
A Novel Approach to the Initial Value Problem with a Complete1

Validated Algorithm ⋆
2

Bingwei Zhanga,1 (Researcher), Chee Yapa,∗ (Researcher)3

aThe Courant Institute of Mathematical Sciences, , New York, USA4

5

A R T I C L E I N F O
Keywords:
initial value problem, IVP, reacha-
bility problem, end-enclosure prob-
lem, radical transform, validated al-
gorithms, interval methods, logarith-
mic norm, matrix measure, contrac-
tion maps

6 A B S T R A C T7

8

We consider the first order autonomous differential equation (ODE) 𝒙′ = 𝒇 (𝒙) where 𝒇 ∶ ℝ𝑛 →9

ℝ𝑛 is locally Lipschitz. For 𝒙0 ∈ ℝ𝑛 and ℎ > 0, the initial value problem (IVP) for (𝒇 ,𝒙0, ℎ) is10

to determine if there is a unique solution, i.e., a function 𝒙 ∶ [0, ℎ] → ℝ𝑛 that satisfies the ODE11

with 𝒙(0) = 𝒙0. Write 𝒙 = IVP𝒇 (𝒙0, ℎ) for this unique solution.12

We pose a corresponding computational problem, called the End Enclosure Problem: given13

(𝒇 , 𝐵0, ℎ, 𝜀0) where 𝐵0 ⊆ ℝ𝑛 is a box and 𝜀0 > 0, to compute a pair of non-empty boxes (𝐵0, 𝐵1)14

such that 𝐵0 ⊆ 𝐵0, width of 𝐵1 is < 𝜀0, and for all 𝒙0 ∈ 𝐵0, 𝒙 = IVP𝒇 (𝒙0, ℎ) exists and15

𝒙(ℎ) ∈ 𝐵1. We provide a algorithm for this problem. Under the assumption (promise) that for16

all 𝒙0 ∈ 𝐵0, IVP𝒇 (𝒙0, ℎ) exists, we prove the halting of our algorithm. This is the first halting17

algorithm for IVP problems in such a general setting.18

We also introduce novel techniques for subroutines such as StepA and StepB, and a scaffold19

datastructure to support our End Enclosure algorithm. Among the techniques are new ways refine20

full- and end-enclosures based on a radical transform combined with logarithm norms. Our21

preliminary implementation and experiments show considerable promise, and compare well with22

current algorithms.23

24

1. Introduction25

We consider the following system of first order ordinary differential equations (ODEs)26

𝒙′ = 𝒇 (𝒙) (1)
where 𝒙 = [𝑥1,… , 𝑥𝑛] ∈ 𝐶1([1, ℎ] → ℝ𝑛) are functions of time and 𝒙′ = [𝑥′1,… , 𝑥′𝑛] indicate differentiation with27

respect to time, and 𝒇 = [𝑓1,… , 𝑓𝑛] ∶ ℝ𝑛 → ℝ𝑛. Since this is an autonomous ODE, we may assume the initial time28

𝑡 = 0. Up to time scaling, we often assume that the end time is ℎ = 1. This assumption is just for simplicity but our29

results and implementation allow any value of ℎ > 0.30

Given 𝒑0 ∈ ℝ𝑛 and ℎ > 0, the initial value problem (IVP) for (𝒑0, ℎ) is the mathematical problem of finding a31

solution, i.e., a continuous function 𝒙 ∶ [0, ℎ] → ℝ𝑛 that satisfies (1), subject to 𝒙(0) = 𝒑0. Let IVP𝒇 (𝒑0, ℎ) denote32

the set of all such solutions. Since 𝒇 is usually fixed or understood, we normally omit 𝒇 in our notations. We say33

that (𝒑0, ℎ) is valid if the solution exists and is unique, i.e., IVP(𝒑0, ℎ) =
{

𝒙0
} is a singleton. In this case, we write34

𝒙0 = IVP(𝒑0, ℎ). It is convenient to write 𝒙(𝑡;𝒑0) for 𝒙0(𝑡). See Figure 1 for the solution to the Volterra system (Eg135

in Table 1). The IVP problem has numerous applications such as modeling physical, chemical and biological systems,36

and dynamical system.37

The mathematical IVP gives rise to a variety of algorithmic problems since we generally cannot represent a solution38

𝒙0 = IVP(𝒑0, ℎ). We are interested in validated algorithms [1] meaning that all approximations must be explicitly39

bounded (e.g., numbers are enclosed in intervals). In this setting, we introduce the simplest algorithmic IVP problem,40

that of computing an enclosure for 𝒙(ℎ;𝒑0). In real world applications, only approximate values of 𝒑0 are truly41

meaningful because of modeling uncertainties. So we replace 𝒑0 by a region 𝐵0 ⊆ ℝ𝑛: 𝐵0 is a non-empty set like a box42
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Figure 1: Volterra system (Eg1). The negative zone of the system is the region above the green parabola.

or ball. Let IVP(𝐵0, ℎ) ∶=
⋃

𝒑∈𝐵0
IVP(𝑝0, ℎ). Call 𝐵1 ⊆ ℝ𝑛 an end-enclosure for IVP(𝐵0, ℎ) if we have the inclusion43

{

𝒙(ℎ) ∶ 𝒙 ∈ IVP(𝐵0, ℎ)
}

⊆ 𝐵1. So our formal algorithmic problem is the following End Enclosure Problem:44

(2)
This is called the Reachability Problem in the non-linear control systems and verification literature (e.g., [2]).45

Note that we allow 𝐵0 to be shrunk to some 𝐵0 in order to satisfy the user-specified bound of 𝜀. If it is promised that46

𝐵0 = 𝐵0 has solution, we can also turn off shrinking. This is a novel feature that will prove very useful in practice.47

The usual formulation of the IVP problem assumes that 𝐵0 is a singleton {

𝒑0
}. In this case, our algorithm will output48

𝐵0 = 𝐵0.49

1.1. What is Achieved50

Our formulation of the end-enclosure problem (2) is new. We will present an algorithm for this problem. Our51

algorithm is complete in that sense that if the input is valid, then [C0] the algorithm halts, and [C1] if the algorithm52

halts, the output (𝐵0, 𝐵1) is correct. Algorithms that only satisfy [C1] are said2 to be partially correct. To our53

knowledge, current validated IVP algorithms are only partially correct since halting is not proved.54

The input to EndEncl_IVP𝒇 (𝐵0, 𝜀) assumes the validity of (𝐵0, 1). All algorithms have requirements on their55

inputs, but they are typically syntax requirements which are easily checked. But validity of (𝐵0, 1) is a semantic56

requirement which is non-trivial to check. Problems with semantic conditions on the input are called promise problems57

[3]). Many numerical algorithms are actually solutions of promise problems. Checking if the promise holds is a separate58

decision problem. To our knowledge, deciding validity of (𝐵0, 1) is an open problem although some version of this59

question is undecidable in the analytic complexity framework [4, 5].60

Hans Stetter [6] summarized the state-of-the-art over 30 years ago as follows: To date, no programs that could be61

truly called ‘scientific software’ have been produced. AWA is state-of-art, and can be used by a sufficiently expert user62

– it requires selection of step-size, order and suitable choice of inclusion set represention. Corliss [7, Section 10] made63

similar remarks. We believe our algorithm meets Stetter’s and Corliss’ criteria. The extraneous inputs such as step-size,64

2Completeness and partial correctness are standard terms in theoretical computer science.
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order, etc, noted by Stetter are usually called hyperparameters. Our algorithm3 does not require any hyperparamters.65

Our preliminary implementation shows the viability of our algorithm, and its ability to do certain computations where66

current IVP software fails.67

1.2. In the Shadow of Lohner’s AWA68

In their comprehensive 1999 review, Nedialkov et al. [8] surveyed a family of validated IVP algorithms that may69

be4 called A/B-algorithms because each computation amounts to a sequence of steps of the form 𝐴𝐵𝐴𝐵⋯𝐴𝐵
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

2𝑚

70

= (𝐴𝐵)𝑚 for some 𝑚 ≥ 1, where 𝐴 and 𝐵 refer to two subroutines which5 we call StepA and StepB. It appears71

that all validated algorithms follow this motif, including Berz and Makino [10] who emphasized their StepB based on72

Taylor models. Ever since Moore [11] pointed out the wrapping effect, experts have regarded the mitigation of this73

effect as essential. The solution based on iterated QR transformation by Lohner [12] is regarded as the best technique to74

do this. It was implemented in the software called AWA6 and recently updated by Bunger [13] in a INTLAB/MATLAB75

implementation. The complexity and numerical issues of such iterated transformations have not studied but appears76

formidable. See Revol [14] for an analysis of the special case of iterating a fixed linear transformation. In principle,77

Lohner’s transformation could be incorporated into our algorithm. By not doing this, we illustrate the extend to which78

other techniques could be used to produce viable validated algorithms.79

In this paper, we introduce [N1] new methods to achieve variants of StepA and StepB, and [N2] data structures80

and subroutines to support more complex motifs than (𝐴𝐵)𝑚 above. Our algorithm is a synthesis of [N1]+[N2]. The81

methods under [N1] will refine full- and end-enclosures by exploiting logNorm and radical tranforms (see next). Under82

[N2], we design subroutines and the scaffold data-structure to support new algorithmic motifs such as (𝐴𝐵+)𝑚, i.e.,83

𝐴 followed by one or more 𝐵’s. Moreover, 𝐵+ is periodically replaced by calling a special “EulerTube” to achieve84

end-enclosures satisfying an priori 𝛿-bound. This will be a key to our termination proof.85

1.3. How we exploit Logarithmic Norm and Radical Transform86

A logNorm bound of 𝐵1 ⊆ ℝ𝑛 is any upper bound on87

𝜇2(𝐽𝒇 (𝐵1)) ∶= sup
{

𝜇2(𝐽𝒇 (𝒑)) ∶ 𝒑 ∈ 𝐵1
} (3)

Unlike standard operator norms, logNorms can be negative. We call 𝐵1 a contraction zone if it has a negative logNorm
bound. Here, 𝐽𝒇 is the Jacobian of 𝒇 and 𝜇2 is the logNorm function (Subsection 2.5). We exploit the fact that

‖𝒙(𝑡;𝒑0) − 𝒙(𝑡;𝒑1)‖ ≤ ‖𝒑0 − 𝒑1‖𝑒𝑡𝜇

(Theorem 3 in Subsection 2.5). In the Volterra example in Figure 1, it can be shown that the exact contraction zone88

is the region above the green parabola. In tracing a solution 𝒙(𝑡;𝒑0) for 𝑡 ∈ [0, ℎ] through a contraction zone, we can89

compute a end-enclosure 𝐵 for IVP(𝐵0, ℎ, 𝐵1) with 𝑤max(𝐵) < 𝑤max(𝐵0) (i.e., the end-enclosure is “shrinking”).90

Previous authors have exploited logNorms in the IVP problem (e.g., Zgliczynski [15], Neumaier [16]). We will exploit91

it in new way via a transform: for any box 𝐵1 ⊆ ℝ𝑛, we introduce a “radical map” 𝜋 ∶ ℝ𝑛 → ℝ𝑛 (Section 5) with92

𝒚 = 𝜋(𝒙). Essentially, this transform is93

𝒚 = (𝑥−𝑑11 ,… , 𝑥−𝑑𝑛𝑛 ) (for some 𝑑1,… , 𝑑𝑛 ≠ 0) (4)
where 𝒙 = (𝑥1,… , 𝑥𝑛). The system 𝒙′ = 𝒇 (𝒙) transforms to another system 𝒚′ = 𝒈(𝒚) in which the logNorm of94

𝜋(𝐵1) has certain properties (e.g., 𝜋(𝐵1) is a contraction zone in the (𝒚, 𝒈)-space). By computing end-endclosures in95

the (𝒚, 𝒈)-space, we infer a corresponding end-enclosure in the (𝒙,𝒇 )-space. Our analysis of the 1-dimensional case96

(Subsection 5.2), suggests that the best bounds are obtained when the logNorm of 𝜋(𝐵1) is close to 0. In our current97

code, computing 𝜋(𝐵1) is expensive, and so we avoid doing a transform if 𝜇2(𝐽𝒇 (𝐵1)) is already negative.98

3Hyperparameters are useful when used correctly. Thus, our implementation has some hyperparameters that may be used to improve
performance, but they are optional and have no effect on completeness.

4This (𝐴𝐵)+ motif is shared with homotopy path algorithms where 𝐴 and 𝐵 are usually called predictor and corrector (e.g., [9]).
5Nedialkov et al. called them Algorithms I and II.
6“Anfangswertaufgabe”, the German term for IVP.
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1.4. Brief Literature Review99

The validated IVP literature appeared almost from the start of interval analysis, pioneered by Moore, Eijgenraam,100

Rihm and others [17, 18, 19, 1, 20]. Corliss [7] surveys this early period. Approaches based on Taylor expansion101

is dominant as they benefit from techniques such automatic differentiation and data structures such as the Taylor102

model. The latter, developed and popularized by Makino and Berz [13, 21, 10], has proven to be very effective. A103

major activity is the development of techniques to control the “wrapping effect”. Here Lohner’s approach [22, 12] has104

been most influential. Another advancement is the 𝐶𝑟-Lohner method developed by Zgliczyński et al. [15, 23]. This105

approach involves solving auxiliary IVP systems to estimate higher order terms in the Taylor expansion. The field of106

validated methods, including IVP, underwent great development in the decades of 1980-2000. Nedialkov et al provide107

an excellent survey of the various subroutines of validated IVP [24, 25, 26, 8].108

In Nonlinear Control Theory (e.g., [27, 28]), the End-Enclosure Problem is studied under various Reachability109

problems. In complexity theory, Ker-i Ko [5] has shown that IVP is PSPACE-complete. This result makes the very110

strong assumption that the search space is the unit square (𝑛 = 1). Bournez et al [29] avoided this restriction by111

assuming that 𝒇 has analytic extension to ℂ𝑑 .112

The concept of logarithmic norm7 (or logNorm for short) was independently introduced by Germund Dahlquist113

and Sergei M. Lozinskiĭ in 1958 [30]. The key motivation was to improve bound errors in IVP. Neumaier [31] is one of114

the first to use logNorms in validated IVP. The earliest survey is T. Ström (1975) [32]. The survey of Gustaf Söderlind115

[30] extends the classical theory of logNorms to the general setting of functional analytic via Banach spaces.116

One of the barriers to the validated IVP literature is cumbersome notations and lack of precise input/output criteria117

for algorithms. For instance, in the 𝐴∕𝐵 algorithms, it is not stated if a target time ℎ > 0 is given (if given, how it is118

used other than to terminate). Algorithm 5.3.1 in [8] is a form of StepA has a 𝜀 > 0 argument but how it constraints119

the output is unclear, nor is it clear how to use this argument in the A/B algorithm. We provide a streamlined notation,120

largely by focusing on autonomous ODEs, and by introducing high-level data structures such as the scaffold. Besides121

non-halting and lack of input/output specification, another issue is the use of an indeterminate “failure mode” (e.g.,122

[26, p.458, Figure 1])123

1.5. Paper Overview124

The remainder of the paper is organized as follows: Section 2 introduces some key concepts and computational125

tools. Section 3 gives an overview of our algorithm. Section 4 describes our StepA and StepB subroutines. Section 5126

describes our transform approach to obtain tighter enclosures. Section 6 describes the Extend and Refine subroutines.127

Section 7 presents our main algorithm and some global experiments. We conclude in Section 8. Appendix A gives128

all the proofs. Appendix B provide details of the affine transform 𝜋.129

2. Basic Tools130

2.1. Notations and Key Concepts131

We use bold fonts such as 𝒙 for vectors. A point 𝒑 ∈ ℝ𝑛 is viewed as a column vector 𝒑 = [𝑝1,… , 𝑝𝑛], with132

transpose the row vector 𝒑𝖳 = (𝑝1,… , 𝑝𝑛). Also vector-matrix or matrix-matrix products are indicated by ∙ (e.g.,133

𝐴 ∙𝒑). Let ℝ𝑛 denote the set of 𝑛-dimensional boxes in ℝ𝑛 where a box 𝐵 is viewed as a subset of ℝ𝑛. The width and134

midpoint of an interval 𝐼 = [𝑎, 𝑏] are 𝑤(𝐼) ∶= 𝑏 − 𝑎 and 𝑚(𝐼) ∶= (𝑎 + 𝑏)∕2, respectively. If 𝐵 =
∏𝑛

𝑖=1 𝐼𝑖, its width135

and midpoint are 𝒘(𝐵) ∶= (𝑤(𝐼1),… , 𝑤(𝐼𝑛)) and 𝒎(𝐵) ∶= (𝑚(𝐼1),… , 𝑚(𝐼𝑛)). Also, maximum width and minimum136

width are 𝑤max(𝐵) ∶= max𝑛𝑖=1𝑤(𝐼𝑖) and 𝑤min(𝐵) ∶= min𝑛𝑖=1𝑤(𝐼𝑖). We assume 𝑤min(𝐵) > 0 for boxes.137

We use the Euclidean norm on ℝ𝑛, writing ‖𝒑‖ = ‖𝒑‖2. For any function 𝑓 ∶ 𝑋 → 𝑌 , we re-use ‘𝑓 ’ to denote its138

natural set extension, 𝑓 ∶ 2𝑋 → 2𝑌 where 2𝑋 is the power set of 𝑋 and 𝑓 (𝑆) = {𝑓 (𝑥) ∶ 𝑥 ∈ 𝑆} for all 𝑆 ⊆ 𝑋.139

The image of a function 𝑓 ∶ 𝐴 → 𝐵 is image(𝑓 ) ∶= {𝑓 (𝑎) ∶ 𝑎 ∈ 𝐴} . The image of IVP(𝐵0, ℎ) is the union140
⋃

𝒙∈IVP(𝐵0,ℎ) image(𝒙). A full-enclosure of IVP(𝐵0, ℎ) is a set 𝐵1 ⊆ ℝ𝑛 that contains141

image(IVP(𝐵0, ℎ)). If, in addition, (𝐵0, ℎ) is valid, then call (𝐵0, ℎ, 𝐵1) an admissible triple, equivalently, (ℎ, 𝐵1) is142

an admissible pair for 𝐵0. We then write IVP(𝐵0, ℎ, 𝐵1) instead of IVP(𝐵0, ℎ). Finally, 𝐵1 ⊆ 𝐵1 is an end-enclosure143

for IVP(𝐵0, ℎ, 𝐵1) if for all solution 𝒙 ∈ IVP(𝐵0, ℎ, 𝐵1), we have 𝒙(ℎ) ∈ 𝐵1. Call (𝐵0, ℎ, 𝐵1, 𝐵1) an admissible144

quadruple (or quad).145

If IVP(𝐵0, ℎ) is valid, then under the assumption 𝒇 ≢ 𝟎, we have the following: for any 𝒙0 ∈ 𝐵0, if 𝒙(𝑡) is a solution146

with 𝒙(0) = 𝒙0, then for all 𝑡 ∈ [0, ℎ), it holds that 𝒇 (𝒙(𝑡)) ≠ 𝟎.147

7This concept goes by other names, including logarithmic derivative, matrix measure and Lozinskiĭ measure.
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2.2. Implicit use of Interval Computation148

For any 𝒈 ∶ ℝ𝑛 → ℝ, a box form of 𝒈 is any function 𝑮 ∶ ℝ𝑛 → ℝ which is (1) conservative, and (2)149

convergent. This means (1) 𝒈(𝐵) ⊆ 𝑮(𝐵) for all 𝐵 ∈ ℝ𝑛, and (2) 𝒈(𝒑) = lim𝑖→∞𝑮(𝐵𝑖) for any infinite sequence150

𝐵1, 𝐵2, 𝐵3,… that converges to a point 𝒑 ∈ ℝ𝑛. In some proofs, it may appear that we need the additional condition,151

(3) that 𝑮 is isotone. This means 𝐵 ⊆ 𝐵′ implies 𝑮(𝐵) ⊆ 𝑮(𝐵′). In practice, isotony can often be avoided. E.g., in152

our termination proof below, we will indicate how to avoid isotony.153

We normally denote a box form 𝐺 of 𝒈 by 𝒈 (if necessary, adding subscripts or superscripts to distinguish various154

box forms of 𝒈). See [33, 34]. In this paper, we will often “compute” exact bounds such as “𝒇 (𝐸0)” (e.g., in StepA,155

Subsection 4.1). But in implementation, we really compute a box form 𝒇 (𝐸0). In the interest of clarity, we do not156

explicitly write 𝒇 since the mathematical function 𝒇 (𝐸0) is clearer.157

2.3. Normalized Taylor Coefficients158

For any solution 𝒙 to the ODE (1), its 𝑖th normalized Taylor coefficient is recursively defined as follows:159

𝒇 [𝑖](𝒙) =

{

𝒙 if 𝑖 = 0,
1
𝑖

(

𝐽𝒇 [𝑖−1] ∙ 𝒇
)

(𝒙) if 𝑖 ≥ 1 (5)

where 𝐽𝒈 denotes the Jacobian of any function 𝒈 = 𝒈(𝒙) ∈ 𝐶1(ℝ𝑛 → ℝ𝑛) in the variable 𝒙 = (𝑥1,… , 𝑥𝑛). For instance,
𝒇 [1] = 𝒇 and 𝒇 [2](𝒙) = 1

2 (𝐽𝒇 ⋅ 𝒇 )(𝒙). It follows that the order 𝑘 ≥ 1 Taylor expansion of 𝒙 at the point 𝑡 = 𝑡0 is

𝒙(𝑡0 + ℎ) =
{

𝑘−1
∑

𝑖=0
ℎ𝑖𝒇 [𝑖](𝒙(𝑡0))

}

+ ℎ𝑘𝒇 [𝑘](𝒙(𝜉))

where 0 ≤ 𝜉 − 𝑡0 ≤ ℎ. If 𝒙(𝜉) lies in a box 𝐵 ∈ ℝ𝑛, then interval form is160

𝒙(𝑡0 + ℎ) ∈
{

𝑘−1
∑

𝑖=0
ℎ𝑖𝒇 [𝑖](𝒙(𝑡0))

}

+ ℎ𝑘𝒇 [𝑘](𝐵) (6)

These Taylor coefficients can be automatically generated, and they can be evaluated at interval values using automatic161

differentiation.162

2.4. Banach Space 𝑋163

If 𝑋, 𝑌 are topological spaces, let 𝐶𝑘(𝑋 → 𝑌 ) (𝑘 ≥ 0) denote the set of 𝐶𝑘-continuous functions from 𝑋164

to 𝑌 . We fix 𝒇 ∈ 𝐶𝑘(ℝ𝑛 → ℝ𝑛) throughout the paper, and thus 𝑘 ≥ 1 is a global constant. It follows that165

IVP𝒇 (𝐵0, ℎ) ⊆ 𝐶𝑘([0, ℎ] → ℝ𝑛). Let 𝑋 ∶=𝐶𝑘([0, ℎ] → ℝ𝑛). Then 𝑋 is a real linear space where 𝑐 ∈ ℝ and 𝒙, 𝒚 ∈ 𝑋166

implies 𝑐𝒚 ∈ 𝑋 and 𝒙±𝒚 ∈ 𝑋. Let 0 ∈ 𝑋 denote the additive identity in 𝑋: 𝒙±0 = 𝒙. 𝑋 is also a normed space with167

norm ‖𝒙‖ = ‖𝒙‖max ∶= max𝑡∈[0,ℎ] ‖𝒙(𝑡)‖2 where ‖ ⋅‖2 is the 2-norm. For simplicity, write ‖𝒙‖ for ‖𝒙‖max. If 𝑆 ⊆ 𝑋,168

we let ‖𝑆‖ ∶= sup𝒙∈𝑆 ‖𝒙‖. We turn 𝑋 into a complete metric space (𝑋, 𝑑) with metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. To prove169

existence and uniqueness of solutions, we need to consider a compact subset 𝑌 ⊆ 𝑋. E.g., let 𝑌 = 𝐶𝑘([0, ℎ] → 𝐵)170

where 𝐵 ⊆ ℝ𝑛 is a box or ball. Then 𝑌 is also a complete metric space induced by 𝑋.171

Using this theory, we prove the following fundamenal result:172

LEMMA 1 (Admissible Triple).173

For all 𝑘 ≥ 1, if 𝐸0, 𝐹1 ⊆ ℝ𝑛 are closed convex sets, and ℎ > 0 satisfy the inclusion174

𝑘−1
∑

𝑖=0
[0, ℎ]𝑖𝒇 [𝑖](𝐸0) + [0, ℎ]𝑘𝒇 [𝑘](𝐹1) ⊆ 𝐹1, (7)

then (𝐸0, ℎ, 𝐹1) is an admissible triple.175

Note that this is very similar to [26, Theorem 4.1] which requires that 𝐸0 lies in the interior of 𝐹1. Our result does not176

need this additional condition.177
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2.5. Logarithmic norms178

Let ‖𝐴‖𝑝 be the induced 𝑝-norm of a 𝑛 × 𝑛 matrix 𝐴 with complex entries. Then the logarithmic 𝑝-norm of 𝐴 is179

defined as180

𝜇𝑝(𝐴) ∶= lim
ℎ→0+

‖𝐼 + ℎ𝐴‖𝑝 − 1
ℎ

.

We shall focus on 𝑝 = 2, and call 𝜇2 the logNorm. If 𝑛 = 1, then 𝐴 = 𝑎 ∈ ℂ and 𝜇𝑝(𝐴) = Re(𝑎). We have these bounds181

for logNorm:182

LEMMA 2.183

(a) 𝜇𝑝(𝐴 + 𝐵) ≤ 𝜇𝑝(𝐴) + 𝜇𝑝(𝐵)184

(b) 𝜇𝑝(𝐴) ≤ ‖𝐴‖𝑝185

(c) 𝜇2(𝐴) = max𝑗=1,…,𝑘(
1
2 (𝜆𝑗(𝐴 + 𝐴𝑇 ))) where 𝜆1(𝐴),… , 𝜆𝑘(𝐴) is the set of eigenvalues of 𝐴.186

(d) Let 𝐴 be an 𝑛 × 𝑛 matrix and let max𝑛𝑖=1(Re(𝜆𝑖)) where 𝜆′𝑖𝑠 are the eigenvalues of 𝐴. Then187

• max𝑛𝑖=1(Re(𝜆𝑖)) ≤ 𝜇(𝐴) holds for any logNorm.188

• For any 𝜀 ≥ 0, there exists an invertible matrix 𝑃 such that189

max
𝑖
(𝑅𝑒(𝜆𝑖)) ≤ 𝜇2,𝑃 (𝐴) ≤ max

𝑖
(𝑅𝑒(𝜆𝑖)) + 𝜀.

where 𝜇2,𝑃 (𝐴) ∶=𝜇2(𝑃−1𝐴𝑃 ).190

For parts(a-c) see [35], and part(d), see Pao [36]. In our estimates, we cite these standard bounds:191

‖𝐴‖2 = max𝑖(
√

𝜆𝑖(𝐴∗𝐴))
‖𝐴𝐵‖2 ≤ ‖𝐴‖2‖𝐵‖2

}

(8)

We have the following result from Neumaier [16, Corollary 4.5] (also [37, Theorem I.10.6]:192

THEOREM 3 (Neumaier).193

Let 𝒙 ∈ IVP𝒇 (𝒑0, ℎ) and 𝜉(𝑡) ∈ 𝐶1([0, ℎ] → ℝ𝑛) be any “approximate solution”.194

Let8 𝑃 be an invertible matrix. Assume the constants 𝜀, 𝛿, 𝜇 satisfy195

1. 𝜀 ≥ ‖𝑃−1 ∙ (𝜉′(𝑡) − 𝒇 (𝜉(𝑡)))‖2 for all 𝑡 ∈ [0, ℎ]196

2. 𝛿 ≥ ‖𝑃−1 ∙ (𝜉(0) − 𝒑0)‖2197

3. 𝜇 ≥ 𝜇2
(

𝑃−1 ∙ 𝐽𝒇 (𝑠𝒙(𝑡) + (1 − 𝑠)𝜉(𝑡)) ∙ 𝑃
)

for all 𝑠 ∈ [0, 1] and 𝑡 ∈ [0, ℎ]198

Then for all 𝑡 ∈ [0, ℎ],199

‖𝑃−1 ∙ (𝜉 − 𝒙)‖2 ≤

{

𝛿𝑒𝜇|𝑡| + 𝜀
𝜇 (𝑒

𝜇|𝑡| − 1), 𝜇 ≠ 0,
𝛿 + 𝜀𝑡, 𝜇 = 0.

(9)

COROLLARY 4.200

Let 𝒙1,𝒙2 ∈ IVP(𝐵1, ℎ, 𝐵𝑎𝑙𝑙(𝒑0, 𝑟)) and 𝜇 ≥ 𝜇2(𝐽𝒇 (𝐵𝑎𝑙𝑙(𝒑0, 𝑟))). Then for all 𝑡 ∈ [0, ℎ]201

‖𝒙1(𝑡) − 𝒙2(𝑡)‖2 ≤ ‖𝒙1(0) − 𝒙2(0)‖2𝑒𝜇𝑡. (10)
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Figure 2: The dashed lines in the figure form a 𝛿-tube around the red solid curve representing 𝒙(𝑡). The segment 𝑙(𝑡) is a
line segment inside this 𝛿-tube.

Euler-tube Method: For any 𝒙 ∈ IVP(𝐸0, ℎ) and 𝛿 > 0, the 𝛿-tube of 𝒙 is the set
Tube𝛿(𝒙) ∶=

{

(𝑡,𝒑) ∶ ‖𝒑 − 𝒙(𝑡)‖2 ≤ 𝛿, 0 ≤ 𝑡 ≤ ℎ
} (

⊆ [0, ℎ] ×ℝ𝑛)

We say that a function 𝓁 ∶ [0, ℎ] → ℝ𝑛 belongs to the 𝛿-tube of 𝒙 is for all 𝑡 ∈ [0, ℎ], (𝑡,𝓁(𝑡)) ∈ Tube𝛿(𝒙),see graph 2202

for illustration.203

LEMMA 5 (Euler Tube Method).204

Let (𝐵0,𝐻, 𝐵1) be admissible triple, 𝜇 ≥ 𝜇2(𝐽𝒇 (𝐵1)) and 𝑀 ≥ ‖𝒇 [2](𝐵1)‖.205

For any 𝛿 > 0 and ℎ1 > 0 given by206

ℎ1 ← ℎeuler(𝐻,𝑀, 𝜇, 𝛿) ∶=

⎧

⎪

⎨

⎪

⎩

min
{

𝐻, 2𝜇𝛿
𝑀 ⋅(𝑒𝜇𝐻−1)

}

if 𝜇 ≥ 0

min
{

𝐻, 2𝜇𝛿
𝑀 ⋅(𝑒𝜇𝐻−1)−𝜇2𝛿

}

if 𝜇 < 0
(11)

Consider the path 𝑄ℎ1 = (𝒒0, 𝒒1,… , 𝒒𝑚) from the Euler method with uniform step-size ℎ1. If each 𝒒𝑖 ∈ 𝐵1207

(𝑖 = 0,… , 𝑚) then for all 𝑡 ∈ [0,𝐻], we have208

‖𝑄ℎ1 (𝑡) − 𝒙(𝑡; 𝒒0)‖ ≤ 𝛿. (12)
I.e., 𝑄ℎ1 (𝑡) lies inside the 𝛿-tube of 𝒙(𝑡; 𝒒0).209

This lemma allows us to refine end- and full-enclosures (see Lemma 7 below).210

3. Overview of our Algorithm211

We will develop an algorithm for the End-Enclosure Problem (2), by elaborating on the classic Euler method or212

corrector-predictor framework for homotopy path (e.g., [38, 9]). The basic motif is to repeatedly call two subroutines9
213

which we call StepA and StepB, respectively:214

(13)
215

(14)
8For our purposes, matrix 𝑃 in this theorem can be the identity matrix.
9Nediakov et al. [8] call them Algorithms I and II.
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Thus we see this progression216

𝐸0
StepA
←←←←←←→ (𝐸0, ℎ0, 𝐹1)

StepB
←←←←←←→ (𝐸0, ℎ0, 𝐹1, 𝐸1) (15)

where StepA and StepB successively transforms 𝐸0 to an admissible triple and quad. By iterating (15) with 𝐸1 we217

can get to the next quad (𝐸1, ℎ1, 𝐹2, 𝐸2), and so on. This is the basis of most validated IVP algorithms. We encode this218

as:219

(16)
Note that the iteration of (15) above is not guaranteed to halt (i.e., to reach 𝑡 = 1). Moreover, we have no control220

over the length of the end-enclosure. To address this, define an 𝜀-admissible triple to be an admissible (𝐸0, ℎ, 𝐹1)221

with ℎ𝑘𝒇 [𝑘](𝐹1) ⊆ [−𝜀, 𝜀]𝑛. See Lemma 1 for the context of this definition. We now extend StepA to:222

(17)
3.1. Scaffold Framework223

We introduce a data structure called a “scaffold” to encode the intermediate information needed for this224

computation. Figure 3 shows such a scaffold.225

Figure 3: A 7-step scaffold. The horizontal axis represents time, and the vertical axis represents ℝ𝑛. The red curve
corresponds to 𝒙(𝑡), the blue line segments represent end-enclosures, and the green boxes, represent full-enclosures.

By a scaffold we mean a quad  = (𝒕,𝑬,𝑭 ,𝑮) where 𝒕 = (0 ≤ 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 ≤ 1), 𝑬 = (𝐸0,… , 𝐸𝑚),226

𝑭 = (𝐹0,… , 𝐹𝑚) and 𝑮 = (𝐺0,… , 𝐺𝑚) such that the following holds for all 𝑖 = 0, 1,… , 𝑚:227
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1. 𝐸𝑖 is an end enclosure of IVP(𝐸𝑖−1, 𝑡𝑖 − 𝑡𝑖−1) for 𝑖 ≥ 1.228

2. (𝐸𝑖−1,Δ𝑡𝑖, 𝐹𝑖, 𝐸𝑖) is an admissible quadruple.229

3. 𝐺𝑖, called the refinement structure, is used to store other information about the 𝑖th stage (see Section 6).230

For 𝑖 = 1,… , 𝑚, let Δ𝑡𝑖 ∶= 𝑡𝑖 − 𝑡𝑖−1 denote the 𝑖th step size. Call  an 𝑚-stage scaffold where the 𝑖th stage of 231

includes the admissible quadruple (𝐸𝑖−1,Δ𝑡𝑖, 𝐹𝑖, 𝐸𝑖).232

For 𝑖 = 0,… , 𝑚, the 𝑖th stage of  is [𝑖] = (𝑡𝑖, 𝐸𝑖, 𝐹𝑖, 𝐺𝑖). Thus, the initial and final stages are [0] and [𝑚],233

respectively. The end- and full-enclosure of  is 𝐸𝑚 and 𝐹𝑚 (respectively). The time-span of  is the interval [𝑡0, 𝑡𝑚],234

and 𝑡𝑚 is the end-time of  .235

A stage (𝑡′, 𝐸′, 𝐹 ′, 𝐺′) is called a refinement of (𝑡, 𝐸, 𝐹 , 𝐺) if 𝑡 = 𝑡′ and 𝐸′ ⊆ 𝐸 and 𝐹 ′ ⊆ 𝐹 . A 𝑚′-stage scaffold236

 ′ is called a refinement of  if 𝑚′ = 𝑚 and for all 𝑖 = 0,… , 𝑚,  ′[𝑖] is a refinement of [𝑖]. A scaffold  ′ is called237

a extension of  if  is a prefix of  ′. For any 𝛿 > 0, the i-th stage is 𝛿-bounded if238

𝑟𝑖 ≤ 𝑟𝑖−1𝑒
𝜇2(𝐽𝒇 (𝐹𝑖))(𝑡𝑖−𝑡𝑖−1) + 𝛿, (18)

where 𝐵𝑎𝑙𝑙𝒑𝑖 (𝑟𝑖) is the circumscribing ball of 𝐸𝑖. The refinement structure 𝐺𝑖 contains a value 𝛿𝑖 > 0, and during the239

computation, the 𝑖th stage is periodically made 𝛿𝑖-bounded.240

Next, we introduce the algorithm Extend( , 𝜀,𝐻) which calls StepA to add a new stage to  . We view  is an241

object in the sense of OOPL, and write  .Extend(⋯) to self-modify.242

(19)
To bound the length of the end enclosure, we refine  whenever 𝑤max(𝐸𝑚) > 𝜀0. The interface for this Refine243

algorithm is as follows:244

(20)
Within the Refine procedure, when processing a stage over the interval [𝑡𝑖−1, 𝑡𝑖], we apply a "light-weight"245

refinement strategy to improve the full- and end-enclosures. Specifically, the interval is uniformly subdivided into246

mini-steps of size ℎ𝑖, and refinement is performed on these finer subintervals. This local subdivision helps control247

the enclosure width without globally modifying the scaffold structure, allowing more efficient and targeted refinement248

where needed.249

3.2. Logarithmic Norm and Radical Transformation method250

We now introduce a new technique to compute enclosures more efficiently. It does not depend on Taylor expansions,251

but is based on logNorm estimates via Theorem 3.252

Consider an admissible triple (𝐸0, ℎ1, 𝐹1). We compute 𝜇, a logarithmic norm bound for (𝒇 , 𝐹1) (see (3)). When253

the step size ℎ1 ≤ ℎeuler(𝐻,𝑀, 𝜇, 𝛿) (see Lemma 5), we can invoke Corollary 4 to derive improved full- and end-254

enclosures. Moreover, the end-enclosure will be 𝛿-bounded. The 𝛿-bounded condition cannot be obtained from Taylor255

methods.256

We also introduce another technique for estimation based on radical transformation of the original system to257

reduce the logarithmic norm. We distinguish two cases:258

Easy Case: 𝜇 ≤ 0. In this case, 𝐹1 is a contraction zone. By Theorem 3, we have 𝑤max(𝐸1) ≤ 𝑤max(𝐸0). Therefore,259

we directly estimate the full- and end-enclosures using the logarithmic norm without further transformation.260
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Hard Case: 𝜇 > 0. The key idea here is to construct an invertible transformation 𝜋 ∶ ℝ𝑛 → ℝ𝑛. Let261

𝒚 = (𝑦1,… , 𝑦𝑛) ∶=𝜋(𝒙) and consider the transformed differential system:262

𝒚′ = 𝒈(𝒚), 𝒈(𝒚) ∶= 𝐽𝜋(𝜋−1(𝒚)) ⋅ 𝒇 (𝜋−1(𝒚)). (21)
This is considered with the admissible triple (𝜋(𝐸0), ℎ, 𝜋(𝐹1)).263

We define the transformation as a composition:264

𝜋 = 𝜋◦𝜋, (22)
where 𝜋 is an affine map (see Appendix B), and 𝜋(𝒙) = (𝑥−𝑑11 ,… , 𝑥−𝑑𝑛𝑛 ) for some exponent vector 𝒅 = (𝑑1,… , 𝑑𝑛) to265

be determined. The map 𝜋 is invertible provided 𝑑𝑖 ≠ 0 for all 𝑖. Due to the component-wise inversion, we refer to 𝜋266

as the radical transform.267

Assuming IVP(𝐵0, ℎ, 𝐵1) is valid (Section 2.1), and that 𝐵1 is sufficiently small, we can show that 𝜋(𝐵1) is a268

contraction zone for (𝜋(𝐵1), 𝒈). This brings the problem back to the easy case. After computing a shrunken enclosures269

in the transformed space, we pull it back to obtain an enclosures for the original IVP. For consistency, in the easy case,270

we define (𝜋, 𝒈) as (Id,𝒇 ).271

4. Steps A and B272

Nedialkov et al [26, 8] provide a careful study of various algorithms for StepA and StepB. In the following, we273

provide new forms of StepA and StepB.274

4.1. Step A275

We now provide the subroutine StepA(𝐸0,𝐻, 𝜀). Its input/output specification has been given in (17). Basically,276

we can regard its main goal as computing the largest possible ℎ > 0 (ℎ ≤ 𝐻) such that (𝐸0, ℎ, 𝐹1) is 𝜀-admissible for277

some 𝐹1. When calling StepA, we are at some time 𝑡1 ∈ [0, 1), and so the largest ℎ needed is 𝐻 = 1− 𝑡1. We therefore278

pass this value 𝐻 to our subroutine. In contrast, [26, p.458, Figure 1], uses a complicated formula for 𝐻 based the279

previous step.280

LEMMA 6.281

Let 𝐻 > 0, 𝜺 = (𝜀1,… , 𝜀𝑛), and 𝐸0 ⊆ ℝ𝑛. If282

𝐵 ∶=
𝑘−1
∑

𝑖=0
[0,𝐻]𝑖𝒇 [𝑖](𝐸0) + 𝐵𝑜𝑥(−𝜺, 𝜺) and 𝑀 ∶= sup

𝒑∈𝐵
‖𝒇 [𝑘](𝒑)‖2,

then an 𝜺-admissible pair for 𝐸0 is given by (ℎ, 𝐹1) where283

ℎ = min
{

𝐻,
𝑛

min
𝑖=1

(

𝜀𝑖
𝑀𝑖

)1∕𝑘}
and 𝐹1 =

𝑘−1
∑

𝑖=0
[0, ℎ]𝑖𝒇 [𝑖](𝐸0) + 𝐵𝑜𝑥(−𝜺, 𝜺). (23)

Using Lemma 6, we can define StepA(𝐸0,𝐻, 𝜺) as computing (ℎ, 𝐹1) as given by (23). Call this the non-adaptive284

StepA, denoted StepA0. The non-adaptive ℎ may be too pessimistic. Instead, we propose to compute ℎ adaptively:285

286

287
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StepA(𝐸0,𝐻, 𝜺)→ (ℎ, 𝐹1)INPUT: 𝐸0 ∈ ℝ𝑛, 𝐻 > 0, 𝜺 = (𝜀1,… , 𝜀𝑛)OUTPUT: 0 < ℎ ≤ 𝐻 , 𝐹1 ∈ ℝ𝑛 such that (𝐸0, ℎ, 𝐹1) is 𝜺-admissible.
ℎ ← 0
While (𝐻 > 2ℎ)

𝐵 ← 𝐵𝑜𝑥
(
∑𝑘−1

𝑖=0 [0,𝐻]𝑖𝒇 [𝑖](𝐸0)
)

+ 𝐵𝑜𝑥(−𝜺, 𝜺)
𝑴 ← 𝒘(𝐵𝑜𝑥(𝒇 [𝑘](𝐵)))

ℎ ← min𝑛𝑖=1
(

𝜀𝑖
𝑀𝑖

)1∕𝑘 (where 𝑴 = (𝑀1,… ,𝑀𝑛))
𝐻 ← 𝐻∕2

𝐹1 ← 𝐵.
Return (ℎ, 𝐹1)

288

In the while-loop of StepA, when 𝐻 > 2ℎ, we reduce 𝐻 to compute a larger value of ℎ. This is an adaptive step289

size search that adjusts 𝐻 in order to maximize ℎ under the constraint of satisfying Lemma 6. The resulting value of ℎ290

is theoretically a factor of 2 from the optimal. The summation ∑𝑘−1
𝑖=0 in StepA should be evaluated with Horner’s rule291

(see [26, p. 458]).292

4.2. Step B293

For Step B, there are several methods such as the “Direct Method” [25, 8], Lohner’s method [12], and 𝐶1-Lohner294

method [39]. The Direct Method, on input (𝐸0, ℎ, 𝐹1) returns the following end-enclosure295

𝐸1 =
𝑘−1
∑

𝑖=0
(ℎ𝑖𝒇 [𝑖](𝑚(𝐸0)) + ℎ𝑘𝒇 [𝑘](𝐹1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Part(m)

+ (
𝑘−1
∑

𝑖=0
ℎ𝑖𝐽𝒇 [𝑖] (𝐸0)) ∙ (𝐸0 − 𝑚(𝐸0))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Part(r)

(24)

where Part(m) tracks the midpoint𝑚(𝐸0) and Part(r) is the correction factor for Part(m). Let us define StepB0(𝐸0, ℎ, 𝐹1)296

as return the value 𝐸1 in (24). We may also call StepB0 the direct method.297

Both the Lohner and the 𝐶1-Lohner methods are refinements of the Direct method. The Lohner method aims to298

reduce the wrapping effect introduced in Part(r). The 𝐶1-Lohner method goes further by considering the limit when299

𝑘 → ∞: then 𝑉 ∶=
(

∑∞
𝑖=0 ℎ

𝑖𝐽𝒇 [𝑖]

)

satisfies another ODE: 𝑉 ′ = 𝐽𝑓 ⋅ 𝑉 . By solving this ODE, the method effectively300

reduces the overall error. We will also use the logarithmic norm to estimate the range by Corollary 4, and combine it301

with the Direct Method in StepB:302

303

304

StepB((𝐸0, ℎ, 𝐹1, 𝜇))→ 𝐸1INPUT: A admissible triple (𝐸0, ℎ, 𝐹1) and
the logNorm𝜇 = 𝜇2(𝐽𝒇 (𝐹1)).

OUTPUT: 𝐸1 is an end-enclosure for (𝐸0, ℎ, 𝐹1).

𝒑 ←
∑𝑘−1

𝑖=0 (ℎ
𝑖𝒇 [𝑖](𝑚(𝐸0)) + ℎ𝑘𝒇 [𝑘](𝐹1).

𝑟0 ←
1
2𝑤max(𝐸0).

𝐸1 ← 𝒑 +(
∑𝑘−1

𝑖=0 ℎ𝑖𝐽𝒇 [𝑖] (𝐸0)) ∙ (𝐸0 − 𝑚(𝐸0)) ∩ 𝐵𝑜𝑥𝒑(𝑟0𝑒𝜇ℎ).
Return 𝐸1.

305

We can also use the range estimation provided by Corollary 4 , in combination with Lohner-type methods.306

4.3. Refinement Technique for Full and End Enclosures of a Stage307

Let (𝐸𝑖−1,Δ𝑡𝑖, 𝐹𝑖, 𝐸𝑖) be an admissible quad for the 𝑖th stage. We now introduce a “light weight” technique to refine308

𝐹𝑖, 𝐸𝑖 using Euler’s method.309
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Eg* Name 𝒇 (𝒙) Parameters Box 𝐵0 Reference

Eg1 Volterra
(

𝑎𝑥(1 − 𝑦)
−𝑏𝑦(1 − 𝑥)

) (

𝑎
𝑏

)

=
(

2
1

)

𝐵𝑜𝑥(1,3)(0.1) [40], [13, p.13]

Eg2 Van der Pol
(

𝑦
−𝑐(1 − 𝑥2)𝑦 − 𝑥

)

𝑐 = 1 𝐵𝑜𝑥(−3,3)(0.1) [13, p.2]

Eg3 Asymptote

(

𝑥2

−𝑦2 + 7𝑥

)

N/A 𝐵𝑜𝑥(−1.5,8.5)(0.01) N/A

Eg4 Lorenz
⎛

⎜

⎜

⎝

𝜎(𝑦 − 𝑥)
𝑥(𝜌 − 𝑧) − 𝑦
𝑥𝑦 − 𝛽𝑧

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜎
𝜌
𝛽

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

10
28
8∕3

⎞

⎟

⎟

⎠

𝐵𝑜𝑥(15,15,36)(0.001) [13, p.11]

Table 1
List of IVP Problems

LEMMA 7 (Euler Enclosures with logNorm).310

Consider an admissible triple (𝐸0,𝐻, 𝐹1) where 𝐸0 ∶=𝐵𝑎𝑙𝑙(𝒑0, 𝑟0).311

Let 𝒒0 = 𝒑0 + ℎ1𝑓 (𝒑0) be obtained from 𝒑0 by an Euler step of size ℎ1.312

If ℎ1 ≤ ℎeuler(𝐻,𝑀, 𝜇, 𝛿) (cf. (11)), where 𝜇 = 𝜇2(𝐽𝒇 (𝐹1)), 𝑀 = ‖𝒇 [2](𝐹1)‖, and 𝛿 > 0, then:313

(a) The linear function 𝓁(𝑡) ∶= (1 − 𝑡∕ℎ1)𝒑0 + (𝑡∕ℎ1)𝒒0 lies in the 𝛿-tube of 𝒙0 = IVP(𝒑0,𝐻).314

(b) An end-enclosure for IVP(𝐸0, ℎ1) is given by 𝐵𝑎𝑙𝑙(𝒒0, 𝑟0𝑒𝜇ℎ1 + 𝛿).315

(c) A full-enclosure for IVP(𝐸0, ℎ1) is given by CHull(𝐵𝑎𝑙𝑙(𝒑0, 𝑟′), 𝐵𝑎𝑙𝑙(𝒒0, 𝑟′)) where 𝑟′ = 𝛿 + max(𝑟0𝑒𝜇ℎ1 , 𝑟0).316

Key idea of the refinement strategy for a stage: suppose stage [𝑖] is represented by the admissible triple317

(𝐸0,𝐻, 𝐹1), and we have a given target 𝛿𝑖 > 0. The goal is to compute a 𝛿𝑖-bounded end-enclosure for this stage.318

Using the above lemma, we can compute a ℎ𝑖 = ℎeuler(⋯ , 𝛿𝑖) (see (11)) such that an Euler path with uniform step size319

ℎ𝑖 will produce 𝛿𝑖-bounded end-enclosure for stage 𝑖. Call this the EulerTube Subroutine. Unfortunately, this is too320

inefficient when 𝑀,𝜇 is large. We therefore introduce an adaptive method called Bisection to reduce 𝑀,𝜇:321

• Bisection Method: we subdivide the interval [0,𝐻] into 2𝓁 mini-steps of size ℎ𝓁 ∶=𝐻∕2𝓁 (for 𝓁 = 1, 2,…). At322

each level 𝓁, we can compute full- and end-enclosures (𝑭 𝑖[𝑗],𝑬𝑖[𝑗]) of the 𝑗th mini-step (𝑗 = 1,… , 2𝓁) using323

the following formula:324

𝑭 𝑖[𝑗] ←
𝑘−1
∑

𝑝=0
[0, ℎ𝓁]𝑝𝒇 [𝑝](𝑬𝑖[𝑗 − 1] + [0, ℎ𝓁]𝑘𝒇 [𝑘](𝐹1), (25)

and325

𝑬𝑖[𝑗] ← StepB(𝑬𝑖[𝑗 − 1], ℎ𝓁 ,𝑭 𝑖[𝑗], 𝜇2(𝐽𝒇 (𝑭 𝑖[𝑗]))). (26)

• When 𝓁 is sufficiently large, i.e., ℎ𝓁 ≤ ℎ𝑖, then we can call the EulerTube subroutine above. Our experiments326

show, this subroutine is more accurate.327

4.4. List of Problems and Local Experiments on Steps A and B328

Table 1 is a list of problems used throughout this paper for our experiments. Here we will give “local” (single-step)329

experiments on the effectiveness our Steps A and B. Later in Section 7, we will do “global” experiments based on our330

overall algorithm. We measure each technique by ratios denoted by 𝜎, such that 𝜎 > 1 shows the effectiveness of the331

technique. Note that the gains for local experiments may appear small (e.g., 1.0001). But in global 𝑚-step experiment,332

this translates to (1.0001)𝑚 which can be significant.333

First, in Table 2, we compare our StepA with the non-adaptive StepA0. This non-adaptive StepA0 is basically the334

algorithm10 in [26, p.458, Figure 1].335

10We replace their ℎ𝑗,0 by 𝐻 , and 2ℎ𝑘𝑗,0𝒇
[𝑘]([𝑦𝑗−1]) by 𝜺.
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Eg 𝐸0 𝜀 H 𝜎 𝜏 𝜌

Eg1

[0.9, 1.1], [2.9, 3.1]
0.1 1.0 38.5 1.15 3.05

10 2.22 × 106 1.06 3.84

0.0001 1.0 56.8 1.02 5.26
10 2.17 × 106 1.27 3.62

[2, 4], [3, 5]
0.1 1.0 3.89 × 104 1.03 2.41

10 1.89 × 108 1.18 3.17

0.0001 1.0 4.97 × 103 1.01 1.52
10 2.65 × 108 1.45 1.72

Eg2

[−3.1,−2.9], [2.9, 3.1]
0.1 1.0 5.12 × 103 14.6 8.49

10 3.50 × 1012 10.2 13.1

0.0001 1.0 5.58 × 103 1.00 8.49
10 4.24 × 1012 7.35 10.4

[−4,−2], [3, 5]
0.1 1.0 3.69 × 105 1.08 5.21

10 1.90 × 1014 1.19 7.41

0.0001 1.0 4.56 × 105 1.0 2.58
10 2.60 × 1014 1.49 3.16

Eg3

[−1.51,−1.49], [8.49, 8.51]
0.1 1.0 2.41 × 104 1.83 65.2

10 2.24 × 109 1.49 30.5

0.0001 1.0 3.23 × 104 1.005 129
10 2.28 × 109 1.81 161

[−3.5,−3.4], [8.4, 8.5]
0.1 1.0 4.30 × 104 1.36 21.1

10 3.00 × 109 1.11 26.2

0.0001 1.0 4.36 × 104 1.20 31.2
10 3.05 × 109 1.20 38.7

Eg4

[14.999, 15.001], [14.999, 15.001], [35.999, 36.001]
0.1 1.0 2.98 × 103 1.00 59.9

10 1.81 × 108 1.04 80.5

0.0001 1.0 3.83 × 103 1.01 2050.88
10 2.84 × 108 1.03 1356.44

[12, 15], [13, 15], [34, 36]
0.1 1.0 1.63 × 104 1.04 4.05

10 8.70 × 108 1.08 5.52

0.0001 1.0 1.95 × 104 1.05 2.05
10 1.09 × 109 1.07 2.51

Table 2
Comparison of StepA with StepA0. Each row of the table is an experiment with one of our examples (Eg1, Eq2, etc), with
the indicated values of (𝐸0,𝐻, 𝜀). The key column is labeled 𝜎 = ℎ∕ℎ0, giving the ratio of the adaptive step size over the
non-adaptive size.

Let (ℎ0, 𝐹0) and 𝑡0 be the admissible pair and computing time for StepA0(𝐸0,𝐻, 𝜀). Let (ℎ, 𝐹 ), 𝑡 be the
corresponding values for StepA(𝐸0,𝐻, 𝜀). The performance of these 2 algorithms can be measured by three ratios:

𝜌 ∶=
𝑤max(𝐹 )
𝑤max(𝐹0)

, 𝜎 ∶= ℎ
ℎ0

, 𝜏 ∶= 𝑡
𝑡0
.

The most important ratio is 𝜎, which we want to be as large as possible and > 1. A large 𝜎 will make 𝜌 and 𝜏 to be > 1,336

which is not good when viewed in isolation. But such increases in 𝜌 and 𝜏, in moderation, is a good overall tradeoff.337

Table 2 shows that StepA can dramatically increase the step size ℎ without incurring a significant increase in338

computation time. So the adaptive version is highly effective and meaningful.339

The Table 3, we combine two comparisons:340

1. 𝜎1 = 𝑤max(𝐸1)
𝑤max(𝐸2)

compares the maximum width from the 𝐶𝑟-Lohner algorithm (𝐸1) with that of the combined341

method based on Corollary 4 , where 𝐸2 = 𝐸1 ∩𝐵𝒑(𝑟0𝑒𝜇𝑇 ), 𝑟0 is the radius of the initial enclosure, and 𝒑 is the342

traced point(Part(m) of (24).343

2. 𝜎2 =
𝑤max(𝐷𝐵1)
𝑤max(𝐵1)

compares the maximum width from the Direct method (𝐷𝐵1) with that from StepB (𝐵1).344

For each example, we provide an admissible triple and compute the logarithmic norm 𝜇 ≥ 𝜇2(𝐽𝒇 (𝐹1)).345

The data in the Table 3 show that intersecting either the 𝐶𝑟-Lohner method or the Direct method with the estimate346

from Corollary 4 leads to tighter enclosures, with the improvement being especially pronounced for the Direct method.347

This effect becomes more noticeable as the step size increases.348

The Table 4 compares various examples under a given (𝐸0,𝐻, 𝐹1), showing the values of ℎ1 = ℎeuler(𝐻,𝑀, 𝜇, 𝛿)349

computed for different choices of 𝛿 (see (11)). It also reports the ratio of the maximum widths of the full enclosures350

obtained using Lemma 7 and (25), respectively.351

The data in Table 4 demonstrate that our method described in Lemma 7 yields a better full enclosure than the one352

obtained from (25). It is worth emphasizing that updating the full enclosure is important, as it allows us to reduce the353

value of logNorm, which in turn enables further tightening of the end enclosure during subsequent refinement steps.354
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Eg* 𝐸0 𝐹1 ℎ 𝜇 𝜎1 𝜎2

Eg1

𝐵𝑜𝑥(0.6,1.2)(0.01)
(0.58, 1.17) ± (0.03, 0.04) 0.10 -0.23 1.10 1.13

(0.575, 1.135) ± (0.065, 0.075) 0.22 -0.03 1.16 1.41
(0.57, 1.105) ± (0.16, 0.135) 0.34 0.28 1.11 2.88

𝐵𝑜𝑥(0.6,1.2)(10
−4)

(0.585, 1.175) ± (0.015, 0.025) 0.10 -0.27 1.10 1.10
(0.57, 1.115) ± (0.08, 0.095) 0.33 0.09 1.15 5.10
(0.57, 1.105) ± (0.14, 0.125) 0.37 0.26 1.11 16.09

Eg2

𝐵𝑜𝑥(−3,3)(0.1)
(−3.00, 2.96) ± (0.105, 0.14) 0.003 7.18 1.01 1.00
(−2.92, 2.47) ± (0.22, 1.13) 0.05 10.67 1.00 1.02

(−2.895, 2.265) ± (0.295, 2.005) 0.08 14.33 1.00 1.07

𝐵𝑜𝑥(−3,3)(10
−4)

(−2.985, 2.925) ± (0.015, 0.075) 0.006 6.03 1.01 1.03
(−2.895, 2.35) ± (0.185, 1.57) 0.085 11.79 1.00 2.25
(−2.895, 2.265) ± (0.295, 2.005) 0.09 12.66 1.00 2.57

Eg3

𝐵𝑜𝑥(−1.5,8.5)(0.001)
(−1.495, 8.475) ± (0.015, 0.035) 0.0005 -2.12 1.00 1.01
(−1.49, 8.315) ± (0.02, 0.205) 0.004 -1.99 1.00 1.10
(−1.445, 7.055) ± (0.065, 3.115) 0.04 0.37 1.00 2.07

𝐵𝑜𝑥(−1.5,8.5)(10
−4)

(−1.495, 8.475) ± (0.005, 0.025) 0.0005 -2.15 1.00 1.02
(−1.495, 8.31) ± (0.005, 0.20) 0.004 -2.08 1.00 1.50
(−1.445, 7.055) ± (0.055, 3.105) 0.04 0.34 1.00 8.61

Eg4

𝐵𝑜𝑥(15,15,36)(0.001)
(14.855, 13.475, 37.085) ± (0.145, 1.595, 1.815) 0.024 3.19 1.35 1.52

(14.74, 12.885, 37.23) ± (0.28, 2.325, 2.27) 0.027 3.67 1.36 1.80
(14.665, 12.58, 37.275) ± (0.375, 2.74, 3.215) 0.031 3.98 1.37 2.58

𝐵𝑜𝑥(15,15,36)(10
−4)

(14.855, 13.475, 37.085) ± (0.145, 1.595, 1.815) 0.020 3.19 1.33 1.79
(14.80, 13.16, 37.23) ± (0.21, 1.97, 2.27) 0.024 3.42 1.35 3.18

(14.665, 12.58, 37.275) ± (0.375, 2.74, 3.215) 0.031 3.98 1.37 13.52

Table 3
Comparison of StepB with the Direct method and the 𝐶𝑟-Lohner algorithm. The key column is 𝜎2 = 𝑤max(𝐷𝐵1)

𝑤max(𝐵1)
, which

reflects the ratio of the maximum width produced by the Direct method (𝐷𝐵1) to that by StepB (𝐵1), serving as a direct
measure of their relative tightness. We also report 𝜎1 which compares the maximum width from the 𝐶𝑟-Lohner algorithm
with that of the combined method based on Corollary 4.

Eg* (𝐸0 ,𝐻, 𝐹1) 𝛿 ℎ1 𝜇 𝜎𝐸0 𝐻 𝐹1

Eg1 (1.0, 3.0) ± (0.1, 0.1) 0.1 (0.745, 2.955) ± (0.455, 0.295)
0.1 0.08 1.31 1.73
0.01 0.008 1.31 1.09
0.001 0.0008 1.31 1.01

Eg2 (−3.0, 3.0) ± (0.1, 0.1) 0.05 (−2.92, 2.40) ± (0.28, 0.80)
0.1 0.019 9.57 1.62
0.01 0.0019 9.57 1.10
0.001 0.00019 9.57 1.01

Eg3 (−1.50, 8.50) ± (0.01, 0.01) 0.04 (−1.445, 6.635) ± (0.165, 1.975)
0.1 0.0059 -0.0026 2.48
0.01 0.00059 -0.0026 1.75
0.001 0.000059 -0.0026 1.14

Eg4 (15.000, 15.000, 36.000) ± (0.001, 0.001, 0.001) 0.027 (14.736, 12.800, 37.279) ± (0.365, 2.301, 2.442)
0.1 0.0026 3.455 1.84
0.01 0.00026 3.455 1.74
0.001 0.000026 3.455 1.41

Table 4
Comparison of Full-Enclosures from Lemma 7 and (25). 𝜎 ∶= 𝑤max(𝐹0)

𝑤max(𝐹 )
, where 𝐹 is the enclosure computed via Lemma 7,

and 𝐹0 is the one obtained using (25).

5. Tighter Enclosures using Transformation355

In the previous section, we used the logNorm in combination with the Taylor method to obtain tighter enclosures.356

However, the earlier approach has two main issues:357

1. It may only reduce the maximum width of the enclosure, without considering the minimum width.358

For example, consider the ODE system (𝑥′, 𝑦′) = (7𝑥, 𝑦), which consists of two independent one-dimensional359

subsystems. When analyzing this as a two-dimensional system, the logarithmic norm depends only on the360

component 𝑥′ = 7𝑥, since the logarithmic norm takes the maximum value.361

2. For methods like the Direct method—which first track the midpoint and then estimate the range—there is a362

potential problem: the tracked midpoint can deviate significantly from the true center of the solution set. This363

deviation may lead to considerable overestimation in the resulting enclosure.364

A radical map can be used to address these issues as suggested in our introduction.365

Consider an admissible triple (𝐸0, ℎ, 𝐹1). By the validity of IVP(𝐸0, ℎ), the following condition can be achieved if366

𝐸0 sufficiently shrunk:367

0 ∉ 𝐹 1 ∶=𝐵𝑜𝑥(𝒇 (𝐹1)) =
𝑛
∏

𝑖=1
𝐼 𝑖. (27)
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This implies that there exists some 𝑖 = 1,… , 𝑛 such that 0 ∉ 𝐼 𝑖. We need such a condition because the radical map368

(4) is only defined if each 𝑥𝑖 > 0, which we can achieve by an affine transformation 𝜋. Recall in Subsection 3.2 that in369

the hard case, we compute the map 𝜋 = 𝜋◦𝜋. Define the box 𝐵2 and 𝑏̌max370

𝐵2 ∶=𝐵𝑜𝑥(𝜋(𝐹1)) =
𝑛
∏

𝑖=1
[1, 𝑏̌𝑖]. 𝑏̌max ∶= max

𝑖=1,…,𝑛
𝑏̌𝑖. (28)

Using 𝜋, we can introduce an intermediate ODE system with new differential variables 𝒚 ∶=𝜋(𝒙) and algebraic371

function 𝒈(𝒚) ∶= 𝐽𝜋 ∙ 𝒇 (𝜋−1(𝒚)) satisfying the ODE: 𝒚′ = 𝒈(𝒚) and372

𝒈(𝜋(𝐹1)) ≥ 1 = [1,… , 1]. (29)
Note that (𝜋(𝐸0), ℎ, 𝜋(𝐹1)) is an admissible triple in the (𝒚, 𝒈)-space.373

THEOREM 8 (Radical Transform).374

375

(a) For any 𝒅 = (𝑑1,… , 𝑑𝑛), we have376

𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

≤ max
{

−(𝑑𝑖+1)
𝑏̌𝑖

∶ 𝑖 = 1,… , 𝑛
}

+max𝑛𝑖=1
{

𝑑𝑖
}

⋅ ‖𝐽𝒈(𝜋(𝐹1))‖2 ⋅max𝑛𝑖=1
{

(𝑏̌𝑖)𝑑𝑖+1

𝑑𝑖

}

.

(b) If 𝑑1 = ⋯ = 𝑑𝑛 = 𝑑 then

𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

≤ −(𝑑 + 1) 1
𝑏̌max

+ (𝑏̌max)𝑑+1‖𝐽𝒈(𝜋(𝐹1))‖2.

Until now, the value of 𝒅 in the radical map 𝜋 was arbitrary. We now specify 𝒅 = 𝒅(𝐹1). The definition of377

𝒅 is motivated by Theorem 8. The optimal choice of 𝒅 is not obvious. So we make a simple choice by restricting378

𝑑1 = ⋯ = 𝑑𝑛 = 𝑑. In this case, we could choose the upper bound of 𝑑:379

𝑑(𝐹1) ∶= max
{

1, 2‖𝐽𝒈(𝜋(𝐹1))‖2 − 1
}

. (30)

LEMMA 9. If 𝑑 ≥ 𝑑(𝐹1), we have:380

(a) 𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

≤ (−2 + (𝑏̌max)𝑑+2) ⋅
‖𝐽𝒈(𝜋(𝐹1))‖2

𝑏̌max
.381

(b) If log2(𝑏̌max) <
1

𝑑+2 then 𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

< 0.382

To use this lemma, we first check if choosing 𝑑 to be 𝑑(𝐹1) satisfies 𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

< 0. If so, we perform a binary383

search over 𝑑 ∈ [1, 𝑑(𝐹1)] to find an integer 𝑑 such that 𝜇2
(

𝐽𝒈(𝜋(𝐹1))
) is negative and as close to zero as possible.384

Otherwise, 𝜋 = Id. As seen in Subsection 5.2, this is a good strategy.385

Given an admissible triple (𝐸0, ℎ, 𝐹1), we introduce a subroutine called Transform(𝒇 , 𝐹1) to convert the386

differential equation 𝒙′ = 𝒇 (𝒙) to 𝒚′ = 𝒈(𝒚) according to above map 𝜋. However, this transformation depends on387

the condition (27). So we first define the following predicate AvoidsZero(𝒇 , 𝐹1):388

389

390

AvoidsZero(𝒇 , 𝐹1) → true or false.
INPUT: 𝐹1 ⊆ ℝ𝑛.
OUTPUT: true if and only if 𝟎 ∉ Box(𝒇 (𝐅𝟏)).

391
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Now we may define the transformation subroutine:392

393

394
Transform(𝒇 , 𝐹1, 𝜇1) → (𝜋, 𝒈, 𝜇)

INPUT: 𝐹1 ⊆ ℝ𝑛 and 𝜇1 ≥ 𝜇2(𝐽𝒇 (𝐹1)).
OUTPUT: (𝜋, 𝜇, 𝒈) where

𝜋 and 𝒈 satisfy (22) and (21).
If (AvoidsZero(𝒇 , 𝐹1)=false & 𝜇1 ≤ 0)

Return (Id,𝒇 , 𝜇1)
Compute 𝜋 to satisfy (29)
Compute 𝜋 and 𝒈 according (22) and (21).
𝜇 ← 𝜇2(𝐽𝒈(𝜋(𝐵))).
Return (𝜋, 𝒈, 𝜇)

395

5.1. Transformation of Error Bounds396

We want to compute a transformation 𝛿𝑥 ↦ 𝛿𝑦 such that if 𝐵 is a 𝛿𝑦-bounded end-enclosure for (𝜋(𝐸0), ℎ, 𝜋(𝐹1))397

in the (𝒚, 𝒈)-space, then 𝜋−1(𝐵) is a 𝛿𝑥-bounded end-enclosure of (𝐸0, ℎ, 𝐹1) in the (𝒙,𝒇 )-space. The following lemma398

achieves this:399

LEMMA 10.
Let 𝒚 = 𝜋(𝒙) and

𝒙 = IVP𝒇 (𝒙0, ℎ, 𝐹1),
𝒚 = IVP𝒈(𝜋(𝒙0), ℎ, 𝜋(𝐹1)).

For any 𝛿𝑥 > 0 and any point 𝒑 ∈ ℝ𝑛 satisfying400

‖𝜋(𝒑) − 𝒚(ℎ)‖2 ≤ 𝛿𝑦 ∶=
𝛿𝑥

‖𝐽𝜋−1 (𝜋(𝐹1))‖2
, (31)

we have
‖𝒑 − 𝒙(ℎ)‖2 ≤ 𝛿𝑥.

401

402
TransformBound(𝛿, 𝜋, 𝐹1) → 𝛿′

INPUT: 𝛿 > 0, 𝜋, 𝐹1 as above.
OUTPUT: 𝛿′ > 0 satisfying the Lemma 10.
If (𝜋 is the identity map)

Return 𝛿.
Else

Return 𝛿
‖𝐽𝜋−1 (𝜋(𝐹1))‖2

.

403

5.2. Enclosures via Transformation404

Let (𝐸0, ℎ, 𝐹1) be an admissible triple that has been transformed into (𝜋(𝐸0), ℎ, 𝜋(𝐹1)). Let 𝜇1 be the logNorm405

bound for (𝒇 , 𝐹1) and 𝜇2 be the corresponding bound for (𝒈, 𝜋(𝐹1)). Given 𝛿𝑥 > 0, if we trace 𝑚 = 𝑚(𝐸0) to get a406

point 𝑸 such that ‖𝑸 − 𝒙(ℎ;𝑚)‖ ≤ 𝛿𝑥 then407

𝐸std
1 ∶=𝐵𝑜𝑥𝑸

(

𝑟0𝑒
𝜇1ℎ + 𝛿𝑥

)

. (32)
as an end-enclosure for IVP(𝐸0, ℎ, 𝐹1), 𝑟0 radius of the circumball of 𝐸0. Using our 𝜋-transform we can first compute408

a point 𝒒 such that ‖𝒒−𝒚(ℎ)‖ ≤ 𝛿𝑦 and take its inverse, or we can take the inverse of the end-enclosure in (𝒚, 𝒈)-space.409

These two methods give us two end-enclosures:410

𝐸xform1
1 ∶=𝐵𝑜𝑥𝜋−1(𝒒)

(

𝑟0𝑒
𝜇1ℎ + 𝛿𝑥

)

,
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𝑑∖𝑒 -2.5 -2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0 2.5

-3.5 52.6123 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000
-3.0 23.8482 22.1158 1.0000 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000
-2.5 10.8027 10.2084 9.3113 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000
-2.0 4.8901 4.7089 4.4287 3.9948 1.0000 1.0000 1 1.0000 1.0000 1.0000
-1.5 2.2121 2.1707 2.1051 1.9992 1.8276 1.0000 1 1.0000 1.0000 1.0000
-1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000
-0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.5647 1 1.0308 1.0168 1.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0798 1.0464 1.0037
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0611 1.0594 1.0075
1.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0474 1.0492 1.0118

Table 5
This is a table of the ratios 𝑊 (𝑒, 𝑑) using our transform subroutines. The red entries are maximal for each column, and
correspond to the choice 𝑑 = 𝑒 − 1. Note that we exclude the column for 𝑒 = 0 since the ODE 𝑥′ = 𝑥𝑒 = 1 is independent
of 𝑥. We also excluded the row for 𝑑 = 0 as the radical transform 𝑦 = 𝑥𝑑 = 1 makes 𝑦 independent of 𝑥. The column for
𝑒 = 1 is literally 1 (other values written “1.0000” are generally approximations).

𝐸xform2
1 ∶=𝜋−1

(

𝐵𝑜𝑥𝒒((𝑟′0 + 𝑑𝑚)𝑒𝜇
2ℎ + 𝛿𝑦)

)

,

𝐸xform
1 ∶=𝐸xform1

1 ∩ 𝐸xform2
1 (33)

where 𝑟′0 is the radius of the circumball of 𝜋(𝐸0) and 𝑑𝑚 ≥ ‖𝜋(𝑚(𝐸0)) −𝑚(𝜋(𝐸0))‖. To motivate these transforms, the411

following will analyze the situation in the special case 𝑛 = 1.412

EXAMPLE 1 (BENEFITS OF TRANSFORM (𝑛 = 1)). Consider the ODE 𝑥′ = 𝑥𝑒 (𝑒 ≠ 0) for 𝑒 real with corresponding413

valid IVP(𝐵0, ℎ) where 𝐵0 = 0.2 ± 0.04 and ℎ = 1. Apply the radical transform 𝑦 = 𝑥−𝑑 for some real 𝑑 ≠ 0.414

Then we see that 𝑦′ = 𝑑
𝑑𝑥

(

𝑥−𝑑
)

⋅ 𝑥′ = −𝑑𝑦
−𝑒+1+𝑑

𝑑 . Let 𝑊 (𝑒, 𝑑) ∶=
𝑤max(𝐸std

1 )
𝑤max(𝐸xform

1 )
denote the ratio of the widths of the415

end-enclosure using (32) and (33). Table 5 shows that the maximum value of 𝑊 (𝑒, 𝑑) for a fixed 𝑒 ≠ 1 is achieved416

when 𝑑 = 𝑒 − 1, i.e., 𝑦′ = −𝑑.417

418

5.2.1. Local Experiments on Transform Methods419

We will compare 𝐸std
1 and 𝐸xform

1 using two independent ratios:420

𝜌(𝐸std
1 , 𝐸xform

1 ) ∶=
( 𝑤max(𝐸std

1 )
𝑤max(𝐸xform

1 )
,

𝑤min(𝐸std
1 )

𝑤min(𝐸xform
1 ))

)

. (34)

Our current experiments shows that the first ratio in 𝜌(𝐸std
1 , 𝐸xform

1 ) is always less than the second ratio, and for421

simplicity, we only show the second ratio, which is denoted by 𝜎(𝐸std
1 , 𝐸xform

1 ) in the last column of Table 6.422

Table 6 compares a single step of our transform method with the Standard method (32).423

Each row represents a single experiment. The columns under (𝐸0, 𝐹1, ℎ) represent an admissible triple. The column424

under 𝜇1 (resp. 𝜇2) represents the logNorm bound of 𝐹1 in the (𝒙,𝒇 )-space (resp. 𝜋(𝐹1) in the (𝒚, 𝒈)-space). The 𝑑425

column refers to uniform exponent 𝒅 = (𝑑,… , 𝑑) of our radical transform. The last column 𝜎(𝐸std
1 , 𝐸xform

1 ) is the most426

significant, showing the relative improvement of our method over 𝐸std
1 (32).427

Table 7 further investigates the impact of the step size ℎ on the improvement ratio. In this experiment, the initial428

box 𝐸0 is fixed, while ℎ is gradually increased (from 0.00001 to 0.6), and the corresponding changes in 𝜎 are observed.429

From the experimental results, we can conclude the following:430

1. Applying the transformation consistently yields a tighter end-enclosure. Moreover, this improvement appears to431

grow exponentially.432

2. When the IVP system exhibits significantly faster growth in one coordinate direction over a certain step size range,433

the benefit of applying the transformation becomes increasingly pronounced as the step size grows. This is clearly434

observed in examples such as eg2, eg3, and eg4. The case of eg1 with a loop trajectory (see Figure 1), when the435

step size is small (e.g., ℎ = 0.00001), the system is in the positive zone region, and the transformation has a slight436

noticeable effect. However, for larger step sizes, the trajectory enters the negative zone, where the transformation loses437

its effectiveness.438
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Eg* 𝐸0 𝐹1 ℎ 𝜇1 𝑑 𝜇2 𝜎(𝐸std
1 , 𝐸xform

1 )

Eg1-a 𝐵𝑜𝑥(1,3)(10
−4) (0.95, 2.95) ± (0.05, 0.05) 0.00001 0.07 17 -68.30 1.0000

1 -5.82 1.0006

Eg1-b 𝐵𝑜𝑥(1,3)(10
−4) (0.95, 2.95) ± (0.05, 0.05) 0.0028 0.07 17 -68.30 1.0000

1 -5.82 1.0000

Eg2-a 𝐵𝑜𝑥(3,−3)(10
−4) (2.95,−2.95) ± (0.05, 0.05) 0.00086 5.90 23 -140.80 1.0002

1 -11.00 1.0007

Eg2-b 𝐵𝑜𝑥(3,−3)(10
−4) (2.95,−2.85) ± (0.05, 0.15) 0.01 5.93 23 -370.14 1.0321

1 -9.20 1.0458

Eg3-a 𝐵𝑜𝑥(3,−3)(10
−4) (2.95,−2.95) ± (0.05, 0.05) 0.001 9.75 20 -177.05 1.0000

1 -9.87 1.0008

Eg3-b 𝐵𝑜𝑥(3,−3)(10
−4) (3.05,−2.80) ± (0.15, 0.20) 0.02 10.64 20 -163.12 1.0035

1 -9.39 1.0665

Eg4-a 𝐵𝑜𝑥(1.0,3.0,1.0)(10
−4) (0.95, 2.95, 0.95) ± (0.05, 0.05, 0.05) 0.001 13.60 58 -22.10 1.0102

1 -2.97 1.0186

Eg4-b 𝐵𝑜𝑥(1.0,3.0,1.0)(10
−4) (1.20, 3.30, 0.95) ± (0.30, 0.40, 0.05) 0.02 13.62 10 -6.01 1.3286

1 -3.01 1.3933

Table 6
Comparison of our transform method with 𝐸std

1 (32). The value 𝛿 is fixed at 10−7 throughout.

𝐸0 0.00001 0.0001 0.001 0.01 0.1 0.2 0.4 0.6
Eg1 𝐵𝑜𝑥(1,3)(10−4) 1.0006 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Eg2 𝐵𝑜𝑥(3,−3)(10−4) 1.0001 1.0008 1.005 1.055 2.628 6.227 32.772 192.823
Eg3 𝐵𝑜𝑥(3,−3)(10−4) 1.0005 1.0013 1.003 1.032 1.706 2.517 7.923 17.892
Eg4 𝐵𝑜𝑥(1,3,1)(10−4) 1.0006 1.0015 1.016 1.156 1.737 3.022 9.027 27.283

Table 7
Comparison of our transform method with 𝐸std

1 (32). Under Increasing Step Sizes.

6. Extend and Refine Subroutines439

We now present algorithms for Extend and Refine as specified in equations (19)–(20).440

For the 𝑖-th stage with admissible triple (𝐸𝑖,Δ𝑡𝑖, 𝐹𝑖), we compute transformation parameters 𝜋𝑖 and 𝒈𝑖. It turns out441

that to compute 𝜋𝑖 and 𝒈𝑖, it is necessary11 using symbolic methods. Since this computation is expensive, we do not442

refine stages by splitting a stage into two or more stages. Instead, we use a “light-weight” approach encoded in the443

refinement structure 𝐺𝑖 that does not recompute 𝜋𝑖 and 𝒈𝑖. Specifically, the time interval Δ𝑡𝑖 is uniformly subdivided444

into 2𝓁𝑖 mini-steps where 𝓁𝑖 is the level. For each mini-step, we compute the full enclosure 𝑭 𝑖, end enclosure 𝑬𝑖, and445

their associated logarithmic norms (logNorm) 𝝁1 (in the original 𝒙-space) and 𝝁2 (in transformed 𝒚-space). Here are446

the details of 𝐺𝑖:447

𝐺𝑖 ∶=𝐺𝑖() = (𝜋𝑖, 𝒈𝑖;𝝁
1
𝑖 ,𝝁

2
𝑖 , 𝛿𝑖, ℎ

euler
𝑖 , (𝓁𝑖,𝑬𝑖,𝑭 𝑖)) (35)

where 𝝁𝟏
𝐢 ,𝝁

𝟐
𝐢 ,𝑬𝐢,𝑭 𝐢 are arrays of length 2𝓁𝑖 and the parameters in red are extra data needed by the Refine subroutine448

below. We call (𝓁𝑖,𝑬𝑖,𝑭 𝑖) the mini-scaffold.449

6.1. Extend Subroutine450

We now give the details of  .Extend(⋯) introduced in the overview:451

452

453  .Extend(𝜀0,𝐻)
INPUT: 𝑚-stage scaffold  , 𝜀 > 0,𝐻 > 0.
OUTPUT:  ′ is a 𝑚 + 1-stage extension  such that

Δ𝑡𝑚+1( ′) ≤ 𝐻 , and (Δ𝑡𝑚+1( ′), 𝐸𝑚+1( ′) is an 𝜀-admissible pair for 𝐸𝑚().

(ℎ̂, 𝐹1) ← StepA(𝐸𝑚(), 𝜀0,𝐻).
𝜇1 ← 𝜇2(𝐽𝒇 (𝐹1)).
𝐸1 ← StepB(𝐸𝑚(), ℎ̂, 𝐹1, 𝜇1).
(𝜇2, 𝜋, 𝒈) ← Transform(𝒇 , 𝐹1, 𝜇1).
𝛿′1 ← TransformBound(𝜀0, 𝜋, 𝐹1)
ℎ1 ← ℎeuler(ℎ̂, ‖𝒈[2](𝜋(𝐹1))‖, 𝜇2, 𝛿′1). ⊲ See (11).
Let 𝑚+1 ← (𝑡𝑚 + ℎ1, 𝐸1, 𝐹1) and 𝐺𝑚+1 ← (𝜋, 𝒈; (𝜇1), (𝜇2), 𝜀0, ℎ1, (0, (𝐸𝑚(), 𝐸1), (𝐹1))).Return ; (𝑚+1, 𝐺𝑚+1).

454

11A numerical approach via automatic differentiation is in principle possible, but it gives extremely poor bounds. We need simplification of the
expressions, which is symbolic.
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6.2. Refine Subroutine455

The goal of  .Refine(𝜀0) is to ensure that the end-enclosure of  has max-width ≤ 𝜀0. Each iteration of the main456

loop of Refine is called a phase. If  has 𝑚 stages, then in each phase, we process stages 𝑖 = 1,… , 𝑚 in this order.457

Recall the12 mini-scaffold (𝓁𝑖,𝑭 𝑖,𝑬𝑖) of stage 𝑖 above. This mini-scaffold has a uniform time step of size (Δ𝑡𝑖) ⋅ 2−𝓁𝑖 .458

See Figure 4 for illustration. We will call the following  .Bisect(𝑖) to perform a bisection of each mini-step:459

460

461

 .Bisect(𝑖)
INPUT: 𝑖th refers to a stage of  .

Let (𝜋𝑖, 𝒈𝑖,𝝁1
𝑖 ,𝝁

2
𝑖 , 𝛿𝑖, ℎ̂𝑖,𝓁𝑖,𝑬𝑖,𝑭 𝑖) ← 𝐺𝑖()be the 𝑖th refinement structure

OUTPUT: each mini-step of the 𝑖th stage
is halved and 𝝁1

𝑖 ,𝑬𝑖,𝑭 𝑖 are updated.
Initialize three new vectors 𝝁 = [], 𝑬′ = [𝑬𝑖[0]] and 𝑭 ′ = [].
ℎ ← (Δ𝑡𝑖)2−𝓁𝑖−1For 𝑗 = 1,… , 2𝓁𝑖 ,

⊳ First half of 𝑗 step
𝑡𝑚𝑝𝐹1 ←

∑𝑘−1
𝑖=0

(

[0, ℎ]𝑖𝒇 [𝑖](𝑬′.𝑏𝑎𝑐𝑘()) + [0, ℎ]𝑘𝒇 [𝑘](𝑭 𝑖[𝑗])
)

.
𝜇′ ← 𝜇2(𝐽𝒇 (𝑡𝑚𝑝𝐹1)); 𝝁.push_back(𝜇′).
𝐸 ← StepB(𝑬′.𝑏𝑎𝑐𝑘(), ℎ, 𝑡𝑚𝑝𝐹1, 𝜇′).
𝑬′.push_back(𝐸); 𝑭 ′.push_back(𝑡𝑚𝑝𝐹1);

⊳ Second half of 𝑗 step
𝑡𝑚𝑝𝐹2 ←

∑𝑘−1
𝑖=0

(

[0, ℎ]𝑖𝒇 [𝑖](𝐸) + [0, ℎ]𝑘𝒇 [𝑘](𝑭 𝑖[𝑗])
)

.
𝜇′ ← 𝜇2(𝐽𝒇 (𝑡𝑚𝑝𝐹2)); 𝝁.push_back(𝜇′).
𝐸 ← StepB(𝐸, ℎ, 𝑡𝑚𝑝𝐹2, 𝜇′)
𝑬′.push_back(𝐸); 𝑭 ′.push_back(𝑡𝑚𝑝𝐹2);

(𝝁1
𝑖 ,𝓁𝑖,𝑬𝑖,𝑭 𝑖) ← (𝝁,𝓁𝑖 + 1,𝑬′,𝑭 ′)

462

In the above code, we view 𝑬𝑖 and 𝑭 𝑖 as a vector in the sense of C++. We append an item 𝐸 to the end of the vector463

by calling 𝑬𝑖.push_back(𝐸) and 𝑬𝑖.back() returns the last item. When (Δ𝑡𝑖)2−𝓁𝑖 is less than the bound in (11), we can464

update the data 𝐸𝑖, 𝐹𝑖,𝝁
1,𝝁2 using the EulerTube subroutine as described next:465

Figure 4: 3-stage scaffold  with 𝓁1 = 2, 𝓁2 = 1 and 𝓁3 = 0 in 𝐺.

466

467

12Viewing the 𝑖th stage as a bigStep, the mini-scaffold represent smallStepss of the 𝑖th stage.
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 .EulerTube(𝑖)
INPUT: 𝑖 refers to the 𝑖th stage of  .
OUTPUT: refine the 𝑖th stage using Lemma 7,

such that the 𝑖th stage is 𝛿(𝐺𝑖())-bounded
(Note: 𝐸𝑖(), 𝐹𝑖(), 𝐺𝑖() are modified)

Let (𝜋, 𝒈,𝝁1,𝝁2, 𝛿, ℎ̂,𝓁,𝑬,𝑭 ) be 𝐺𝑖()Let 𝐵𝑎𝑙𝑙𝒑(𝑟0) be the circumscribing ball of 𝑬[0]
and 𝐵𝑎𝑙𝑙𝒑′ (𝑟′0) be the circumscribing ball of 𝜋(𝑬[0]).

𝒒 ← 𝜋(𝒑), 𝑑 ← ‖𝒒 − 𝑚(𝐵𝑜𝑥(𝜋(𝑬[0])))‖.
Let 𝐻 be the step size each mini-step of [𝑖].
For (𝑗 = 1,… , 2𝓁 )

𝒒 ← 𝒒 + 𝒈(𝒒)𝐻 ,
𝛿1 ← TransformBound(𝛿, 𝜋,𝑭 [𝑗]).
𝝁2[𝑗] ← 𝜇2(𝐽𝒈(𝜋(𝑭 [𝑗]))).
𝑟1 ← 𝑟0𝑒𝑗𝝁

1[𝑗]𝐻 + 𝛿; 𝑟′1 ← (𝑟′0 + 𝑑)𝑒𝑗𝝁2[𝑗]𝐻 + 𝛿1
𝐵 ← 𝐵𝑜𝑥(𝑟1); 𝐵′ ← 𝐵𝑜𝑥(𝑟′1).
𝑭 [𝑗] ← 𝑭 [𝑗] ∩ 𝜋−1(𝐵𝑜𝑥(𝑐𝑒𝑛𝑡𝑒𝑟(𝜋(𝑬[𝑗 − 1])) + 𝐵′, 𝒒 + 𝐵′) ⊲ Full-enclosure for mini-step
𝝁1[𝑗] ← 𝜇2(𝐽𝒇 (𝑭 [𝑗])).
𝑬[𝑗] ← 𝑬[𝑗] ∩ 𝜋−1(𝒒 + 𝐵′) ∩ (𝜋−1(𝒒) + 𝐵). ⊲ End-enclosure for mini-step

468

Observe that EulerTube performs all its Euler computation in transformed space, and only pulls back the469

enclosures back to primal space. It turns out that EulerTube is extremely efficient compared to Bisect, and moreover,470

it ensures that the 𝑖th stage is now 𝛿𝑖-bounded.471

We are ready to describe the Refine subroutine:472

473

474
 .Refine(𝜀0)INPUT: 𝑚-stage augmented scaffold  and 𝜀0 > 0.

OUTPUT:  remains an 𝑚-stage augmented scaffold
but the length satisfies 𝑤max(𝐸𝑚) ≤ 𝜀0.

𝑟0 ← 𝑤max(𝐸𝑚()).While (𝑟0 > 𝜀0)
For (𝑖 = 1,… , 𝑚) ⊲ Begin new phase

𝓁 ∶=𝐺𝑖().𝓁; ℎ̂ ∶=𝐺𝑖().ℎ̂.
𝐻 ← (Δ𝑡𝑖)2−𝓁

If (𝐻 > ℎ̂)
 .Bisect(𝑖)

Else
 .EulerTube(𝑖)
𝐺𝑖().𝛿 ← 𝛿∕2

⊳ Update ℎ̂ in 𝐺𝑖():
I.e., let (𝜋, 𝒈,𝝁1,𝝁2, 𝛿, ℎ̂,𝓁,𝑬,𝑭 ) be 𝐺𝑖()

𝐸𝑖() ← 𝑬[2𝓁 ] ⊲ End-enclosure for stage
𝐹𝑖() ←

⋃2𝓁
𝑗=1 𝑭 [𝑗] ⊲ Full-enclosure for stage

𝜇2 ← max
{

𝝁2[𝑗] ∶ 𝑗 = 1,… , 2𝓁
}

𝛿′1 ← TransformBound(𝛿, 𝜋, 𝐹𝑖())
𝑀 ← ‖𝒈[2](𝜋(𝐹𝑖())‖2
ℎ𝑡𝑚𝑝 ← min

{

Δ𝑡𝑖, ℎeuler(ℎ̂,𝑀, 𝜇2, 𝛿′1)
}

⊲ (see (11))

𝐺𝑖().ℎ̂ ← ℎ𝑡𝑚𝑝
⊲ End of For-Loop

𝐸0() ←
1
2
𝐸0()

𝑟0 ← 𝑤max(𝐸𝑚())Return 

475

THEOREM 11. The subroutine  .Refine(𝜀0) is correct. In particular, it halts.476

This proof is a bit subtle, and can be illustrated by the following phase-stage diagram:477

(36)
Each phase will refine the stages 1, 2,… , 𝑚 (in this order). The 𝑖th stage in phase 𝑘 has a “target bound” 𝛿𝑘𝑖 > 0 stored478

as 𝐺𝑖().𝛿. For 𝑘 = 1, 𝛿1𝑖 is 𝜀0 if 𝑖 = 𝑚 and otherwise inherited from (𝑚 − 1)-stage structure before Extend(𝜀0,𝐻).479

For 𝑘 > 1, 𝛿𝑘𝑖 halved after a call to EulerTube subroutine (see Refine(𝜀)). The proof in the appendix will show that480

lim𝑘→∞ 𝛿𝑘𝑖 = 0 for each 𝑖 = 1,… , 𝑚, which will contradict the non-halting of Refine.481
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7. The Main Algorithm and Experiments482

The following is our algorithm to solve the EndEncl_IVP problem of (2):483

484

485

EndEnc𝒇 (𝐵0, 𝜀0) → (𝐵0, 𝐵1):
INPUT: 𝜀0 > 0, 𝐵0 ∈ ℝ𝑛

such that IVP𝒇 (𝐵0, 1) is valid
OUTPUT: 𝐵0, 𝐵1 ∈ ℝ𝑛, 𝐵0 ⊆ 𝐵0, 𝑤max(𝐵1) < 𝜖

and 𝐵1 is an end-enclosure of IVP(𝐵0, 1)

⊳ Initialize a 0-stage scaffold :
 ← ((𝑡0), (𝐵0), (𝐵0), (𝐼𝑑,𝒇 , (𝜇1), (𝜇2), 𝜀0, ℎ̂, (𝓁, (𝐵0, 𝐵0), (𝐵0))))

where (𝑡0, 𝜇1, 𝜇2, ℎ̂,𝓁) ← (0, 0, 0, 0, 0)
𝑡 ← 0
While 𝑡 < 1

 .Extend(𝜀0, 1 − 𝑡)
 .Refine(𝜀0)
𝑡 ← 𝒕().back()

Return (𝐸0(),𝑬().back())

486

THEOREM 12. Algorithm EndEnc(𝐵0, 𝜀0) halts, provided the interval computation of StepA is isotonic. The output487

is also correct.488

7.1. Implementation and Limitations489

We implemented EndEnc in C++. Our implementation follows the explicitly described subroutines in this paper.490

There are no hidden hyperparameters (e.g., our step sizes are automatically adjusted). Our eventual code will be open-491

sourced in [41].492

Implementation of the various numerical formulas such as Taylor forms implicitly call interval methods as493

explained in Subsection 2.2. The radical transform requires symbolic computation (Section 6) which we take from494

the symEngine library ( https://symengine.org/).495

Limitations. The main caveat is that we use machine arithmetic (IEEE standard). There are two main reasons.496

First, this is necessary to have fair comparisons to existing software and we rely on library routines based on497

machine arithmetic. In principle, we can implement our algorithm using arbitrary precision number types (which will498

automatically get a hit in performance regardless of needed precision).499

7.2. Global Experiments500

In previous sections, we had tables of experimental results evaluating “local” (1-step) operations. In this section,501

we show three tables (A, B, C) that solve complete IVP problems over time 𝑡 ∈ [0, 1] (with one exception in Table C).502

Table A compares our StepA/StepB with the standard methods. Table B is an internal evaluation of our transform and503

Bisect/EulerTube heuristic. Table C is an external comparison of our main algorithm with other validated software.504

The problems are from Table 1. We informally verify our outputs by tracing points using CAPD’s code to see that their505

outputs are within our end-enclosures. Timings are taken on a laptop with a 13th Gen Intel Core i7-13700HX 2.10506

GHz processor and 16.0 GB RAM.507

Our tables indicate two kinds of error conditions: Timeout and No Output. The former means the code took more508

than 1 hour to run. the latter means the code stopped with no output.509

In each table, we are comparing our main enclosure algorithm denoted Ours with some algorithm 𝑋 where 𝑋 may510

be variants of Ours or other IVP software. We define speedup over 𝑋 as 𝜎(𝑋) ∶= Time(𝑋)
Time(Ours) .511

TABLE A: We compare the relative computation times of Ours against Ours∕StepA0 and Ours∕StepB0. Here512

Ours∕StepA0 denotes the algorithm where we replace StepA by StepA0 in Ours. Similarly for Ours∕StepB0.513

Recall StepA0 is the non-adaptive stepA in Subsection 4.1, and StepB0 is the direct method of (24). The speedup514

𝜎(Ours∕StepB0) is a good measure of relative performance of StepB and StepB0 when Ours and Ours∕StepB0 have515

about the same number of phases. So we include the statistic 𝜌(Ours∕StepB0) ∶=
phases(Ours/stepB0)

phases(𝑂𝑢𝑟𝑠) .516
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Example 𝐸0 𝜀 Time(Ours) 𝜎(Ours∕StepA0) 𝜎(Ours∕StepB0) 𝜌(Ours∕StepB0)

Eg1 𝐵𝑜𝑥(1,3)(0.1)

0.1 0.018 5.44 1.00 4∕4
0.01 0.073 1.57 1.08 5∕5
0.001 0.643 2.465 1.75 8∕7
0.0001 12.803 1.49 1.03 9∕9

Eg2 𝐵𝑜𝑥(−3,3)(0.1)

0.1 0.031 653.22 1.00 4∕4
0.01 0.086 334.875 1.025 7∕7
0.001 1.437 > 1000 1.074 10∕10
0.0001 11.491 > 1000 1.102 13∕13

Eg3 𝐵𝑜𝑥(−1.5,8.5)(0.01)

10.0 0.043 > 1000 1.03 1∕1
5.0 0.027 > 1000 1.04 1∕1
1.0 0.022 > 1000 1.06 1∕1
0.1 2.159 > 1000 5.81 3∕3

Eg4 𝐵𝑜𝑥(15,15,36)(0.001)

10.0 0.142 > 1000 1.24 1∕1
5.0 0.130 > 1000 2.24 5∕1
1.0 0.122 > 1000 14.38 7∕1
0.1 0.205 > 1000 > 1000 Timeout

Table A: Comparison of StepA and StepB with StepA0 and direct-method. all run with 𝑜𝑟𝑑𝑒𝑟 = 20.

Eg 𝜀 𝐵0 Method 𝐵0 𝐵1 #(miniSteps) Time(s)

𝑥′ = 𝑥2 0.01 [0.8, 0.9]

OurSimple 0.8495 ± 0.0005 5.6665 ± 0.0045 20861 45.630
OurSimpleT 0.8495 ± 0.0005 5.6665 ± 0.0045 18 11.854

OurNoT 0.8495 ± 0.0005 5.6665 ± 0.0045 297 15.073
OurNoEuler 0.8495 ± 0.0005 5.6665 ± 0.0045 31 71.846

Ours 0.8495 ± 0.0005 5.6665 ± 0.0045 16 5.966

𝑥′ = 𝑥2 0.001 [0.98, 0.99]

OurSimple 0.985 ± 0.0005 65.66665 ± 0.00035 128890 2104.03
OurSimpleT 0.985 ± 0.0005 65.66665 ± 0.00035 103 31.898

OurNoT 0.985 ± 0.0005 65.66665 ± 0.00035 22763 85.051
OurNoEuler 0.985 ± 0.0005 65.66665 ± 0.00035 72489 327.89

Ours 0.985 ± 0.0005 65.66665 ± 0.00035 105 49.861

Eg1 0.01 𝐵𝑜𝑥(1,3)(0.1)

OurSimple (0.995, 2.995) ± (0.005, 0.005) (0.077, 1.4635) ± (0.001, 0.0035) 1454 13.877
OurSimpleT (0.995, 2.995) ± (0.005, 0.005) (0.077, 1.4635) ± (0.001, 0.0035) 1888 15.370

OurNoT (0.995, 2.995) ± (0.005, 0.005) (0.077, 1.4635) ± (0.001, 0.0035) 47 9.386
OurNoEuler (0.995, 2.995) ± (0.005, 0.005) (0.077, 1.4635) ± (0.001, 0.0035) 47 9.415

Ours (0.995, 2.995) ± (0.005, 0.005) (0.077, 1.4635) ± (0.001, 0.0035) 47 9.232

Eg2 0.1 𝐵𝑜𝑥(−3,3)(0.1)

OurSimple (−2.995, 3.0) ± (0.025, 0.025) (−2.13, 0.56) ± (0.05, 0.02) 997 15.343
OurSimpleT (−2.995, 3.0) ± (0.025, 0.025) (−2.13, 0.56) ± (0.05, 0.02) 1367 16.540

OurNoT (−2.995, 3.0) ± (0.025, 0.025) (−2.13, 0.56) ± (0.05, 0.02) 14 14.785
OurNoEuler (−2.995, 3.0) ± (0.025, 0.025) (−2.13, 0.56) ± (0.05, 0.02) 14 15.119

Ours (−2.995, 3.0) ± (0.025, 0.025) (−2.13, 0.56) ± (0.05, 0.02) 14 14.590

Eg3 0.1 𝐵𝑜𝑥(−1.5,8.5)(0.01)

OurSimple (−1.495, 8.495) ± (0.005, 0.005) (−0.595,−6.685) ± (0.005, 0.045) 2908 25.710
OurSimpleT (−1.495, 8.495) ± (0.005, 0.005) (−0.595,−6.685) ± (0.005, 0.045) 3223 23.110

OurNoT (−1.495, 8.495) ± (0.005, 0.005) (−0.595,−6.685) ± (0.005, 0.045) 35 23.773
OurNoEuler (−1.495, 8.495) ± (0.005, 0.005) (−0.595,−6.685) ± (0.005, 0.045) 1034 455.548

Ours (−1.495, 8.495) ± (0.005, 0.005) (−0.595,−6.685) ± (0.005, 0.045) 25 11.795

Eg4 5 𝐵𝑜𝑥(15,15,36)(0.001)

OurSimple (15, 15, 36) ± (0.0005, 0.0005, 0.0005) (−6.94, 1.81, 35.52) ± (1.64, 2.33, 2.5) 26 294.019
OurSimpleT (15, 15, 36) ± (0.0005, 0.0005, 0.0005) (−6.94, 1.81, 35.52) ± (1.64, 2.33, 2.5) 26 166.969

OurNoT (15, 15, 36) ± (0.0005, 0.0005, 0.0005) (−6.945, 2.99, 35.14) ± (1.005, 2.15, 1.88) 61 146.360
OurNoEuler (15, 15, 36) ± (0.0005, 0.0005, 0.0005) (−6.94, 1.81, 35.52) ± (1.64, 2.33, 2.5) 26 159.028

Ours (15, 15, 36) ± (0.0005, 0.0005, 0.0005) (−6.945, 2.99, 35.14) ± (1.005, 2.15, 1.88) 61 123.64

Table B: The global effects of radical transform and bisection for our algorithm, all run with 𝑜𝑟𝑑𝑒𝑟 = 3.

We conclude from Table A that our StepA significantly improves efficiency (𝜎(Ours∕StepA0)). Moreover, StepB517

also yields a noticeable performance gain and effectively reduces the number of required phases (𝜎(Ours∕StepB0) and518

𝜌(Ours∕StepB0)).519

TABLE B: We conduct experiments to show the benefits of various techniques used in our algorithm. The520

algorithms 𝑋 being compared in Table B differ from Ours only in the use of variants of the Refine subroutine.521

Specifically: 𝑋 = OurSimple uses 𝐸std
1 (32) to compute the end-enclosure, without performing our Bisect522

subroutine. 𝑋 = OurSimpleT is similar, except that we use 𝐸xform
1 (33) instead. Similarly, 𝑋 = OurNoT represents a523

variant of our algorithm with the transform step disabled (i.e., the transformation 𝜋 is set to the identity map). Finally,524

𝑋 = OurNoEuler is our algorithm with EulerTube disabled.525

We run all the experiments with order 𝑘 = 3 because with high order (e.g. 𝑘 = 20), the number of stages is too526

small (see Table C).527

We conclude from Table B that the transform method improves efficiency overall (compare OurSimple528

vs. OurSimpleT, and Ours vs. OurNoT). In certain cases, such as the example 𝑥′ = 𝑥2 and Eg3, the transform method529

can significantly improve performance. For the two-dimensional examples, Eg1, Eg2 and Eg3, the comparison between530

OurSimpleT and Ours shows that our Bisect subroutine enhances the overall performance of the algorithm. Also,531

comparing OurNoEuler with Ours shows that EulerTube can significantly improve performance when there are532

many mini-steps (e.g., 𝑥′ = 𝑥2 and Eg3).533

TABLE C: The time span is 𝑡 ∈ [0, 1] in all the experiments except for Eg1-b, where 𝑡 ∈ [0, 5.5] corresponding534

to one full loop. This is an example that AWA cannot solve [13, p. 13]. For each example of order 𝑘 = 20, we use our535

algorithm to compute a scaffold (𝜀0) for an initial value of 𝜀0; subsequently, this scaffold is refined using a smaller 𝜀𝑖536

(𝑖 = 1, 2,…) to obtain (𝜀1), (𝜀2),…. The total number of mini-steps in all the stages of (𝜀𝑖) is shown in column537
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Case Method 𝜀 𝐵0 𝐵1 #(miniSteps) Time(s) 𝜎(𝑋)

Eg1-a

Ours 1.0 𝐵𝑜𝑥(1.0,3.0)(0.1) (0.08, 1.46) ± (0.06, 0.16) 7 0.010 1
Refine 0.05 𝐵𝑜𝑥(1.0,3.0)(0.05) (0.08, 1.46) ± (0.02, 0.05) 13 0.009 N/A
Refine 0.03 𝐵𝑜𝑥(1.0,3.0)(0.025) (0.08, 1.46) ± (0.006, 0.02) 25 0.017 N/A

𝚂𝚝𝚎𝚙𝙱𝙳𝚒𝚛𝚎𝚌𝚝 N/A N/A (0.08, 1.47) ± (0.06, 0.15) N/A 0.014 1.4
𝚂𝚝𝚎𝚙𝙱𝙻𝚘𝚑𝚗𝚎𝚛 N/A N/A (0.08, 1.46) ± (0.06, 0.15) N/A 0.031 3.1

CAPD N/A N/A (0.08, 1.46) ± (0.03, 0.10) N/A 0.018 1.8

Eg1-b

Ours 3.3 𝐵𝑜𝑥(1.0,3.0)(0.0125) (0.95, 3.00) ± (0.20, 0.30) 294 0.404 1
Refine 0.15 𝐵𝑜𝑥(1.0,3.0)(0.00625) (0.95, 3.00) ± (0.10, 0.14) 587 0.326 N/A
Refine 0.07 𝐵𝑜𝑥(1.0,3.0)(0.00313) (0.95, 3.00) ± (0.05, 0.7) 1173 0.638 N/A

𝚂𝚝𝚎𝚙𝙱𝙳𝚒𝚛𝚎𝚌𝚝 N/A N/A Timeout N/A Timeout -
𝚂𝚝𝚎𝚙𝙱𝙻𝚘𝚑𝚗𝚎𝚛 N/A N/A Timeout N/A Timeout -

CAPD N/A N/A No Output N/A No Output -

Eg2

Ours 1.0 𝐵𝑜𝑥(−3.1,3.1)(0.1) (−2.14, 0.57) ± (0.28, 0.28) 10 0.016 1
Refine 0.1 𝐵𝑜𝑥(−3.1,3.1)(0.05) (−2.14, 0.57) ± (0.08, 0.04) 19 0.012 N/A
Refine 0.05 𝐵𝑜𝑥(−3.1,3.1)(0.025) (−2.14, 0.57) ± (0.03, 0.01) 37 0.023 N/A

𝚂𝚝𝚎𝚙𝙱𝙳𝚒𝚛𝚎𝚌𝚝 N/A N/A (−2.14, 0.57) ± (0.26, 0.23) N/A 0.506 31.6
𝚂𝚝𝚎𝚙𝙱𝙻𝚘𝚑𝚗𝚎𝚛 N/A N/A (−2.14, 0.57) ± (0.26, 0.23) N/A 0.904 56.5

CAPD N/A N/A (−2.14, 0.57) ± (0.29, 0.29) N/A 0.012 0.75

Eg3

Ours 1.0 𝐵𝑜𝑥(−1.51,8.51)(0.01) (−0.6,−6.69) ± (0.00, 0.19) 10 0.012 1
Refine 0.06 𝐵𝑜𝑥(−1.51,8.51)(0.005) (−0.6,−6.69) ± (0.0008, 0.06) 19 0.012 N/A
Refine 0.03 𝐵𝑜𝑥(−1.51,8.51)(0.0025) (−0.6,−6.69) ± (0.0004, 0.02) 37 0.022 N/A

𝚂𝚝𝚎𝚙𝙱𝙳𝚒𝚛𝚎𝚌𝚝 N/A N/A (−0.60,−6.69) ± (0.01, 0.19) N/A 4.113 342.7
𝚂𝚝𝚎𝚙𝙱𝙻𝚘𝚑𝚗𝚎𝚛 N/A N/A (−0.60,−6.69) ± (0.01, 0.19) N/A 6.044 503.6

CAPD N/A N/A (−0.60,−6.69) ± (0.01, 0.19) N/A 0.017 1.4

Eg4

Ours 4.5 𝐵𝑜𝑥(15.0,15.0,36.0)(0.001) (−6.94, 2.99, 35.14) ± (0.09, 0.15, 0.15) 23 0.053 1
Refine 0.6 𝐵𝑜𝑥(15.0,15.0,36.0)(0.0003) (−6.94, 2.99, 35.14) ± (0.05, 0.06, 0.06) 89 0.161 N/A
Refine 0.03 𝐵𝑜𝑥(15.0,15.0,36.0)(0.0001) (−6.94, 2.99, 35.14) ± (0.02, 0.02, 0.02) 177 0.203 N/A

𝚂𝚝𝚎𝚙𝙱𝙳𝚒𝚛𝚎𝚌𝚝 N/A N/A (−6.95, 3.00, 35.14) ± (31.56, 176.50, 173.98) N/A 3.830 72.2
𝚂𝚝𝚎𝚙𝙱𝙻𝚘𝚑𝚗𝚎𝚛 N/A N/A (−6.95, 3.00, 35.14) ± (31.23, 169.99, 166.39) N/A 8.398 158.4

CAPD N/A N/A (−6.94, 2.99, 35.14) ± (0.03, 0.01, 0.04) N/A 0.088 1.66

Table C: Experiments on EndEnc and Refine: comparison to CAPDand simple_IVP, all executed with 𝑜𝑟𝑑𝑒𝑟 = 20.
𝜎(𝑋) ∶= Time(𝑋)

Time(Ours)
.

#(miniSteps); the timing for each refinement is incremental time. This nice refinement feature gives us to better538

precision control with low additional cost after the initial  .539

We compared our algorithm with 3 other algorithms:540

The first algorithm CAPD is from [42] and github. In Table 7.2, we invoke the method ICnOdeSolver with Taylor541

order 20, based on the 𝐶𝑟-Lohner algorithm [15, 43]. The method accepts an interval input such our 𝐵0.542

The other two algorithms are simple_IVP algorithm in (16), where StepA is StepA0 and StepB is either543

the 𝚂𝚝𝚎𝚙𝙱𝙳𝚒𝚛𝚎𝚌𝚝(see (24)) and well as 𝚂𝚝𝚎𝚙𝙱𝙻𝚘𝚑𝚗𝚎𝚛. In Table 7.2, they are called 𝚂𝚝𝚎𝚙𝙱𝙳𝚒𝚛𝚎𝚌𝚝 and 𝚂𝚝𝚎𝚙𝙱𝙻𝚘𝚑𝚗𝚎𝚛,544

respectively.545

We conclude from Table C that our method outperforms simple_IVP in terms of efficiency and is nearly as efficient546

as CAPD. Note that we deliberately choose 𝜀 so that our final 𝐵0 is equal to the input 𝐵0 in order to be comparable to the547

other methods. The only case where 𝐵0 ≠ 𝐵0 is 𝐸𝑔1-𝑏: here, our method successfully computes a solution while all548

the other methods fail to produce any output. Since our current method does not directly address the wrapping effect,549

the resulting end-enclosure is less tight than that of CAPD, as seen in 𝐸𝑔4. In addition, when higher precision (smaller550

𝜀) is required, our Refine algorithm can efficiently compute solutions to meet the desired accuracy.551

8. Conclusion552

We have presented a complete validated IVP algorithm with the unique ability to pre-specify the an 𝜀-bound553

on the width of the end-enclosure. Preliminary implementations show promise in comparison to current validated554

software. This paper introduces a more structured approach to IVP algorithms, opening the way for considerable555

future development of such algorithms. We introduced several novel techniques for Step A and Step B, including a556

new exploitation of logNorms combined with the radical transform.557

For future work, we plan to do a full scale implementation that includes the ability to use arbitrary precision558

arithmetic, in the style of Core Library [41, 44]. We will also explore incorporating the Lohner-type transform into559

our radical transform.:w560

Nedialkov et al. [8, Section 10], “Some Directions for Future Research”, presented a list of challenges that remain561

relevant today. Our algorithm is one answer to their call for automatic step sizes, order control (interpreted as error562

control) and tools for quasi-monotone problems (i.e., contractive systems).563
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A. Appendix A: Proofs564

Note that the numberings of lemmas and theorems in this Appendix are the same as corresponding results in the565

text, and have hyperlinks to the text.566

Corollary 4567

Let 𝒙1 ∈ IVP(𝒑1, ℎ, 𝐵𝑎𝑙𝑙(𝒑0, 𝑟)) and 𝒙2 ∈ IVP(𝒑2, ℎ, 𝐵𝑎𝑙𝑙(𝒑0, 𝑟)).568

If 𝜇 ≥ 𝜇2(
𝜕𝒇
𝜕𝒙 (𝐵𝑎𝑙𝑙(𝒑0, 𝑟))) then for all 𝑡 ∈ [0, ℎ]569

‖𝒙1(𝑡) − 𝒙2(𝑡)‖2 ≤ ‖𝒑1 − 𝒑2‖2𝑒𝜇𝑡.

570

Proof. Note that 𝒙1 and 𝒙2 are solutions of (1) with different initial values. Therefore, we have 𝒙′1 = 𝒇 (𝒙1) and571

𝒙′2 = 𝒇 (𝒙2). This implies that572

𝒙′1(𝑡) − 𝒇 (𝒙1(𝑡)) = 𝒇 (𝒙1(𝑡)) − 𝒇 (𝒙1(𝑡)) = 0 = 𝜀.

If 𝜇 ≠ 0, then (10) is the first case of (9) since 𝛿 = ‖𝒑1 − 𝒑2‖2. If 𝜇 = 0, it comes from the second case since 𝜀 = 0.573

Q.E.D.574

575

The following is a useful lemma:
Lemma A.1
Let (𝐵0,𝐻, 𝐵1) be an admissible triple with 𝜇 ≥ 𝜇2(𝐽𝒇 (𝐵1)), and 𝑀 ≥ ‖𝒇 [2](𝐵1)‖. Denote the Euler step at 𝒒0 ∈ 𝐵0
by the linear function

𝓁(𝑡; 𝒒0) = 𝒒0 + 𝑡𝒇 (𝒒0).

Then for any 𝒑0 ∈ 𝐵0 and 𝑡 ∈ [0,𝐻],

‖𝒙(𝑡;𝒑0) − 𝓁(𝑡; 𝒒0)‖ ≤ ‖𝒑0 − 𝒒0‖𝑒𝜇𝑡 +
1
2𝑀𝑡2

576

577

Proof. By Corollary 4,578

‖𝒙(𝑡;𝒑0) − 𝒙(𝑡; 𝒒0‖ ≤ ‖𝒑0 − 𝒒0‖𝑒𝜇𝑡 (37)
We also have579

𝒙(𝑡; 𝒒0) = 𝒒0 + 𝑡 ⋅ 𝒇 (𝑞0) +
1
2 𝑡

2𝒙′′(𝜏) (for some 𝜏 ∈ [0, 𝑡])
‖𝒙(𝑡; 𝒒0) − (𝒒0 + 𝑡 ⋅ 𝒇 (𝑞0))‖

≤ ‖

1
2 𝑡

2𝒙′′(𝜏)‖
= ‖

1
2 𝑡

2𝒇 [2](𝒙(𝜏; 𝒒0)‖
≤ ‖

1
2 𝑡

2𝑀‖ (since 𝑀 ≥ 𝒇 [𝑥](𝐵1))
Combined with (37), the triangular inequality shows our desired bound. Q.E.D.580

581

Lemma 5582

Let (𝐵0,𝐻, 𝐵1) be admissible triple, 𝜇 ≥ 𝜇2(𝐽𝒇 (𝐵1)) and 𝑀 ≥ ‖𝒇 [2](𝐵1)‖. For any 𝜀 > 0, if ℎ1 > 0 is given by583

ℎ1 ← ℎeuler(𝐻,𝑀, 𝜇, 𝜀) ∶=

⎧

⎪

⎨

⎪

⎩

min
{

𝐻, 2𝜇𝜀
𝑀 ⋅(𝑒𝜇𝐻−1)

}

if 𝜇 ≥ 0

min
{

𝐻, 2𝜇𝜀
𝑀 ⋅(𝑒𝜇𝐻−1)−𝜇2𝜀

}

if 𝜇 < 0

Zhang and Yap: Preprint submitted to Elsevier Page 24 of 36



A Novel Approach to Initial Value Problems

consider the path 𝑄ℎ1 = (𝒒0, 𝒒1,… , 𝒒𝑚) from the Euler method with step-size ℎ1. If each 𝒒𝑖 ∈ 𝐵1 (𝑖 = 0,… , 𝑚), then584

for all 𝑡 ∈ [0,𝐻], we have585

‖𝑄ℎ1 (𝑡) − 𝒙(𝑡; 𝒒0)‖ ≤ 𝜀.

I.e., 𝑄ℎ1 (𝑡) lies inside the 𝜀-tube of 𝒙(𝑡; 𝒒0).586

Proof. For simplicity, we only prove the lemma when 𝐻∕ℎ1 is an integer. We first show that the Euler method with587

step size ℎ1 > 0 has the following error bound:588

‖𝒒 − 𝒙(𝐻)‖ ≤
⎧

⎪

⎨

⎪

⎩

𝑀ℎ1
2𝜇 (𝑒𝜇𝐻 − 1) 𝜇 ≥ 0,
𝑀ℎ1

2𝜇+𝜇2ℎ1
(𝑒𝜇𝐻 − 1) 𝜇 < 0.

(38)

To show (38), assume (𝒑0 = 𝒙(0),𝒑1,… ,𝒑𝑚 = 𝒒) are obtained by the Euler method corresponding to 𝑡0 =589

0, 𝑡1,… , 𝑡𝑚 = 𝐻 . Let 𝑔𝑖 = ‖𝒑𝑖 − 𝒙(𝑡𝑖)‖2 be the error bound. Then we have590

𝑔𝑚 ≤ 𝑔𝑚−1𝑒𝜇ℎ1 +
𝑀ℎ21
2 (by Taylor formula)

≤ 𝑔𝑚−2𝑒𝜇ℎ1 +
𝑀ℎ21
2 𝑒𝜇ℎ1 +

𝑀ℎ21
2 (by expanding 𝑔𝑚−1)

⋮

≤
𝑀ℎ21
2 (1 + 𝑒𝜇ℎ1 +⋯ 𝑒𝜇ℎ1(𝑚−1)) (since 𝑔0 = 0)

≤
𝑀ℎ21
2

𝑒𝜇𝐻−1
𝑒𝜇ℎ1−1

≤
⎧

⎪

⎨

⎪

⎩

𝑀ℎ1
2𝜇 (𝑒𝜇𝐻 − 1) if 𝜇 ≥ 0,
𝑀ℎ1

2𝜇+𝜇2ℎ1
(𝑒𝜇𝐻 − 1) if 𝜇 < 0.

If 𝜇 ≥ 0, then the last formula is justified by 𝑒𝜇ℎ1 − 1 ≥ 𝜇ℎ1, and so 𝑔𝑚 ≤ 𝑀ℎ1
2𝜇 (𝑒𝜇𝐻 − 1). If 𝜇 < 0, then the formula591

is justified by 𝑒𝜇ℎ1 − 1 ≤ 𝜇ℎ1 +
1
2𝜇

2ℎ21 (use the fact that 𝑓 (𝑥) = 𝑒𝑥 − 1 − 𝑥 − 1
2𝑥

2 < 0 when 𝑥 < 0; check that592

𝑓 ′(𝑥) = 𝑒𝑥 − 1 − 𝑥 > 0 for all 𝑥 < 0). This proves (38). Note that593

𝜇ℎ1 +
1
2𝜇

2ℎ21 = 𝜇ℎ1(1 +
1
2𝜇ℎ1)

= 𝜇ℎ1(1 +
𝜇2𝜀

𝑀 ⋅(𝑒𝜇𝐻−1)−𝜇2𝜀
)

(Choose ℎ1 =
2𝜇𝜀

𝑀 ⋅(𝑒𝜇𝐻−1)−𝜇2𝜀
)

= 𝜇ℎ1(
𝑀 ⋅(𝑒𝜇𝐻−1)

𝑀 ⋅(𝑒𝜇𝐻−1)−𝜇2𝜀
) ≤ 0.

Focusing on the case 𝜇 < 0: we claim that

𝛿 >
𝑀ℎ1

2𝜇 + 𝜇2ℎ1
(𝑒𝜇𝐻 − 1)

is equivalent to
ℎ1 <

2𝜇𝛿

𝑀 ⋅ (𝑒𝜇𝐻 − 1) − 𝜇2𝛿
.

This is verified by direct algebraic manipulation. Q.E.D.594

595

Lemma 6596

Let 𝐻 > 0, 𝜺 = (𝜀1,… , 𝜀𝑛), and 𝐸0 ⊆ ℝ𝑛. If597

𝐵 ∶=
𝑘−1
∑

𝑖=0
[0,𝐻]𝑖𝒇 [𝑖](𝐸0) + 𝐵𝑜𝑥(−𝜺, 𝜺) and 𝑀 ∶= sup

𝒑∈𝐵
‖𝒇 [𝑘](𝒑)‖2,
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then an 𝜺-admissible pair for 𝐸0 is given by (ℎ, 𝐹1) where598

ℎ = min
{

𝐻,
𝑛

min
𝑖=1

(

𝜀𝑖
𝑀𝑖

)1∕𝑘}
and 𝐹1 =

𝑘−1
∑

𝑖=0
[0, ℎ]𝑖𝒇 [𝑖](𝐸0) + 𝐵𝑜𝑥(−𝜺, 𝜺). (39)

599

Proof. To verify (7), we only need to verify600

[0, ℎ]𝑘𝒇 [𝑘](𝐹1) ⊆ 𝐵𝑜𝑥(−𝜺, 𝜺).

We have:601

ℎ𝑘𝒇 [𝑘](𝐹1) ⊆ ℎ𝑘[−𝑀,𝑀]𝑛 (by the definition of 𝑀 )
⊆ 𝐵𝑜𝑥(−𝜺, 𝜺). (by the definition of ℎ )

Q.E.D.602

603

Lemma 7604

Consider an admissible triple (𝐸0,𝐻, 𝐹1) where 𝐸0 ∶=𝐵𝑎𝑙𝑙(𝒑0, 𝑟0).605

Let 𝒒0 = 𝒑0 + ℎ1𝑓 (𝒑0) be obtained from 𝒑0 by an Euler step of size ℎ1.606

If ℎ1 ≤ ℎeuler(𝐻,𝑀, 𝜇, 𝛿) (cf. (11)), where 𝜇 = 𝜇2(𝐽𝒇 (𝐹1)), 𝑀 = ‖𝒇 [2](𝐹1)‖, and 𝛿 > 0, then:607

(a) The linear function 𝓁(𝑡) ∶= (1 − 𝑡∕ℎ1)𝒑0 + (𝑡∕ℎ1)𝒒0 lies in the 𝛿-tube of 𝒙0 = IVP(𝒑0,𝐻).608

(b) An end-enclosure for IVP(𝐸0, ℎ1) is given by 𝐵𝑎𝑙𝑙(𝒒0, 𝑟0𝑒𝜇ℎ1 + 𝛿).609

(c) A full-enclosure for IVP(𝐸0, ℎ1) is given by CHull(𝐵𝑎𝑙𝑙(𝒑0, 𝑟′), 𝐵𝑎𝑙𝑙(𝒒0, 𝑟′)) where 𝑟′ = 𝛿 + max(𝑟0𝑒𝜇ℎ1 , 𝑟0).610

611

Proof.612

(a) By Lemma 5 we have 𝓁(𝑡) lies in the 𝛿-tube of 𝒙0, since for any 𝑡 ∈ [0, ℎ1], ‖𝓁(𝑡) − 𝒙𝑐(𝑡)‖ ≤ 𝛿.613

(b) By Corollary 4 we have for any 𝒙 ∈ IVP(𝐵𝑎𝑙𝑙(𝒑0, 𝑟0), ℎ1, 𝐹1), ‖𝒙(ℎ1)−𝒙0(ℎ1)‖ ≤ 𝑟0𝑒𝜇ℎ1 . Since ‖𝒒0−𝒙0(ℎ1)‖2 ≤
𝛿, then by the triangular inequality we have

‖𝒒0 − 𝒙(ℎ1)‖2 ≤ ‖𝒙(ℎ1) − 𝒙0(ℎ1)‖ + ‖𝒒0 − 𝒙0(ℎ)‖2 ≤ 𝑟.

So, 𝒙(ℎ1) ∈ 𝐵𝑎𝑙𝑙(𝒒0, 𝑟0𝑒𝜇ℎ + 𝛿).614

(c) We show that for any 𝑇 ∈ [0, ℎ1], the end-enclosure of IVP(𝐸0, 𝑇 ) is a subset of 𝐵𝑜𝑥(𝐵𝑎𝑙𝑙(𝒑0, 𝑟′+𝛿), 𝐵𝑎𝑙𝑙(𝒒0, 𝑟′+615

𝛿)). Note that 𝐸1 = 𝐵𝑎𝑙𝑙(𝑙(𝑇 ), 𝑟0𝑒𝜇𝑇 + 𝛿) is the end-enclosure for IVP(𝐸0, 𝑇 ).616

Let 𝑙(𝑇 )𝑖 denote the 𝑖-th component of 𝑙(𝑇 ) and 𝑟(𝑇 ) ∶= 𝑟0𝑒𝜇𝑇 + 𝛿. Then, we only need to prove that for any617

𝑖 = 1,… , 𝑛, the interval 𝑙(𝑇 )𝑖 ± 𝑟(𝑇 ) satisfies618

𝑙(𝑇 )𝑖 ± 𝑟(𝑇 ) ⊆ 𝐵𝑜𝑥((𝒑0)𝑖 ± (𝑟′ + 𝛿), (𝒒0)𝑖 ± (𝑟′ + 𝛿)),

where (𝒑0)𝑖 and (𝒒0)𝑖 are the 𝑖-th components of 𝒑0 and 𝒒0, respectively.619

Since 𝑙(𝑇 ) is a line segment, it follows that620

min((𝒒0)𝑖, (𝒑0)𝑖) ≤ 𝑙(𝑇 )𝑖 ≤ max((𝒒0)𝑖, (𝒑0)𝑖).

Additionally, we have 𝑟(𝑇 ) ≤ 𝑟′ + 𝛿.621

Combining these observations, we conclude that622

𝑙(𝑇 )𝑖 ± 𝑟(𝑇 ) ⊆ 𝐵𝑜𝑥((𝒑0)𝑖 ± (𝑟′ + 𝛿), (𝒒0)𝑖 ± (𝑟′ + 𝛿)).
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Q.E.D.623

624

625

Lemma A.2626

627

(a) 𝒈(𝒚) = 𝐽𝜋(𝜋−1(𝒚)) ∙ 𝒈(𝜋−1(𝒚))628

= 𝚍𝚒𝚊𝚐(−𝑑𝑖𝑦
1+ 1

𝑑𝑖
𝑖 ∶ 𝑖 = 1,… , 𝑛) ∙ 𝒈(𝜋−1(𝒚)).629

(b) The Jacobian matrix of 𝒈 with respect to 𝒚 = (𝑦1,… , 𝑦𝑛) is:630

𝐽𝒈(𝒚) = 𝐴(𝒚) + 𝑃−1(𝒚) ∙ 𝐽𝒈(𝜋−1(𝒚)) ∙ 𝑃 (𝒚), (40)
where

𝐴(𝒚) = 𝚍𝚒𝚊𝚐

(

− (𝑑𝑖 + 1)𝑦
1
𝑑𝑖
𝑖 ⋅ (𝒈(𝜋−1(𝒚)))𝑖) ∶ 𝑖 = 1,… , 𝑛

)

and
𝑃 (𝒚) = 𝚍𝚒𝚊𝚐

(𝜋−1(𝒚)𝑑𝑖+1𝑖
𝑑𝑖

∶ 𝑖 = 1,… , 𝑛
)

.

631

632

Proof.633

(a) For each 𝑖 = 1,… , 𝑛, we have from (21) that 𝑦′𝑖 = 𝑔𝑖(𝒚) where 𝒚 = (𝑦1,… , 𝑦𝑛), 𝒈 = (𝑔1,… , 𝑔𝑛), i.e.,634

𝑔𝑖(𝒚) = 𝑦′𝑖 =
(

1
𝑦𝑑𝑖𝑖

)′
(by (21) and 𝑦𝑖 = 𝑦−𝑑𝑖𝑖 )

= −𝑑𝑖𝑦
−(𝑑𝑖+1)
𝑖 𝑦′𝑖

= −𝑑𝑖𝑦
1+ 1

𝑑𝑖
𝑖

(

𝒈
(

𝑦
− 1
𝑑1

1 ,… , 𝑦
− 1
𝑑𝑛

𝑛
)

)

𝑖

= −𝑑𝑖𝑦
1+ 1

𝑑𝑖
𝑖 (𝒈(𝜋−1(𝒚)))𝑖.

Thus,
𝒈(𝒚) = (𝑔1(𝒚),… , 𝑔𝑛(𝒚)) = 𝚍𝚒𝚊𝚐(−𝑑𝑖𝑦

1+ 1
𝑑𝑖

𝑖 , 𝑖 = 1,… , 𝑛) ∙ 𝒈(𝜋−1(𝒚))

(b) By plugging 𝑔𝑖(𝒚) = −𝑑𝑖𝑦
1+ 1

𝑑𝑖
𝑖 (𝒈(𝜋−1(𝒚)))𝑖 into the Jacobian, we get635

𝐽𝒈(𝒚) =
⎡

⎢

⎢

⎣

∇(𝑔1(𝒚))
⋮

∇(𝑔𝑛(𝒚)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

∇(−𝑑𝑖𝑦
1+

1
𝑑𝑖

1 (𝒈(𝜋−1(𝒚)))1)
⋮

∇(−𝑑𝑛𝑦
1+

1
𝑑𝑛

𝑛 (𝒈(𝜋−1(𝒚)))𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

∇(−𝑑1𝑦
1+

1
𝑑1

1 )(𝒈(𝜋−1(𝒚)))1
⋮

∇(−𝑑𝑛𝑦
1+

1
𝑑𝑛

𝑛 )(𝒈(𝜋−1(𝒚)))𝑛

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

−𝑑1𝑦
1+

1
𝑑1

1 ∇((𝒈(𝜋−1(𝒚)))1)
⋮

−𝑑𝑛𝑦
1+

1
𝑑𝑛

𝑛 ∇((𝒈(𝜋−1(𝒚)))𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

(41)

Note that for any 𝑖 = 1,… , 𝑛,

∇(−𝑑𝑖𝑦
1+

1
𝑑𝑖

𝑖 )(𝒈(𝜋−1(𝒚)))𝑖 =
(

0,… , 0,−𝑑𝑖
(

1 + 1
𝑑𝑖

)

𝑦
1
𝑑𝑖
𝑖 (𝒈(𝜋−1(𝒚)))𝑖,… , 0

)
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and636

−𝑑𝑖𝑦
1+

1
𝑑𝑖

𝑖 ∇((𝒈(𝜋−1(𝒚)))𝑖) =
(

− 𝑑𝑖𝑦
1+

1
𝑑𝑖

𝑖
𝜕(𝒈(𝒙))𝑖
𝜕𝑥𝑗

(𝜋−1(𝒚)) 𝜕𝜋
−1(𝒚)
𝜕𝒚

∶ 𝑗 = 1,… , 𝑛
)

=
(

𝑑𝑖
𝑑𝑗

⎛

⎜

⎜

⎝

𝑦
1+ 1

𝑑𝑖
𝑖

𝑦
1+ 1

𝑑𝑗
𝑗

⎞

⎟

⎟

⎠

𝜕(𝒈(𝒙))𝑖
𝜕𝑥𝑗

(𝜋−1(𝒚)) ∶ 𝑗 = 1,… , 𝑛
)

=
(

𝑑𝑖
𝑑𝑗
𝜋−1(𝒚)𝑑𝑗+1𝑗

𝜕(𝒈(𝒙))𝑖
𝜕𝑥𝑗

(𝜋−1(𝒚))𝜋−1(𝒚)−𝑑𝑖−1𝑖 ∶ 𝑗 = 1,… , 𝑛
)

.

Thus,
𝐽𝒈(𝒚) = 𝐴(𝒚) + 𝑃−1(𝒚) ∙ 𝐽𝒈(𝜋

−1(𝒚)) ∙ 𝑃 (𝒚),

where
𝐴(𝒚) = 𝚍𝚒𝚊𝚐(−(𝑑1 + 1)𝑦

1
𝑑1
1 (𝒈(𝜋−1(𝒚)))1),… ,−(𝑑𝑛 + 1)𝑦

1
𝑑𝑛
𝑛 (𝒈(𝜋−1(𝒚)))𝑛)

and
𝑃 (𝒚) = 𝚍𝚒𝚊𝚐(

𝜋−1(𝒚)𝑑1+11
𝑑1

,… , 𝜋
−1(𝒚)𝑑𝑛+1𝑛

𝑑𝑛
).

Q.E.D.637

638

Theorem 8639

(a)

𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

≤ max
{

−(𝑑𝑖+1)
𝑏̌𝑖

∶ 𝑖 = 1,… , 𝑛
}

+max𝑛𝑖=1
{

𝑑𝑖
}

⋅ ‖𝐽𝒈(𝜋(𝐹1))‖2 ⋅max𝑛𝑖=1
{

(𝑏̌𝑖)𝑑𝑖+1

𝑑𝑖

}

.

(b) If 𝑑1 = ⋯ = 𝑑𝑛 = 𝑑 then

𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

≤ −(𝑑 + 1) 1
𝑏̌max

+ (𝑏̌max)𝑑+1‖𝐽𝒈(𝜋(𝐹1))‖2.

640

Proof. From Lemma A.2(b) we have for any 𝒑 = (𝑝1,… , 𝑝𝑛) ∈ 𝜋(𝐹1),641

𝐽𝒈(𝜋(𝒑)) = 𝐴(𝒑) + 𝑃−1(𝒑)
𝜕𝒈
𝜕𝒙

(𝒑)𝑃 (𝒑) (42)

where 𝑃 (𝒑) = 𝚍𝚒𝚊𝚐
( 𝑝𝑑𝑖+1𝑖

𝑑𝑖
∶ 𝑖 = 1,… , 𝑛

) and 𝐴(𝒑) = 𝚍𝚒𝚊𝚐(𝑎1,… , 𝑎𝑛) with642

𝑎𝑖 ∶= − 𝑑𝑖(1 +
1
𝑑𝑖
)𝑝−1𝑖 ⋅ (𝒈(𝒑))𝑖. (43)

Thus, 𝐴, 𝑃 are diagonal matrices and 𝑝−1𝑖 is well-defined since 𝒑 ∈ 𝐵2 ≥ 1, (28).643

By Lemma 2(b) and (43), we conclude that the form644

𝜇2(𝐴(𝒑)) = 𝜇2(𝚍𝚒𝚊𝚐(𝑎1,… , 𝑎𝑛)) = max
{

𝑎𝑖 ∶ 𝑖 = 1,… , 𝑛
}

. (44)
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From (29), we conclude that645

𝜇2
(

𝐽𝒈(𝜋(𝒑))
)

= 𝜇2

(

𝐴(𝒑) + 𝑃 −1(𝒑) 𝜕𝒈
𝜕𝒙
(𝒑)𝑃 (𝒑)

)

(by (42))
≤ 𝜇2(𝐴(𝒑)) + 𝜇2

(

𝑃 −1(𝒑) 𝜕𝒈
𝜕𝒙
(𝒑)𝑃 (𝒑)

)

(by Lemma 2(a))
≤ 𝜇2(𝐴(𝒑)) +

‖

‖

‖

𝑃 −1(𝒑) 𝜕𝒈
𝜕𝒙
(𝒑)𝑃 (𝒑)‖‖

‖2(by Lemma 2(b))
≤ max

{

−(𝑑𝑖+1)
𝑏̌𝑖

∶ 𝑖 = 1,… , 𝑛
}

+ ‖

‖

𝑃 −1(𝒑)‖
‖

‖

‖

‖

𝜕𝒈
𝜕𝒙
(𝒑)‖‖

‖

‖𝑃 (𝒑)‖
(by (8))

≤ max
{

−(𝑑𝑖+1)
𝑏̌𝑖

∶ 𝑖 = 1,… , 𝑛
}

+max𝑛𝑖=1
{

𝑑𝑖
}

⋅ ‖𝐽𝒈(𝜋(𝐹1))‖2 ⋅max𝑛𝑖=1
{

(𝑏̌𝑖)𝑑𝑖+1

𝑑𝑖

}

.

Q.E.D.646

647

Lemma 9 If 𝑑 ≥ 𝑑(𝐹1), we have:648

(a) 𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

≤ (−2 + (𝑏̌max)𝑑+2) ⋅
‖𝐽𝒈(𝜋(𝐹1))‖2

𝑏̌max
.649

(b) If log2(𝑏̌max) <
1

𝑑+2 then 𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

< 0.650

651

Proof.652

(a) By Theorem 8 we have653

𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

≤ −(𝑑 + 1) 1
𝑏̌max

+ (𝑏̌max)𝑑+1‖𝐽𝒈(𝜋(𝐹1))‖2

=
(

−(𝑑+1)
‖𝐽𝒈(𝜋(𝐹1))‖2

+ (𝑏̌max)𝑑+2
)

⋅
‖𝐽𝒈(𝜋(𝐹1))‖2

𝑏̌max

(by factoring)
≤

(

− 2 + (𝑏̌max)𝑑+2
)

⋅
‖𝐽𝒈(𝜋(𝐹1))‖2

𝑏̌max

(By eqn.(30), we have (𝑑 + 1) ≥ 2(‖𝐽𝒈(𝜋(𝐹1))‖2)).

(b) Since (𝑏̌max)𝑑+2 < 2 is equivalent to log2(𝑏̌max) <
1

𝑑+2 , we conclude that 𝜇2
(

𝐽𝒈(𝜋(𝐹1))
)

< 0.654

Q.E.D.655

656

657

Lemma A.4658

Let 𝒑, 𝒒 ∈ 𝐵 ⊆ ℝ𝑛 and 𝜙 ∈ 𝐶1(𝐹1 → ℝ𝑛), then ‖𝜙(𝒑) − 𝜙(𝒒)‖2 ≤ ‖𝐽𝜙(𝐵)‖2 ⋅ ‖𝒑 − 𝒒‖2659

660

Proof.661

‖𝜙(𝒑) − 𝜙(𝒒)‖2 ≤ ‖𝜙(𝒒) + 𝐽𝜙(𝜉) ∙ (𝒑 − 𝒒) − 𝜙(𝒒)‖2(by Taylor expansion of 𝜙(𝒑) at 𝒒)
= ‖𝐽𝜙(𝜉) ∙ (𝒑 − 𝒒)‖2
≤ ‖𝐽𝜙(𝜉)‖2 ⋅ ‖(𝒑 − 𝒒)‖2
≤ ‖𝐽𝜙(𝐵)‖2 ⋅ ‖(𝒑 − 𝒒)‖2,
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where 𝜉 ∈ 𝐵. Q.E.D.662

663

Lemma 10
Let 𝒚 = 𝜋(𝒙) and

𝒙 ∈ IVP𝒇 (𝒙0, ℎ, 𝐹1),
𝒚 ∈ IVP𝒈(𝜋(𝒙0), ℎ, 𝜋(𝐹1)).

For any 𝛿 > 0 and any point 𝒑 ∈ ℝ𝑛 satisfying664

‖𝜋(𝒑) − 𝒚(ℎ)‖2 ≤
𝛿

‖𝐽𝜋−1 (𝜋(𝐹1))‖2
,

we have
‖𝒑 − 𝒙(ℎ)‖2 ≤ 𝛿.

665

Proof.666

‖𝒑 − 𝒙(ℎ)‖2 = ‖𝜋−1(𝜋(𝒑)) − 𝜋−1(𝜋(𝒙(ℎ)))‖2
= ‖𝜋−1(𝜋(𝒑)) − 𝜋−1(𝒚(ℎ))‖2
≤ ‖𝐽𝜋−1 (𝜋(𝐹1))‖2 ⋅ ‖𝜋(𝒑) − 𝒚(ℎ)‖2(by Lemma A.4)
≤ 𝛿 (by condition (31).)

Q.E.D.667

668

Theorem 11 The subroutine  .Refine(𝜀) is correct. In particular, it halts.669

Proof. The proof is in two parts: (a) partial correctness and (b) termination. Assume the scaffold  has 𝑚 stages and670

the input for Refine is 𝜀 > 0.671

(a) Partial correctness is relatively easy, so we give sketch a broad sketch: we must show that if the Refine halts,672

then its output is correct, i.e., 𝑤max(𝐸𝑚()) < 𝜀. The first line of Refine initializes 𝑟0 to 𝑤max(𝐸𝑚()). If 𝑟0 < 𝜀, then673

we terminate without entering the while-loop, and the result hold. If we enter the while-loop, then we can only exit the674

while-loop if the last line of the while-body assigns to 𝑟0 a value 𝑤max(𝐸𝑚()) less than 𝜀. Again this is correct.675

(b) The rest of the proof is to show that Refine halts. We will prove termination by way of contradiction. If Refine676

does not terminate, then it has infinitely many phases where the 𝑘th phase (𝑘 = 1, 2,…) refers to the 𝑘 iterate of the677

while-loop.678

(H1) We will show that lim𝑘→∞ 𝛿𝑘𝑖 = 0 for each 𝑖 = 1,… , 𝑚 in (36). This will yield a contradiction.679

(H2) For a fixed stage 𝑖, we see the number of times that Refine calls EulerTube is

𝑑𝑘𝑖 ∶= log2
(𝛿1𝑖
𝛿𝑘𝑖

)

.

Similarly, the number of times Refine calls Bisect is
𝓁𝑘
𝑖 − 𝓁1

𝑖

where 𝓁𝑘
𝑖 is the level of the (𝑘, 𝑖) phase-stage. So,680

𝑘 = 𝑑𝑘𝑖 + (𝓁𝑘
𝑖 − 𝓁1

𝑖 ) (45)
since each phase calls either Bisect or EulerTube. Hence 𝑘 → ∞.681
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(H3) CLAIM: lim𝑘→∞ 𝑑𝑘𝑖 → ∞, i.e., EulerTube is called infinitely often. By way of contradictor, suppose 𝑑𝑘𝑖 has an682

upper bound, say 𝑑
𝑘
𝑖 . Since 𝜇2, Δ𝑡𝑖, and 𝑀 are bounded, we have ℎ̂ ≥ 𝐶 ⋅2𝑑

𝑘
𝑖 in Refine (see (11)), where 𝐶 > 0683

is a constant.684

Note that each Bisect(𝑖) increments the level and thus halves 𝐻 . Therefore, once 𝐻 < 𝐶 ⋅ 2𝑑
𝑘
𝑖 , Bisect will685

no longer be called. This implies that lim𝑘→∞(𝓁𝑘
𝑖 − 𝓁1

𝑖 ) is finite. This is a contradicts the fact that 𝑘 → ∞ since686

both 𝑑𝑘𝑖 and (𝓁𝑘
𝑖 − 𝓁1

𝑖 ) are bounded. Thus, our CLAIM is proved.687

It follows from the CLAIM that lim𝑘→∞ 𝛿𝑘𝑖 = 0, since EulerTube is called infinitely often, and after each call,688

𝛿𝑘𝑖 is halved.689

(H4) Consider (𝑘, 𝑖) as a phase-stage: define 𝑟𝑘𝑖 as the radius of the circumball of 𝐸𝑖() at phase 𝑘. For instance, we690

terminate in phase 𝑘 if 𝑘 ≥ 0 is the first phase to satisfy 𝑟𝑘𝑚 < 1
2𝜀0.691

Since we call EulerTube infinitely often, and each call ensures that the target 𝛿𝑘𝑖 in (18) is reached:692

𝑟𝑘𝑖 ≤ 𝑟𝑘𝑖−1𝑒
𝜇𝑘𝑖 Δ𝑡𝑖 + 𝛿𝑘𝑖 , (46)

where 𝜇𝑘
𝑖 (computed as 𝜇2 in Refine) is an upper bound for the logarithmic norm over the full enclosure of the693

𝑖th stage.694

(H5) A chain is a sequence 𝐶1 = (1 ≤ 𝑘(1) ≤ 𝑘(2) ≤ ⋯ ≤ 𝑘(𝑚)) such that EulerTube is called in phase-stage695

(𝑘(𝑖), 𝑖) for each 𝑖 = 1,… , 𝑚. The chain contains 𝑚 inequalities of the form (46), and we can telescope them into696

a single inequality.697

But first, to simplify these inequalities, let 𝜇 be the largest value of 𝜇1
𝑖 for 𝑖 = 1,… , 𝑚, Δ = Δ(𝐶1) is the698

maximum of 𝛿𝑘(1)𝑖 , and ℎ𝑖 be the step size of the 𝑖th stage:699

𝑟𝑘(𝑚)𝑚 ≤ (𝑟𝑘(𝑚)𝑚−1)𝑒
𝜇𝑘(𝑚)𝑖 ℎ𝑖 + 𝛿𝑘(𝑚)𝑖 (by (46) for (𝑘(𝑚), 𝑚))

≤ (𝑟𝑘(𝑚−1)𝑚−1 )𝑒𝜇
𝑘(𝑚)
𝑖 ℎ𝑖 + 𝛿𝑘(𝑚)𝑖 (since 𝑟𝑘(𝑚)𝑚−1 ≤ 𝑟𝑘(𝑚−1)𝑚−1 )

≤ ((𝑟𝑘(𝑚−1)𝑚−2 )𝑒𝜇
𝑘(𝑚−1)
𝑖−1 ℎ𝑖−1 + 𝛿𝑘(𝑚−1)𝑖−1 )𝑒𝜇

𝑘(𝑚)
𝑖 ℎ𝑖 + 𝛿𝑘(𝑚)𝑖 (by (46) for (𝑘(𝑚 − 1), 𝑚 − 1))

≤ ((𝑟𝑘(𝑚−1)𝑚−2 )𝑒𝜇ℎ𝑖−1 + Δ)𝑒𝜇ℎ𝑖 + Δ (simplify using 𝜇, ℎ𝑖,Δ)
⋮

≤ (𝑟𝑘(1)0 )𝑒𝜇
∑𝑚

𝑗=1 ℎ𝑗 + Δ
∑𝑚−1

𝑗=0 𝑒𝜇
∑𝑚

𝑖=𝑗+1 ℎ𝑖

≤ 𝑒𝜇(𝑟𝑘(1)0 + Δ ⋅ 𝑚) (since 1 ≥
∑𝑚

𝑖=1 ℎ𝑖)

To summarize what we just proved13 about a chain 𝐶1, let 𝑟𝑚(𝐶1) denote 𝑟𝑘(𝑚)𝑚 and 𝑟0(𝐶1) denote 𝑟𝑘(1)0 the700

following 𝐶1-inequality:701

𝑟𝑚(𝐶1) ≤ 𝑒𝜇(𝑟0(𝐶1) + Δ(𝐶1) ⋅ 𝑚). (47)

(H6) If 𝐶 = (1 ≤ 𝑘(1) ≤ ⋯ ≤ 𝑘(𝑚)) and 𝐶 ′ = (1 ≤ 𝑘′(1) ≤ ⋯ ≤ 𝑘′(𝑚)) are two chains where 𝑘(𝑖) < 𝑘′(𝑖) for702

𝑖 = 1,… , 𝑚, then we write 𝐶 < 𝐶 ′.703

LEMMA: If 𝐶 < 𝐶 ′ then
𝑟𝑚(𝐶 ′) ≤ 1

2𝑒
𝜇(𝑟0(𝐶) + Δ(𝐶) ⋅ 𝑚)

(H7) It is easy to show that there exists an infinite sequence of chains
𝐶1 < 𝐶2 < 𝐶3 < ⋯ .

13This proof assumes that 𝜇𝑘
𝑖 ≤ 𝜇𝑘−1

𝑖 . This is true if our interval computation of 𝜇2 is isotonic. But we can avoid isotony by defining 𝜇𝑘
𝑖 to be

𝜇𝑘−1
𝑖 if the computation returns a larger value.
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This comes from the fact that for each 𝑖 = 1,… , 𝑚, there are infinitely many phases that calls EulerTube. It
follows by induction using the previous LEMMA that, for each 𝑖 ≥ 2,

𝑟𝑚(𝐶𝑖) ≤ ( 12 )
𝑖𝑒𝜇(𝑟0(𝐶1) + Δ(𝐶1) ⋅ 𝑚)

This proves that lim𝑖→∞ 𝑟𝑚(𝐶𝑖) = 0. This contradicts the non-termination of Refine.704

Q.E.D.705

706

Theorem 12 Algorithm EndEnc(𝐵0, 𝜀0) halts, provided the interval computation of StepA is isotonic. The output707

is also correct.708

Proof.709

If the algorithm terminates, its correctness is ensured by the conclusions in Section 4.710

We now proceed to prove the termination of the algorithm. Specifically, we need to show that the loop in the711

algorithm can terminate, which means that the time variable 𝑡 can reach 1. It suffices to demonstrate that for any inputs712

𝐵0 and 𝜀0 > 0, there exists a lower bound ℎ > 0 such that for the 𝑖th iteration of the loop has step size Δ𝑡𝑖 = ℎ𝑖 ≥ ℎ.713

First we define the set 𝐸 ∶= image(IVP(𝐵0, 1)) + [−𝜀0, 𝜀0]𝑛. Since IVP(𝐵0, 1) is valid, 𝐸 is a bounded set. Let the714

pair (ℎ, 𝐹 ) be the result of calling the subroutine StepA(𝐸, 1, 𝜀0). Note that StepA is implicitly calling box functions715

to compute ℎ, 𝐹 (see Subsection 2.2), and thus ℎ is positive. Whenever we call StepA in our algorithm, its arguments716

are (𝐸,𝐻, 𝜀0) for some 𝐸 ⊆ 𝐸 and 𝐻 ≤ 1. If StepA(𝐸,𝐻, 𝜀0) → (ℎ, 𝐹 ), then ℎ ≥ ℎ, provided14 StepA is isotonic.717

This proves that the algorithm halts in at most ⌈1∕ℎ⌉ steps. Q.E.D.718

719

B. Appendix B: The affine map 𝜋720

Consider the condition (27). Without loss of generality, assume 0 ∉ 𝐼1. To further simplify our notations, we721

assume722

𝐼1 > 0. (48)
In case 𝐼1 < 0, we shall indicate the necessary changes to the formulas. We first describe an invertible linear map723

𝜋 ∶ ℝ𝑛 → ℝ𝑛 such that724

𝜋(𝒇 (𝐵1)) > 1 = (1,… , 1) (Greater-than-One Property of 𝜋) (49)
Note that (49) means that for each 𝑖 = 1,… , 𝑛, the 𝑖th component (𝜋(𝒇 (𝐵1)))𝑖 is greater than one.725

To define 𝜋, we first introduce the box 𝐵1:726

𝐵1 ∶= 𝐵𝑜𝑥(𝒇 (𝐵1))
=

∏𝑛
𝑖=1 𝐼 𝑖 (implicit definition of 𝐼 𝑖)

=
∏𝑛

𝑖=1[𝑎𝑖, 𝑏𝑖] (implicit definition of 𝑎𝑖, 𝑏𝑖)
(50)

where 𝐵𝑜𝑥(𝑆) ∈ ℝ𝑛 is the smallest box containing a set 𝑆 ⊆ ℝ𝑛. For instance, 𝐼 𝑖 = 𝑓𝑖(𝐵1) where 𝒇 = (𝑓1,… , 𝑓𝑛).727

The assumption (48) says that 𝐼1 > 0, i.e., either 𝑎1 > 0.728

We now define the map 𝜋 ∶ ℝ𝑛 → ℝ𝑛 as follows: 𝜋(𝑥1,… , 𝑥𝑛) = (𝑥1,… , 𝑥𝑛) where729

𝑥𝑖 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑖
𝑎𝑖

if 𝑎𝑖 > 0, (i.e., 𝑓𝑖(𝐵1) > 0)
𝑥𝑖
𝑏𝑖

else if 𝑏𝑖 < 0, (i.e., 𝑓𝑖(𝐵1) < 0)
𝑥𝑖 + 𝑥1

( 1+𝑏𝑖−𝑎𝑖
𝑎1

) else (i.e., 0 ∈ 𝑓𝑖(𝐵1)).
(51)

14If computes ℎ > ℎ, we could not “simply” set ℎ to be ℎ because we do not know how to compute a corresponding full enclosure. Note that 𝐸
is a full enclosure, but we do not know how to compute it.
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Note that if 𝐼1 < 0, we only need to modify the third clause in (51) to 𝑥𝑖 + 𝑥1
( 1+𝑏𝑖−𝑎𝑖

𝑏1

).730

Observe that 𝜋(𝐵1) is generally a parallelopiped, not a box. Even for 𝑛 = 2, 𝜋(𝐵1) is a parallelogram. So we are731

interested in the box 𝐵𝑜𝑥(𝜋(𝐵1)):732

𝐵′
1 ∶=𝐵𝑜𝑥(𝜋(𝐵1)) =

∏𝑛
𝑖=1 𝐼

′
𝑖 (implicit definition of 𝐼 ′𝑖 )

=
∏𝑛

𝑖=1[𝑎
′
𝑖, 𝑏

′
𝑖] (implicit definition of 𝑎′𝑖, 𝑏′𝑖)

(52)

Then we have the following results:733

734

Lemma B.1735

(a) 𝜋 is an invertible linear map given by736

𝜋(𝒙) = 𝐴 ∙ 𝒙 (53)
1
𝑎𝑖

, 1
𝑏𝑖

or 1 along the diagonal and other non-zero entries in column 1 only, Here’s the revised version with improved737

clarity and formatting:738

⎡

⎢

⎢

⎢

⎢

⎣

𝑣1
𝑐2 𝑣2
𝑐3 𝑣3
⋮ ⋱
𝑐𝑛 𝑣𝑛

⎤

⎥

⎥

⎥

⎥

⎦

where

𝑣𝑖 =

⎧

⎪

⎨

⎪

⎩

1
𝑎𝑖

if 𝑎𝑖 > 0,
1
𝑏𝑖

else if 𝑏𝑖 < 0,
1 else

𝑐𝑖 =

{

0 if 0 ∉ 𝑓𝑖(𝐵1),
1+𝑏𝑖−𝑎𝑖

𝑎1
else.

(b) The box 𝐵𝑜𝑥(𝜋(𝐵1)) =
∏𝑛

𝑖=1 𝐼
′
𝑖 is explicitly given by739

𝐼 ′𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

1, 𝑏𝑖𝑎𝑖

]

if 𝑎𝑖 > 0,
[

1, 𝑎𝑖
𝑏𝑖

]

else if 𝑏𝑖 < 0,
[

1 + 𝑏𝑖,
𝑏1
𝑎1

(

1 + 𝑏𝑖
(

1 + 𝑎1
𝑏1

)

− 𝑎𝑖
)

]

else .

(54)

(c) The map 𝜋 has the positivity property of (49).740

741

742

Proof.743

(a) From the definition of 𝜋 in (51), we see that the matrix 𝐴 matrix the form described in the lemma. This matrix is744

clearly invertible.745

(b) We derive explicit formulas for 𝐼 ′𝑖 in each of the 3 cases:746
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• If 𝑎𝑖 > 0, then it is clear that (𝜋(𝐵1))𝑖 =
[

1, 𝑏𝑖𝑎𝑖

]

.747

• Else if 𝑏𝑖 < 0, it is also clear that (𝜋(𝐵1))𝑖 =
[

1, 𝑎𝑖
𝑏𝑖

]

.748

• Else, we consider an arbitrary point 𝒙 = (𝑥1,… , 𝑥𝑛) ∈ 𝐵1:749

(𝜋(𝒙))𝑖 = 𝑥𝑖 + 𝑥1
( 1+𝑏𝑖−𝑎𝑖

𝑎1

) (by definition)
≥ 𝑎𝑖 + 𝑎1

( 1+𝑏𝑖−𝑎𝑖
𝑎1

)

(𝑥𝑗 ∈ [𝑎𝑗 , 𝑏𝑗] (∀ 𝑗) & (1 + 𝑏𝑖 − 𝑎𝑖)∕𝑎1 > 0))
= 1 + 𝑏𝑖.

(𝜋(𝒙))𝑖 = 𝑥𝑖 + 𝑥1
( 1+𝑏𝑖−𝑎𝑖

𝑎1

)

≤ 𝑏𝑖 + 𝑏1
( 1+𝑏𝑖−𝑎𝑖

𝑎1

)

(𝑥𝑗 ∈ [𝑎𝑗 , 𝑏𝑗] and (1 + 𝑏𝑖 − 𝑎𝑖)∕𝑎1 > 0)
= 𝑏1

𝑎1

(

1 + 𝑏𝑖(1 +
𝑎1
𝑏1
) − 𝑎𝑖

)

.

Since both the upper and lower bounds are attainable, they determine the interval 𝐼 ′𝑖 as claimed.750

(c) It is sufficient to show that 𝐼 ′𝑖 ≥ 1. This is clearly true for the first two clauses of (54). For the last two clauses, we751

have 𝐼 ′𝑖 ≥ 1 + 𝑏𝑖 by part(b). The result follows since 0 ≤ 𝑏𝑖.752

Q.E.D.753

754

Let755

𝐵∗
1 ∶= 𝐵𝑜𝑥(𝜋(𝐵1))

=
∏𝑛

𝑖=1 𝐼
∗
𝑖 (implicit definition of 𝐼 ∗𝑖)

=
∏𝑛

𝑖=1[𝑎
∗
𝑖 , 𝑏

∗
𝑖 ] (implicit definition of 𝑎∗𝑖 , 𝑏∗𝑖 )

(55)

We now define the affine map 𝜋 ∶ ℝ𝑛 → ℝ𝑛:756

𝜋(𝒙) = (𝜋1(𝑥1), 𝜋2(𝑥2),… , 𝜋𝑛(𝑥𝑛))where 𝒙 = (𝑥1,… , 𝑥𝑛) and
𝜋𝑖(𝑥) ∶= 𝜋(𝑥) − 𝑎∗𝑖 + 1.

(56)

Then we have the following results, which is property (Q2):757

Lemma B.2 𝜋(𝐵1) > 𝟏.758

759

Proof. The conclusion follows from the fact that 𝜋(𝐵1) ⊆
∏𝑛

𝑖=1[𝑎
∗
𝑖 , 𝑏

∗
𝑖 ] and 𝜋(𝐵1) = 𝜋(𝐵1) − (𝑎∗1,… , 𝑎∗𝑛) + 1.760

Q.E.D.761

762
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