Written Qualifying Exam
Theory of Computation
Spring, 1998
Friday, May 22, 1998

This is nominally a three hour examination, however you will be
allowed up to four hours. All questions carry the same weight.
You are to answer the following six questions.

e Please write your name on the outside envelope, but not on
any if the exam booklets.

e Please answer each question in the numbered booklet provided
for that question.

Read the questions carefully. Keep your answers brief. Assume
standard results, except where asked to prove them.

Problem 1 [10 points]

Consider the problem of sorting an array A[l : n] of n distinct items, where each item
is guaranteed to be within k places of its correct location in the sorted array; i.e. A[h]
belongs somewhere between A[h — k] and A[h 4 k] in the sorted ordering.

Consider the following algorithm for sorting A. It uses a heap H which can hold up
to k + 1 items.

procedure Sort_PartiallySorted(A, n)

1 for i+ 1to k+1do
2 Heaplnsert(H, A[i]) {* inserts A[¢] into heap H *}
3 endfor

4 for i «+ k42 to n do

5 All — (k 4+ 1)] + Deleletemin(H)

6 Heaplnsert(H, A[i])

7 endfor

8 for i+ 1to k+1do

9 Aln — (k+ 1) + 1] « Deletemin(H)
10 endfor

11 end_Sort_PartiallySorted.

a. 3 points. Argue that the above algorithm correctly sorts A if every item starts within
k positions of its final location.

b. 2 points. What is the running time of the above algorithm as a function of n and k7
Justify your answer briefly.

c. 2 points. Suppose the heap is stored in-place in A[l : k£ + 1]. By slightly modifying
the above algorithm, explain how to reorder the array so that Ak + 2] < A[k 4 3] <
< An] < A[l] < A[2) < -+ < Ak 4 1]. Tt suffices to explain the changes in words.

d. 3 points. Suppose k + 1 divides n exactly. Give an O(n) time algorithm to reorder
the array from part (c¢) so that it is in standard sorted order (A[l] < A[2] < --- < A[n]).
Your algorithm may only use O(1) space in addition to the array A. Further, do not
assume that k is a constant (so an O(nk) time algorithm does not suffice).

(GO TO THE NEXT PAGE

Problem 2 [10 points]
Consider the following medical rationing problem.

There are k diseases. Fach disease has a vaccine. The cost of the ith vaccine is $¢;.
The ith vaccine has an effectiveness ¢;, versus an effectiveness f; if the ¢th vaccine is
not given. The effectiveness is the fraction of people that survive or avoid the disease in
question. You may assume e; > f; (for otherwise the vaccine is worthless).

Suppose $D can be spent per person on vaccines. Assume D and ¢;, 1 < i < k,
are integers. Give an algorithm to determine a best choice of vaccines, i.e. a choice that
achieves the highest survival rate. More precisely, suppose vaccines ji, - - -, j; are chosen,
and vaccines hy,-- -, hy_; are not chosen. The goal is to maximize:

! k—1 !
I1 e - I fr given that > ¢, <D
=1 =1 =1

Your algorithm should run in time O(kD).

Hint. Use Dynamic Programming.

Problem 3 [10 points]
The Gas Tank Problem.

Suppose a directed graph GG = (V, E) is given in which each edge is labelled with a
real number cost (in gallons). Let n = |V/|.

In the following problem you may use the O(n®) Floyd-Warshall all pairs shortest
path algorithm for G without further elaboration.

a. 5 points. Suppose that some subset U C V of nodes are labelled as gas stations.
Suppose that a car has a gas tank with capacity g gallons, and initially it is full. The
problem is to determine, for each pair 7, j of vertices in (G, whether it is possible for the
car to travel from vertex i to vertex j with at most one refuelling, and if so, to determine
the most gas that can remain in the tank. Show how to solve this problem in O(n?) time.

b. 5 points. Suppose any number of refuellings are allowed. Now, for each pair 7,
of vertices, give an algorithm to determine if the car can travel from 7 to 7 assuming it
starts with a full tank of gas, and if so determine the largest amount of gas that could
remain in the gas tank. Again, seek an algorithm with an O(r?®) running time.

Hint. A trip from ¢ to j had three parts:
a. The journey from 7 to a first gas station.
b. The journey from the first to the last gas station, possibly via intermediate gas
stations.
c. The journey from the last gas station to j.

What is the “cost” of each of the parts?

(GO TO THE NEXT PAGE

Problem 4 [10 points]
Let ¥ be an alphabet of two or more characters. Let L. C ¥*. Strings =,y € ¥* are
strongly equivalent with respect to L if for all w,z € X*:

wrz € L < wyz € L

Let C, = {y | and y are strongly equivalent}.

It is easy to see that (. is an equivalence class (you need not prove this). C, is called
2’s class (w.r.t. L).

Show that if L is regular then there are finitely many classes of strongly equivalent
strings with respect to L.

Hint. Consider a DFA M accepting L. Let M have state set (). Consider strings x
and y, and pairs of states §(q,x) and (¢, y), for states ¢ € @), where § is the transition
function for M.

Problem 5 [10 points]

A twin prime is a pair of primes of the form (p,p + 2). Thus (3,5),(5,7),(11,13) are
the first three twin primes. Let (M) denote the standard encoding of Turing machine
M. Consider the language B comprising all (M) such that for all twin primes (p, p + 2),
M accepts p and also accepts p + 2.

Classify the language B completely with respect to its recursiveness, recursive enu-
merability (r.e.), and co-recursive enumerability (co-r.e.); i.e., is B recursive, r.e., co-r.e.,
or none of these. You must justify your answers. NOTE: it is not known if there are
infinitely many twin primes. You should consider both logical possibilities.

(GO TO THE NEXT PAGE

Problem 6 [10 points]

In this question, assume probabilistic Turing machines (PTM) that halt on every path,
and answer ‘YES” or ‘NO’ upon halting. (In general, a PTM could also answer
‘MAYBE’.) Let e(n) be a function such that (¥ n) 0 < e(n) < 1/2. M has error
bound e(n) if:

e On w € L(M), the probability that M answers YES is > 1 — e(|w]).

e On w ¢ L(M), the probability that M answers NO is > 1 — e(|w]).

A p(n)-strong B P P-machine is a PTM that runs in polynomial time with error bound
e(n) = 1/p(n). A RP-machine is a PTM that runs in polynomial time, and for any
inputs not in the language, the machine answers NO on every path.

Suppose SAT is accepted by a p(n)-strong BP P-machine M, for a sufficiently large
polynomial p(n). Consider the following procedure to test if a given Boolean formula
F' is satisfiable: let the Boolean variables in F' be zq,...,2,. We shall operate in n
stages. At the start of stage k& (k = 1,...,n), we have already computed a sequence
of Boolean values by,...,bz_1, and F},..p,_, is the formula in which x; is replaced by b;

(i=1,... k1)

STAGE k:

1. Call M on input Fy, .., ;0.

2. If M answers YES, then set by = 0 and go to DONE.

3. Else call M on input Fjy, .4, _,1-

4. If M answers NO again, answer NO and return.

5. Else set b, = 1.

6. DONE: If £ <n go to stage k + 1.

7. Else answer YES if F}, ;. =1, otherwise answer NO.

Prove that this procedure is an RP-machine for SAT, if p(n) is a sufficiently large
polynomial. Assume |Fy, 5| = |F| > n, 0 < k < n. You will need to choose an
appropriate p.

.....

HINT: If Fy,..p,_, is satisfiable, what is the probability of the following event: either the
algorithm answers NO in stage k or the Fy,..;,, computed in stage £ is not satisfiable.

Solutions

Solution to Problem 1

a. The smallest item in the array must lie among the first £ 4+ 1 items in A and hence
is correctly identified and written in A[1]. Suppose the first ¢ items are correctly placed
by the algorithm. Then the (¢ 4+ 1)st item must be drawn from the remaining k items
in the heap (the remaining k items from A[l]--- Al + k]) and A[i + k + 1]. But these
are the items in the heap following the insert of the (i 4+ 1)st step and thus the algorithm
correctly identifies the (i + 1)st item and places it in A[i + 1].

b. Each heap operation requires O(log(k+1)) time (assuming & > 1). Thus the algorithm
runs in O(nlog k) time for k > 2, and O(n) time for k =0, 1.

c. Instead of outputting the sorted items to A[l], A[2],---, A[n] in turn, they are output
to Alk + 2], A[k + 3],---, A[n], A[1],-- -, A[k + 1] in turn. Care must be taken to store
Alk+14 1] on the ith iteration, before it is overwritten by the ith smallest item. Further,
the heap is stored “backward” with the minimum in A[k + 1], so that in the final stage
as the heap shrinks in size, items can be written in A[1], A[2], ---, A[k + 1], in turn.

d. We repeatedly move blocks of k£ + 1 items to their final locations, starting with the
smallest k£ + 1 items, followed by the next smallest &+ 1 items, followed by the next and
third smallest set of & + 1 items, and so on. In turn, each set of k + 1 items is swapped
with the block of the k41 largest items, which are initially in the leftmost £+ 1 locations.
One could think of this as a bubble sort, with a bubble of the k£ + 1 largest items moving
to the right, in steps of size k + 1. Each step results in the next smallest k£ 4+ 1 items
being correctly positioned.

The code is given below. Clearly, the algorithm takes O(n/(k+1)-(k+1)) = O(n)

time.
procedure Reorder(A, n, k)

1 for i < 1 ton/(k+1) do

2 for j« 1to k+1 do

3 swap(A[(e — 1)« (k4+ 1)+ 5], Ale*x (E+ 1)+ j])
4 endfor

5 endfor

6 end_Reorder.

Solution to Problem 2
Let Effect(R, i) be a function that computes the effectiveness of a most effective choice
of vaccines among the first ¢ vaccines, with cost at most .

Then, Effect(D, k) is defined recursively as follows:
procedure Effect(D, k))

1 if £ = 0 then return 1
2 elseif D < ¢; then return Effect(D, k —1) - f;
3 else do
4 use k < Effect(D —cp, bk —1) - e
5 not_use_k < Effect(D, k —1) - fi
6 if use_k > not_use_k then return use_k
7 else return not_use_k
8 endif
9 endif
10 endif
11 end_Effect.

By using a table T of Dk entries, this recursive algorithm becomes a Dynamic Pro-
gramming algorithm taking O(1) time per recursive call and hence O(Dk) time overall.

To determine the choice of vaccines, with each table entry, T(R,), the corresponding
choice of vaccine needs to be recorded in a second table V(R,1) (i.e., whether the ith
vaccine is used or not). Then, by a standard backtracking, the best overall choice of
vaccines can be determined in a further O(k) time. The code follows.

forall R,i,0 < R <k, O < i<k, initialize T(R, 1) < oo
1 procedure Effect(D, k)
2 if T(D, k) # oo then return T'(D, k)
3 elseif k£ = 0 then answer + 1
4 elseif D < ¢; then answer < Effect(D, k — 1) f
5 else do
6 use k < Effect(D —cp, bk —1) - e
7 not_use_k < Effect(D, k — 1) fx
8 if use_k > not_use_k then V(D, k) « ‘use’; answer + use_k

9 else V(D, k) < ‘not use’; answer < not_use_k
10 endif

11 T(D,k) + answer

12 return answer

13 endif

14 endif

15 end_Effect.

procedure ChooseVaccines(D, k)

1 if £ > 1 then

2 if T(D, k) = ‘use’ then Print(Use Vaccine k); ChooseVaccines(D — ¢,k — 1)
3 else ChooseVaccines(D,k — 1)

4 endif

5 endif

6

end_ChooseVaccines.

Solution to Problem 3
a. First, the all pairs shortest path problem is solved on graph . Suppose the solution
for vertex pair (¢, j) is stored in ShortestDirect(i, 7). Then ShortestNoStop is computed
as follows:
procedure ShortestNoStop(z, 7)

if ShortestDirect(i,7) < g¢

then ShortestNoStop(i, j) « ShortestDirect(z, j)

else ShortestNoStop(i, j) «+ oo

endif
end _ShortestNoStop.

T = W N —

This gives the least amount of gas < g needed to travel from ¢ to j, and is co if there
is no route using at most g gallons.

To determine the amount left in the tank if up to one refuelling is allowed, all paths
involving one stop at a gas station are considered, thus:

procedure ShortestOneStop(z, j)

1 if ShortestDirect(i,7) < g¢

2 then ShortestOneStop(i, j) « ShortestDirect(z,)
3 else ShortestOneStop(i, j) < oo
4 endif

5 for each v € U do

6 if ShortestDirect(s,u) < g
7 then ShortestOneStop(i, j) <

8 min{ShortestDirect(u, 7), ShortestOneStop(z, j)}
9 endif
0 endfor
1 end_ShortestOneStop.

Finally, we compute GasRemaining(i,j) to be the difference of ¢ and
ShortestOneStop(z, 7), unless ShortestOneStop(i, 7) is oo, in which case there is no route
from ¢ to j with just one refuelling.

Since |U] < n, this procedure requires O(n”) time over all vertex pairs 7, 7. Clearly,
it considers all paths involving at most one refuelling.

b. We create a new graph G’ which augments (G. The following new edges with length
0 are added to Gi: edge (7,u) for each u € U such that ShortestNoStop(z,u) < g.

If there are duplicate edges, only the 0-weight edge is kept.

8

The Floyd-Warshall algorithm is run on G’. As G’ has n vertices this takes O(n?)
time.

Clearly, a path from ¢ to gas station u that uses at most ¢ gallons will leave the
tank full after refuelling at u. Likewise, paths between gas stations of length at most
g, will also leave the gas tank full, after subsequent refuellings. Thus, the cost, in fuel,
of a path from 7 to j, which uses the new 0-cost edges, is the cost in fuel of travelling
from the last gas station to j, where all the paths between successive gas stations use
at most ¢ gallons, as does the path from 7 to the first gas station. But this is what the
algorithm computes. As in part (a), the amount of gas left in the tank is the difference
between ¢ and the length of the shortest path (except where there is no shortest path,
which indicates that there is no route that can be managed with a gas tank holding only
g gallons).

Solution to Problem 4

Let M be a dfa accepting L. Let) be the set of states for M and let § be the transition
function for M. Suppose that é(q,z) = d(q,y) for all ¢ € Q. Then, for all strings
w, z, 0(q,wxrz) = §(qr,wyz), where ¢ is the initial state of M, and thus waz € L if
and only if wyz € L. In other words, = and y are strongly equivalent. But this is
a finite partitioning: there are only |Q[I?! collections (q1,q:,), (g2, i), - (91Q1> %))
where 1 < ¢;; <|Q], for 1 < j <|Q|; with each collection we associate the set of strongly
equivalent strings such that §(g;,) = ¢;,, for 1 < j < |Q]. As each string must belong
to one of these collections, we conclude that a regular language L has only finitely many
strongly equivalent sets.

Solution to Problem 5
It is convenient to write

T,y T3y ey (1)

for the sequence of twin primes. Thus m = (3,5), m = (5,7), etc. We may use the fact
that the function 7 — m; is computable. Consider the two logical possibilities.

(1) There are finitely many twin primes. Then B is r.e., but not recursive. To
see that it is not recursive, we can invoke Rice’s theorem. To see that it is r.e., we can
construct a TM Mg that, on input (M), simply checks if M accepts each prime in the
sequence (1).

(2) There are infinitely many twin primes. Then B is neither r.e. nor co-r.e.

(2.1) To see that B is not r.e., we give a many-one reduction of co-Arys to B. [Note: the
set App comprises all pairs (M, w) such that M is a TM that accepts w.] Given (M, w),
we construct a TM N with the following property: on input x, N will run M on w for
|z| steps. If M accepts within |x| steps then N rejects. Otherwise N accepts. Thus N
has this property:

— If M rejects w, then N accepts all inputs (and so all twin primes).

— If M accepts w, then N rejects all inputs after some point.

Equivalently, (M, w) € Agppy iff (V) € B. If Bisr.e., then co-Agyy is r.e., a contradiction.
(2.2) Suppose B is co-r.e. We derive the contradiction that co-Apys is r.e. by using

another reduction: on input (M, w), we construct a TM N with the following property:
on input x, N will accept unless = 3. If @ = 3, N will simulate M on w (accepting iff
M accepts). Thus N has this property:

— M rejects w iff N does not accept all primes. Equivalently, (M, w) ¢ Apas iff (N) € B.
Thus if B is co-r.e., then co-Arys is r.e., a contradiction.

Solution to Problem 6

To show the procedure is an RP-algorithm, we need to show 3 properties: (a) the
procedure is polynomial time, (b) if F'is unsatisfiable, the answer is always NO, and (c)
the probability of accepting a satisfiable formula is > 1/2.

Property (a) is obvious. To see property (b), note that the answer YES occurs only
at the end of stage n, and this answer is never wrong. This implies that when F' is
unsatisfiable, the answer is NO on every path.

Finally, to see property (c), assume F' is satisfiable. Write Fy for Fy, ;. , assuming
that by,..., b are defined. Let the event Ay correspond to “no mistakes up to stage &”,
i.e., Fj is defined and satisfiable. Similarly, let event Fj correspond to “first mistake at
stage k7, i.e., B = Ap_y N Ay.

CLAIM: Pr(Ey) < 271FI+1,

Proof: Note that Pr(Fy) < Pr(Ex|Ak—1). We will bound Pr(Ej|Ak—1). Assuming Ap_1,

we consider 2 cases:

(A) CASE Fp,..5,_,0 is not satisfiable. Then £}, .., _,1 is satisfiable. With probability
> (1 — 1/p(n)), the procedure will (correctly) answer NO the first time we invoke M.
Then with probability > (1 — 1/p(n)), it will (correctly) answer YES the second time.
So Pr(Ag|Ag_1) > (1 —1/p(n))* and

Pr(Ey i) < 1= (1= 1/p(n))* < 2/p(n).

(B) CASE Fp,..5,_,0 is satisfiable. This case is even easier, and yields Pr(Fy|Az—1) <
1/p(n). This proves the claim.

To conclude, the probability of making a mistake at any stage is at most

S Pr(E) < - 2/p(n) = 2n/p(n).

This is less than 1/2 if p(n) > 4n. Hence F' will be accepted if p(n) > 4n.

10

