
Written Qualifying ExamTheory of ComputationSpring, 1998Friday, May 22, 1998This is nominally a three hour examination, however you will beallowed up to four hours. All questions carry the same weight.You are to answer the following six questions.� Please write your name on the outside envelope, but not onany if the exam booklets.� Please answer each question in the numbered booklet providedfor that question.Read the questions carefully. Keep your answers brief. Assumestandard results, except where asked to prove them.
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Problem 1 [10 points]Consider the problem of sorting an array A[1 : n] of n distinct items, where each itemis guaranteed to be within k places of its correct location in the sorted array; i.e. A[h]belongs somewhere between A[h� k] and A[h+ k] in the sorted ordering.Consider the following algorithm for sorting A. It uses a heap H which can hold upto k + 1 items.procedure Sort PartiallySorted(A, n)1 for i 1 to k + 1 do2 HeapInsert(H, A[i]) f* inserts A[i] into heap H *g3 endfor4 for i k + 2 to n do5 A[i� (k + 1)] Deleletemin(H)6 HeapInsert(H, A[i])7 endfor8 for i 1 to k + 1 do9 A[n� (k + 1) + i] Deletemin(H)10 endfor11 end Sort PartiallySorted.a. 3 points. Argue that the above algorithm correctly sorts A if every item starts withink positions of its �nal location.b. 2 points. What is the running time of the above algorithm as a function of n and k?Justify your answer brie
y.c. 2 points. Suppose the heap is stored in-place in A[1 : k + 1]. By slightly modifyingthe above algorithm, explain how to reorder the array so that A[k + 2] < A[k + 3] <� � � < A[n] < A[1] < A[2] < � � � < A[k + 1]. It su�ces to explain the changes in words.d. 3 points. Suppose k + 1 divides n exactly. Give an O(n) time algorithm to reorderthe array from part (c) so that it is in standard sorted order (A[1] < A[2] < � � � < A[n]).Your algorithm may only use O(1) space in addition to the array A. Further, do notassume that k is a constant (so an O(nk) time algorithm does not su�ce).Go to the next page
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Problem 2 [10 points]Consider the following medical rationing problem.There are k diseases. Each disease has a vaccine. The cost of the ith vaccine is $ci.The ith vaccine has an e�ectiveness ei, versus an e�ectiveness fi if the ith vaccine isnot given. The e�ectiveness is the fraction of people that survive or avoid the disease inquestion. You may assume ei > fi (for otherwise the vaccine is worthless).Suppose $D can be spent per person on vaccines. Assume D and ci, 1 � i � k,are integers. Give an algorithm to determine a best choice of vaccines, i.e. a choice thatachieves the highest survival rate. More precisely, suppose vaccines j1; � � � ; jl are chosen,and vaccines h1; � � � ; hk�l are not chosen. The goal is to maximize:lYi=1 eji � k�lYi=1 fhi given that lXi=1 cji � DYour algorithm should run in time O(kD).Hint. Use Dynamic Programming.Problem 3 [10 points]The Gas Tank Problem.Suppose a directed graph G = (V;E) is given in which each edge is labelled with areal number cost (in gallons). Let n = jV j.In the following problem you may use the O(n3) Floyd-Warshall all pairs shortestpath algorithm for G without further elaboration.a. 5 points. Suppose that some subset U � V of nodes are labelled as gas stations.Suppose that a car has a gas tank with capacity g gallons, and initially it is full. Theproblem is to determine, for each pair i; j of vertices in G, whether it is possible for thecar to travel from vertex i to vertex j with at most one refuelling, and if so, to determinethe most gas that can remain in the tank. Show how to solve this problem in O(n3) time.b. 5 points. Suppose any number of refuellings are allowed. Now, for each pair i; jof vertices, give an algorithm to determine if the car can travel from i to j assuming itstarts with a full tank of gas, and if so determine the largest amount of gas that couldremain in the gas tank. Again, seek an algorithm with an O(n3) running time.Hint. A trip from i to j had three parts:a. The journey from i to a �rst gas station.b. The journey from the �rst to the last gas station, possibly via intermediate gasstations.c. The journey from the last gas station to j.What is the \cost" of each of the parts?Go to the next page3



Problem 4 [10 points]Let � be an alphabet of two or more characters. Let L � ��. Strings x; y 2 �� arestrongly equivalent with respect to L if for all w; z 2 ��:wxz 2 L () wyz 2 LLet Cx = fy j x and y are strongly equivalentg.It is easy to see that Cx is an equivalence class (you need not prove this). Cx is calledx's class (w.r.t. L).Show that if L is regular then there are �nitely many classes of strongly equivalentstrings with respect to L.Hint. Consider a DFA M accepting L. Let M have state set Q. Consider strings xand y, and pairs of states �(q; x) and �(q; y), for states q 2 Q, where � is the transitionfunction for M .Problem 5 [10 points]A twin prime is a pair of primes of the form (p; p + 2). Thus (3; 5); (5; 7); (11; 13) arethe �rst three twin primes. Let hMi denote the standard encoding of Turing machineM . Consider the language B comprising all hMi such that for all twin primes (p; p+2),M accepts p and also accepts p + 2.Classify the language B completely with respect to its recursiveness, recursive enu-merability (r.e.), and co-recursive enumerability (co-r.e.); i.e., is B recursive, r.e., co-r.e.,or none of these. You must justify your answers. NOTE: it is not known if there arein�nitely many twin primes. You should consider both logical possibilities.Go to the next page
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Problem 6 [10 points]In this question, assume probabilistic Turing machines (PTM) that halt on every path,and answer `YES' or `NO' upon halting. (In general, a PTM could also answer`MAYBE'.) Let e(n) be a function such that (8 n) 0 < e(n) < 1=2. M has errorbound e(n) if:� On w 2 L(M), the probability that M answers YES is � 1 � e(jwj).� On w 62 L(M), the probability that M answers NO is � 1 � e(jwj).A p(n)-strong BPP -machine is a PTM that runs in polynomial time with error bounde(n) = 1=p(n). A RP -machine is a PTM that runs in polynomial time, and for anyinputs not in the language, the machine answers NO on every path.Suppose SAT is accepted by a p(n)-strong BPP -machineM , for a su�ciently largepolynomial p(n). Consider the following procedure to test if a given Boolean formulaF is satis�able: let the Boolean variables in F be x1; : : : ; xn. We shall operate in nstages. At the start of stage k (k = 1; : : : ; n), we have already computed a sequenceof Boolean values b1; : : : ; bk�1, and Fb1���bk�1 is the formula in which xi is replaced by bi(i = 1; : : : ; k � 1).STAGE k:1. Call M on input Fb1���bk�10.2. If M answers YES, then set bk = 0 and go to DONE.3. Else call M on input Fb1���bk�11.4. If M answers NO again, answer NO and return.5. Else set bk = 1.6. DONE: If k < n go to stage k + 1.7. Else answer YES if Fb1;:::;bn = 1, otherwise answer NO.Prove that this procedure is an RP -machine for SAT , if p(n) is a su�ciently largepolynomial. Assume jFb1;:::;bk j = jF j � n, 0 � k � n. You will need to choose anappropriate p.Hint: If Fb1���bk�1 is satis�able, what is the probability of the following event: either thealgorithm answers NO in stage k or the Fb1���bk computed in stage k is not satis�able.
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SolutionsSolution to Problem 1a. The smallest item in the array must lie among the �rst k + 1 items in A and henceis correctly identi�ed and written in A[1]. Suppose the �rst i items are correctly placedby the algorithm. Then the (i + 1)st item must be drawn from the remaining k itemsin the heap (the remaining k items from A[1] � � �A[i + k]) and A[i + k + 1]. But theseare the items in the heap following the insert of the (i+1)st step and thus the algorithmcorrectly identi�es the (i+ 1)st item and places it in A[i+ 1].b. Each heap operation requiresO(log(k+1)) time (assuming k � 1). Thus the algorithmruns in O(n log k) time for k � 2, and O(n) time for k = 0; 1.c. Instead of outputting the sorted items to A[1]; A[2]; � � � ; A[n] in turn, they are outputto A[k + 2]; A[k + 3]; � � � ; A[n]; A[1]; � � � ; A[k + 1] in turn. Care must be taken to storeA[k+ i+1] on the ith iteration, before it is overwritten by the ith smallest item. Further,the heap is stored \backward" with the minimum in A[k + 1], so that in the �nal stageas the heap shrinks in size, items can be written in A[1], A[2], � � �, A[k + 1], in turn.d. We repeatedly move blocks of k + 1 items to their �nal locations, starting with thesmallest k+1 items, followed by the next smallest k+1 items, followed by the next andthird smallest set of k + 1 items, and so on. In turn, each set of k + 1 items is swappedwith the block of the k+1 largest items, which are initially in the leftmost k+1 locations.One could think of this as a bubble sort, with a bubble of the k+1 largest items movingto the right, in steps of size k + 1. Each step results in the next smallest k + 1 itemsbeing correctly positioned.The code is given below. Clearly, the algorithm takes O(n=(k + 1) � (k + 1)) = O(n)time. procedure Reorder(A, n, k)1 for i 1 to n=(k + 1) do2 for j  1 to k + 1 do3 swap(A[(i� 1) � (k + 1) + j], A[i � (k + 1) + j])4 endfor5 endfor6 end Reorder.
6



Solution to Problem 2Let E�ect(R; i) be a function that computes the e�ectiveness of a most e�ective choiceof vaccines among the �rst i vaccines, with cost at most R.Then, E�ect(D; k) is de�ned recursively as follows:procedure E�ect(D, k))1 if k = 0 then return 12 elseif D < ck then return E�ect(D, k � 1) � fk3 else do4 use k  E�ect(D � ck, k � 1) � ek5 not use k  E�ect(D, k � 1) � fk6 if use k � not use k then return use k7 else return not use k8 endif9 endif10 endif11 end E�ect.By using a table T of Dk entries, this recursive algorithm becomes a Dynamic Pro-gramming algorithm taking O(1) time per recursive call and hence O(Dk) time overall.To determine the choice of vaccines, with each table entry, T (R; i), the correspondingchoice of vaccine needs to be recorded in a second table V (R; i) (i.e., whether the ithvaccine is used or not). Then, by a standard backtracking, the best overall choice ofvaccines can be determined in a further O(k) time. The code follows.forall R; i, 0 � R � k, O � i � k, initialize T (R; i) 11 procedure E�ect(D, k)2 if T (D; k) 6=1 then return T (D; k)3 elseif k = 0 then answer  14 elseif D < ck then answer E�ect(D, k � 1)�fk5 else do6 use k  E�ect(D � ck, k � 1) � ek7 not use k  E�ect(D, k � 1)�fk8 if use k � not use k then V (D; k) `use'; answer use k9 else V (D; k)  `not use'; answer  not use k10 endif11 T (D; k) answer12 return answer13 endif14 endif15 end E�ect. 7



procedure ChooseVaccines(D, k)1 if k � 1 then2 if T (D; k) = `use' then Print(Use Vaccine k); ChooseVaccines(D� ck,k� 1)3 else ChooseVaccines(D,k � 1)4 endif5 endif6 end ChooseVaccines.Solution to Problem 3a. First, the all pairs shortest path problem is solved on graph G. Suppose the solutionfor vertex pair (i; j) is stored in ShortestDirect(i; j). Then ShortestNoStop is computedas follows:procedure ShortestNoStop(i, j)1 if ShortestDirect(i; j) � g2 then ShortestNoStop(i; j) ShortestDirect(i; j)3 else ShortestNoStop(i; j) 14 endif5 end ShortestNoStop.This gives the least amount of gas � g needed to travel from i to j, and is1 if thereis no route using at most g gallons.To determine the amount left in the tank if up to one refuelling is allowed, all pathsinvolving one stop at a gas station are considered, thus:procedure ShortestOneStop(i, j)1 if ShortestDirect(i; j) � g2 then ShortestOneStop(i; j) ShortestDirect(i; j)3 else ShortestOneStop(i; j) 14 endif5 for each u 2 U do6 if ShortestDirect(i; u) � g7 then ShortestOneStop(i; j) 8 minfShortestDirect(u; j);ShortestOneStop(i; j)g9 endif10 endfor11 end ShortestOneStop.Finally, we compute GasRemaining(i; j) to be the di�erence of g andShortestOneStop(i; j), unless ShortestOneStop(i; j) is1, in which case there is no routefrom i to j with just one refuelling.Since jU j � n, this procedure requires O(n3) time over all vertex pairs i; j. Clearly,it considers all paths involving at most one refuelling.b. We create a new graph G0 which augments G. The following new edges with length0 are added to G: edge (i; u) for each u 2 U such that ShortestNoStop(i; u) � g.If there are duplicate edges, only the 0-weight edge is kept.8



The Floyd-Warshall algorithm is run on G0. As G0 has n vertices this takes O(n3)time.Clearly, a path from i to gas station u that uses at most g gallons will leave thetank full after refuelling at u. Likewise, paths between gas stations of length at mostg, will also leave the gas tank full, after subsequent refuellings. Thus, the cost, in fuel,of a path from i to j, which uses the new 0-cost edges, is the cost in fuel of travellingfrom the last gas station to j, where all the paths between successive gas stations useat most g gallons, as does the path from i to the �rst gas station. But this is what thealgorithm computes. As in part (a), the amount of gas left in the tank is the di�erencebetween g and the length of the shortest path (except where there is no shortest path,which indicates that there is no route that can be managed with a gas tank holding onlyg gallons).Solution to Problem 4Let M be a dfa accepting L. Let Q be the set of states for M and let � be the transitionfunction for M . Suppose that �(q; x) = �(q; y) for all q 2 Q. Then, for all stringsw; z, �(q1; wxz) = �(q1; wyz), where q1 is the initial state of M , and thus wxz 2 L ifand only if wyz 2 L. In other words, x and y are strongly equivalent. But this isa �nite partitioning: there are only jQjjQj collections (q1; qi1); (q2; qi2); � � � ; (qjQj; qijQj)),where 1 � qij � jQj, for 1 � j � jQj; with each collection we associate the set of stronglyequivalent strings such that �(qj; x) = qij , for 1 � j � jQj. As each string must belongto one of these collections, we conclude that a regular language L has only �nitely manystrongly equivalent sets.Solution to Problem 5It is convenient to write �1; �2; �3; : : : ; (1)for the sequence of twin primes. Thus �1 = (3; 5), �2 = (5; 7), etc. We may use the factthat the function i 7! �i is computable. Consider the two logical possibilities.(1) There are �nitely many twin primes. Then B is r.e., but not recursive. Tosee that it is not recursive, we can invoke Rice's theorem. To see that it is r.e., we canconstruct a TM MB that, on input hMi, simply checks if M accepts each prime in thesequence (1).(2) There are in�nitely many twin primes. Then B is neither r.e. nor co-r.e.(2.1) To see that B is not r.e., we give a many-one reduction of co-ATM to B. [Note: theset ATM comprises all pairs hM;wi such that M is a TM that accepts w.] Given hM;wi,we construct a TM N with the following property: on input x, N will run M on w forjxj steps. If M accepts within jxj steps then N rejects. Otherwise N accepts. Thus Nhas this property:{ If M rejects w, then N accepts all inputs (and so all twin primes).{ If M accepts w, then N rejects all inputs after some point.Equivalently, hM;wi 62 ATM i� hNi 2 B. IfB is r.e., then co-ATM is r.e., a contradiction.(2.2) Suppose B is co-r.e. We derive the contradiction that co-ATM is r.e. by using9



another reduction: on input hM;wi, we construct a TM N with the following property:on input x, N will accept unless x = 3. If x = 3, N will simulateM on w (accepting i�M accepts). Thus N has this property:{ M rejects w i� N does not accept all primes. Equivalently, hM;wi 62 ATM i� hNi 62 B.Thus if B is co-r.e., then co-ATM is r.e., a contradiction.Solution to Problem 6To show the procedure is an RP -algorithm, we need to show 3 properties: (a) theprocedure is polynomial time, (b) if F is unsatis�able, the answer is always NO, and (c)the probability of accepting a satis�able formula is > 1=2.Property (a) is obvious. To see property (b), note that the answer YES occurs onlyat the end of stage n, and this answer is never wrong. This implies that when F isunsatis�able, the answer is NO on every path.Finally, to see property (c), assume F is satis�able. Write Fk for Fb1;:::;bk , assumingthat b1; : : : ; bk are de�ned. Let the event Ak correspond to \no mistakes up to stage k",i.e., Fk is de�ned and satis�able. Similarly, let event Ek correspond to \�rst mistake atstage k", i.e., Ek = Ak�1 \Ak.CLAIM: Pr(Ek) � 2�jF j+1.Proof: Note that Pr(Ek) � Pr(EkjAk�1). We will bound Pr(EkjAk�1). Assuming Ak�1,we consider 2 cases:(A) CASE Fb1���bk�10 is not satis�able. Then Fb1���bk�11 is satis�able. With probability� (1 � 1=p(n)), the procedure will (correctly) answer NO the �rst time we invoke M.Then with probability � (1 � 1=p(n)), it will (correctly) answer YES the second time.So Pr(AkjAk�1) � (1� 1=p(n))2 andPr(EkjAk�1) � 1 � (1� 1=p(n))2 � 2=p(n):(B) CASE Fb1���bk�10 is satis�able. This case is even easier, and yields Pr(EkjAk�1) �1=p(n). This proves the claim.To conclude, the probability of making a mistake at any stage is at mostnXk=1Pr(Ek) � n � 2=p(n) = 2n=p(n):This is less than 1=2 if p(n) � 4n. Hence F will be accepted if p(n) � 4n.
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