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In Memoriam Stephen Cameron (1958–2019)

Abstract. In the subdivision approach to robot path planning, we need
to subdivide the configuration space of a robot into nice cells to perform
various computations. For a rigid spatial robot, this configuration space
is SEp3q � R3 � SOp3q. The subdivision of R3 is standard but so far,
there are no global subdivision schemes for SOp3q. We recently intro-
duced a representation for SOp3q suitable for subdivision. This paper
investigates the distortion of the natural metric on SOp3q caused by our
representation. The proper framework for this study lies in the Rieman-
nian geometry of SOp3q, enabling us to obtain exact distortion bounds.

Keywords: subdivision path planning, subdivision atlas, robot path
planning, cubic model of SO(3), distortion constant.

1 Introduction

Path planning is a fundamental task in robotics [4]. The problem may be formu-
lated thus: Fix a robot R0 in Rk (k � 2, 3). For example, a rigid robot R0 can be
identified as a subset of Rk (typically a disc or convex polygon). Given pα, β,Ωq
where α, β are the start and goal configurations of R0, the task is to either find a
path from α to β avoiding the obstacle set Ω � Rk, or output NO-PATH. Such
an algorithm is called a planner for R0. This problem originated in AI as the
FINDPATH problem. In the 1980s, path planning began to be studied algorith-
mically, from an intrinsic geometric perspective. Schwartz and Sharir showed
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supported under this grant.
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that algebraic path planning can be solved exactly by a reduction to cylindrical
algebraic decomposition. Yap (1987) described two “universal methods” for con-
structing such paths: cell-decomposition and retraction. These exact methods
are largely of theoretical interest because they require exact computation with
algebraic numbers. Since no physical robot is exact and maps of the world even
less so, we need numerical approximations. But we lack a systematic way to “ap-
proximately implement exact algorithms” (this difficulty is not specific to path
planning). After the 1990s the exact approach is largely eclipsed by the sampling
approach (combined with randomness) such as PRM, RRT and many variants
etc. These proved to be practical, widely applicable and easy to implement
[4]. But it has a well-known bane called the “narrow passage” problem This
bottleneck (sic) is actually symptomatic of a deeper problem, namely, sampling
algorithms do not know how to halting when there is no path [8].

In [8,9], we revisited the subdivision approach by introducing the “Soft Sub-
division Search” (SSS) framework to address two foundational issues: (1) To
avoid the underlying cause of the above halting problem, we introduce the no-
tion of resolution-exactness. (2) To exploit resolution-exactness, we need the
notion of soft-predicates. In a series of papers with implementations [8,10], we
showed that SSS framework is practical. The guarantee of resolution-exactness is
much stronger than any guarantees of sampling algorithms. Despite such strong
guarantees, SSS planners outperform or match the state-of-art sampling algo-
rithms for various robots with up to 6 degrees of freedom (DOF). Our last paper
[10] reached a well-known milestone, achieving the first rigorous, complete and
implementable path planner for a rigid spatial robot with 6 DOF.

Central to the design and implementation of the 6-DOF planner [10] is a
representation of SOp3q that supports subdivision. As a 3-dimensional space,
SOp3q can be locally represented by three real parameters. E.g., using Euler an-
gles pα, β, γq which range over the box B0 � r�π, πs�r�π{2, π{2s�r�π, πs � R3.
Such parametrizations have well-known singularities (β � 0) and a wrong global
topology. For example for there is By viewing SOp3q as quaternions, we can
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Fig. 1. The Cubic modelySO3 for SOp3q (taken from [9])



Subdivision Atlas and Distortion for SOp3q 3

represent it by the boundary Br�1, 1s4 of the 4-dimensional cube r�1, 1s4, after
identification of opposite pairs of faces. After the identification, we have 4 copies
of the standard 3-cube C � r�1, 1s3 � R3 which are shown as Cw, Cx, Cy, Cz

in Figure 1. We can now do subdivision on these cubes. This “cubic model”3 of
SOp3q was known to Canny [1, p. 36], and to Nowakiewicz [6]. To our knowledge,
this model has never been systematically developed before. New data structures
and algorithms for this representation are needed [10]. This paper addresses a
mathematical question about this representation.

Brief Literature Overview. Besides the above introduction to path plan-
ning, there are many surveys [11]. In this paper, we study SOp3q as a metric
space. Since 3D rotations arise in applications such as computer vision and
graphics, many SOp3q metrics are known. Huynh [3] listed six of these metrics
Φi (i � 1, . . . , 6). We will focus on Φ6, simply calling it the natural distance
for SOp3q because it has all the desirable properties and respects the Lie group
structure of SOp3q. Basically, Φ6pR1, R2q is the angle of the rotation R�1

1 R2

about its rotation-axis.
More complete references and any missing proofs in this paper may be found

in the arXiv version of this paper [11].

2 Distortion in Cubic Models for Sn

We call xSn :�Bpr�1, 1sn�1q the cubic model of Sn and consider the homeo-

morphism µn : xSn Ñ Sn where

µnpqq :� q{}q}2 and µ�1
n pqq :� q{}q}8 (1)

and }q}p denotes the p-norm. Viewing Sn and xSn as metric spaces with the
induced metric [7, p. 3], the cubic representation µn introduces a distortion
in the distance function of Sn. We want to bound this distortion.

In general, if pX, dXq and pY, dY q are metric spaces and f : X Ñ Y is
continuous, we define the distortion range of f to be the closure of the set

Df :�
"
dY pfppq, fpqqq

dXpp, qq : p, q P X, p � q

*
. (2)

If the distortion range is ra, bs, then the distortion constant of f is

C0pfq :� max tb, 1{au . (3)

Note that C0pfq ¥ 1 is the largest expansion or contraction factor produced
by the map f . In [9], C0pfq was introduced as the subdivision atlas constant.
If C0pfq � 1, then f is just an isometry. In [2], we showed4 that the map µ2

3 We are indebted to the late Stephen Cameron who first brought it to our attention
(June 2018). This paper is dedicated to his memory.

4 We originally claimed that the range is r1{?3, 1s; Zhaoqi pointed out that the correct
range is r1{3, 1s.
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has distortion range r 13 , 1s. The proof for µ2 used elementary geometry which is
not easily generalized to µ3. In this paper, we provide the proper mathematical
framework for a generalization to any µn. This paper will focus on µ3 (see Zhang’s
thesis for the general case). Our main theorem is the following:

Theorem 1 (Distance Distortion Range for µ3).

Dµ3
� r 14 , 1s.

Thus the distortion constant for µ3 is 4.

The key to the proof lies in exploiting the Riemannian metric of S3 and xS3.
In practical applications, we want representations whose distortion constant is
as small as possible, subject to other considerations. E.g., our SSS planner [10]
(like many algorithms) uses an ε ¡ 0 parameter to discard a subdivision box
B if “ε ¡ widthpBq”. Clearly widthpBq is a distorted substitute for distance in
SOp3q, but how distorted is it?

The following simple lemma is very useful:

Lemma 1 (Composition of Distortion Range). If f : X Ñ Y and g : Y Ñ
Z have distortion ranges of ra, bs and rc, ds (respectively), then the distortion
range of h � g � f : X Ñ Z is contained in rca, dbs. If c � d, then Dh � rca, cbs.
See proof in [11]. To apply this lemma, let f be the map µ3 and forK ¡ 0, let gK :
Br�K,Ks3 Ñ Br�1, 1s3 where gKpqq � q{K. So gK has distortion range r 1

K , 1
K s.

Then Lemma 1 implies that the map gKpp�q : Br�K,Ks3 Ñ S3 has distortion
range r1{4K, 1{Ks. Hence the distortion constant becomes C0 � max t1{K, 4Ku
(see (3)). By choosing K to minimize the distortion constant, this proves:

Theorem 2 (Parametric Cubic Models). Consider representations

µn,K : Br�K,Ksn Ñ Sn

which are parametrized by K ¡ 0.

(a) (n � 3) The optimal distortion of C0 � 2 is achieved when K � 1{2.
(b) (n � 2) The optimal distortion of C0 �

?
3 is achieved when K � 1{?3.

In practice, we would like K to be a dyadic number (BigFloats) so that subdi-
vision (which is typically reduced to bisection) can be carried out exactly. This
implies we should choose K � 1{2 when n � 2 to get a suboptimal distortion of
C0 � 2. This remark is relevant for our 5DOF robots in [2].

3 Reduction to Distortion in Riemannian Metric

We now reduce the distortion of maps between metric spaces to the distortion
of diffeomorphisms F between Riemannian manifolds M,N ,

F : M Ñ N
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whereM,N are smooth n-dimensional manifolds. Our terminology and notations
in differential geometry follow [7,5]. A Riemannian manifold is a pair pM, gM q
where gM (called aRiemannian metric) is an inner product (positive, bilinear,
symmetric) on vectors up, vp in the tangent space TpM (p P M). We write
“gM

@
up, vp

D
” instead of gM pup, vpq to suggest the inner product property. Also,

write |up|gM :�
b
gM
@
up, up

D
. As pN, gN q is also a Riemannian manifold, we get

an (induced) Riemannian metric F�pgN q for M where

F�pgN q
@
up, vp

D
:� gN

@
DF pupq, DF pvpq

D
, (4)

called the F -pullback of gN [5, p.333], and DF is the Jacobian of F . Then we
define the metric distortion range of F , namely, the closure of the set

MDF � rmF ,MF s :�
" |vp|F�pgN q

|vp|gM
: vp P TpM,p P M

*
. (5)

From any Riemannian manifold pM, gM q, we derive a distance function5 given
by

dgM pp, qq :� inf
p

π
;q

» 1

0

|π1ptq|gMdt � inf
p

π
;q

» 1

0

b
gM
@
π1ptq, π1ptqDdt (6)

where p
π
; q means that π : r0, 1s Ñ M is a smooth curve with πp0q � p,

πp1q � q; also π1ptq is the tangent vector to the curve at πptq. The pair pM,dgM q
is now a metric space [5, Theorem 13.29, p. 339].

The distance distortion range of F : pM,dgM q Ñ pN, dgN q (viewed as
maps between metric spaces) is

DF :�
"
dgN pF ppq, F pqqq

dgM pp, qq : p, q P M,p � q

*
. (7)

We next connect distance distortion to metric distortion of F :

Theorem 3 (Metric Distortion).
If F : M Ñ N is a smooth map between two Riemannian manifolds, then the
metric distortion range of F is equal to the distance distortion range of F :

MDF � DF

See proof in [11].

3.1 Metric Distortion Range of µ3

Our Theorem 1 is now a consequence of Theorem 3 and the following theorem.

5 Following [5, p. 328], we call dgM a distance function, reserving “metric” for gM .
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Theorem 4 (Metric Distortion Range for µ3).

The metric distortion range MDµ3 for µ3 :ySO3 Ñ S3 is

rmµ3
,Mµ3

s � r14 , 1s.

Moreover, there exists p, q PySO3, and u P Tp
ySO3, v P Tq

ySO3 such that

mµ3
� |u|gS3

|u|g
zSO3

, Mµ3
� |v|gS3

|v|g
zSO3

. (8)

Note that our theorem gives the exact metric distortion range. To achieve
this, we will find two expressions for the metric norm |vp|gN : one that achieves
the upper bound, and another that achieves the lower bound.

Proof. Let µ3 : Br�1, 1s4 Ñ S3 where Br�1, 1s4 is viewed as the union of 8
cubes, corresponding to each choice of w, x, y, z � �1. By symmetry, we focus
on the cube B1 � tpw, x, y, zq P Br�1, 1s4 : w � 1u. Thus

µ3p1, x, y, zq � 1
r p1, x, y, zq

where r �
a
1� x2 � y2 � z2. If gS3 is the induced Riemannian metric for S3,

then MDµ3
is the range of

c
µ�3 pgS3 qxvp,vpy

gB1
xvp,vpy

over vp P TvpB1 for all p P B1 and

µ�3 pgS3q is pull-back metric. First compute the Jacobian of µ3:

Dµ3
� Jµ3

�

�
�����

Bp1{rq
Bx

Bp1{rq
By

Bp1{rq
Bz

Bpx{rq
Bx

Bpx{rq
By

Bpx{rq
Bz

Bpy{rq
Bx

Bpy{rq
By

Bpy{rq
Bz

Bpz{rq
Bx

Bpz{rq
By

Bpz{rq
Bz

�
����
� 1

r3

�
���

�x �y �z
x2 � r2 xy xz

xy y2 � r2 yz
xz yz z2 � r2

�
��
. (9)

In the following, we may assume that vp � pdx,dy, dzqT P TpB1 where

gB1pvp, vpq � xvp, vpy � dx2 � dy2 � dz2 � 1. (10)

The pull-back metric µ�3 pgS3qxvp, vpy �
@
Jµ3

� vp, Jµ3
� vp
D

� vTppJT
µ3
� Jµ3

qvp

� 1

r4
vTp �

�
�r2 � x2 �xy �xz

�xy r2 � y2 �yz
�xz �yz r2 � z2

�

� vp (from (9))

� E

r4
(11)

where

E :�pr2 � x2qdx2 � pr2 � y2qdy2 � pr2 � z2qdz2 � 2
�
xydxdy� yzdydz� xzdxdz

�
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To facilitate further manipulation, rewrite E in the compact form

E �
¸
i

pr2 � x2
i qdx2i � 2

¸
i,j

xixjdxidxj (12)

where px, y, zq � px1, x2, x3q and the sums
°

i,
°

i,j (and
°

i,j,k) are interpreted
appropriately: i, j, k range over t1, 2, 3u, with i chosen independently, but j cho-
sen to be different from i, and k chosen to be different from i and j. Thus each
sum has exactly 3 summands.

To obtain upper and lower bounds on µ�3 pgS3qxvp, vpy � E{r4, we need to
express E in two different ways:

(A) For the lower bound,

E �
¸
i

pr2 � x2
i qdx2i � 2

¸
i,j

xixjdxidxj

�
¸
i,j,k

p1� x2
j � x2

kqdx2i � 2
¸
i,j

xixjdxidxj

�
¸
i

dx2i �
¸
i,j

px2
idx

2
j � x2

jdy
2
i q � 2

¸
i,j

xixjdxidxj

� 1�
¸
i,j

pxidxj � xjdxiq2 (as 1 �
¸
i

dx2i )

Hence,

µ�3 pgS3qxvp, vpy �
1�°i,jpxidyj � yjdxiq2

r4
¥ 1

p1� x2 � y2 � z2q2 ¥ 1

16
.

The last two inequalities become equalities when x � y � z � 1 and
dx � dy � dz � 1{?3. This proves a tight lower bound of 1{16 for
µ�3 pgS3

qxvp, vpy.
(B) To obtain an upper bound, we rewrite E as follows:

E �
¸
i,j,k

p1� xj � xkqdx2i � 2
¸
i,j

xixjdxidxj

�
¸
i

dx2i �
¸
i,j,k

x2
i pdx2j � dx2kq � 2

¸
i,j

xixjdxidxj

� 1�
¸
i

x2
i p1� dx2i q � 2

¸
i,j

xixjdxidxj (as 1 �
¸
i

dx2i )

�
�
1�

¸
i

x2
i

	
�
¸
i

x2
idx

2
i � 2

¸
i,j

xixjdxidxj

� r2 �
�¸

i

xidxi

	2
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µ�3 pgS3
qxvp, vpy � r2 � pxdx� ydy� zdzq2

r4
¤ 1

r2
¤ 1.

The last two inequalities are equalities when x � y � z � 0.

We have therefore established thatb
µ�3 pgS3qxvp, vpy P r14 , 1s

and these bounds are achievable. Q.E.D.

With the above compact notation, we could generalize the argument to µn

(see [11]), showing MDµn � r1{pn� 1q, 1s.

4 Final Remarks

1. It remains to determine the distortion of the representation µ3 : xS3 Ñ SOp3q,
where µ3 � µ3 � ρ and ρ : S3 Ñ SOp3q is the usual map from unit quaternions
to SOp3q. Huynh observed that Φ6pρpq1q, ρpq2qq � 2Φ3pq1, q2q [3]. Since Φ3 and
Φ6 are natural distance functions on S3 and SOp3q, the distortion range of ρ is
r2, 2s. By Lemma 1, we conclude that the distance distortion of µ3 is

Dµ3
� 2r 14 , 1s � r 12 , 2s.

2. This work establishes the exact distortion bounds on the cubic model rep-
resentation µ3 of SOp3q. A critical step was to exploit Riemannian geometry
by reducing distance distortion to metric distortion. We expect our cubic rep-
resentation to have other applications, e.g., a rigorous subdivision search for an
ε-optimal rotation to best fit experimental data as in motion capture research.
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