ru and rv range from −R to R, a range
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parameter chosen such that all the points are within the surface with a reasonable boundary.

4.9.1 Volumes of Connecting Modes

In Bayesian deep learning, we wish to form a predictive distribution through a posterior weighted

Bayesian model average:

p(y |x,D) =

∫
p(y |w, x)p(w |D)dw , (4.7)

where y is an output (e.g., a class label), x is an input (e.g., an image),D is the data, andw are the

neural network weights. This integral is challenging to compute due to the complex structure of

the posterior p(w |D).

To help address this challenge, we can instead approximate the Bayesian model average in a

subspace that contains many good solutions, as in Izmailov et al. [2019b]. Here, we generalize

the mode connecting procedure of Garipov et al. [2018] to perform inference over subspaces that

contain volumes of mode connecting curves.

In Garipov et al. [2018], a mode connecting curve is de�ned by its parameters θ . Treating the

objective used to �nd θ in Garipov et al. [2018], l(θ ), as a likelihood, we infer an approximate

Gaussian posterior q(θ |D) using the SWAG procedure of Maddox et al. [2019a], which induces a

distribution over mode connecting curves. Each sample from q(θ |D) provides a mode connecting

curve, which itself contains a space of complementary solutions.

In Figure 4.7, we see that it is possible to move between di�erent values of θ without leaving

a region of low loss. We show samples from the SWAG posterior, projected into the plane formed

by the endpoints of the curves,w0 andw1, and a mode connecting point θ0. We show the induced

connecting paths from SWAG samples with orange lines. All samples from the SWAG posterior

lie in the region of low loss, as do the sampled connecting paths, indicating that there is indeed

an entire volume of connected low loss solutions induced by the SWAG posterior over θ . We
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provide training details in the Appendix A.6.3.

Figure 4.7: A loss surface in the basis spanned by the defining points of a connecting curve, w0,w1, θ0.
Using SWAG, we form a posterior distribution over mode connecting curves, representing a volume of low
loss explanations for the data.

4.9.2 Simplicial Complex Mode Connectivity

The results of Section 4.9.1 suggest that modes might be connected by multi-dimensional paths.

SPRO represents a natural generalization of the idea of learning a distribution over connecting

paths. By construction, if we use SPRO to �nd the simplicial complexK(S(w0,θ0,...,θk ), . . . , S(wm,θ0,...,θk ))

we have found a whole space of suitable vertices to connect the modes w0, · · · ,wm. Any θ sam-

pled from the k-simplex S(θ0,...,θk ) will induce a low-loss connecting path between any two vertices

in the complex.

To demonstrate that SPRO �nds volumes of low loss, we trained a simplicial complex us-

ing SPRO,K(S(w0,θ0,θ1,θ2), S(w1,θ0,θ1,θ2)), forming two simplexes containing three connecting vertices

θ0, θ1, θ2 between the two �xed points, w0 and w1, which are pre-trained models.

Figure 4.8 shows loss surface visualizations of this simplicial complex in the parameter space

of a VGG-16 network trained on CIFAR-10. We see that this complex contains not only standard
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mode connecting paths, but also volumes of low loss that connect modes. Figure 4.8 is a straight-

forward representation of how the loss landscape of large neural networks should be understood

as suggested in Figure 4.6; not only are all training solutions connected by paths of low loss,

they are points on the same multi-dimensional manifold of low loss. In the bottom right panel of

Figure 4.8, every point in the simplex corresponds to a di�erent mode connecting curve.

In Figure 4.9, we show there exist manifolds of low loss that are vastly more intricate and

high dimensional than a simple composition of 3-simplexes connecting two modes. In Figure

4.9(a), we connect 4 modes using 3 connecting points so that we have four di�erent simplexes

formed between the modes of low loss for VGG-16 networks [Simonyan and Zisserman 2015]

on CIFAR-100. The structure becomes considerably more intricate as we expand the amount

of modes used; Figure 4.9(b) uses 7 modes with 9 connecting points, forming 12 inter-connected

simplexes. Note that in this case not all modes are in shared simplexes with all connecting points.

These results clearly demonstrate that SPRO is capable of �nding intricate and multi-dimensional

structure within the loss surface. As a broader takeaway, any mode we �nd through standard

training is a single point within a large and high dimensional structure of loss, as shown in the

rightmost representation in Figure 4.6. We consider the accuracy of ensembles found via these

mode connecting simplexes in Appendix A.6.4.4. In Section 4.10.4 we consider a particularly

practical approach to ensembling with SPRO.

4.9.3 Dimensionality of Loss Valleys

We can estimate the highest dimensionality of the connecting space that SPRO can �nd, which

provides a lower bound on the true dimensionality of these mode connecting subspaces for a given

architecture and dataset. To measure dimensionality, we take two pre-trained modes, w0 andw1,

and construct a connecting simplex with as many connecting points as possible, by �nding the

largest k such that K(S(w0,θ0,...,θk ), S(w1,θ0,...,θk )) contains both low loss parameter settings and has

non-zero volume. We could continue adding more degenerate points to the simplex; however,
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Figure 4.8: Loss surfaces for planes intersecting a mode connecting simplicial complex trained on CIFAR-
10 using a VGG-16 network. Top: along anyw0 → θ j → w1 path we recover a standard mode connecting
path. Bo�om Le�: a face of one of the simplexes that contains one of the independently trained modes.
We see that as we travel away fromw1 along any path within the simplex we retain low train loss. Bo�om
Right: the simplex defined by the three mode connecting points. Any point sampled from within this
simplex defines a low-loss mode connecting path between w0 and w1.

the resulting simplicial complex has no volume.

Figure 4.10 shows the volume of a simplicial complex connecting two modes as a function

of the number of connecting points, k, for a VGG-16 network on CIFAR-10. To ensure these are

indeed low-loss complexes, we sample 25 models from each of these simplicial complexes and

�nd that all sampled models achieve greater than 98% accuracy on the train set. We can continue

adding new modes until we reach k = 11, when the volume collapses to approximately 10−4,

from a maximum of 105. Thus the dimensionality of the manifold of low loss solutions for this

architecture and dataset is at least 10, as adding an eleventh point collapses the volume.
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(a) 4 modes, 3 connectors. (b) 7 modes, 9 connectors.

Figure 4.9: (a,b) Three dimensional projections of mode connecting simplicial complexes with training
modes shown in blue and connectors in orange. Blue shaded regions represent regions of low loss found
via SPRO. (a) 4 modes and 3 connecting points found with a VGG-16 network on CIFAR-100. (b) 7 modes
and a total of 9 connecting points found with a VGG-16 network on CIFAR-10.

Figure 4.10: Volume of the simplicial complex as a function of the number of connectors for a VGG net on
CIFAR-10 for two se�ings λ of SPRO regularization. A�er 10 connectors, the volume collapses, indicating
that new points added to the simplicial complex are within the span of previously found vertices. The
low-loss manifold must be at least 10 dimensions in this instance.

4.10 ESPRO: Ensembling with SPRO

The ability to �nd large regions of low loss solutions has signi�cant practical implications: we

show how to use SPRO to e�ciently create ensembles of models either within a single simplex or

by connecting an entire simplicial complex. We start by generalizing the methodology presented

in Section 4.8.2, leading to a simplex based ensembling procedure, we call ESPRO (Ensembling

SPRO). Crucially, our approach �nds a low-loss simplex starting from only a single SGD solution.

We show that the di�erent parameters in these simplexes gives rise to a diverse set of functions,

which is crucial for ensembling performance. Finally, we demonstrate that ESPRO outperforms
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Figure 4.11: Loss surface visualizations of the faces of a sample ESPRO 3-simplex for a VGG network
trained on CIFAR-100. The ability to find a low-loss simplex starting from only a single SGD solution, w0,
leads to an e�icient ensembling procedure.

state-of-the-art deep ensembles [Lakshminarayanan et al. 2017], both as a function of ensemble

components and total computational budget. In Section 4.11, we show ESPRO also provides state-

of-the-art results for uncertainty representation.

4.10.1 Finding Simplexes from a Single Mode

In Section 4.8.2 we were concerned with �nding a simplicial complex that connects multiple

modes. We now describe how to adapt SPRO into a practical approach to ensembling by instead

�nding multiple simplexes of low loss, each — crucially — starting from a single pre-trained SGD

solution.

Simplexes contain a single mode, and take the form S(w j ,θ j ,0,...,θ j ,k )where theθj,k is thekth vertex

found with SPRO in a simplex where one of the vertices is mode wj . We �nd SPRO simplexes

one at a time, rather than as a complex. The associated loss function to �nd the kth vertex in
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association with mode wj is

Lreд(D,S(w j ,θ j ,0,...,θ j ,k )) =
1
H

∑
ϕh∼S

L(D,ϕh)−

λi log(V(S(w j ,θ j ,0,...,θ j ,k ))).

(4.8)

For compactness we write ϕh ∼ S to indicate ϕh is sampled uniformly at random from simplex

S(w j ,θ j ,0,...,θ j ,k ).

We can think of this training procedure as extending out from the pre-trained modewj . First,

in �nding θj,0 we �nd a line segment of low loss solutions, where one end of the line is wj . Next,

with θj,0 �xed, we seek θj,1 such that the triangle formed bywj , θj,0, θj,1 contains low loss solutions.

We can continue adding vertices, constructing many dimensional simplexes.

With the resulting simplex S(w j ,θ j ,0,...,θ j ,k ), we can sample as many models from within the

simplex as we need, and use them to form an ensemble. Functionally, ensembles sampled from

SPRO form an approximation to Bayesian marginalization over the model parameters where we

assume a posterior that is uniform over the simplex. We can de�ne our prediction for a given

input x as,

ŷ =
1
M

∑
ϕm∼S

f (x,ϕm) ≈

∫
ϕm∈S

f (x,ϕh)dϕh, (4.9)

where we write S as shorthand for S(w j ,θ j ,0,...,θ j ,k ). Speci�cally, the Bayesian model average and its

approximation using approximate posteriors is

p(y∗ |y,M) =

∫
p(y∗ |ϕ)p(ϕ |y)dϕ ≈

∫
p(y∗ |ϕ)q(ϕ |y)dϕ

≈
1
M

M∑
i=1

p(y∗ |ϕi); ϕi ∼ q(ϕ |y)
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4.10.2 ESPRO: Ensembling over Multiple Independent Simplexes

We can signi�cantly improve performance by ensembling from a simplicial complex containing

multiple disjoint simplexes, which we refer to as ESPRO (Ensembling over SPRO simplexes). To

form such an ensemble, we take a collection of j parameter vectors from independently trained

models, w0, . . . ,wj , and train a k + 1-order simplex at each one using ESPRO. This procedure

de�nes the simplicial complex K(S(w0,...,θ0,k ), . . . , S(w j ,...,θ j ,k )), which is composed of j disjoint sim-

plexes in parameter space. Predictions with ESPRO are generated as,

ŷ =
1
J

∑
ϕ j∼K

f (x,ϕj) ≈

∫
K

f (x,ϕj)dϕj (4.10)

where K is shorthand for K(S(w0,...,θ0,k ), . . . , S(w j ,...,θ j ,k )). ESPRO can be considered a mixture of

simplexes (e.g. a simplicial complex) to approximate a multimodal posterior, towards a more

accurate Bayesian model average. This observation is similar to how Wilson and Izmailov [2020]

show that deep ensembles provide a compelling approximation to a Bayesian model average

(BMA), and improve on deep ensembles through the MultiSWAG procedure, which uses a mixture

of Gaussians approximation to the posterior for a higher �delity BMA. ESPRO further improves

the approximation to the BMA, by covering a larger region of the posterior corresponding to low

loss solutions with functional variability. This perspective helps explain why ESPRO improves

both accuracy and calibration, through a richer representation of epistemic uncertainty.

We verify the ability of ESPRO to �nd a simplex of low loss starting from a single mode in

Figure 4.11, which shows the loss surface in the planes de�ned by the faces of a 3-simplex found

in the parameter space of a VGG-16 network trained on CIFAR-100. The ability to �nd these sim-

plexes is core to forming ESPRO ensembles, as they only take a small number of epochs to �nd,

typically less than 10% the cost of training a model from scratch, and they contain diverse solu-

tions that can be ensembled to improve model performance. Notably, we can sweep out a volume

of low loss in parameter space without needing to �rst �nd multiple modes, in contrast to prior

113



Figure 4.12: Functional diversity within a simplex. We show the decision boundaries for two classes, in
the two spirals problem, with predictions in yellow and purple respectively. Both plots are independent
solution samples drawn from a 3-simplex of an 8-layer feed forward classifier and demonstrate that the
simplexes have considerable functional diversity, as illustrated by di�erent decision boundaries. Signifi-
cant di�erences are visible inside the data distribution (center of plots) and outside (around the edges).

work on mode connectivity [Draxler et al. 2018; Garipov et al. 2018; Fort and Jastrzebski 2019].

We show additional results with image transformers [Dosovitskiy et al. 2021] on CIFAR-100 in

Appendix A.6.4.3, emphasizing that these simplexes are not speci�c to a particular architecture.

4.10.3 SPRO and Functional Diversity

In practice we want to incorporate as many diverse high accuracy classi�ers as possible when

making predictions to gain the bene�ts of ensembling, such as improved accuracy and calibration.

SPRO gives us a way to sample diverse models in parameter space, and in this section we show,

using a simple 2D dataset, that the parameter diversity found with SPRO is a reasonable proxy

for the functional diversity we actually seek.

To better understand how the simplexes interact with the functional form of the model, we

consider an illustrative example on the two-spirals classi�cation dataset presented in Huang et al.

[2019], in which predictions can be easily visualized. We �nd a 3-simplex (a tetrahedron) in the

parameter space of a simple 8 layer deep feed forward classi�er, and visualize the functional form

of the model for both samples taken from within the simplex in parameter space. By examining

the functional form of models sampled from simplexes in parameter space we can quickly see

why ESPRO is bene�cial. Figure 4.12 shows individual models sampled from a single 3-simplex

in parameter space, corresponding to clear functional diversity. Models within the simplex all �t
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Figure 4.13: Performance of deep ensembles and ESPRO (with either a 1-simplex, e.g. a line or a 2-
simplex, e.g. a triangle) using VGG-16 networks in terms of total train time and the number of simplexes
(number of ensembles). Le�: Test error as a function of total training budget on CIFAR-10. The number
of components in the ensembles increases as curves move le� to right. For any given training budget,
ESPRO outperforms deep ensembles. Center: Test error as a function of the number of simplexes in the
ensemble on CIFAR-10. A comparison of performance of ESPRO models on CIFAR-10 (le�) and CIFAR-100
(right) of VGG-16 networks with various numbers of ensemble components along the x-axis, and various
simplex orders indicated by color. For any fixed number of ensemble components we can outperform a
standard deep ensemble using simplexes from ESPRO. Notably, expanding the number of vertices in a
simplex takes only 10 epochs of training on CIFAR-10 compared to the 200 epochs of training required to
train a model from scratch. On CIFAR-100 adding a vertex to an ESPRO simplex takes just 20 epochs of
training compared to 300 to train from scratch.

the training data nearly perfectly but do so in distinct ways, such that we can improve our �nal

predictions by averaging over these models.

4.10.4 Performance of Simplicial Complex Ensembles

Section 4.10.3 shows that we are able to discover simplexes in parameter space containing models

that lead to diverse predictions, meaning that we can ensemble within a simplex and gain some

of the bene�ts seen by deep ensembles [Lakshminarayanan et al. 2017]. We use SPRO to train

simplicial complexes containing a number of disjoint simplexes, and ensemble over these com-

plexes to form predictions, using Eq. 4.10. We �x the number of samples taken from the ESPRO

ensemble, J , to 25 which provides the best trade o� of accuracy vs test time compute cost.7 For

example, if we are training a deep ensemble of VGG-16 networks with 3 ensemble components on

CIFAR-10, we can form a deep ensemble to achieve an error rate of approximately 6.2%; however,
7We show the relationship between samples from the simplex and test error in Appendix A.6.4.2.
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by extending each base model to just a simple 2-simplex (3 vertices) we can achieve an error rate

of approximately 5.7% — an improvement of nearly 10%!

After �nding a mode through standard training, a low order simplex can be found in just

a small fraction of the time it takes to train a model from scratch. For a �xed training budget,

we �nd that we can achieve a much lower error rate through training fewer overall ensemble

components, but training low order simplexes (order 0 to 2) at each mode using ESPRO. Figure

4.13 shows a comparison of test error rate for ensembles of VGG-16 models over di�erent numbers

of ensemble components and simplex sizes on CIFAR-10 and CIFAR-100. For any �xed ensemble

size, we can gain performance by using a ESPRO ensemble rather than a standard deep ensemble.

Furthermore, training these ESPRO models is generally inexpensive; the models in Figure 4.13 are

trained on CIFAR-10 for 200 epochs and CIFAR-100 for 300 epochs. Adding a vertex takes only an

additional 10 epochs of training on CIFAR-10, and 20 epochs of training on CIFAR-100. We show

the CIFAR-100 time-accuracy tradeo� in Appendix A.6.4 �nding a similar trend to CIFAR-10.

Figure 4.14 shows a comparison of test error for ensembles of ResNet-56 models over di�erent

ensemble and simplex sizes in Figure 4.13, providing more evidence for the general applicability

of the ESPRO procedure. The main practical di�erence between ResNet-56’s and the previous

VGG networks is that the ResNet-56’s use BatchNorm. BatchNorm statistics need to be adjusted

when we sample a model from within a simplex, leading to an additional cost at test time. To

generate predictions, we use 100 minibatches of train data to update the batch norm statistics

before freezing the statistics and predicting on the test set.

4.11 Uncertainty and Robustness

We �nish by investigating the uncertainty representation and robustness to dataset shift provided

by ESPRO. We show qualitative results on a regression problem, before studying corruptions of

CIFAR-10, comparing to deep ensembles, MultiSWA, and the state-of-the-art Bayesian approach
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Figure 4.14: Performance of deep ensembles and ESPRO (1, 2, or 3-simplex) using ResNet-56 models on
CIFAR-10. The ResNet-56s follow the same trend as VGG networks: more ensemble components increases
accuracy, ESPRO significantly outperforms deep ensembles, and adding further simplex vertices to each
ESPRO component provides additional improvements.

MultiSWAG [Wilson and Izmailov 2020].

4.11.1 �alitative Regression Experiments

In general, a good representation of epistemic (model) uncertainty has the property that the un-

certainty grows as we move away from the data. Visualizing the growth in uncertainty is most

straightforward in simple one-dimensional regression problems.

Izmailov et al. [2019b] visualize one dimensional regression uncertainty by randomly initial-

izing a two layer neural network, evaluating the neural network on three disjoint random inputs

in one dimension: (−7,−5), (−1, 1), and (5, 7), and adding noise of σ 2 = 0.1 to the net’s outputs.

The task is to recover the true noiseless function, f , given another randomly initialized two layer

network, as well as to achieve reasonable con�dence bands in the regions of missing data — we

used a Gaussian likelihood with �xed σ 2 = 0.1 to train the networks, modelling the noisy data

y. In Figure 4.15, we show ESPRO (top left) which recovers good qualitative uncertainty bands
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Figure 4.15: �alitative uncertainty plots of p(f |D) on a regression problem. We show both the 2σ
confidence regions from p(f |D) (the latent noise-free function) and p(y |D), which includes the observed
noise of the data (aleatoric uncertainty). Top Le�: ESPRO, colored lines are the vertices in the sim-
plex. First two are fixed points in the simplex. Top Right: Deep ensembles, colored lines are individual
models. Bo�om Le�: Curve subspaces. ESPRO solutions produce functionally diverse solutions that
have good in-between (between the data distribution) and extrapolation (outside of the data distribution)
uncertainties; the ESPRO predictive distribution is broader and more realistic than deep ensembles and
mode-connecting subspace inference, by containing a greater variety of high performing solutions.

on this task. We compare to deep ensembles (size 5) (top right) and the state of the art subspace

inference method of Izmailov et al. [2019b] (bottom left), �nding that ESPRO does a better job

of recovering uncertainty about the latent function f than either competing method, as shown

by the 2σ con�dence region about p(f |D). Indeed, after adding in the true noise, ESPRO com-

plexes also do a better job of modelling the noisy responses, y, measured by p(y |D) than either

approach.
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(a) Accuracy for Gaussian noise corruption

(b) NLL for Gaussian noise corruption

Figure 4.16: (a) Accuracy for Gaussian blur corruption for MultiSWA, MultiSWAG, deep ensembles and
ESPRO. (b) NLL under the same corruption. All models were originally significantly over-confident so
we use temperature scaling [Guo et al. 2017] to improve uncertainty; a�er temperature scaling ESPRO
generally performs the best under varying levels of corruption.
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4.11.2 Uncertainty and Accuracy under Dataset Shift

Modern neural networks are well known to be poorly calibrated and to result in overcon�dent

predictions. Following Ovadia et al. [2019], we consider classi�cation accuracy, the negative

log likelihood (NLL), and expected calibration error (ECE), to asses model performance under

varying amounts of dataset shift, comparing to deep ensembles [Lakshminarayanan et al. 2017],

MultiSWA, and MultiSWAG [Wilson and Izmailov 2020], a state-of-the-art approach to Bayesian

deep learning which generalizes deep ensembles. In Figure 4.16(a), we show results across all

levels for the Gaussian noise corruption, where we see that ESPRO is most accurate across all

levels. For NLL we use temperature scaling [Guo et al. 2017] on all methods to reduce the over-

con�dence and report the results in Figure 4.16(b). We see that ESPRO with temperature scaling

outperforms all other methods for all corruption levels. We show ECE and results across other

types of dataset corruption in Appendix A.6.5.1.

4.12 Discussion

Through this chapter we have explored and utilized a better understanding of the connection

between the statistical properties of parameter space and function space in neural networks.

Taking inspiration from theoretically driven results in simpler cases, such as linear models, we

have empirically explored the ways in which training solutions in neural networks contract in

the presence of data, as well as the implications of this contraction on the functional forms of the

model.

Extending the results regarding posterior contraction in parameter space, we have also shown

that the loss landscapes for deep neural networks contain large multi-dimensional simplexes of

low loss solutions. We proposed a simple approach, which we term SPRO, to discover these

simplexes. We show how this geometric discovery can be leveraged to develop a highly practical
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approach to ensembling, which samples diverse and low loss solutions from the simplexes. Our

approach improves upon state-of-the-art methods including deep ensembles and MultiSWAG, in

accuracy and robustness. Overall, these results provide a new understanding of how the loss

landscapes in deep learning are structured: rather than isolated modes, or basins of attraction

connected by thin tunnels, there are large multidimensional manifolds of connected solutions.

This new understanding of neural network loss landscapes has many exciting practical im-

plications and future directions. We have shown we can build state-of-the-art ensembling ap-

proaches from low less simplexes, which serve as a simple drop-in replacement for deep en-

sembles. Moving forward, we hope our work will help inspire a continued e�ort to capture the

nuanced interplay between the statistical properties of parameter space and function space in

understanding generalization behavior.
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5 | Conclusion

We have explored a range of methods for using and constructing function space representations

in machine learning models. In Chapter 2 we use the function space distribution of Gaussian

processes to imply distributions over the kernel functions within GPs themselves. We introduced

Functional Kernel Learning (FKL) and Volt, two methods for forming distributions over covari-

ance functions in Gaussian process models. FKL is focused on general applications, and provides

support for all stationary covariance functions, making it an appealing choice for many standard

time series problems. Volt, on the other hand, is much more specialized and is designed around

cases where we can safely assume certain types of stochastic volatility models will accurately de-

scribe our data. By relieving us from the need to learn and rely on a single kernel function, both

FKL and Volt provide powerful tools in Gaussian process models that improve forecast accuracy

and uncertainty.

In Chapter 3 we move from focusing on the functional properties in GPs to considering

functional constraints in neural networks. We introduced Residual Pathway Priors (RPP) and

Augerino for building equivariant and invariant functions in an imperfect world. In an ideal set-

ting we would be able to prescribe models that are perfectly equivariant to full ranges of transfor-

mations, but in reality we are often forced to work with only approximate equivariance or only

a limited range of transformations. The ability of these models to handle cases where we may

not know what equivariances are present a priori gives us a framework for deploying equivariant

models in real world setting where perfect assumptions will not always hold. RPP and Augerino
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both provide principled ways of building equivariance-inspired models where we can learn the

appropriate transformations directly from the data.

Finally, in Chapter 4, we connect the parameter space view point to a functional perspective

in neural networks. By exploring neural network loss surfaces and the types of solutions found

through training, as well as the posterior contraction of these solutions we are able to draw

stronger conclusions about how the functional properties of our models change through training.

Finally, using these insights about loss surfaces we introduced SPRO, a method for quickly and

e�ciently �nding diverse ensembles of models. While the preceding chapters focused directly

on functional properties either through the function space distribution provided by Gaussian

processes or via equivariance constraints, SPRO focuses on using parameter space understanding

to help build more accurate functions. By forming low loss simplexes of models in parameter

space, SPRO is able to sample collections of accurate models, and by constructing simplexes that

are as large as possible in parameter space we are able to �nd diverse ensembles of models in

function space.

Collectively these works provide a set of tools for engaging with functional properties of

models, be they function space distributions or speci�c qualities like equivariance. While in

many cases it is mathemetically easier to engage with the parameters our models take on, such

as assigning priors in neural networks or training hyperparameters in Gaussian processes, ulti-

mately we should only be concerned with these parameters insofar as they a�ect the functions

our models produce. In this thesis it is through a functional lens that we are not only able to better

understand the properties of our models, but also to take a prescriptive approach and describe

methods for building better models.

We have shown empirically and theoretically that such functional constructions can lead to

a range of desirable outcomes. These outcomes include models with some predetermined traits,

such as correspondence to a prior known volatility model or soft equivariance constraints. They

can also include models that are more robust to the presence of data corruption, or form more
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accurate ensembles as is the case with SPRO. We hope that these methods and discoveries inspire

future work, especially as researchers continue to improve our understanding of the connection

between neural network parameters and the functions they produce.
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A | Appendix

A.1 Appendix For Function-Space Distributions over

Kernels

A.1.1 Computational Complexity

Note that when sampling at N data points and I frequencies, the storage costs for this model are

naivelyO(N 2+I 2)with the computational cost for prediction ofO(N 3+I 3).Using pre-conditioned

conjugate gradients for inverses and stochastic Lanczos quadrature (SLQ) or the log determinants

[Dong et al. 2017] as implemented in GPyTorch [Gardner et al. 2018a] for the data and likelihood

calls can immediately reduce the computational cost to O(N 2 + I 2). However, the randomness in

the log determinant calculations proved to be problematic for ESS and we only used SLQ for the

gradient-based updates, keeping the overall time complexity cubic in N . Given that the latent

Gaussian processes are on a pre-de�ned grid, we can utilize fast Toeplitz matrix multiplications

[Wilson et al. 2014] to reduce the time complexity to O(N 3 + I log I ) and the memory complexity

to O(N 3 + I ).

Extending the model to multi-dimensional inputs and multiple outputs adds on a linear term

for both dimensionality D and tasks T independently, so for a multi-task model with T tasks

predictions are done in O(T (N 3+ I )). Note that this is signi�cant improvement over the O(T 3N 3)
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Algorithm 2: Alternating Sampler
Input: Data (x,y), Initial hyper-parameters ϕ0, Sampling frequencies ω, Initial Latent GP
д(ω), Number of gradient steps to take per iteration Noptim, Number of ESS samples per
update per iteration NESS ,
repeat
for i = 1 to Noptim do

Update ϕ using gradient descent given д(ω) and Eqn. 2.7
end for
for i = 1 to NESS do

Update д(ω) using elliptical slice sampling given ϕ and Eqn. 2.9
end for

until convergence

needed to do exact inference in previous multi-task work such as Bonilla et al. [2008].

For enhanced scalability, we can approximate the kernel matrices in single (and low) di-

mensions by utilizing scalable kernel interpolation (SKI) as introduced by Wilson and Nickisch

[2015]. Using m inducing points we can achieve an inference cost of O(N +m logm + I log I ) or

O(T (N +m logm + I log I )) for the multi-task setting.

A.1.2 Latent Model Specification

A.1.2.1 Initialization

FKL proves to be robust to initialization, thus for simplicity we initialize the spectral density to

be constant, S(ω) = 1, for a large range of frequencies. An experiment detailing the models

robustness is given in the Appendix.
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A.1.2.2 Specification of the Latent GP

We �x the mean and covariance of the latent process д(ω) to take the following forms:

{log of RBF spectral density} µ(ω;θ ) = θ0 −
ω2

2θ̃1
2

{Matérn kernel} kд(ω,ω
′;θ ) =

21−ν

Γ(ν )

(
√

2ν
|ω − ω′|

θ̃2

)
Kν

(
√

2ν
|ω − ω′|

θ̃2

)
+ θ̃3δτ=0

(A.1)

The θ̃i ’s are non-negative variables, so are computed with θ̃i = log(eθi + 1), the softplus of the

raw value. The mean parametrization coupled with the constraints �xes the latent mean to be

negative quadratic, like the logarithm of an RBF spectral density.

A.1.2.3 Prior Specification

For the noise terms, we place smoothed box priors1 on the range (1e-8, 1e-3) to control both

numerical instability and the noise terms. For the constant mean terms in both the data and latent

means, we place uninformativeN(0, 100) priors. For the length-scale in the spectral density mean

along with the length-scale and output-scale of the covariance of the spectral density GP, we place

standard log-normal priors.

A.1.3 Density and Error Bounds of FKL

A.1.3.1 Error Rate of Trapezoidal Rule Approximation

Given a sample path from a Gaussian process with a Matérn kernel as is used in our implemen-

tation, we can get explicit O(1/I ) error bounds on the error of trapezoid rule integration of the

warped GP instead by checking Holder continuity of sample draws from the latent GP [Belyaev
1A smooth approximation to uniform priors, where B(x) = {a ≤ x ≤ b} then d(x,B) := minx ′∈B |x − x ′ | and

�nally the density is given by f (x) := exp{−d(x,B)2/
√

2σ 2}. See https://gpytorch.readthedocs.io/en/latest/
priors.html for further implementation details.
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Algorithm 3: Multi-Task Alternating Sampler
Input: Data (x,Y ), Initial hyper-parameters ϕ0, Sampling frequencies ω, Initial Latent GPs
дi(ω) for i = 1, . . . ,T , Number of gradient steps to take per iteration Noptim, Number of ESS
samples per update per iteration NESS ,
repeat
for i = 1 to Noptim do

Update ϕ using gradient descent given д(ω) and Eqn. 2.8
end for
for t = 1 to T do
for i = 1 to NESS do

Update дt (ω) using elliptical slice sampling given ϕ and Eqn. 2.9 with respect to ft (x)
end for

end for
until convergence

1961], and using results on the error of trapezoid rule for Holder continuous functions [Cruz-

Uribe and Neugebauer 2002]. Note that we could use standard error bounds if we use a GP with

twice di�erentiable sample paths.

A.1.3.2 Density Amongst Stationary Kernels

We next note that the trapezoidal rule is just a �nite sample version of both Riemann and Darboux

integrals. Thus, functional kernel learning can also be written as a linear combination of the

trigonemetric basis expansions and the spectral density (e.g. in sparse spectrum form like Lázaro-

Gredilla et al. [2010]). Thus, FKL can model discontinuous but �nite measures because mixtures

of Gaussians are dense approximations of Riemann integrable densities (see Theorem 5 of Shen

et al. [2019]). Thus, the trapezoid rule will be an approximator of the true kernel on the compact

set [0,ωmax ], converging as ωmax →∞ (e.g. as the number of basis functions goes to in�nity).

Finally, we note that in the multi-dimensional case, FKL does not provide support over all

stationary covariances (like other spectral approaches [Shen et al. 2019; Wilson and Adams 2013]),

but we �nd in practice that the domain of support is great enough for accurate performance on

most tasks. We would need to at least model the ω’s for each dimension on a grid to provide full
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support, at a cost of af the number of grid points exponentially increasing. Future work will help

to alleviate this issue.

A.1.4 Sensitivity to Initialization

Part of the strength of FKL, particularly over competing methods like spectral mixture (SM) ker-

nels, is robustness to initialization. We compare the performance of FKL and SM kernels on

interpolating data generated from a GP with a quasi-periodic kernel.

In GPyTorch spectral mixture (SM) kernels are initialized to,

µ = log(exp(0) + 1)

σ = log(exp(0) + 1)

w = log(exp(0) + 1),

i.e. the means, variances, and weights of each mixture component is the softplus of 0 prior to

calling the data initialization routine [Gardner et al. 2018a]. The data-based initialization routine

uses statistics of the data to randomly initialize the parameters of the mixture components, and

performance is highly dependent on this initialization.

In the current implementation FKL is initialized with a spectral density that is constant,

S0(ω) = 1 ∀ω

д0(ω) = 0 ∀ω,

whereд(ω) is the log-spectral density, which is modeled using a latent GP. The surprising fact, and

what makes FKL such an appealing model for complex problems, is robustness to initialization.

In practice we see no gains in predictive performance when initializing in a more sophisticated

fashion than is currently done. This robustness goes far enough that we don’t even see perfor-
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Figure A.1: Comparison of naive and data-based initialized SM kernels on interpolation tasks. Le�: the
default (naive) initialized kernel, Right: the data-based initialized kernel.

mance gains when we have access to ground truth data and can initialize the spectral density to

be near to the spectral density of the kernel of generative model itself.

Data are generated using a GP with quasi-periodic kernel and the middle portion of the data

are held out as a testing set. Using the inverse Fourier transform we can compute the spectral

density of the generating quasi-periodic kernel directly, S∗(ω). First we train and predict using a

SM kernel that is has parameters initialized to the constant values from above, and compare to

a SM kernel using GPyTorch’s built in data-based initialization. Next we repeat the procedure

using a default initialized FKL model, then compare to an FKL model where the spectral density

has been initialized to a corrupted version of the ground truth spectral density. Thus we compare

FKL models with the initializations,

S0(ω) = 1 ∀ω

S0(ω) = S∗(ω) +N(0, 0.1) ∀ω .

The results are shown in Figures A.1 and A.2. What we see is that a naive implementation

of SM kernels leads to poor performance on the testing set, while FKL performs nearly the same

whether we initialize the spectral density to an arbitrary value, or to nearly the ground truth.
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Figure A.2: Comparison of basic and ground-truth initialized FKL kernels on interpolation tasks. Le�:
the default (naive) initialized kernel, Right: the ground-truth initialized kernel.

A.1.5 Further Experiments

A.1.5.1 Recovery of Known Kernels

Spectral Mixture Kernel Extending from Section 2.5.1, we also display the accuracy of the

kernel reconstruction given the samples drawn in the latent space. Figure A.3 shows the accu-

rately sampled spectral density, and the kernels reconstructed from these samples.

�asi-Periodic Kernel Synthetic data are generated from a mean zero Gaussian process with

kernel,

k(τ ; `,ω) = exp
(
−
τ 2

2`2

)
exp

(
−2 sin2(πτω)

)
. (A.2)

Since there is inherent periodicity in the generative model, the true spectral density has distinct

modes corresponding to the period length of the sinusoidal component of the kernel. The spec-

tral density of this kernel is not analytically computed, however using the known kernel the

discrete Fourier transform allows an approximation of the ground-truth spectrum to be found,

and comparison in the spectral domain can be made.

Using this latent GP model accurate reconstruction of both the spectral density and kernel are
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Figure A.3: Samples from the latent GP displayed in the spectral domain along with the ground truth
(Le�) and the reconstructed kernels generated by these samples (Right).

obtained using only training data. Further more, in�lling into the testing set shows high accuracy

and the con�dence region encompasses the data.

A.1.5.2 Foreign Exchange Rates Dataset

We consider multi-output prediction tasks on a foreign exchange rates dataset originally devel-

oped in [Álvarez et al. 2010]. The dataset consists of the exchange rates of 10 currencies and 3

precious metals with respect to the US dollar in 2007. The task is to predict the Canadian dollar

(CAD) on days 50-100, Japanese yen (JPY) on days 100-150, and Australian dollar (AUD) on days

150-200, given the exchange rate information for all other days. Due to market di�erences, there

are occasionally also missing data. Like in [Requeima et al. 2019a], we measure performance with

the standardized mean square error (SMSE). The results from this experiment are shown in Table

A.1 with comparisons taken from both [Requeima et al. 2019a] and [Nguyen et al. 2014]. FKL

performs considerably better than both types of collaborative Gaussian process, which constrain

the outputs considerably more. By comparison, the GPAR [Requeima et al. 2019a] outperforms

FKL on this task, perhaps due to its explicit ordering of tasks and its increased depth (the GPAR
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Table A.1: Standardized mean squared error on FX dataset. Comparisons are with independent Gaussian
processes (IGP), convolved multi-output GP (CMOGP) [Álvarez and Lawrence 2011], collaborative GP
(CGP) [Nguyen et al. 2014], and Gaussian process autoregressive model (GPAR). Note that the GPAR is
perhaps best viewed as a deep Gaussian process with known inputs. Comparisons taken from [Requeima
et al. 2019a]. Note that FKL multi-task outperforms the standard multi-task GP methods) averaged over
10 random trials.

Model IGP CMOGP CGP GPAR FKL(multi-task)

SMSE 0.5996 0.2427 0.2125 0.0302 0.1392 ± 0.01

Table A.2: UCI Regression RMSEs, comparisons are with RBF, ARD, and ARD Matérn kernels, N points
D input dimensions. We compare to separate latent GPs for each input dimension, finding that sharing a
single latent GP across dimensions works be�er than both the standard fixed spectrum approaches and
separate latent GPs. Each of the experiments were conducted 10 times with random 90/10 train/test splits
and we report the average RMSE ± one standard deviation.

Dataset N D RBF ARD ARD Matérn FKL-PB (separate) FKL-PB (shared)

challenger 23 4 0.713 ± 0.348 0.659 ± 0.368 0.612 ± 0.268 0.58 ± 0.225 0.548 ± 0.174
fertility 100 9 0.159 ± 0.036 0.177 ± 0.035 0.148 ± 0.038 0.19 ± 0.047 0.182 ± 0.022

concreteslump 103 7 36.302 ± 7.934 27.377 ± 7.782 26.335 ± 7.482 59.444 ± 12.879 4.385 ± 1.332
servo 167 4 0.305 ± 0.056 0.23 ± 0.075 0.256 ± 0.06 0.282 ± 0.086 0.288 ± 0.063
yacht 308 6 0.17 ± 0.07 0.187 ± 0.078 0.269 ± 0.048 0.193 ± 0.13 0.11 ± 0.054

autompg 392 7 2.651 ± 0.488 3.077 ± 0.544 2.516 ± 0.332 2.838 ± 0.374 2.69 ± 0.492
housing 506 13 3.771 ± 0.675 3.222 ± 0.846 3.261 ± 0.624 4.679 ± 0.632 2.703 ± 0.227

stock 536 11 0.005 ± 0.001 0.005 ± 0.001 0.005 ± 0.001 0.018 ± 0.002 0.016 ± 0.001
pendulum 630 9 1.297 ± 0.315 1.185 ± 0.326 1.013 ± 0.207 2.747 ± 0.737 1.562 ± 0.554

energy 768 8 1.839 ± 0.253 0.457 ± 0.035 0.373 ± 0.062 0.296 ± 0.066 0.334 ± 0.063
concrete 1030 8 7.001 ± 0.513 6.125 ± 0.456 6.058 ± 0.373 3.781 ± 0.501 4.047 ± 0.693

airfoil 1503 5 2.503 ± 0.202 1.696 ± 0.243 1.595 ± 0.296 1.378 ± 0.176 1.39 ± 0.181

is a special case of deep Gaussian processes [Damianou and Lawrence 2013]).

Here, we utilize 5 rounds of the alternating sampler with 10 optimization and 50 ESS iterations

and run on a single GPU (with 10 repetitions taking about 3 minutes).

A.1.5.3 UCI Tables

Tables A.2, A.3, and A.4 show the RMSE, standardized log loss, and negative log likelihoods of

FKL (both separate and shared latent models) compared to standard parametric models on UCI

regression tasks.
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Table A.3: UCI Regression Mean Standardized Log loss, comparisons are with RBF, ARD, and ARD Matérn
kernels, N points D input dimensions. We compare to separate latent GPs for each input dimension. Each
of the experiments were conducted 10 times with a random 90/10 train/test split and reported over ± a
standard deviation.

Dataset N D RBF ARD ARD Matérn FKL-PB (separate) FKL-PB (shared)

challenger 23 4 0.83 ± 1.085 0.91 ± 1.951 0.383 ± 0.778 -0.053 ± 0.192 0.216 ± 0.292
fertility 100 9 -0.049 ± 0.075 -0.094 ± 0.137 -0.077 ± 0.295 0.013 ± 0.06 -0.0 ± 0.017

concreteslump 103 7 30.821 ± 12.039 20.055 ± 11.079 17.247 ± 9.789 -0.125 ± 0.131 -2.57 ± 0.23
servo 167 4 -1.076 ± 0.216 -1.242 ± 0.386 -1.25 ± 0.121 -1.28 ± 0.218 -0.981 ± 0.272
yacht 308 6 5.136 ± 8.696 -2.001 ± 2.369 4.943 ± 7.521 -2.62 ± 0.225 -2.477 ± 0.17

autompg 392 7 -1.065 ± 0.216 -0.93 ± 0.306 -1.085 ± 0.152 -1.034 ± 0.149 -0.888 ± 0.482
boston 506 13 -0.912 ± 0.196 -1.077 ± 0.213 -1.031 ± 0.13 -0.86 ± 0.085 -1.191 ± 0.109
stock 536 11 -0.831 ± 0.082 -0.82 ± 0.088 -0.868 ± 0.105 0.014 ± 0.04 -0.001 ± 0.017

pendulum 630 9 -1.12 ± 0.084 -1.358 ± 0.147 -1.586 ± 0.227 -0.323 ± 0.181 -1.685 ± 0.263
energy 768 8 -1.684 ± 0.127 -3.062 ± 0.093 -3.11 ± 0.05 -3.49 ± 0.133 -3.302 ± 0.081

concrete 1030 8 -0.417 ± 0.232 -0.717 ± 0.171 -0.745 ± 0.154 -0.489 ± 1.37 -0.311 ± 1.345
airfoil 1503 5 -0.994 ± 0.064 -1.177 ± 0.078 -1.31 ± 0.048 -1.448 ± 0.336 -1.586 ± 0.198

Table A.4: UCI Regression Negative Log-likelihoods, comparisons are with RBF, ARD, and ARD Matérn
kernels, N points D input dimensions. We compare to separate latent GPs for each input dimension. Each
of the experiments were conducted 10 times with a random 90/10 train/test split and reported over ± a
standard deviation.

Dataset N D RBF ARD ARD Matérn FKL-PB (separate) FKL-PB (shared)

challenger 23 4 5.74 ± 4.547 6.064 ± 7.283 3.753 ± 3.05 2.82 ± 0.809 2.966 ± 0.854
fertility 100 9 -3.901 ± 1.76 -2.861 ± 2.187 -4.408 ± 2.582 -1.83 ± 3.336 -2.738 ± 1.252

concreteslump 103 7 400.451 ± 134.157 282.544 ± 124.796 250.299 ± 108.762 60.248 ± 2.542 33.016 ± 1.965
servo 167 4 5.144 ± 3.995 1.101 ± 5.871 1.374 ± 3.14 0.93 ± 3.867 4.686 ± 5.271
yacht 308 6 221.42 ± 271.437 1.65 ± 76.479 -19.949 ± 14.092 -15.703 ± 8.233 -14.52 ± 4.7

autompg 392 7 96.189 ± 8.025 104.563 ± 13.36 94.012 ± 5.033 98.942 ± 6.135 101.757 ± 19.333
housing 506 13 139.617 ± 11.546 131.22 ± 15.034 130.841 ± 10.506 143.75 ± 5.714 122.618 ± 3.91

stock 536 11 -191.624 ± 1.626 -191.515 ± 1.472 -191.154 ± 1.318 -140.055 ± 6.679 -147.805 ± 2.577
pendulum 630 9 84.964 ± 3.402 69.371 ± 7.299 62.64 ± 5.692 141.121 ± 20.914 53.86 ± 16.301

energy 768 8 157.1 ± 8.894 52.118 ± 5.835 47.776 ± 3.591 17.808 ± 9.927 30.222 ± 6.881
concrete 1030 8 395.596 ± 21.02 361.792 ± 20.077 357.248 ± 14.532 384.242 ± 140.779 405.779 ± 137.561

airfoil 1503 5 358.932 ± 8.932 325.059 ± 6.605 305.588 ± 7.462 284.895 ± 48.796 270.073 ± 28.424
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A.1.6 Large-Scale Precipitation Extrapolation

We demonstrate the scalability and practicality of FKL by extending this to a much larger dataset;

modeling 108 di�erent stations in seven American states across the northeast (ME, MA, VT, NH,

RI, CT, NY) with a single latent Gaussian process, training on the �rst 300 days of the year, and

attempting to extrapolate on the �nal 65 days. Despite not including any geographic information

(e.g. longitude and latitude), FKL �ts the trends across this climatologically diverse region We

show extrapolation on 120 stations in Figure 15 in the Appendix. Note that this corresponds to a

dataset size of greater than 30,000 data points, and that we were able to �t this dataset on a single

Nvidia 1080 Ti GPU in roughly 30 minutes.

A.2 Appendix For Volatility Based Kernels and Moving

Average Means for Accurate Forecasting with

Gaussian Processes

A.2.1 Tutorial

This section should serve as a useful reference on much of the more domain-speci�c language

and methodology used throughout the paper.

In the context of a time series St , we use volatility, denotedVt , to refer to the standard deviation

of the variability in price over some time period. In �nancial applications we consider stock

prices on the daily time scale, and as is standard report volatility as annualized volatility, which

corresponds to the volatility of a stock over the course of a year.

More speci�cally, we assume that the log returns in observations, log
(
St+1
St

)
, are normally

distributed with standard deviation Vt . In this paper we make the common assumption that the

volatility itself is a time varying stochastic process, meaning we expect the magnitude of the daily
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Figure A.5: 40 stations modelled in the multi-task extrapolation test. The multi-task FKL both interpo-
lates and extrapolates well even for relatively geographically diverse datasets.
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Figure A.6: 40 stations modelled in the multi-task extrapolation test. The multi-task FKL both interpo-
lates and extrapolates well even for relatively geographically diverse datasets.
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Figure A.7: 40 stations modeled in the multi-task extrapolation test. The multi-task FKL both interpolates
and extrapolates well even for relatively geographically diverse datasets.
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Figure A.8: 15 stations modeled in the multi-task extrapolation test. The multi-task FKL both interpolates
and extrapolates well even for relatively geographically diverse datasets.

returns to vary over time.

Figure A.10 provides an example of the connection between price, log returns, and volatility.

On the left we have a simulated set of price observations over one year, and in the center we have

the associated log returns. Finally, on the right, we have the volatility path overlaid on the returns.

We can see that where volatility is high we have larger returns (both positive and negative), and

where volatility is low the returns tend to be small. Naturally if we wish to understand how the

price will evolve in the future we need to also understand how volatility will evolve.

A.2.2 Extended Methods

A.2.2.1 Moving Average Gaussian Processes

Figure A.11 gives an example of how various moving averages (or Magpie prior means) appear

given a series of price observations for a stock. On the left, the standard EMA formulation displays

a clear lag e�ect, that is ameliorated by using either Double or Triple moving averages (DEMA

and TEMA). On the right, we see how the DEMA moving average varies for di�erent smoothing
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seen in the EMA curve. Right: DEMA curves for various values of k . Increasing k averages over more
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parameters k ; for larger values the moving average is less sensitive to �uctuations in the data,

but exhibits more bias, similarly smaller values of k produce moving averages that more closely

match the data, but are susceptible to outliers.

A.2.2.2 Proofs from Derivations

Log-Volatility Kernel Function Recall the SDE governing movements in the log-volatility:

dv(t) = −
σ 2

2
dt + σdZ (t). (A.3)
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We now derive the covariance function Cov(v(t),v(t ′)), assuming without loss of generality, that

t < t ′. For ease of notation, and as the mean does not a�ect the covariance structure, let ṽ(t) be

the same process as v(t) with the mean trend removed.

Using independence of increments of the SDE we can determine the covariance as follows:

Cov(v(t),v(t ′)) = Cov(v(t) − E[v(t)],v(t ′) − E[v(t ′)])

= Cov(ṽ(t), ṽ(t ′))

= E[ṽ(t)ṽ(t ′)] − E[ṽ(t)]E[ṽ(t ′)]

= E[ṽ(t)ṽ(t ′)]

= E[ṽ(t)(ṽ(t ′) − ṽ(t))] + E[ṽ(t ′)2]

= E[ṽ(t ′)2] = t ′σ 2 = min{t, t ′}σ 2.

So �nally we have Cov(v(t),v(t ′)) = Kv(t, t
′) = min{t, t ′}σ 2.

Log-Price Kernel Function

ds(t) = µsdt +V (t)dW (t) (A.4)

The covariance function of s(t) can be derived using the fact that the s(t) di�usion has in-

dependent increments; �rst assume that t < t ′ and that s̃(t) is the same process as s(t) with the
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mean trend removed. Therefore,

Cov(s(t), s(t ′)) = Cov(s(t) − E[s(t)], s(t ′) − E[s(t ′)])

= Cov(s̃(t), s̃(t ′))

= E[s̃(t)s̃(t ′)] − E[s̃(t)]E[s̃(t ′)]

= E[s̃(t)s̃(t ′)]

= E[s̃(t)(s̃(t ′) − s̃(t))] + E[s̃(t ′)2]

= E[s̃(t ′)2],

now since E[s̃(t)] = 0, E[s̃(t)2] = Var(s̃(t)) = Var(s(t)) which is just the integral of the variance of

the di�usion in Equation (2.13), leaving us with

Cov(s(t), s(t ′)) =

∫ min{t,t ′}

0
V (t)2dt = Ks(t, t

′;V (t)).

A.2.2.3 GPCV Training

GPCV Likelihood As described in the main text, we model the log returns, w(t), at time t as

independently distributed following the construction of Wilson and Ghahramani [2010]. That is,

w(t) ∼ N(0,γ 2(t)),whereγ (t) is the latent standard deviation. We chooseγ (t) = exp{ f (t)},which

is equivalent to the parameterization used in Lázaro-Gredilla and Titsias [2011]. The exponential

parameterization has the nice property that we are also modelling the log prices in the SDE

formulation described in the rest of the paper, unlike Wilson and Ghahramani [2010]’s softplus

transformation of the latent process. Wilson and Ghahramani [2010] also study the exponential

parameterization for a few experiments.

We note that γ (t) is a daily volatility and to convert to an annualized volatilty like in the rest

of the paper, we need to rescale it by a factor of 1/
√
t, so that γ̂ (t) = γ (t)/

√
t .
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Inference Scheme Following Hensman et al. [2013, 2015], we want to compute the ELBO as

logp(y) ≥ Eq(f )(logp(y | f )) − KL(q(u)| |p(u)), (A.5)

where p(y | f ) is the GPCV volatility likelihood and KL(q(u)| |p(u)) is the Kullback-Leibler diver-

gence between the the variational distribution q(u) = N(m, S) and the prior p(u). We need to

optimizeq(u), our free form variational distribution and estimate Eq(f )(logp(y | f )) using Bayesian

quadrature as in Hensman et al. [2015].

AsT is generally pretty small, we set the inducing points,u, to be the training data points, e.g.

{ti}
T
i=1.We initialize the variational meanm to be the logarithm of the running standard deviation

of the log returns, and the variational covariance to be Kuu(Kuu + KuuΣyKuu)
−1Kuu where Σy is

the negative Hessian at the initial value ofm.

Computational and memory costs then run at about O(T 3) time. In the future, we hope to use

sliding windows for the inducing points, enabling mini-batching, reducing the cost to O(T 3
window)

time [Hensman et al. 2015]. Finally, our inference scheme is simply a more �exible version of the

�xed-form heteroscedastic scheme used in Lázaro-Gredilla and Titsias [2011], which we found to

be too in�exible to �t rougher volatility paths well.

Multi-task Parameterization We follow the ICM-like model parameterization of Dai et al.

[2017] by parameterizing q(u) = N(m, Sx ⊗ ST ) and assume that p(u) = N(µ(u),Kuu ⊗KTT ). Then

we need to compute q(f )which can be done for single-task models as q(f ) = N(K f uK
−1
uum,K f f +
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K f uK
−1
uu (S − Kuu)K

−1
uuKu f ). In the multi-task setting, this is algebraically written as:

q(f ) = N((K f u ⊗ KTT )(Kuu ⊗ KTT )
−1m,

(K f f ⊗ KTT ) + (K f u ⊗ KTT )(Kuu ⊗ KTT )
−1(Sx ⊗ St − (Kuu ⊗ KTT ))(Kuu ⊗ KTT )

−1(K f u ⊗ KTT )
>)

= N
(
(K f uK

−1
uu ⊗ I )m, (K f f ⊗ KTT ) + (K f uK

−1
uu ⊗ I )(Sx ⊗ St − (Kuu ⊗ KTT ))(K f uK

−1
uu ⊗ I )

>
)

= N
(
(K f uK

−1
uu ⊗ I )m, (K f f − K f uK

−1
uuKu f ⊗ KTT ) + (K f uK

−1
uu SxK

−1
uuKu f ⊗ St )

)
(A.6)

Note that the variational mean term is a batch matrix vector multiplication, while the variational

covariance form is a sum of two Kronecker products. Together we can sample from the posterior

distribution in O(T 3+P3) time by using Kronecker identities as described in Rakitsch et al. [2013].

In the multi-task setting, we also initialize the variational covariance to be the average initial

covariance across tasks and the variational intertask covariance to be the covariance ofm across

tasks. The intertask covariance is a P × P matrix parameterized as rank one plus diagonal; we

regularize it with a LKJ prior with η = 5.0 [Lewandowski et al. 2009].

Additionally, we exploit Kronecker identities to e�ciently compute the KL divergence in the

variational distribution so that training stays atO(T 3+P3) time by broadly following the approach

of Dai et al. [2017].

A.2.2.4 Model Training

All models were trained in GPyTorch [Gardner et al. 2018b] and PyTorch [Paszke et al. 2019] on

either a single 24GB GPU or a single 12GB GPU; the multi-task wind experiment used a 48GB

Titan RTX GPU. Training time was negligible, with models typically taking less than 1 minute to

train. For training, we use 500 steps of Adam with learning rate 0.1 and optimize through the log

marginal likelihood.
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Multitask GPs We use the ICM model of Bonilla et al. [2007]. Like in the GPCV setting, we

use a rank one plus diagonal intertask covariance, regularized with a LKJ prior [Lewandowski

et al. 2009]. By structure exploitation, these models cost O(P3 +T 3) for �tting and O(P3 +T 3) for

posterior sampling when using Matheron’s rule [Maddox et al. 2021a].

Data Space GPs We use a standard Gaussian likelihood for these responses on the log trans-

formed data and optimize both the scale of the volatility as well as the noise term, initializing

the noise to be 10−4. As these models reduce to a standard exact GP conditional on volatility,

computational and memory costs then run at O(T 3) time.

A.2.3 Experimental Details

A.2.3.1 Details from Section 2.9.1

We source daily closing prices for stocks in the Nasdaq 100 for 2 years prior to January 2022. Volt

models are trained according to the outline in Section 2.8.2, and standard GPs are implemented

and trained via GPyTorch and BoTorch [Gardner et al. 2018b; Balandat et al. 2020]. The LSTM

model is implemented with 2 hidden layers each with 128 units and takes the form

f (st , st−1, st−2, st−3, st−4) = {µ̂t+1σ̂t+1}

where µ̂t+1 is the predicted mean at time t +1, and σ̂t+1 is the predicted standard deviation at time

t + 1.

For each stock in our universe we select 25 cuto� times at which we generate forecasts, using

the preceding 400 observations as training data. At each cuto� time we forecast the log closing

price 100 days into the future, and compute the calibration and negative log likelihood of the

forecasts 75 to 100 days out. We speci�cally focus on longer horizon forecasts, as it is generally

a harder task for which out of the box methods are ill-suited.

147



Stock Prices Wind Speeds FX
Volt + Magpie 5.88 ± 0.02 4.28 ± 0.16 −1.69 ± 0.02

Volt + Con. 4.69 ± 0.03 3.38 ± 0.05 −1.60 ± 0.02
Matérn + Magpie 9.80 ± 0.27 12.13 ± 0.81 4.23 ± 0.30

Matérn + Con. 7.74 ± 0.21 18.03 ± 1.90 −0.36 ± 0.04
SM + Magpie 147.84 ± 1.84 110.07 ± 7.81 562.67 ± 15.71

SM + Con. 80.43 ± 0.57 70.14 ± 5.03 356.55 ± 11.98
LSTM 49.95 ± 0.59 45.13 ± 1.82 10.66 ± 0.44

Volt-VHGP + Con. 4.76 ± 3.05 5.75 ± 0.44 −1.58 ± 0.03
Volt-VHGP + Magpie 6.97 ± 1.24 5.91 ± 0.34 −1.66 ± 0.02

GPCV 5.45 ± 1.51 4.89 ± 0.04 −1.79 ± 0.02

Table A.5: Negative log likelihoods (NLLs) per test point for the methods compared on both the stock
forecasting and wind speed tasks, averaged of tens of thousands of forecasts. While there is a slight
improvement in NLL from using a constant mean, the inclusion of Magpie is central to achieving high
calibration.

A.2.3.2 Details from Section 2.9.2

We source data from Diamond et al. [2013] for the 2021 calendar year. Wind measurements are

taken at 15 minute intervals for all 154 stations in the observation network. In order to treat the

observed wind speed as log-normally distributed we add 1 to each observation (to shift the 0 m/s

observations to a value of 1), and then model the log of the resulting time series.

Figure A.12 compares the performance of Volt alone and Volt with Magpie mean functions

with various smoothing parameters. Magpie means aid in calibration, although the e�ect is less

pronounced as we see with stock forecasting in Figure 2.12.

A key distinction between wind speed forecasting and stock price forecasting is that wind

speeds tend to revert to a consistent level, whereas stock prices may increase by thousands then

stabilize at a new level. For this reason we explore the use of mean reversion in our rollout

forecasts. To add mean reversion to the rollouts we simply adjust the posterior mean of the GP

towards the mean of the training data by a factor of θ . That is, rather than sampling from the GP

posterior st∗ ∼ N(µ∗f |D |Σ
∗
f |D
) we sample from st∗ ∼ N(µ

∗
f |D
− θ (µ∗

f |D
− 1

N

∑
i si)|Σ

∗
f |D
).

In this mean reversion setting, θ controls the speed at which rollouts tend to revert towards
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Figure A.12: A comparison of Volt with a constant mean, and Volt with various Magpie means in terms
of calibration in wind forecasts. While Volt with a constant mean is well calibrated, it is aided by the
inclusion of a Magpie mean with large smoothing parameter.
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Figure A.13: Calibration of di�erent mean reversion θ values across stock prices.

the mean. At θ = 0 we are in the standard GP prediction case, at θ = 1, we only ever sample

from a distribution centered around the mean of the training observations. Figure A.13 provides

a comparison of the calibration under di�ering levels of mean reversion for Volt. The standard

Volt rollouts are in general well calibrated for this problem, but we see that just a small amount

of mean reversion can increase the overall calibration notably.

A.2.4 Details from Section 2.10

In Figure A.14, we construct a multi-task SABR volatility model with correlations given by the

farthest right panel and volatility processes given as the blue lines in the left three panels. We

149



0.0 0.5 1.0 1.5 2.0
Time

0.2

0.4

0.6

0.8

si
gm

a(
t)

0.0 0.5 1.0 1.5 2.0
Time

0.2

0.4

0.6

0.8

si
gm

a(
t)

0.0 0.5 1.0 1.5 2.0
Time

0.2

0.4

0.6

0.8

1.0

si
gm

a(
t)

Posterior Mean
Posterior Samples
Actual

0 1 2

0.5

0.0

0.5

1.0

1.5

2.0

2.5
0 1 2

0.5

0.0

0.5

1.0

1.5

2.0

2.51.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

Figure A.14: Le� three panels: Predicted correlated volatility models. Fourth panel: Estimated cor-
relation matrix between volatility models. Fi�h panel: True volatility correlation. Multitask GPCVs are
able to both predict volatility while also estimating the true correlation between volatility.

then use our multi-task GPCV model to estimate and predict the true volatilities for each task

in the left three panels, while also estimating the true relationships between each volatility. The

estimated relationships are shown in the fourth panel from left, which is pleasingly similar to the

true correlation shown at far right.

For Figure 2.15left and Figures A.15, A.17(a), A.17(b), we �t stocks comprising of �ve di�erent

exchange traded fund SPDRs2 collected over 5 years of daily data from 09/2016 to 09/2021. These

SPDRS are XLE, XLF, XLK, XLRE, XLY; each had six stocks in it except for XLF which had 30.

We �t on 300 days and evaluated 100 days into the future, with 5 rolling testing sets for each

prediction.

For Figure 2.15 center, we used the same training data except used only �ve stocks from the

XLE SPDR and �ve from the XLF SPDR.

For Figure 2.15 right and Figures A.16, A.18 we �t about 100 di�erent wind stations (depending

on amount of missing data) at 5 minute intervals across 2021 with 25 indepdendent rolling splits.

We �t on 252 increments and tested on 100 increments. Here, on the multi-task ones, we used a

larger RTX 8000 GPU.
2https://en.wikipedia.org/wiki/SPDR
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Figure A.15: Calibration of multi-task Volt and independent models across time step lookaheads for 5
di�erent SPDRS.
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Figure A.16: Calibration of multi-task Volt and independent models across time step lookaheads for the
wind forecasting datasets.

A.3 Appendix for Residual Pathway Priors for Soft

Eqivariance Constraints

Appendix Outline In Section 3.7 discuss potential for negative impact. In Section A.3.2 we

investigate the utility of using RPP-EMLP for the policy function only on the Mujoco tasks. In

Section A.3.3 we detail the datasets and experimental methodology used in the paper. Finally in

Sections A.3.4 and A.3.5 we break down the components of the Mujoco environment state and

action spaces, and the representations that we use for them.
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Figure A.17: Le� panel: Mean absolute error of rollouts. Right panel: Negative log likelihood of
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Figure A.18: Calibration error of the models across di�erent time step lookaheads for the wind forecast-
ing task.

A.3.1 Potential Negative Impacts

As one of our primary application areas is reinforcement learning, and speci�cally exploiting ap-

proximate symmetries in reinforcement learning, we must address the potential negative impacts

of the deployment of RPPs in RL systems. In general model free RL algorithms tend to be brittle,

and often policies and behavior learned in a simulated environment like Mujoco don’t transfer

easily to real world robots. This point is acknowledged by most RL researchers, and a large e�ort

is being made to improve the situation. Applying neural networks to the control of real robots

can be dangerous if the functions are important or failure can cause injury to the robot or hu-

mans. We believe that RL will ultimately be impactful for robot control, however practitioners

need to be responsible and exercise caution.
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A.3.2 Benefit of Eqivariant Value Functions

In principle both the policy and the value or critic function can bene�t from equivariance. How-

ever, the policy learns from the value function in the policy update which is approximately equiv-

alent to minimizing the KL divergence

Es∼D[KL(πϕ(·|s)| exp(Qθ (·, s))/Zθ (s))]

as derived in Haarnoja et al. [2018b]. If the value function Q is a standard MLP yielding a non

equivariant distribution and the policy function π is an RPP that merely has a bias towards equiv-

ariance, then the RPP policy will learn to �t the non equivariant parts of Q as if it were a ground

truth dataset that is not equivariant. This likely explains why we �nd in practice that using an

RPP for the value function has a stronger impact on performance as shown in Figure 3.5.

A.3.3 Experimental Details

Here we present the training details of the models used in the paper. Experiments were run

on private servers with NVIDIA Titan RTX and RTX 2080 Ti GPUs. We estimate that all runs

performed in the initial experimentation and �nal evaluation on the RL tasks used approximately

500 GPU hours. The experiments on dynamical systems, CIFAR-10, and UCI data required an

additional 200 GPU hours.

A.3.3.1 Synthetic Dataset Experiments (3.5.1 and 3.5.3)

The windy pendulum dataset is a variant of the double spring pendulum Hamiltonian system

from Finzi et al. [2021]. In addition to the Hamiltonian of the base system

H0(x1, x2,p1,p2) = V (x1, x2) +T (p1,p2)
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Figure A.19: Average reward curves (max over steps) for an RPP-EMLP applied to the policy π only, as
well as an RPP-EMLP for both the policy π and the critic Q . Mean and standard deviation taken over 4
trials shown in the shaded region. Only minor performance gains are achieved if using RPP for the policy
only, however this variant is more stable and can to train on Humanoid-v2 without diverging.
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where T (p1,p2) = ‖p1‖
2/2m1 + ‖p2‖

2/2m2 and V (x1, x2) =

1
2k1(‖x1‖ − `1)

2 + 1
2k2(‖x1 − x2‖ − `2)

2 +m1д
>x1 +m2д

>x2,

we add a perturbation H1(x1, x2,p1,p2) = −w
>x1 −w

>x2 that is the energy of the wind acting as

a constant force pushing in the w = [−8,−5, 0] direction. Setting H = H0 + ϵH1, we can control

the strength of the wind and we choose ϵ = 0.01. This perturbation breaks the SO(2) symmetry

about the z axis.

For the MLP, EMLP, and RPP we use 3 layer deep 128 hidden unit Hamiltonian neural net-

works [Greydanus et al. 2019] to �t the data using the rollouts of an ODE integrator [Chen et al.

2018] with an MSE loss on rollouts of length 5 timesteps with ∆t = 0.2. For training we use

500 trajectory chunks and use another 500 for testing. We train all models in section 3.5.1 for

1000 epochs, su�cient for convergence. The input and output representation for EMLP and RPP-

EMLP isV 4
O(3) → R, whereVO(3) is the restricted representation from the standard representation

of a 3D rotation matrix to the given group in question, like SO(2) for rotations about the z axis.

The input isV 4
O(3) because there are two point masses each of which has a 3D vectors for position

and for momentum. The scalar R output is the Hamiltonian function.

The Modi�ed Inertia dataset is a small regression dataset o� of the task also from Finzi et al.

[2021] for learning the moment of inertia matrix in 3D of a collection of 5 point masses. For the

base Inertia dataset, the targets are I =
∑5

i=1mi(x
>
i xiI − xix

>
i ) from the input tuples (mi, xi)

5
i=1.

In order to break the equivariance of the dataset, we add an additional term so that the target

is y = vec(I + 0.3I2ẑẑ>I) where ẑ is the unit vector along the z axis. The input and output

representations for EMLP and RPP-EMLP on this problem are (R ⊕ V )5 → V ⊗ V , representing

the 5 point masses and vectors mapping to matrices V ⊗ V .

We use 1000 train and test examples for the inertia datasets and we train for 500 epochs. In

both cases we use an Adam optimizer [Kingma and Ba 2014] with a learning rate of 0.003.
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A.3.3.2 Image and UCI experiments (3.5.4)

We use the CIFAR-10 and UCI datasets, taken from Krizhevsky et al. [2009] and Dua and Gra�

[2017] respectively. In Section 3.5 we train models on dynamical systems and CIFAR-10 and UCI

regression data. For the CIFAR-10 experiments we use a convolutional neural network (and the

equivalent MLP) with 9 convolutional layers and 1 fully connected layer, and max-pooling layers

after the third and sixth convolutional layers. The channel sizes of the 9 layers are, in order:

16, 16, 16, 32, 32, 32, 32, 32, 32. We train for 200 epochs using a cosine learning rate schedule with

an initial learning rate of 0.05 and the Adam optimizer.

For the UCI tasks we use a small convolutional neural network, and the equivalent MLP,

with 3 convolutional layers and 1 fully connected layer, with each convolutional layer having 32

channels. Models are trained for 1000 epochs using an Adam optimizer with a learning rate of

0.01 and a cosine learning rate schedule.

A.3.3.3 Model Free RL

We train on the Mujoco locomotion tasks in the OpenAI gym environments [Brockman et al.

2016]. We follow the implementation details and hyperparameters from Haarnoja et al. [2018c],

with a learned temperature function, stochastic policies, and double critics. Additionally we use

the recommendation from Andrychowicz et al. [2020] to initialize the last layer of the policy

network with 100x smaller weights, which we �nd slightly improves the performance of both

RPP and the baseline. Additionally for RPP which can be less stable than standard SAC, we use

the Adam betas β1 = 0.5 and β2 = 0.999 that are used in he GAN community [Miyato et al. 2018]

rather than the defaults. Training with the RPP π and Q functions on the Mujoco locomotion

tasks takes about 8 hours for 1 million steps.

We found it necessary to reduce the speed τ of the critic moving average to keep SAC stable

on some of the environments, with values shown in Table A.6. In general, higher τ ’s are favorable
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for learning quickly. Unfortunately we were not able to get SAC with an RPP Q function to train

reliably on Humanoid, even after trying multiple values of τ .

Walker2d Hopper HalfCheetah Swimmer Ant Humanoid

Baseline τ .005 .005 .005 .005 .005 .005
RPP τ .004 .005 .005 .004 .005 7

Table A.6: Critic moving average speed τ .

A.3.3.4 Transition Models for Mujoco

We train the transition models on a dataset of 50000 transitions which are composed of 5000

trajectory chunks of length 10. These trajectory chunks are sampled uniformly from the replay

bu�er collected over the course of training a standard SAC agent for 106 steps on each of the

environments. We train by minimizing the `1 norm of the rollout error over a 10 step trajectory,

and we evaluate on a holdout set of 50 trajectories of length 100.

The models are simple MLPs or RPPs mapping from the state and control actions to the state

space, predicting the change in state,

xt+1 = xt + NN(xt ,ut ).

For the MLPs and RPPs we use 2 hidden layers of size 256 as well as swish activations [Ra-

machandran et al. 2017]. We use a prior variance of 106 in the equivariant subspace and 3 in

the non equivariant subspace. The RPP is a standard RPP-EMLP with the input representation

ρX ⊕ ρU (concatenation of the representation of the state space and the action space), output

representation ρX , and symmetry group described in subsection A.3.4 the same as for the model

free experiments. We train the transition models for 500 epochs which takes about 45 minutes

for RPP compared to 15 minutes for the standard MLPs.

157



A.3.4 Mujoco State and Action Representations

Based on the state and action spaces of the Mujoco environments we describe in subsection A.3.5,

we de�ne appropriate group representations on these spaces. Let V be the base representation

of the group acted upon by permutations for Zn and by rotation matrices for SO(2), let R denote

a scalar representation (of dimension 1) that is una�ected by the transformations, and let P be a

pseudoscalar representation (of dimension 1) that transforms by the sign of the permutation. For

Z2, P takes the values 1 and −1 and acts by negating the values when a �ip or L/R re�ection is

applied.

Table A.7: Mujoco Locomotion State and Action Representations used for RPP-EMLP

Env State Representation Action Rep Group

Hopper R ⊕ P5 ⊕ R ⊕ P4 P3 Z2

Swimmer R ⊕ P↔ ⊕ (P↔ ⊗ Vl) ⊕ (R ⊕ P)
2 ⊕ (P↔ ⊗ Vl) P↔ ⊗ Vl Z↔2 × Z

l

2
HalfCheetah R ⊕ P8 ⊕ R ⊕ P7 P6 Z2

Walker2d R2 ⊕ V 3 ⊕ R3 ⊕ V 3 V 3 Z2
Ant R5 ⊕ V 2 ⊕ R6 ⊕ V 2 V 2 Z4

Humanoid R ⊕ V ⊗2
SO(3) ⊕ R

17 ⊕ V 2
SO(3) ⊕ R

17 R17 SO(2)

From the raw state and action spaces listed in subsection A.3.5, we convert quaternions to 3D

rotation matrices for Humanoid and Ant, and we reorder elements to group together left/right

pairs for Walker2d and Swimmer. The representations of these transformed state and action

vectors are shown in Table A.7. Note that V 3 denotes V ⊕ V ⊕ V = V ⊕3, and is simply the

concatenation of 3 copies ofV asR3 would be 3 copies ofR. This is not to be confused with powers

of the tensor product, V ⊗3 = V ⊗ V ⊗ V . For Humanoid, we denote the restricted representation

of 3D rotation matrices restricted to the SO(2) rotations about the z axis as VSO(3).
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A.3.5 Mujoco State and Action Spaces

In order to build symmetries into the state and action representations for Mujoco environments,

we need to have a detailed understanding of what the state and action spaces for these environ-

ments represent. As these spaces are not well documented, for each of the Mujoco environments

we experimented in the simulator and identi�ed the meanings of the state vectors in Tables A.12,

A.14, A.13, A.9, A.11, A.8, and A.10. We hope that these detailed descriptions can be useful to

other researchers.

Table A.8: Hopper-v2 State and Action Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Hip Angle

Knee Angle
Ankle Angle
X Velocity
Y Velocity

Orientation Angular Velocity
Hip Angular Velocity

Knee Angular Velocity
Ankle Angular Velocity

Action Space
Hip

Knee
Ankle

Table A.9: Swimmer-v2 State and Action Spaces

State Space

X (Unobserved)
Y (Unobserved)

Orientation Angle
Head Joint Angle
Tail Joint Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Head Joint Angular Velocity
Tail Joint Angular Velocity

Action Space Head Joint
Tail Joint
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Table A.10: HalfCheetah-v2 State and Action
Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Rear Hip Angle

Rear Knee Angle
Rear Ankle Angle
Front Hip Angle

Front Knee Angle
Front Ankle Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Rear Hip Angular Velocity

Rear Knee Angular Velocity
Rear Ankle Angular Velocity
Front Hip Angular Velocity

Front Knee Angular Velocity
Front Ankle Angular Velocity

Action Space

Rear Hip
Rear Knee
Rear Ankle
Front Hip

Front Knee
Front Ankle

Table A.11: Walker2d-v2 State and Action Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Right Hip Angle

Right Knee Angle
Right Ankle Angle

Left Hip Angle
Left Knee Angle
Left Ankle Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Right Hip Angular Velocity

Right Knee Angular Velocity
Right Ankle Angular Velocity

Left Hip Angular Velocity
Left Knee Angular Velocity
Left Ankle Angular Velocity

Action Space

Right Hip
Right Knee
Right Ankle

Left Hip
Left Knee
Left Ankle

A.4 Appendix for Learning Invariances in Neural

Networks

A.4.1 Forming The Invariant Model

We form a model that is approximately invariant to transformations in supp(µθ ) = S by taking

the expectation over transformations д ∼ µθ :

f̄ (x) = Eд∼µθ f (дx). (A.7)
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If µθ is uniform over the full span of a transformation, such as rotations in [−π , π ], then f̄ (x)

will be exactly invariant with respect to that transformation. In cases where S has only partial

support over transformations, Equation (A.7) alone does not imply invariance. For example, let

µθ be a uniform distribution over rotations in [−π/2, π/2]. Then for an input image x and and an

input x′ = rπ/2x , i.e. the image x rotated by π/2 radians, we have

f̄ (x) =

∫ π/2

−π/2
f (rϕx)dϕ

f̄ (x′) =

∫ π/2

−π/2
f (rϕx

′)dϕ =

∫ π

0
f (rϕx)dϕ .

Therefore without additional properties on f , we cannot guarantee that f̄ (x) = f̄ (x′). This

behaviour is in contrast to the case of having a complete invariance where the support of µθ is

closed over transformations.

However, even in these cases of partial support over invariances, the training procedure still

leads to invariant or nearly invariant models (also referred to as insensitivity in van der Wilk et al.

[2018]). This empirical fact can be naturally understood from the perspective of data augmenta-

tion. Once we iterate through the training set many times, then for each input x the network f̄

will have been trained on inputs дx for many д ∼ µθ . If our network achieves near 0 training loss,

as is typical for image problems, then we will have a network which predicts the same correct

label for each input дx with д ∼ µθ , giving a network f̄ that is approximately invariant to the cor-

rect augmentations. In practice, the network will generalize this insensitivity to transformations

on unseen test data.

In particular, Augerino learns the maximal possible augmentations that do not hurt training

performance. For example, suppose we observe rotations of the digit ‘6’ in the range [−π/4, π/4]

from the vertical. Augerino will learn rotation invariance up to π/4, as rotating further will move

some of the observations below the upper half plane, where they may be more correctly labelled

as ‘9’. Once µθ has converged to [−π/4, π/4], f̄ will be trained to correctly classify observations

161



of the digit ‘6’ rotated over the upper half plane, giving approximate invariance to any rotation

in [−π/4, π/4].

A.4.2 Lie Group Generators

The six Lie group generating matrices for a�ne transformations in 2D are,

G1 =


0 0 1

0 0 0

0 0 0


, G2 =


0 0 0

0 0 1

0 0 0


, G3 =


0 −1 0

1 0 0

0 0 0


,

G4 =


1 0 0

0 1 0

0 0 0


, G5 =


1 0 0

0 −1 0

0 0 0


, G6 =


0 1 0

1 0 0

0 0 0


. (A.8)

Applying the exponential map to these matrices produces a�ne matrices that can be used to

transform images. In order, these matrices correspond to translations in x , translations in y,

rotations, scaling in x , scaling in y, and shearing.

A.4.3 Semantic Segmentation: Details

In Section 3.15, we apply Augerino to semantic segmentation on the rotCamVid dataset (see

Figure A.20).

To generate the rotCamVid dataset, we rotate all images in the CamVid by a random an-

gle, analogously to the rotMNIST dataset [Larochelle et al. 2007]. We note that rotCamVid only

contains a single rotated copy of each image, which is not the same as applying rotational aug-

mentation during training. When computing the training loss and test acccuracy, we ignore the

padding pixels which appear due to rotating the image.

For the segmentation experiment we used the simpler augmentation distribution covering
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(a) Original Data (b) Augerino Sample (c) Augerino Sample (d) Augerino Sample

Figure A.20: Augmentations learned by Augerino on the rotCamVid dataset. (a): original data from
rotCamVid; (b)-(d): three random samples of augmentations from the learned augerino distribution.
Augerino learns to be invariant to rotations but not translations.

rotations and translations instead of the a�ne transformations (Section 3.10.2). We use a Gaussian

parameterization of the distribution:

t = (t1, t2, t3) ∼ N(µ, Σ), A(t) =


cos(t1) − sin(t1) 2 · t2/(w + h)

sin(t1) cos(t1) 2 · t3/(w + h)

 , (A.9)

where µ, Σ are trainable parameters, and A(t) is the a�ne transformation matrix for the random

sample t ; w and h are the width and height of the image.

Augerino achieves pixel-wise segmentation accuracy of 69.8% while the baseline model with

standard augmentation achieves 68.7%.

A.4.4 Training Details

Network Training Hyperparameters We train the networks in Sections 3.11 and 3.13 for 200

epochs, using an initial learning rate of 0.01 with a cosine learning rate schedule and a batch size

of 128. We use the cross entropy loss function for all classi�cation tasks, and mean squared error

for all regression tasks except for QM9 where we use mean absolute error.

Train- and Test-Time Augmentations In Algorithm 1 we include a term ncopies that de-

notes the number of sampled augmentations during training. We �nd that we can achieve strong
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(a) Original Data (b) Augerino Sample (c) Augerino Sample (d) Augerino Sample

Figure A.21: Color-space augmentation distribution learned by Augerino. (a): original data from STL-10;
(b)-(d): three random samples of augmentations from the learned augerino distribution. Augerino learns
to be invariant to a broad range of color and contrast adjustments while matching the performance of the
baseline.

performance with Augerino, with minimally increased training time, by setting ncopies to 1 at

train-time and then applying multiple augmentations by increasing ncopies at test-time. Thus

we train using a single augmentation for each input, and then apply multiple augmentations at

test-time to increase accuracy, as seen in Table 3.4.

A.4.5 Color-Space Augmentations: Details

In Section 3.16, we apply Augerino to learning color-space invariances on the STL-10 dataset. We

consider two transformations:

• Brightness adjustment by a value t transforms the intensity c in each channel additively:

c′ = max(min(c + t, 255), 0). (A.10)

Positive t increases, and negative t decreases brightness.
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• Contrast adjustment by a value t transforms the intensity c in each channel as follows3:

c′ = max
(

min
(
259 · (t + 255)
255 · (259 − t)

· (c − 128) + 128, 255
)
, 0

)
(A.11)

We apply brightness and contrast adjustments sequentially and independently from each

other. We learn the range of a uniform distribution over the values t in (A.10), (A.11). The learned

data augmentation strategy is visualized in Figure A.21.

A.4.6 QM9 Experiment

We reproduce the training details from Finzi et al. [2020]. A�ne transformations in 3d, there are

9 generators, 3 for translation, 3 for rotation, 2 for squeezing and 1 for scaling, a straightforward

extension of those listed in equation A.8 to 3 dimensions. Like before, we parametrize the bounds

on the uniform distribution for each of these generators. We use a regularization strength of 10−3.

A.4.7 Width of Augerino Solutions

To help explain the increased generalization seen in using Augerino, we train 10 models on

CIFAR-10 both with and without Augerino. In Figure A.22 we present the test error of both types

of models for along with the corresponding e�ective dimensionalities and sensitivity to parameter

perturbations of the networks as a measure of the �atness of the optimum found through train-

ing. Maddox et al. [2020] shows that e�ective dimensionality can capture the �atness of optima in

parameter space and is strongly correlated to generalization, with lower e�ective dimensionality

implying �atter optima and better generalization. Overall we see that Augerino enables networks

to �nd much �atter solutions in the loss surface, corresponding to better compressions of the data

and better generalization.
3https://www.dfstudios.co.uk/articles/programming/image-programming-algorithms/

image-processing-algorithms-part-5-contrast-adjustment/
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Figure A.22: Top: Test error and train loss as a function of perturbation lengths along random rays
from the SGD found training solution for models. Each curve represents a di�erent ray. Bo�om: Test
error and e�ective dimensionality for models trained on CIFAR-10. Results from 8 random initializations
are presented violin-plot style where width represents the kernel density estimate at the corresponding
y-value.

A.5 Appendix for Effective Dimensionality Revisited

A.5.1 The Hessian and Effective Dimensionality over the Course of

Training

One possible limitation of using the Hessian as a measurement for posterior contraction for

(Bayesian) deep learning would be if the Hessian was constant through the training procedure,

or if the eigenvalues of the Hessian remained constant. Jacot et al. [2018] showed that in the

limit of in�nite width neural networks, the Hessian matrix converges to a constant, in a similar

manner to how the Fisher information matrix and Jacobian matrices converge to a constant limit,

producing the neural tangent kernel (NTK) [Jacot et al. 2018]. However, Lee et al. [2019] recently

showed that while the in�nite width NTK is a good descriptor of �nitely wide neural networks,

the corresponding �nite width NTK is not constant throughout training. Similarly, the empirical
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observations of Papyan [2018], Sagun et al. [2017], and Ghorbani et al. [2019] demonstrate that

even for extremely wide neural networks, the Hessian is not constant through training.

Preliminary experiments with both the Fisher information matrix (using fast Fisher vector

products as described in Maddox et al. [2019b]) and the NTK demonstrated similar empirical

results in terms of double descent and e�ective dimensionality as the Hessian matrix.

A.5.2 Further Statements on Effective Dimensionality

In this subsection, we provide further results the e�ective dimensionality, including its connec-

tion to both the bias-variance decomposition of predictive risk [Geman et al. 1992; Dobriban and

Wager 2018] as well as the Hilbert space norm of the induced kernel [Rasmussen and Williams

2008].

A.5.2.1 Effective Dimensionality of the Inverse of A

We show that

rank(A) − Ne f f (A,α) = Ne f f (A
+, 1/α), (A.12)

formalizing the idea that as the e�ective dimensionality of the covariance increases, the e�ective

dimensionality of the inverse covariance decreases. This statement is alluded to in the analysis

of MacKay [1992a] but is not explicitly shown.

We assume that A has rank r and that α , 0; we also assume that A+ is formed by inverting

the non-zero eigenvalues of A and leaving the zero eigenvalues �xed in the eigendecomposition
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of A (i.e. the Moore-Penrose pseudo-inverse). With λi as the eigenvalues of A, we can see that

r − Ne f f (A,α) =
r∑
i=1

λi + α − λi
λi + α

= α
r∑
i=1

1
λi + α

=

r∑
i=1

1
1/α

1
λi + α

=

r∑
i=1

1
λi/α + 1

=

r∑
i=1

1/λi
1/λi(λi/α + 1)

=

r∑
i=1

1/λi
1/α + 1/λi

= Ne f f (A
+, 1/α).

When A is invertible, the result reduces to k − Ne f f (A,α) = Ne f f (A
−1, 1/α) for A ∈ Rk×k .

A.5.2.2 Predictive Risk for Bayesian Linear Models

Dobriban and Wager [2018] and Hastie et al. [2019] have extensively studied over-parameterized

ridge regression. In particular, Theorem 2.1 of Dobriban and Wager [2018] gives the predictive

risk (e.g. the bias-variance decomposition of Geman et al. [1992]) as a function of e�ective di-

mensionality and intrinsic noise. The critical aspect of their proof is to decompose the variance

of the estimate into the e�ective dimensionality and a second term which then cancels with the

limiting bias estimate. For completeness, we restate Theorem 2.1 of Dobriban and Wager [2018]

theorem for �xed feature matrices, Φ, and an explicit prior on the parameters, β ∼ N(0,α2I ),

leaving the proof to the original work.

TheoremA.1 (Predictive Risk of Predictive Mean for Ridge Regression). Under the assumption of

model correct speci�cation, y = Φβ + ϵ, with β drawn from the prior and ϵ ∼ N(0, In), and de�ning

f̂ = Φβ̂, with β̂ = (Φ>Φ + α−2I )−1Φ>y (the predictive mean under the prior speci�cation), then

R(Φ) = E(| |Y − f̂ | |22) = 1 +
1
n
Ne f f (ΦΦ

>,α−2). (A.13)
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A.5.2.3 Expected RKHS Norm

Finally, we show another unexpected connection of the e�ective dimensionality — that the re-

producing kernel Hilbert space (RKHS) norm is in expectation, under model correct speci�cation,

the e�ective dimensionality. We follow the de�nition of Gaussian processes of Rasmussen and

Williams [2008] and focus on the de�nition of the RKHS given in Rasmussen and Williams [2008,

Chapter 6], which is de�ned as | | f | |2
H
= 〈f , f 〉H =

∑N
i=1 f

2
i /λi, where λi are the eigenvalues

associated with the kernel operator, K, of the RKHS, H .4 The kernel is the covariance matrix

of the Gaussian process, and assuming that the response is drawn from the same model, then

y ∼ N(0,K + σ 2I ), then a = (K + σ 2I )−1y, where a is the optimal weights of the function with

respect to the kernel, e.g. f =
∑N

i=1 aiK(x, .). To compute the Hilbert space norm, we only need to

compute the optimal weights and the eigenvalues of the operator. For �nite (degenerate) Hilbert

spaces this computation is straightforward:

Ep(y)(| | f | |
2
H
) = Ep(y)(a

>Ka)

= Ep(y)(y
>(K + σ 2I )−1K(K + σ 2I )−1y)

= Ep(y)tr (y
>(K + σ 2I )−1K(K + σ 2I )−1y)

= Ep(y)tr ((K + σ
2I )−1K(K + σ 2I )−1yy>)

= tr ((K + σ 2I )−1K(K + σ 2I )−1(K + σ 2I ))

= Ne f f (K,σ
2)

with the second equality coming by plugging in the optimal a (see Rasmussen and Williams

[2008, Chapter 6] and Belkin et al. [2019a] as an example). As linear models with Gaussian priors

are Gaussian processes with a degenerate feature expansion, the expected RKHS norm becomes

Ne f f (Φ
>Φ,σ 2/α2), which is the same value as our de�nition of posterior contraction. Further

4Note that the expectation we take in the following is somewhat separate than the expectation taken in Rasmussen
and Williams [2008] which is directly over fi .

169



research connecting these two ideas is needed.

A.5.3 Measuring Posterior Contraction in Bayesian Generalized

Linear Models

We �rst consider the over-parametrized case, k > n:

∆post (θ ) = tr (Covp(θ )(θ )) − tr (Covp(θ |D)(θ ))

=

k∑
i=1

α2 −

n∑
i=1
(λi + α

−2)−1 +

k∑
i=n+1

α2

= kα2 − (k − n)α2 −

n∑
i=1
(λi + α

−2)−1

=

n∑
i=1

1 − α2(λi + α
−2)

λi + α−2

= α2
n∑
i=1

λi
λi + α−2 ; (A.14)

where we have used Theorem 4.3 to assess the eigenvalues of the posterior covariance. When

n > k , we have the simpli�ed setting where the summation becomes to k instead of n, giving us

that all of the eigenvalues are shifted from their original values to become λi + α−2, and so

∆post .(θ ) = α
−2

k∑
i=1

λi
λi + α−2 , (A.15)

where λi is the ith eigenvalue of Φ>Φ/σ 2.
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A.5.3.1 Contraction in Function Space

We can additionally consider the posterior contraction in function space. For linear models, the

posterior covariance on the training data in function space becomes

ΦΣβ |DΦ
> = σ 2Φ(Φ>Φ +

σ 2

α2 Ip)
−1Φ>, (A.16)

while the prior covariance in function space is given by α2ΦΦ>. We will make the simplifying

assumption that the features are normalized such that tr (ΦΦ>) = rank(ΦΦ>) = r . Now, we can

simplify

∆post (f ) = tr (Covp(f )(f ) − tr (Covp(f |D)(f ))

= α2r − σ 2
r∑
i=1

λi
λi + σ 2/α2

= α2
r∑
i=1

λi + σ
2/α2

λi + σ 2/α2 − σ
2

r∑
i=1

λi
λi + σ 2/α2

= (α2 − σ 2)

r∑
i=1

λi
λi + σ 2/α2 + σ

2
r∑
i=1

1
λi + σ 2/α2 .

Simplifying and recognizing these summations as the e�ective dimensionalities ofΦ>Φ and (Φ>Φ)+,

we get that

∆post (f ) = (α
2 − σ 2)Ne f f (Φ

>Φ,σ 2/α2)

+ σ 2Ne f f ((Φ
>Φ)+,α2/σ 2) (A.17)

= σ 2r + (α2 − 2σ 2)Ne f f (Φ
>Φ,σ 2/α2),
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thereby showing that the posterior contraction in function space is explicitly tied to the e�ective

dimensionality of the Gram matrix.

A.5.4 Posterior Contraction and Function-Space Homogeneity Proofs

and Additional Theorems

In this subsection we complete the proofs to Theorems 4.3 and 4.4 and extend the results from

linear models to generalized linear models.

A.5.4.1 Proof and Extensions to Theorem 4.3

Theorem (Posterior Contraction in Bayesian Linear Models). Let Φ = Φ(x) ∈ Rn×k be a feature

map of n data observations, x , with n < k and assign isotropic prior β ∼ N(0k, S0 = α2Ik) for

parameters β ∈ Rk . Assuming a model of the form y ∼ N(Φβ,σ 2In) the posterior distribution of β

has an p − k directional subspace in which the variance is identical to the prior variance.

Proof. The posterior distribution of β in this case is known and given as

β |D ∼ N ((µ |D), (Σ|D))

µ |D = (Φ>Φ/σ 2 + S−1
0 )
−1Φ>y/σ 2

Σ|D = (Φ>Φ/σ 2 + S−1
0 )
−1

(A.18)

We want to examine the distribution of the eigenvalues of the posterior variance. Let Φ>Φ/σ 2 =

VλnV
> be the eigendecomposition with eigenvalues Λ = diag(γ1, . . . ,γn, 0n+1, . . . , 0k); k − n of

the eigenvalues are 0 since the gram matrix Φ>Φ is at most rank n by construction.
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Substitution into the posterior variance of β yields,

(Φ>Φ/σ 2 + S−1
0 )
−1 = (VΛV> + α−2Ik)

−1

= V (Λ + α−2Ik)
−1V>

= V ΓV>.

(A.19)

The eigenvalues of the posterior covariance matrix are given by the entries of

Γ =
(
(γ1 + α

−2)−1, . . . , (γn + α
−2)−1,α2, . . . ,α2) ,

where there are k − n eigenvalues that retain a value of α2.

Therefore the posterior covariance has p − n directions in which the posterior variance is

unchanged and n directions in which it has contracted as scaled by the eigenvalues of the gram

matrix Φ>Φ. �

Generalized linear models (GLMs) do not necessarily have a closed form posterior distribution.

However, Neal and Zhang [2006] give a straightforward argument using the invariance of the

likelihood of GLMs to orthogonal linear transformation in order to justify the usage of PCA as

a feature selection step. We can adapt their result to show that overparameterized GLMs have a

k − n dimensional subspace in which the posterior variance is identical to the prior variance.

Theorem A.2 (Posterior Contraction in Generalized Linear Models). We specify a generalized

linear model, E[Y ] = д−1(Φβ) and Var (Y ) = V (д−1(Φβ)), where Φ ∈ Rn×k is a feature matrix of n

observations and k features and β ∈ Rk are the model parameters. In the overparameterized setting

with isotropic prior on β , there exists a k − n dimensional subspace in which the posterior variance

is identical to the prior variance.

Proof. First note that the likelihood of a GLM takes as argument Φβ , thus transformations that

leave Φβ una�ected leave the likelihood, and therefore the posterior distribution, una�ected.
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Let R be an orthogonal matrix, R>R = RR> = Ip , and β̃ = Rβ ∼ N (0,σ 2I ). If we assign a

standard isotropic prior, to β then β̃ = Rβ ∼ N(0,σ 2RIkR
> = σ 2Ik). If we also rotate the feature

matrix, Φ̃ = ΦR> ∈ Rn×k so that Φ̃β̃ = ΦR>Rβ = Φβ , showing that the likelihood and posterior

remain unchanged under such transformations.

In the overparameterized regime, k > n, with linearly independent features we have that Φ

has rank at most k , and we can therefore choose R to be a rotation such that ΦR has exactly

k − n columns that are all 0. This de�nes a k − n dimensional subspace of β ∈ Rk in which

the the likelihood is unchanged. Therefore the posterior remains no di�erent from the prior

distribution in this subspace, or in other words, the posterior distribution has not contracted in

k − n dimensions. �

A.5.4.2 Function-Space Homogeneity

Theorem (Function-Space Homogeneity in Linear Models). Let Φ = Φ(x) ∈ Rn×k be a feature

map of n data observations, x , with n < k and assign isotropic prior β ∼ N(0k, S0 = α2Ik) for

parameters β ∈ Rk . The minimal eigenvectors of the Hessian de�ne a k −n dimensional subspace in

which parameters can be perturbed without changing the training predictions in function-space.

Proof. The posterior covariance matrix for the parameters is given by

Σβ |D =

(
Φ>Φ

σ 2 + α
−2Ik

)−1
,

and therefore the Hessian of the log-likelihood is
(
Φ>Φ
σ 2 + α

−2Ik

)
. By the result in Theorem 4.3

there are k −n eigenvectors of the Hessian all with eigenvalue α−2. If we have some perturbation

to the parameter vector u that resides in the span of these eigenvectors we have

(
Φ>Φ

σ 2 + α
−2Ik

)
u = α−2u,
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which implies u is in the nullspace of Φ>Φ. By the properties of gram matrices we have that

the nullspace of Φ>Φ is the same as that of Φ, thus u is also in the nullspace of Φ Therefore any

prediction using perturbed parameters takes the form ŷ = Φ(β +u) = Φβ , meaning the function-

space predictions on training data under such perturbations are unchanged. �

Theorem A.3 (Function-Space Homogeneity in Generalized Linear Models). We specify a gen-

eralized linear model, E[Y ] = д−1(Φβ), where Φ ∈ Rn×k is a feature matrix of n observations and

k features and β ∈ Rk are the model parameters. In the overparameterized setting with isotropic

prior on β , there exists a k − n dimensional subspace in which parameters can be perturbed without

changing the training predictions in function-space or the value of the Hessian.

Proof. The Hessian of the log-likelihood for GLMs can be written as a function of the feature map,

Φ, and the product of the feature map and the parameters, Φβ , i.e. β only appears multiplied by

the feature map [Nelder and Wedderburn 1972]. We can then writeHβ = f (Φβ,Φ) Additionally

predictions are generated by y = д−1 (Φβ). Since Φ ∈ Rn×p with n < p there is a nullspace of Φ

with dimension at least n − p. Thus for any u ∈ null(Φ) we have д−1 (Φ(β + u)) = д−1 (Φβ) = y

and f (Φ(β + u),Φ) = f (Φβ,Φ) = Hβ , which shows that the training predictions and the Hessian

remain unchanged. �

A.5.5 Perturbations on CIFAR-10

To demonstrate that the results presented in subsection 4.5 apply to larger architectures similar

to those seen in practice we train a convolutional classi�er provided by Pytorch on the CIFAR-10

dataset.5 The network has approximately 62000 parameters and is trained on 50000 images.

Figure A.23 shows the presence of degenerate directions in parameter space. We compute the

top 200 eigenvectors of the Hessian of the loss and consider perturbations in the directions of the

top 2 eigenvectors, as well as in all parameter directions except the top 200 eigenvectors of the
5The architecture is provided here: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.

html
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Figure A.23: Le�: A visualization of the log-loss surface taken in the direction of the top two eigenvec-
tors of the Hessian of the loss. Right: A visualization of a random projection of the log-loss surface in
all parameter directions except the top 200 eigenvectors of the Hessian. We can see that in nearly all di-
rections the loss is constant even as we move far from the optimal parameters. Note the scale di�erence,
even as we increase the resolution of the degenerate loss surface we still see no structure.

Hessian. We see that even for larger networks and more complex datasets degenerate directions

in parameter space are still present and comprise most possible directions.

Figure A.24 demonstrates that the degenerate directions in parameter space lead to models

that are homogeneous in function space on both training and testing data. As increasingly large

perturbations are made in degenerate parameter directions, we still classify more than 99% of

both training and testing points the same as the unperturbed classi�er.

A.5.6 More Classifiers

Figures A.25 and A.26 provide more examples of perturbations in high and low curvature direc-

tions and the e�ect of the scale of the perturbation on function-space predictions for the two-

spirals experiment in subsection 4.5.
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Figure A.24: Le�: Loss, normalized by dataset size, on both train and test sets as perturbations are made
in high curvature directions and degenerate directions. Right: Classification homogeneity, the fraction
of data points classified the same as the unperturbed model, as perturbations are made in both high
curvature and degenerate directions.
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Figure A.25: Classifiers as the parameters are shi�ed in random directions within the span of the bo�om
1500 eigenvectors of the Hessian of the loss. Scales of the perturbation range from 0 (upper le�) to 2 (lower
right).
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Figure A.26: Classifiers as the parameters are shi�ed in random directions within the span of the top 3
eigenvectors of the Hessian of the loss. Scales of the perturbation range from 0 (upper le�) to 0.5 (lower
right).

A.6 Appendix for Loss Surface Simplexes for Mode

Connecting Volumes and Fast Ensembling

Outline

The Appendix is outlined as follows:

In Appendix A.6.2, we give a more detailed description of our methods, focusing �rst on

computing the simplex volume and sampling from the simplexes, then describe vertex initializa-

tion and regularization, giving training details, and �nally describing the training procedure for

multi-dimensional mode connectors.

In Appendix A.6.2.1, we describe several more results on volume and ensembling, particularly

on the number of samples required for good performance with SPRO and ESPRO.

Finally, in Appendix A.6.5, we plot the results of a larger suite of corruptions on CIFAR-10 for

ESPRO, deep ensembles, and MultiSWAG.
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Figure A.27: A simplified version of the progressive understanding of the loss landscape of neural net-
works. Le�: The traditional view in which low loss modes are disconnected in parameter space. Center:
The updated understanding provided by works such as Draxler et al. [2018], Fort and Jastrzebski [2019],
and Garipov et al. [2018], in which modes are connected along thin paths or tunnels. Right: The view we
present in this work: independently trained models converge to points on the same volume of low loss.

A.6.1 Extended Methodology

First, we present a two dimensional version of the schematic in Figure 4.6 in A.27, which explains

the same progressive illustration, but in two dimensions.

A.6.2 Simplex Volume and Sampling

We employ simplexes in the loss surface for two reasons primarily:

• sampling uniformly from within a simplex is straightforward, meaning we can estimate the

expected loss within any found simplexes easily,

• computing the Volume of a simplex is e�cient, allowing for regularization encouraging

high-Volume simplexes.

Sampling from Simplexes: Sampling from the standard simplex is just a speci�c case of sam-

pling from a Dirichlet distribution with concentration parameters all equal to 1. The standard

n-simplex is a simplex is a simplex formed by the vectors v0, . . . , vn such that the vi ’s are the
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standard unit vectors. Therefore, to draw samples from a standard n-simplex in a d dimensional

space with vertices v0, . . . , vn, we follow the same procedure to sample from a Dirichlet distribu-

tion.

To sample vector x = [x0, . . . , xd]
T we �rst draw y0, . . . ,yn

i.i.d.
∼ Exp(1), then set ỹi =

yi∑d
j=1 yj

.

Finally, x =
∑n

i=1 ỹivi .

While this method is su�cient for simulating vectors uniformly at random from the standard

simplex, there is no guarantee that such a sampling method produces uniform samples from an

arbitrary simplex, and thus samples of the loss over the simplex that we use in Equation 4.6 may

not be an unbiased estimate of the expected loss over the simplex. Practically, we do not �nd this

to be an issue, and are still able to recover low loss simplexes with this approach.

Furthermore, Figure A.28 shows that the distribution of samples in a unit simplex is visually

similar to the samples from an elongated simplex where we multiply one of the basis vectors by a

factor of 100. This �gure serves to show that although there may be some bias in our estimate of

the loss over the simplex in Equation 4.6, it should not be (and is not in practice) limiting to our

optimization routine. Note too, this may appear like a simplistic case, but typically the simplexes

found by SPRO contain only a small number of vertices, so a 2-simplex whose edge lengths vary

by a factor of nearly 100 is a reasonable comparison to a scenario we may �nd in practice.

Computing Simplex Volume: Simplex Volumes can be easily computed using Cayley-Menger

determinants [Colins 2021]. If we have an n-simplex de�ned by the parameter vectorsw0, . . . ,wn
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Figure A.28: Le�: 100 samples drawn uniformly from within the unit simplex. Right: 100 samples drawn
from a non-unit simplex (note the scale of the X1 axis). The distribution of points in both simplexes is
visually indistinguishable — evidence that the method for sampling from a unit simplex is su�icient to
draw samples from arbitrary simplexes.

the Cayley-Menger determinant is de�ned as

CM(w0, . . . ,wn) =

����������������

0 d2
01 · · · d2

0n 1

d2
01 0 · · · d2

0n 1
...

...
. . .

...
...

d2
n0 d2

n1 · · · 0 1

1 1 1 1 1

����������������
. (A.20)

The Volume of the simplex S(w0,...,wn) is then given as

V(Sw0,...,wn))
2 =
(−1)n+1

(n!)22n
CM(w0, . . . ,wn). (A.21)

While in general we may be adverse to computing determinants or factorial terms the simplexes

we work with in this paper are generally low order (all are under 10 vertices total) meaning that

computing the Cayley-Menger determinants is generally a quite fast and stable computation.
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Figure A.29: CIFAR-10 test accuracy as a function of regularization parameter λ∗ and colored by the
number of vertices. Accuracy is essentially unchanged for the various regularization parameters.

A.6.2.1 Initialization and Regularization

Vertex Initialization: We initialize the jth parameter vector corresponding to a vertex in

the simplex as the mean of the previously found vertices, wj =
1
j

∑j−1
i=0 wi and train using the

regularized loss in Eq. 4.6.

Regularization Parameter: As the order of the simplex increases, the Volume of the simplex

increases exponentially. Thus, we de�ne a distinct regularization parameter, λj , in training each

θj to provide consistent regularization for all vertices. To choose the λk ’s we de�ne a λ∗ and

compute

λk =
λ∗

log V(K)
, (A.22)

whereK is randomly initialized simplicial complex of the same structure that the simplicial com-

plex will have while training θj . Eq. A.22 normalizes the λk ’s such that they are similar when

accounting for the exponential growth in volume as the order of the simplex grows. In practice

we need only small amounts of regularization, and choose λ∗ = 10−8. As we are spanning a space

of near constant loss any level of regularization will encourage �nding simplexes with non-trivial

Volume.
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Finally, when dealing with models that use batch normalization, we follow the procedure of

Garipov et al. [2018] and compute several forwards passes on the training data for a given sample

from the simplex to update the batch normalization statistics. For layer normalization, we do not

need to use this procedure as layer norm updates at test time.

A.6.2.2 Training Details

We used VGG-16 like networks originally introduced in Simonyan and Zisserman [2015] from

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py. For train-

ing, we used standard normalization, random horizontal �ips, and crops and a batch size of 128.

We used SGD with momentum = 0.9, and a cosine annealing learning rate with a single cycle,

a learning rate of 0.05, and weight decay 5e − 4 training for 300 epochs for the pre-trained VGG

models. For SPRO, we used a learning rate of 0.01 and trained for 20 epochs for each connector.

In our experiments with transformers, we used the ViT-B_16 image transformer model [Doso-

vitskiy et al. 2021] pre-trained on ImageNet from https://github.com/jeonsworld/ViT-pytorch

and trained on CIFAR100 with upsampled image size of 224 with a batch size of 512 for 50000

steps (the default �ne-tuning on CIFAR-100). Again, we used random �ips and crops for data

augmentation. To train these SPRO models, we used a learning rate of 0.001 and trained with

SGD for 30 epochs for each connector, using 20 samples from the simplex at test time.

A.6.3 Multi-Dimensional Mode Connectors

To train the multi-dimensional SWAG connectors, we connected two pre-trained networks fol-

lowing Garipov et al. [2018] using a piece-wise linear curve, trained for 75 epochs with an initial

learning rate of 0.01, decaying the learning rate to 1e − 4 by epoch 40. At epoch 40, we reset the

learning rate to be constant at 5e−3. The �nal individual sample accuracy (not SWA) was 91.76%,

which is similar to the �nal individual sample accuracies for standard training of VGG networks

with SWAG. We used random crops and �ips for data augmentation.
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A.6.4 Extended Volume and Ensembling Results

A.6.4.1 Volumes on MNIST

In a similar construction to the dimensionality experiment in Figure 4.10, we next consider lower

bounding the dimensionality of the connecting space that SPRO can �nd for LeNet-5s on MNIST

[LeCun et al. 1998b]6, varying the width of the convolutional networks from a baseline of 1 (stan-

dard parameterization), either halving the width or consecutively widening the layers by a con-

stant factor. We �nd in Figure A.30(a) that the volumes of the simplicial complex can vary by

several powers of 10 for the as we increase the widths. However, all width networks generally

follow the same patter of decaying volume as we increase the number of connecting points (e.g.

increasing the dimensionality of the simplicial complex).

A.6.4.2 Test Error vs. Simplex Samples

SPRO gives us access to a whole space of model parameters to sample from rather than just

a discrete number of models to use as in deep ensembles. Therefore a natural question to ask

is how many models and forwards passes need to be sampled from the simplex to achieve the

highest accuracy possible without incurring too high of a cost at test time.

Figure A.30(b) shows that for a VGG-16 network trained on CIFAR-100 we achieve near con-

stant accuracy for any number of ensemble components greater than approximately 25. There-

fore, for the ensembling experiments in Section 4.10.4 we use 25 samples from each simplex to

generate the SPRO ensembles. In this work we are not focused on the issue of test time compute

cost, and if that were a consideration for deployment of a SPRO model we could evaluate the

trade-o� in terms of test time compute vs accuracy, or employ more sophisticated methods such

as ensemble distillation.
6Implementation from https://github.com/activatedgeek/LeNet-5/blob/master/lenet.py
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Figure A.30: (a) Log volumes as a function of LeNet-5 layer width. Volumes are generally highest for
wider models, and the volume of the simplicial complex tends to decrease as the dimension of the space
increases. (b)Test error vs. number of samples, J , in the ensemble on CIFAR-100 using a VGG-16 network
and a 3-simplex trained with SPRO. For any number of components in the SPRO ensemble greater than
approximately 25 we achieve near constant test error.
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Figure A.31: Loss surface visualizations of the faces of a sample ESPRO 3-simplex for a Transformer
architecture [Dosovitskiy et al. 2021] fine-tuned on CIFAR-100. Here, the volume is considerably smaller,
but a low loss region is found.

A.6.4.3 Loss Surfaces of Transformers

Next, we show the results of training a SPRO 3−simplex with an image transformer on CIFAR-

100 [Dosovitskiy et al. 2021] in Figure A.31. Due to computational requirements, the transformer

was pre-trained on ImageNet before being �ne-tuned on CIFAR-100 for 50, 000 minibatches. We

then trained each vertex for an additional 10 epochs. Due to the in�exibility of the architecture,

we observed training instability, which ultimately produced a small volume of the simplex found

(approximately 10−21). Furthermore, the small volume of the simplex produced less diverse solu-
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Figure A.32: Test error for mode connecting simplexes that connect various numbers of modes through
various numbers of connecting points in the parameter space of VGG-16 networks trained on CIFAR-10
and CIFAR-100. The error rates of baseline models are shown as horizontal do�ed lines. In general the
highest performing models are those with the fewest modes and the fewest connecting points, but the
performance gaps between configurations are small.

tions, limiting the bene�ts of ensembling transformer models as shown in Figure A.34. However,

these results demonstrate that a region of low loss can be found in subspaces of transformer mod-

els, and further work will be necessary to e�ciently exploit these regions of low loss, much like

has been done with CNNs and ResNets.

A.6.4.4 Ensembling Mode Connecting Simplexes

We can average predictions over these mode connecting volumes, generating predictions as en-

sembles, ŷ = 1
H

∑
ϕh∼K f (x,ϕh), where ϕh ∼ K indicates we are sampling models uniformly at

random from the simplicial complexK(S(w0,θ0,... ), S(w1,θ0,... ), . . . ). Test error for such ensembles for

volumes in the parameter space of VGG-16 style networks on both CIFAR-10 and CIFAR-100 are

given in Figure A.32. We see that while some improvements over baselines can be made, mode

connecting simplexes do not lead to highly performant ensembles.

A.6.4.5 Ensembling Modes of SPRO

Figure A.33 presents the results of Figure 4.13 in the main text, but against the total training

budget rather than the number of ensemble components. We see from the plot that on either
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Figure A.33: Test error of ESPRO models on CIFAR-10 (le�) and CIFAR-100 (right) as a function of total
training time (training the original models and the ESPRO simplexes). The color of the curves indicate the
number of the vertices in the simplex, and the points corresponding to increasing numbers of ensemble
components moving le� to right (ranging from 1 to 8). We see that on either dataset for nearly any fixed
training budget, we are be�er o� training fewer models overall and using ESPRO to construct simplexes
to sample from.

dataset, for nearly any �xed training budget the most accurate model is an ESPRO model, even

if that means using our budget to train ESPRO simplexes but fewer models overall.

Times correspond to training models sequentially on an NVIDIA Titan RTX with 24GB of

memory.

Finally, Figure A.34 presents the results of ensembling with SPRO using state of the art trans-

formers architectures on CIFAR-100 [Dosovitskiy et al. 2021]. We �nd, counterintuitively that

there is only a very small performance di�erence from ensembling with SPRO compared to the

base architecture. We suspect that this is because it is currently quite di�cult to train transform-

ers without using signi�cant amounts of unlabelled data.

A.6.5 Extended Uncertainty Results

A.6.5.1 Further NLL and Calibration Results

Finally, we include the results across 18 di�erent corruptions for the ensemble components. In

order, these are jpeg, fog, snow, brightness, pixelate, zoom blur, saturate, contrast, motion blur,

defocus blur, speckle noise, gaussian blur, glass blur, shot noise, frost, spatter, impulse noise and,
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elastic transform.

188



2 4 6 8

0.895

0.900

0.905

0.910

Ac
cu

ra
cy

Corruption Level: 1

MultiSWA MultiSWAG Deep Ensembles ESPRO

2 4 6 8

0.865

0.870

0.875

0.880

0.885
Corruption Level: 2

2 4 6 8
0.850

0.855

0.860

0.865

0.870

Corruption Level: 3

2 4 6 8
0.835

0.840

0.845

0.850

0.855

0.860
Corruption Level: 4

2 4 6 8

0.815

0.820

0.825

0.830

0.835

Corruption Level: 5

2 4 6 8
2800

3000

3200

3400

3600

N
LL

2 4 6 8

3800

4000

4200

4400

2 4 6 8
4000

4200

4400

4600

4800

2 4 6 8
4400

4600

4800

5000

5200

2 4 6 8
5000

5200

5400

5600

5800

6000

2 4 6 8
Number of Models

0.010

0.015

0.020

0.025

0.030

EC
E

2 4 6 8
Number of Models

0.020

0.025

0.030

0.035

0.040

0.045

2 4 6 8
Number of Models

0.02

0.03

0.04

0.05

2 4 6 8
Number of Models

0.02

0.03

0.04

0.05

2 4 6 8
Number of Models

0.03

0.04

0.05

0.06

Figure A.35: Accuracy, NLL and ECE with increasing intensity of the jpeg compression corruption (from
le� to right).
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Figure A.36: Accuracy, NLL and ECE with increasing intensity of the fog corruption (from le� to right).
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Figure A.37: Accuracy, NLL and ECE with increasing intensity of the snow corruption (from le� to right).
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Figure A.38: Accuracy, NLL and ECE with increasing intensity of the brightness corruption (from le� to
right).
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Figure A.39: Accuracy, NLL and ECE with increasing intensity of the pixelate corruption (from le� to
right).
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Figure A.40: Accuracy, NLL and ECE with increasing intensity of the zoom blur corruption (from le� to
right).
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Figure A.41: Accuracy, NLL and ECE with increasing intensity of the saturate corruption (from le� to
right).
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Figure A.42: Accuracy, NLL and ECE with increasing intensity of the contrast corruption (from le� to
right).
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Figure A.43: Accuracy, NLL and ECE with increasing intensity of the motion blur corruption (from le�
to right).
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Figure A.44: Accuracy, NLL and ECE with increasing intensity of the defocus blur corruption (from le�
to right).
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Figure A.45: Accuracy, NLL and ECE with increasing intensity of the speckle noise corruption (from le�
to right).
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Figure A.46: Accuracy, NLL and ECE with increasing intensity of the Gaussian blur corruption (from le�
to right).
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Figure A.47: Accuracy, NLL and ECE with increasing intensity of the glass blur corruption (from le� to
right).
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Figure A.48: Accuracy, NLL and ECE with increasing intensity of the shot noise corruption (from le� to
right).
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Figure A.49: Accuracy, NLL and ECE with increasing intensity of the frost corruption (from le� to right).
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Figure A.50: Accuracy, NLL and ECE with increasing intensity of the spa�er corruption (from le� to
right).
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Figure A.51: Accuracy, NLL and ECE with increasing intensity of the impulse noise corruption (from le�
to right).
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Figure A.52: Accuracy, NLL and ECE with increasing intensity of the elastic transform corruption (from
le� to right).
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Table A.12: Ant-v2 State and Action Spaces

State Space

X (Unobserved)
Y (Unobserved)

Z
Orientation Quaternion (4D)

Limb 2 Left/Right
Limb 2 Up/Down
Limb 3 Left/Right
Limb 3 Up/Down
Limb 4 Left/Right
Limb 4 Up/Down
Limb 1 Left/Right
Limb 1 Up/Down

Action Space

Limb 1 Left/Right
Limb 1 Up/Down
Limb 2 Left/Right
Limb 2 Up/Down
Limb 3 Left/Right
Limb 3 Up/Down
Limb 4 Left/Right
Limb 4 Up/Down

Table A.13: Humanoid-v2 Action Space

Action Space

Torso Forward/Backward
Torso Z

Torso Left/Right
Right Hip Left/Right
Right Hip Up/Down

Right Hip Front/Back
Right Knee Front/Back

Left Hip Left/Right
Left Hip Up/Down

Left Hip Front/Back
Left Knee Front/Back

Right Shoulder Left/Right
Right Shoulder Front/Back

Right Elbow Front/Back
Left Shoulder Left/Right
Left Shoulder Front/Back

Left Elbow Front/Back
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Table A.14: Humanoid-v2 State Space

State Space (Position)

X (Unobserved)
Y (Unobserved)

Z
Orientation Quaternion (4D)

Torso Z
Torso Forward/Backward

Torso Left/Right
Right Hip Left/Right

Right Knee Left/Right
Right Hip Up/Down

Right Knee Up/Down
Left Hip Left/Right

Left Knee Left/Right
Left Hip Up/Down

Left Knee Up/Down
Right Shoulder Left/Right
Right Shoulder Up/Down
Right Elbow Left/Right
Left Shoulder Left/Right
Left Shoulder Up/Down
Left Elbow Left/Right

State Space (Velocity)

Body Linear Velocity (3D)
Body Angular Velocity (3D)

Torso Z
Torso Forward/Backward

Torso Left/Right
Right Hip Left/Right

Right Knee Left/Right
Right Hip Up/Down

Right Knee Up/Down
Left Hip Left/Right

Left Knee Left/Right
Left Hip Up/Down

Left Knee Up/Down
Right Shoulder Left/Right
Right Shoulder Up/Down
Right Elbow Left/Right
Left Shoulder Left/Right
Left Shoulder Up/Down
Left Elbow Left/Right
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