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ON MINIMIZING THE SPECTRAL RADIUS OF A NONSYMMETRIC
MATRIX FUNCTION: OPTIMALITY CONDITIONS
AND DUALITY THEORY*

MICHAEL L. OVERTON} AND ROBERT S. WOMERSLEY}

Abstract. Let 4(x) be a nonsymmetric real matrix affine function of a real parameter vector x € 2™, and
let p(x) be the spectral radius of 4(x). The article addresses the following question: Given xo € 4™, is p(x)
minimized locally at x,, and, if not, is it possible to find a descent direction for p(x) from x,? If any of the
eigenvalues of A(xp) that achieve the maximum modulus p(x,) are multiple, this question is not trivial to
answer, since the eigenvalues are not differentiable at points where they coalesce. In the symmetric case,
A(x) = A(x)7 for all x, p(x) is convex, and the question was resolved recently by Overton following work by
Fletcher and using Rockafellar’s theory of subgradients. In the nonsymmetric case p(x) is neither convex nor
Lipschitz, and neither the theory of subgradients nor Clarke’s theory of generalized gradients is applicable. A
new necessary and sufficient condition is given for p(x) to have a first-order local minimum at xp, assuming
that all multiple eigenvalues of 4(x) that achieve the maximum modulus are nondefective. The optimality
condition is computationally verifiable and involves computing “dual matrices.” If the condition does not hold,
the dual matrices provide information that leads to the generation of a descent direction. The result can be
extended to the case where p(x) is replaced by the maximum real part of the eigenvalues of A(x). The authors
use the eigenvalue perturbation theory of Rellich and Kato, which provides expressions for directional derivatives
of p(x). They also derive formulas for the codimension of manifolds on which certain eigenvalue structures of
A(x) are maintained; these are due to Von Neumann and Wigner and to Arnold. Finally, they discuss the much
more difficult question of resolving optimality when 4(x) has a defective multiple eigenvalue achieving the
maximum modulus p(xp).
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1. Introduction. Let A(x) be a real nXn matrix affine function of x=
(Sla Y Em)Te '@m’ i-e'9

(1.1) A(x)=Aot+ 2 &Ax,
k=1

where {4} are given real n X n matrices. Define p(x) to be the spectral radius of
A(x), i.e.,

(1.2) p(x)= max |N(x)][,
1=isn

where \;(x),i=1, - -+, n, are the (not necessarily distinct ) eigenvalues of 4(x). Because
A(x) is real, the eigenvalues { \;,(x)} are either real or occur in complex conjugate pairs.
In this paper we address the following question: Given xy € 2™, is p(x) minimized
locally by x = xp, and if not, can we find a descent direction for p from x,, that is, a
direction d € #™ such that p(xo + ad) < p(xp) for sufficiently small « > 0? There are
several cases of increasing level of difficulty.
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474 M. L. OVERTON AND R. S. WOMERSLEY

If A(x,) has real eigenvalues of distinct modulus, p(x) is differentiable, indeed an-
alytic, at xo (see Kato (1984, p. 64)). The question is therefore answered by examining
Vp(x) and V?p(xo). The same is true when complex conjugate pairs of eigenvalues,
each pair having different modulus, are permitted. For example, let n = 2, m = 1,
and define

A(x)=[l+$1 1 ]

1 1-§&

Then N\ 5(x) = 1 = V1+£%, and p(x) is minimized at xo = [0], where Vp = 0 and V?p
is positive.

If several eigenvalues, not complex conjugates of each other, achieve the maximum
modulus at x, but each eigenvalue is distinct, then p(x) is simply the pointwise maximum
function of several differentiable functions, and may be analyzed by standard min-max
theory (see, e.g., Fletcher (1981, p. 175)).

Example 1.1. Let n = 2, m = 1, and define

1+§&

1
A(x)_[ & 1+el]'

The eigenvalues are
Na(x) =1+ &= V=§
and the spectral radius is given by
—1-g+V-¢ ifg=-1,
p(X)=1 1+&+V=¢ if—1=§=0,
VEL+3E+1 if£20

(see Fig. 1.1). We see that at x = [£,] = —1, the eigenvalues A;(x) and A,(x) have the
same modulus, although they are distinct. The function p(x) is a standard “max function”
here; in particular, it is Lipschitz. On the other hand, at x = 0, the eigenvalues \;(x)
and \,(x) coalesce and p(x) has a completely different, non-Lipschitz, character. In fact,
A is defective, i.e., not diagonalizable, at x = 0, and we say that A\;(x) = A\ (x) is a
defective eigenvalue. In general, even if A(x) is nondefective at x = xp, p(x) is not
differentiable at x, if 4 (x,) has multiple eigenvalues, and cannot be analyzed by standard
min-max theory.

Besides showing the very different character of the two local minima, Fig. 1.1 also
shows that, as typical with nonconvex problems, several local minima may occur and
finding a global minimum would be very difficult in general. The example also shows
that it is possible for p(x) to have a smooth local maximum, so that the condition
Vp(xo) = 0 is not sufficient for f to have a local minimum at x,.

An example with m > 1 gives additional insight.

Example 1.2. Let n = 2, m = 2, and define

244 & ]

A 1
*) [251 2HEE

Figure 1.2 shows a contour plot of p(x). There is no unconstrained local minimum of
p. At the origin x = [0, 0]7, A(x) has a nondefective eigenvalue of multiplicity 2. Along
the two lines £, = 0 and &, = —8¢, except at the origin, A(x) has a defective eigenvalue
of multiplicity 2. These two lines divide the (£, &) plane into four quadrants; the ei-
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p(x)
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FI1G. 1.1. Plot of Example 1.1.

F1G. 1.2. Contours of Example 1.2.
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genvalues are real and distinct in the top right and bottom left quadrants, and a complex
conjugate pair in the other two quadrants. Note how the contours of p change sharply
as they cross the defective manifold. This is because on the real side of the defective
manifold, one of the eigenvalues is sharply increased by O(Ve) as the point x moves a
distance ¢ away from the manifold, while on the complex side it is the imaginary part of
the eigenvalue that is perturbed by O(V;), which has only an O(¢) effect on p. (The same
effect is observed in Fig. 1.1 at x = 0.) Along lines passing through the origin, the function
p is Lipschitz, but it is not Lipschitz along any other line in the (§,, &) plane. Note that
even if two vectors d; and d, are descent directions from the origin, a convex combination
of d; and d, may be an ascent direction. We shall return to this phenomenon later.

Example 1.2 is not generic in the sense that a two-parameter family of matrices
cannot be expected to have a nondefective multiple eigenvalue; this is explained in § 2.
However, the example can be extended to three variables without changing its essential
character by adding a term £3.4; to A(Xx). In that case the defective manifold becomes a
cone instead of a pair of lines (see Arnold (1971, p. 40)). The eigenvalues of 4(x) are
complex in the two disconnected “interior” parts of the cone and real elsewhere.

If A(x) = A(x)T for all x, p(x) is a convex function and Rockafellar’s theory of
subgradients applies. In a recent paper, Overton (1988), following Fletcher (1985), has
given verifiable optimality conditions for the symmetric case and shown how, if not
optimal, a descent direction may always be obtained, even if this requires splitting a
multiple eigenvalue. (There are exceptions in degenerate cases.) Both the optimality
conditions and the method for obtaining descent directions involve an interesting duality
theory. The same paper provides a practical, accurate algorithm for minimizing p(x) in
the symmetric case.

In the nonsymmetric case p(x) is generally not convex and the problem is much
more difficult. The main contribution of the present paper concerns the case where the
(multiple ) eigenvalues achieving the maximum modulus at x; are all nondefective. Even
in this case, p(x) is generally not Lipschitz at x,, and hence the usual definition of the
generalized gradient of Clarke (1975) is not applicable. However, the function p is Lipschitz
at Xxo if its argument is restricted to the line {xp + ad|a € R#}, for any d € #™, and
indeed the usual directional derivative of p (in the direction d) always exists. By considering
this we are able to give a new necessary and sufficient condition for x; to be a local first-
order minimizer of p(x), excluding degenerate cases. The condition is computationally
verifiable and involves computing “dual matrices.” If the condition is found not to hold,
the dual matrices are used to provide information that produces a descent direction, even
if this requires splitting a multiple eigenvalue or making a multiple eigenvalue defective.

The paper is organized as follows. In the next section we derive formulas for the
codimensions of manifolds defined by maintaining a given Jordan structure for A(x).
In the most general case, these formulas are due to Arnold (1971), (1983). In § 3 we
characterize the directional derivative of p(x). This derivation relies on the classic work
of Kato and Rellich (see Kato (1984)). In § 4 we begin by summarizing the known
optimality conditions for the symmetric case; we then derive new optimality conditions
in the nonsymmetric case when only one multiple eigenvalue, which is nondefective at
Xo, achieves the maximum modulus at x,. In § 5 we extend this result to cover the case
of several nondefective multiple eigenvalues achieving the same maximum modulus at
Xo. In § 6 we briefly discuss the situation where a multiple eigenvalue achieving the
maximum modulus is defective. The question of optimality seems very difficult to resolve
in this case.

This paper is motivated by many applications. Perhaps the major source of appli-
cations is control engineering, where, for example, an optimal spectral radius value below
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1 would represent system stability while a value greater than 1 would represent instability.
See, for example, Mikil4d and Toivonen (1987) and Miller, Cochran, and Howze (1978)
for applications where 4(x) is nonsymmetric; see Boyd (1988) and Kamenetskii and
Pyatnitskii (1987) for applications where A(x) is symmetric. Another source of appli-
cations is the design of iterative methods for solving linear systems of equations, where
certain parameters must be chosen to minimize the spectral radius of the iteration matrix
(see, for example, Young (1971)). The most well-known example is the SOR method,
which depends on a single parameter w whose optimal value is well known. More generally,
we might consider a general preconditioner design problem. Since the latter application
class generally involves nonlinear parameter dependence, the results of this paper cannot
be applied directly. However, the results reported here will be an essential starting point
for the analysis of problems where 4(x) is a nonlinear function. Other applications may
involve constraints on the variables; it should be possible to extend the results given here
to handling such constraints using standard Lagrange multiplier techniques.

As mentioned earlier, a practical algorithm is already available to minimize p(x)
in the symmetric case. We believe the results in this paper are an important first step
towards the long-term goal of obtaining an efficient algorithm for the nonsymmetric
case. There are many difficulties to be overcome before such a goal can be achieved. For
example, even computing the Jordan form of 4(x) at a single point x is known to be a
hard problem numerically, although there has been substantial progress in this direction
in recent years (see Golub and Van Loan (1983) and Demmel (1983)).

It is important to note that the techniques used in this paper are also relevant to
other functions of the eigenvalues A(x) besides the spectral radius. In fact, they could be
used to analyze any real convex function of the eigenvalue function A(x) € €™. In our
analysis of p(x), we note that minimizing p(x) is equivalent to minimizing
(1.3) S(x)=4p(x)*=1 max A(X)Ni(x),

=i=n

where Z denotes the complex conjugate of z € €. Most of the analysis is then concerned
with the nondifferentiable nature of A\;(x). Similarly, we can also consider minimizing
another function that frequently arises in applications:

(1.4) g(x)= max Re A\(x)=14 max (A(x)+\i(x)).
1=si=n 1=isn

Of course, p(x) and g(x) are related to each other by exponential transformation of the
matrix A(x), but this is to be avoided numerically (Golub and Van Loan (1983)). In
control engineering, for example, the form g(x) arises when we consider stability of
initial value problems; the form p(x) arises when we consider discrete-time systems.
There is a large literature on extremal eigenvalue problems (see, for example, No-
wasad (1968), Friedland (1978), and references therein). However, most of this work
seems to be concerned with special problems that arise in infinite-dimensional spaces.
The questions raised here do not seem to have been considered in detail previously.

2. The codimension of manifolds. An eigenvalue of multiplicity ¢ is said to be non-
defective (or semisimple) if the corresponding part of the Jordan form of the matrix is
diagonal. Let x, be given, with 4(x,) having a nondefective eigenvalue of multiplicity
t, say A(xo) = *-+ = N(Xo). What, generically, is the codimension of the manifold
containing xo on which 4(x) has a nondefective multiple eigenvalue \(x) = -+ =
A(x)? This question was answered in the symmetric case by von Neumann and Wigner
(1929) and, in the context of requiring a matrix to have a given rank, by Ledermann
(1937), although the answer does not seem to be widely known. More recently, the
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symmetric case was discussed by Friedland, Nocedal, and Overton (1987) in the context
of inverse eigenvalue problems. Arnold (1971), (1983) answers the question in the general
complex nonsymmetric case, including the defective case when nontrivial Jordan blocks
must be considered. In this section we motivate and summarize these results, which are
essential for a complete understanding of the later sections. We do not give a rigorous
derivation, for which the reader is referred to Arnold’s work.

First assume that A\;(xp) = -+ + = A(xp) is real and that the other eigenvalues of
A(xp) are real and distinct. For x to lie in the desired manifold, we require

A,
(2.1 A(x)Q=QA, A=[ ],
A,

where Q is a nonsingular real matrix, 7, is the identity matrix of order ¢, and A, is a real
diagonal matrix of order n — ¢. (None of the eigenvalues can become complex near
enough to X, since the only multiple eigenvalue is being preserved.) We may view (2.1)
as h; = n? equations that restrict x; but we have introduced additional variables Q and
A. These variables are correctly counted as follows. There are 4, = n — ¢ + 1 variables
in A. The matrix Q has h; = n? components, but not all 72 degrees of freedom are useful
in satisfying (2.1). Let Q = [Q,, Q,], where the columns of Q, correspond to A;(x) =
-+ = \(x). We may postmultiply Q, by any nonsingular ¢ X ¢ matrix, and postmultiply
Q> by any nonsingular diagonal matrix, without affecting (2.1). Let 4, = ¢t and hs =
n — t; therefore, we see that the total number of introduced variables useful in solving
(2.1)is

h2+h3—-h4—-h5=n2-—t2+l.

The codimension of the desired manifold is obtained by subtracting this from h,, the
number of equations in (2.1), giving

(22) CN(t)=h1—'h2—h3+h4+h5=t2'—1.

Since this manifold is embedded in ™, and the codimension describes the number of
degrees of freedom restricted by requiring x to be in the manifold, the dimension of the
manifold is m + 1 — 2. For example, if t = 2 and m = 3, the dimension of the manifold
is zero, i.e., a three-parameter matrix family 4(x) generically has only a single point xp,
where 4 (xy) has a nondefective multiple eigenvalue. Of course, this argument is generic
and there are exceptions in degenerate cases.

A similar argument for the symmetric case (4(x) = A(x)7 for all x) gives the Von
Neumann-Wigner result 4, = n(n + 1)/2, h, =n—t+ 1, hs = n(n — 1)/2 (since Q
is orthogonal), k4 = t(t — 1)/2, hs = 0 (since Q is already restricted to being orthogonal
by h3), so

(2.3) cs(t)=it—;-—l)— 1.

Von Neumann and Wigner also derived the codimension for the case that 4(x) is complex
but Hermitian for all x, where we continue to view 4 (x) as a function of real variables;
thus (2.1) is n? real equations, namely n(n — 1)/2 complex off-diagonal equations and
n real diagonal equations. We then obtain the same formula as (2.2).

Returning to the real nonsymmetric case, if A\;(xp) = -+ = A\(xp) is real but we
allow the other eigenvalues to be complex, the codimension (2.2) does not change. This
is because A, and @, although complex, consist of complex conjugate pairs.
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If the multiple eigenvalue \;(xp) = - - - = N\,(Xp) is one of a complex conjugate pair,
we require

M
A(x)Q=QA, A= A1, ,
A,

where Q = [Qy, 01, Q:], and A, is a diagonal matrix of order n — 2t. We obtain s, =
nt h=n—2t+2, hy=n% hy=2t*> and hs = n— 2t, ie.,

(2.4) cc(t)=212-2.

Thus the codimension is the same as if two real multiple eigenvalues, each of multiplicity
t, were to be preserved separately.

Suppose we require 7 + s nondefective multiple eigenvalues to have the same mod-
ulus, where r of them are real with respective multiplicities, #;, * - - , f,, and s of them
are complex with positive imaginary part and respective multiplicity ¢4, ***, fr4+5.
(Note r = 2.) Then the codimension of the manifold along which multiplicities are
preserved and all eigenvalues have the same modulus is

r r+s

oty slitrsrs 005 )= 2 (F—D+ T (27-2)+(r+s—1)
j=1 j=r+1

(2.5)

reflecting the fact that (r + s — 1) additional restrictions are being placed on the moduli.

Now let us drop the assumption that A\;(xp) is nondefective. Assume A(Xxp) has a
real multiple eigenvalue A\ (xp) = - -+ = N (Xp), corresponding to Jordan blocks of size
U= Z Uy, 1 = p =t. We are interested in the dimension of the manifold
passing through x, along which the same Jordan structure is maintained. For x to lie in
the manifold, we require that

= = J]
AXx)Q=0J, J [ Az]’

where Q = [Q;, @.] is any nonsingular matrix, A, is diagonal of order » — ¢, and J; is
the desired Jordan form. We have b, = n?, h, =n—t+ 1, hs=n?,and hs = n — t as
before. To determine s, we need to answer the following question: What class of matrices
commute with J,? If J; equals A, I, the answer is all ¢ X ¢ matrices; if J; is a single Jordan
block, the answer is all ¢z X ¢ upper triangular Toeplitz matrices. In general, the answer
is given by Arnold (1971, p. 34), namely matrices of the following form:

NENAN
N
AN

AN

N
N
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Here the block partitioning conforms to the Jordan block partitioning of J;, and each
block is an upper triangular (rectangular) Toeplitz matrix. The example shown here
corresponds to u#; = 4, u, = 3, u3 = 2. The number of variables in such a matrix is

hy=u;+3up+S5uz + - - - +(2p+ Du,.
We therefore obtain the codimension
(2.6) cp(ug, s up)=uy+3up+Suz+ - - +(2p+ Du,— 1.
Note that, as before, the codimension is independent of n. We have
eo(l, 1, -+, 1) =12 —1=cp(2)
and the codimension for a single Jordan block is
2.7 co(t)=t—1.

The arguments given here are not rigorous; in particular we have not attempted
to prove independence of the various restricting equations. For a full derivation, see
Arnold (1971).

3. Directional derivatives. Let x, be given with 4(x) having a nondefective multiple

eigenvalue A\ (xp) = - -+ = M(Xo). In general the eigenvalues \;(x),i=1, - - - , ¢, are not
Lipschitz functions even at x,. For example, let
1
A(x)= [ E‘]
& 1
so that

Ma(x)=1£VE L.

Given any ball of radius ¢> 0 around x, = [0, 0]7, let x, = [¢/V2,0]7 and x, =
[e/‘/i, 617, where 8 > 0. Both x; and x; lie in the given ball if § < ¢/V2, but

I A1) = Ni(oe2) |

cannot be bounded by K& for any constant K independent of 8. This contradicts the
definition of a Lipschitz function (which may be found in, e.g., Clarke (1983)). Of
course, the eigenvalues \;(x) are always continuous functions, regardless of x¢, provided
a consistent ordering is used.

Although the eigenvalues \;(x), i = 1, -+, ¢, are not Lipschitz with respect to
several variables, they may be ordered so that they are locally continuously differentiable
along any line passing through Xx,. This follows from the classical eigenvalue perturbation
theory of Rellich and Kato. Before stating the result let us introduce some notation. Let
Q; be an n X ¢ matrix whose columns are independent right eigenvectors of 4(xp) cor-
responding to \;(xp) = - - = \(xo) and let P be a ¢ X n matrix whose rows are corre-
sponding independent left eigenvectors. We may normalize P, so that

(3.1 PO =1,
and we then have

(3.2) PTA(X0) Q1 = M (X0) 1.
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The quantity Q, P7 is called the eigenprojection for A;(x,). Define the ¢ X ¢ matrices
(3'3) Bk=PlTAkQ19 k= 1’ e ,m,

where A4, is given by (1.1). Note that if A\;(x,) is real, all of P,, @, and By, k=1, - - -,
m, are also real, but if \; (x,) is complex, all these matrices generally will also be complex.
If \i(xp) is complex, it has an associated complex conjugate multiple eigenvalue, with
corresponding eigenvector matrices P;, 0,, and

§k=PTAkQ—l9 k=l9'..9m
corresponding to (3.3).
Now define the directional derivative of \;(x) in the direction d = [6,, - - - , 6,,]7
€ R™ by
Ai(xo0+ ad) — Ni(xo)
= .

(3.4) M(xo;d)= lim
a—>0%

LEMMA 3.1. We have
(3~5) >\l’(x0;d)=”'l’ i=13 e ,t9

where { u;} are the eigenvalues of

k=1

Proof. See Kato (1984, p. 81) and preceding pages for the proof. Note that, although
we assume that \;(x) = **+ = A(xo) is nondefective, we do not assume that B(d) is
nondefective.

Remark. Tt is useful to motivate the result as follows. Suppose for simplicity that
B(d) is nondefective, and let its eigensystem be

(3.7) B(d)=ZDYT,

where Y, Z are nonsingular ¢ X ¢ matrices, Y’Z = I,, and D is diagonal with entries
{ui}. We have

(3.8) YTPTA(Xo“'ad)QlZ:)\1(X0)+01D.

If t = n, this proves the lemma, since (3.8) gives the eigensystem of 4(xy + ad), with
linear eigenvalues A\;(xp) + au;. On the other hand, if ¢t = 1, the lemma is trivial since
u; is the inner product of d with the gradient of the differentiable function X, (x), namely
[pTA4,qy, -+, pTA,.q,17. More generally, suppose that 1 < ¢ < n. Then (3.8) represents
a generalized Rayleigh quotient, the key point being that the right-hand side is diagonal.
Thus the diagonal entries approximate the first ¢ eigenvalues of 4(xy + ad), and the
columns of Q, Z (respectively, the rows of Y7PT) are the particular right (respectively,
left) eigenvectors of 4(xp) to which the right (left) eigenvectors of 4(xo + ad) generally
converge as o = 0. (If the {u;} are not distinct, the corresponding eigenvectors need
not converge.)

Now let us turn to the functions f(x) and g(x) defined by (1.3) and (1.4); it is easier
to work with f(x) = 4p(x)? than directly with p(x). Note that as long as f"(xo; d) exists
with f(xp) # 0, the quantity p'(xo; d) exists and is related by

S0 d)

p'(xo3d) = (x0)
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LEMMA 3.2. Suppose that \\(xp) = * -+ = N(xo) is a real nondefective eigenvalue,
and that all other eigenvalues of A(xo) have smaller modulus than |\ (Xo) |. Then for any
de R™

S (x03d) = N1 (x0) max Re u;,

1=sis

where, as before, { u;} are the eigenvalues of B(d).
Proof. 1t is clear that

Sf'(x0;d) = 1nsl-:gtfi-(aa);al),
where
Silxosd) = FNi(x)Ni(X).
Now
Fi(x03d) = (A\i(x0) Ni(x05d) + Ni(X0) N (X053 d)),

s0 the result follows from Lemma 3.1, since A\ (Xp) is real. O
LEMMA 3.3. Suppose that \(xp) = « -+ = M(Xo) is a nondefective eigenvalue, and
that all other eigenvalues of A(xy) have smaller real part. Then

8'(xo;d) = max Re u;,
1=si=st

where again { u;} are the eigenvalues of B(d).

Proof. The proof is straightforward.

More generally, consider the case where several different eigenvalues achieve the
maximum modulus or the maximum real part, respectively. It is convenient to change
notation as follows. Let A ;(x) denote the eigenvalues of 4 (x) with the following properties:

(1) Nji(xo) = -+ = Njy(X0), for j = 1, -+, r, is a real nondefective multiple
eigenvalue of 4 (xo) with multiplicity ¢;.
(i) Nji(xo) = *+* = Njy(xo), forj=r+1, -+, r+s,is a complex nondefective

multiple eigenvalue of 4(x,) with multiplicity ¢; and positive imaginary part.

(i) {Nji(x0)}, j=1,---, r+ s, are distinct quantities with, in the case of
minimizing the spectral radius, the same modulus p(xo) = V2 f(x,), or, in the case of mini-
mizing the maximum real part, the same real part g(xp). These eigenvalues are said to
be active. The complex conjugates N;(x0), j =r+ 1, -+, r + s, are also active, so
there are a total of r + 2s distinct active eigenvalues. All other eigenvalues of 4(xp)
are inactive, i.e., they have smaller modulus or smaller real part, respectively. (Note
that r = 2.)

Now, forj=1, ---,r+s,define Q;, P,T as matrices whose columns (respectively,
rows) are independent right (respectively, left) eigenvectors of 4(x,) corresponding to
Aji(xo) = - ++ = Njy (%), with P]Q; = I,. Define the #; X ¢; matrix

(3.9) B =PT4,Q,, k=1, --,m, j=1, -+ ,r+s.
J J

LEMMA 3.4. Let A(xy) have nondefective active eigenvalues with respect to the func-
tion f(x). Foranyd = [y, -+ - , 0,17 € R™,

S'(x0;d)= max max Re (X (xo0)u),
1sjsr+s1sisy

where uj, =1, -+ -, t; are the eigenvalues of

(3.10) BY(d)= > 8B .
k=1
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Proof. 1t is clear that

S'(x0;d)= max max f(x;d),
Isjsr+s1sisy

where
Sr(X)= 3N ()N ().
Since
(3.11) Sit(x%o3 d) = § (N ju(x0) Nji(xo3 d) + Ni(x0) N Xo3 d))
the result follows from Lemma 3.1. O

LEMMA 3.5. Let A(xo) have nondefective active eigenvalues with respect to the func-
tion g(x). Foranyd e R™,
g'(x0;d)= max max Reupuy,
1=jsr+s1slsty
where pj, [ = 1, -+ , t;, are the eigenvalues of BY(d) defined by (3.10).
Proof. The proof is straightforward.

We complete this section with the definition of a matrix inner product that will be
needed in § 4. Following Fletcher (1985), define

(3.12) A:B=tr A'B

for any real rectangular matrices 4 and B with the same dimension.
LEMMA 3.6. XAYT:B = A:X"BY.
Proof. The proof is straightforward.

4. Optimality conditions in the case of one active nondefective multiple eigen-
value. Assume that 4(x) has one active multiple eigenvalue that is real, nonzero, and
nondefective, and that we denote by X\;(xo) = - -+ = \,(Xp), reverting to our original
notation. Let us define d € #"™ to be a descent direction for f from x, if f'(xp; d) < 0.
If no such direction exists, f'is said to have a first-order local minimum at x,. We wish
to give a procedure for determining whether f has a first-order local minimum at x; and,
if it does not, for obtaining a descent direction.

It is useful to first consider the symmetric case.

€)) Symmetric case (A4(x) = A(x)7 for all x).

In this case the eigenvalues \;(x) are always real, the eigenvector matrix Q is orthogonal,
P, = Q,, and B; = QT A4, Q,. Furthermore, f(x) and p(x) are convex; this follows from
Fletcher (1985, p. 510).

THEOREM 4.1. Define the set

Q={v=[vy, * ,vm]T€ R™|there exists a symmetric positive semidefinite
tX tmatrix Usatisfying tr U= 1, A\ (X)) U:Bx=vi, k=1, - ,m}.

TR

(The matrix inner product operator “:” was defined by (3.12).) A necessary and sufficient
condition for X, to minimize f is that 0 € Q.

Proof. LetveQ,letd=[6;, -, 0,17 € R™, and let the eigenvalue decomposition
of the ¢ X ¢ symmetric matrix B(d) = 27, 6By be given by B = ZMZ7, where Z is
orthogonal and M = diag (u;). We have

m
UTd=>\1(X()) z o U: By

k=1

=N () U:ZMZ7T.
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Therefore
@.1) supv’d=\(x0) sup U:ZMZ7,

veQ U
where the second “sup” is taken over all ¢ X ¢ symmetric positive semidefinite matrices
U with tr U = 1. Since Z is orthogonal and U is symmetric, without loss of generality
we may write (4.1) as

4.2) M(xo) sup U:M =\ (x) sup 2 Uiipi

i=1

(see Lemma 3.6). Now U cannot have negative diagonal elements, and it has trace equal
to one, so we see from (4.1), (4.2) that

sup v7d=X\;(x) max p;
(43) vEQ 1=i=st
= ["(x0;d)
by Lemma 3.2. It follows that if 0 € Q,
f'(x0;d)Z0 VdeR™,

i.e., Xo minimizes f. On the other hand, if 0 ¢ , then by the separating hyperplane
theorem and the convexity of Q, there exists d with v7d < 0 for all v € ©, i.e., dis a
descent direction by (4.3). (For a statement of the separating hyperplane theorem, see
Rockafellar (1970, p. 95).)

Remark. This theorem was proved in Overton (1988). The proof here is more
direct, since it does not use Rockafellar’s theory of subgradients, but only the separating
hyperplane theorem. Nonetheless, the proof technique is similar to those used in the
theory of subgradients, and it is doubtful whether the theorem would have been obtained
without the motivation of that theory (and also the paper of Fletcher (1985)).

COROLLARY. Q = df(xy), the subdifferential of the convex function f as defined by
Rockafellar (1970).

Proof. The proof follows from (4.3).

Remark. Because f'is convex, there is no distinction between “first-order local min-
imum” and “minimum.”

Remark. The matrix U is called the dual matrix (or Lagrange matrix ), and it plays
the role of Lagrange multipliers familiar from constrained optimization.

We now discuss the generation of descent directions if xj is not optimal. There are
three cases.

(1A) Symmetric case, assuming I, € Span { B, -+ , B, }.

In this case we simply solve

(4.9) M(x0) 2 8kBi=—1,.

k=1
By Lemma 3.2, d = [0y, -, 8,,]7 is a descent direction for f. Furthermore, all the
eigenvalues A\ (x), - -+, A,(x) decrease at the same rate along d; that is, the eigenvalue

does not split to first order. This case holds generically if m = #(¢ + 1)/2, i.e., m > cs(?),
i.e., the generic dimension of the manifold defined by

4.5) A(xX)= - =N(x)

is greater than zero.
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(1B) Symmetric case, assuming (1A) does not apply and the set {I,, By, - -+, B}
has full rank ¢(¢ + 1)/2.

This case holds generically when m = ¢s(¢) = t(¢t + 1)/2 — 1, i.e., the manifold defined
by (4.5) is the single point X,. It also holds if m > cg(¢), but f is minimized on the
manifold (4.5) at xo. To make further progress we must split the multiple eigenvalue A;.
Solve for the dual matrix U = U7 in the linear system

(4.6) trU=1, M(x)U:B=0, k=1, - ,m.

This is a system of m + 1 equations in (¢ + 1)/2 unknowns. Although it is possible that
the { Bx} are not independent, (4.6) has a unique solution U in view of the homogeneity
of all equations except the trace equation (which is equivalent to I,:U = 1). If 0 ¢ Q, i.e.,
Xo is not optimal, it follows that U is not positive semidefinite.

THEOREM 4.2. Assume 0 € Q, so that U has an eigenvalue 6 < 0. Let z € R be a

corresponding normalized eigenvector of U. Solve for [8g, 81, *++ , 0m]T € R™ 1V in
(4.7) 501; + >\|(.Xo) 2 6kBk = “'ZZT.

k=1
Thend = [8,, -+ , 8,,)7 is a descent direction.

Proof. The linear system (4.7) is solvable by assumption, although if { B} are not
independent, d is not unique. Taking an inner product of U with (4.7) we obtain

dotr U+ N (x0) > & U:Bi=—-U:zz7,

k=1
ie.,

60 =—0>0
by (4.6). From (4.7) and Lemma 3.2, f'(xo; d) is the maximum eigenvalue of the sym-
metric matrix —zz” — §o1,. The eigenvalues of this matrix are (—1 + 0, 8, - - - , ), so
Sf'(x03 d) <0.

Remark. This theorem was given by Overton (1988). The proof here is slightly
different. The theorem shows that we can progress by splitting the multiple eigenvalue
while maintaining multiplicity ¢ — 1 (to first order). This is analogous to moving off a
single active constraint in the context of constrained optimization. Note that it is the
dual matrix U that provides information leading to a descent direction, just as negative
Lagrange multipliers provide similar information in constrained optimization. Note in
particular that the coefficient matrix of the left-hand side of the linear system (4.6),
which defines the dual matrix, is the transpose of the coefficient matrix of the linear
system (4.7), which gives the descent direction.

(1C) Symmetric case, where neither (1A) nor (1B) applies.

Although this applies generally if m < ¢s(t), such cases are degenerate in the sense that,
generically, a point X, satisfying (4.5) will not exist. In such degenerate situations, verifying
optimality or finding a descent direction is very difficult, just as it is in the much simpler
case of linear programming. We may be able to solve (4.6), but the dual matrix U is not
uniquely defined and generally (4.7) will not be solvable. Theorem 4.1 still applies, so
Xo 1s optimal if and only if there exists a dual matrix U with the required properties.
However, because the solution to (4.6) is not unique, finding such a matrix U may be
very difficult.
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We now turn to the nonsymmetric problem. We first dispose of the trivial case.
(2A) Nonsymmetric case, assuming I, € Span { By, -+, By, }.

A descent direction is obtained by solving (4.4). The eigenvalue is not split (to first
order). This case holds generically if m > cy(2) = > — 1.

(2B) Nonsymmetric case, assuming (2A) does not hold and the set
{1, By, -+ , By} has full rank ¢°.

This case holds generically when m = cy(t), i.e., the manifold defined by maintaining
the nondefective multiple eigenvalue is the single point x,. It also holds if m > cy(?),
but f is minimized on the manifold at x,. To make further progress we must either split
the multiple eigenvalue A\, or make it defective.

Our initial work on this problem involved the following set, intended to generalize
the subdifferential Q to the nonconvex case. Define the (nonconvex) set ¥ by

V={v=[v,  *,vm]7€ R™|there exists a real ¢ X ¢ diagonalizable matrix U with
real nonnegative eigenvalues satisfying tr U= 1, A\ (X)) U:Bx=vg, k=1, -+ ,m}.

However, it is not the case that (4.3) holds when we substitute ¥ for Q on the left-hand
side. On the contrary,

supv’d=c0.
vevw

The point where the proof of Theorem 4.1 breaks down in the nonsymmetric case is
that U can have negative diagonal elements, even though it is similar to a nonnegative
diagonal matrix with trace equal to 1.

Nonetheless, it is true that 0 € ¥ is a necessary condition for x, to minimize f. A
weaker result which is easier to show, following the lines of Theorem 4.1, is that 0 €
Conv ¥V is a necessary condition for optimality, but this is of no interest since it turns
out that Conv ¥ = #"™. We note that if we were to apply the usual definition of Clarke’s
generalized gradient (Clarke (1983, p. 10)) to f, ignoring the fact that f is not Lipschitz,
we would obtain d f(xp) = R™. Rockafellar has extended the definition of the generalized
gradient to the non-Lipschitz case, but this apparently still gives 9 f(xy) = R™ for our
function f (Rockafellar (1985), Burke (1987)).

It may be worth noting at this point that there cannot exist any set ¥, convex or
not, such that

supv’d=f"(xo;d) forall de R™.

vevw

The existence of such a set would contradict the possibility of the existence of descent
directions whose convex combination is an ascent direction, which was noted in Exam-
ple 1.2.

To show that 0 € W is a necessary condition for x, to minimize f, first observe that,
as in case (1B), the linear system (4.6) is solvable, although since the matrices are non-
symmetric, it is now a system of m + 1 equations in ¢2 unknowns, namely the elements
of the dual matrix U. If U has a negative real eigenvalue, we can obtain a descent direction
by solving (4.7), replacing the right-hand side by yz”, where z and y7 are, respectively,
right and left eigenvectors for the negative eigenvalue of U. If U has complex eigenvalues
or is defective, we can also find a descent direction by appropriate choice of the right-
hand side of (4.7). In view of the subsequent remarks, there is no need to elaborate on
this further.
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We now show that the set ¥ is too large to be useful and that a necessary and
sufficient optimality condition can be obtained from using a smaller set. Define

1
q)={'v=[l}|, e 9ym]T€@m| U=';Il,A](XO)U:Bk=Vk,k= 1, e am}s

i.e., ® consists of the single point v = (A{(x)/t)[tr By, - -+ , tr B,,]7.

THEOREM 4.3. A necessary and sufficient condition for f to have a first-order local
minimum at X, is that 0 € ®.

Remark. The theorem does not require the assumption that A\;(x,) # 0. However,
it is convenient to assume throughout that A\;(x,) # 0, as stated at the beginning of the
section, so that (4.6) remains solvable. With this assumption, 0 € ® < tr B, = 0, k =
L, -, m.

Proof. Define U by solving (4.6). The theorem states that U = (1/¢)1, if and only
if f has a first-order local minimum at x,. First suppose that U = (1/¢)1,, and suppose
also that x, is not a first-order local minimizer, i.e., there exists a descent direction d €
R™. By Lemma 3.2, this implies that

Ai(x0) Re p; <0, i=1,--- 1,

where u; are the eigenvalues of B(d). Because \;(xp) is real, B(d) is also real, so this
implies tr A\;(xo)B(d) < 0. However, this is a contradiction, since U = (1/t)1, implies
Mx)trBi=0,k=1, -+, m.

Now suppose that f has a first-order local minimum at xp, but that U # (1/¢)1,.
The latter assumption implies that there exists a ¢ X ¢ real matrix E with zero eigenvalues
such that U:E # 0, namely, one of the following > — 1 linearly independent defec-
tive matrices:

T —_
epeqa I’,q— 19 e ,ta p¢q
or
T T T T —
€yl — €y 1€pi 1t €811~ €p 4 1€p, p=1, - ,t—1

Here e, denotes the pth column of I,. Now solve the following linear system for
[609 619 Tt 6m]T= [50, dT]TG «@m+l:

(4.8) 6ol + N (X0) 2 0xBx=E.

k=1

(This system is a nonsymmetric version of (4.7), and therefore the coefficient matrix of
the left-hand side is the transpose of that in the nonsymmetric version of (4.6).) Taking
an inner product of U with (4.8), we get

(4.9) do=U:E+0.

But by (4.8) and Lemma 3.2, f'(xp; d) is the largest real part of the eigenvalues of E —
801, i.e., —b¢. This contradicts the assumption that a descent direction does not exist,
since if 8o < 0 we may replace [8o, d”]7 by — [0, d7]7. O

Any direction d that preserves the multiple eigenvalue A\; = - - - = A, (to first order)
by making it defective (to first order) has the property that f'(xo; —d) = —f"(x0; d),
since all the active eigenvalues have the same first-order charge. It follows that either d
or —d is a descent direction unless the first-order charge is zero; Theorem 4.3 states that
this happens for all such “defective” directions if and only if U = (1/¢)1I,. An example
of this is the following.
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Example 4.1. Let n = 2, m = 3, and define

1+& & ]

A =
*) [ L 1-&

The eigenvalues are
Aip=1£VES+H£i6,.

At the origin, A\; = ), is nondefective (with value 1) and we may take P, = Q, = I. Thus
By = Ak, k=1,2,3,and tr By = tr 4, = 0, so U, defined by (4.6), is 1 I. The spectral
radius p(x) is one at every point on the manifold where \; = )\, is defective. Figure 4.1
shows a contour plot of p(x) restricted to the (£, &) plane, where the defective manifold
reduces to the coordinate axes.

COROLLARY. There is always a direction d satisfying f'(xo; d) = 0, i.e., f never
has a strongly unique local minimum at x,.

Proof. The proof is straightforward.

From both a practical and a theoretical point of view, obtaining a descent direction
by making the active eigenvalue defective to first order is far from satisfactory. Because
defective eigenvalues are very ill-conditioned, roundoff error may be overwhelming. Even
in exact arithmetic, it is possible that a very small stepsize o may be required to make
f(xo + ad) < f(xo). In any case, finding the next descent direction to further reduce f
may be very difficult, as explained in § 6. The following theorem greatly improves the
situation.

THEOREM 4.4. Suppose that0¢€ ®, i.e., fdoes not have a first-order local minimum
at xo and therefore U, defined by (4.6), is not equal to (1/t)1,. Then there exists a descent
direction d along which \\ = - -+ = X, is split into several nondefective eigenvalues. All
eigenvalues maintain a common real part to first order, but they may have several different

imaginary parts.
&

RS

£,=1

£ = -1

FiG. 4.1. Contours of Example 4.1 in &3 = 0 plane.
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Proof. Since U # (1/t)1,, there exists a matrix E with imaginary eigenvalues such
that U:E # 0, namely one of the following ¢> — 1 linearly independent matrices:

2epeg_eqez, paq':l,.'.,t; P7éq

or
T T T T =
€€y —€pr1€pr1t2€€511—€p116p,s p=1---,t—1

Now solve (4.8) for [ 8y, d7]7, using the new right-hand side matrix E. As before, we
obtain (4.9). Also as before, '(xo; d) is the largest real part of the eigenvalues of E —
801y, 1.., —09, since F has imaginary eigenvalues. Thus a descent direction is obtained
with the required property, since d may be replaced by —d if 6, < 0. Note that, to first
order, multiplicity ¢ — 2 is maintained along d, the common value being reduced by &y,
while the other two eigenvalues split into a complex conjugate pair. It may be possible
to split A further, with several eigenvalues taking on several different imaginary parts to
first order, by choosing a less elementary matrix E with several different imaginary ei-
genvalues for the right-hand side of (4.8). O

The following question might arise: Can we obtain a descent direction along which
A = .-+ = A, is split into several distinct real eigenvalues? Obtaining such a descent
direction 4 is much more difficult, since it is not true that f'(xo; —d) = —f'(xo; d). If
U has a negative real eigenvalue, such a descent direction may be obtained by using yz”
on the right-hand side of (4.8), where y7, z are the left and right eigenvectors corresponding
to the negative eigenvalue of U, as already explained. However, we have observed examples
where there exists such a descent direction even if U has no negative eigenvalue.

Other examples have led us to the following conjecture that might be of interest.

CONJECTURE. Assume n=2, m=3, A\(X)= N(xo) is nondefective, and
{I,, B|, By, B3} has full rank. Then U has real eigenvalues if and only if there exist
descent directions in both of the disconnected regions where A splits into a complex
conjugate pair.

Remark. When there are descent directions in both of these disconnected regions,
a convex combination of descent directions can give an ascent direction, namely in the
region where A splits into a distinct real pair.

In the case n = 2, t = 2, m = 3, it is usually easy to find a descent direction by
random search, since we need only that A\;(xy) max Re u; < 0, i = 1, 2. However, for
larger ¢, the chance of finding a descent direction rapidly diminishes. In some randomly
generated tests, we found that it was usually possible to obtain a descent direction with
less than 500 random attempts for # = ¢ = 6, m = 35, but this was not usually possible
for n = t = 8, m = 63. Presumably the chance of success decreases exponentially with ¢.

We have now completed the discussion of case (2B). The degenerate case remains.

(2C) Nonsymmetric case, where neither (2A) nor (2B) applies.

This case generally applies if m < cy(f) = t> — 1. As in case (1C), such situations are
degenerate. Unlike the symmetric case, the nonsymmetric case no longer has an applicable
optimality condition.

5. Optimality conditions in the case of several active nondefective multiple eigen-
values. Assume that 4(xo) has several distinct active eigenvalues, all nondefective and
with nonzero common modulus. Denote those that are real by N,j=1,--+,r,and
those that have positive imaginary parts by Ay, j=r+ 1, -+, s, as described in the
latter part of § 3. Recall that A i e = Ny isa multlple eigenvalue of multiplicity
t;, and recall the definition of B glven by (3.9). We now wish to generalize the re-
sults of the previous section.
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(1) Symmetric case. This is easily generalized, since r =< 2 and s = 0. Details may
be found in Overton (1988).
2) Nonsymmetric case. To avoid confusing notation we entitle the three cases (A ),

(B), (C) somewhat differently than in § 4.
(2A) Nonsymmetric case, where we can obtain a descent direction without splitting
a multiple eigenvalue or making it defective, or separating moduli.

For this case to apply, assume that the following linear system is solvable for
[6la ttt Bm, Ery1y ° " €r+s]T€ @WH’S:

(51) z 5k>\,~1(xo)B,(cj) =—Itj’ j= L,
k=1
m - .
(52) 2 5kRe(>\j|(Xo)B]((j))=—Itj, j=r+ 1, ---,r+s,
k=1
(.3) el + 2 o dm (i (x0)BK’)=0,  j=r+1, - r+s.
k=1

The system is generically solvable if m > cg(t;, -- -, ¢ +s5), Which is given by
(2.5). Since we do not use the index i in this section, let i = V=1. Adding (5.2) to i times
(5.3) we get

m
3 M (x0)BY =—(1+ei)l,,  j=r+1, - ,r+s.
k=1

From Lemma 3.1, the first-order changes in the eigenvalue Ay, / = 1, - - - , ¢;, along the
direction d = {8,, -+, 8, } 7, are thus all the same quantity —(1 + &;i)/X;1(Xo), for
eachj=r+1, -+, r+s. Similarly, by (5.1), the first-order chargesin A, /=1, -- -,
tj,areall =1/ \;;(xo), foreachj =1, - - - , r. Thus all multiple eigenvalues are preserved.
Furthermore, by Lemma 3.4, or more specifically (3.11), the first-order change in f;, =
LInyl?is—1foralll=1,--+,¢,j=1,--+,r+s,ie., all moduli are reduced along
d and remain equal to first order.

(2B) Nonsymmetric case, where we can obtain a descent direction by splitting a
multiple eigenvalue or making it defective or separating moduli, or else dem-
onstrate optimality.

For this case to apply, assume that the coefficient matrix of the left-hand side of the
following linear system has full column rank, and that the system is solvable. This case
applies generically if m = cg(ty, *** , tr+s). It also applies if m > cg(t1, * -, t,+5), but
f is minimized at x, on the manifold that preserves the nondefective multiplicities and
the equal moduli. The linear system defines square dual matrices, U;, -+ -, Uy,
Viet, o+, Viss, of dimension ¢y, « | tyys, Lrs 1, *° * , Lt s, TESPECtively, by

r . r+s _ . r+s _ .
54) S Uihi(x)BY + 3 lUj:Re(x,-l(xo)Bi”)+ > le:Im(xj.(xo)Bi”)=o,
. Jj=1 j=r+ j=r+
k= 1, PR ’m’
r+s
(5.5) StrU;=1,
j=1

(5.6) tr V;=0, j=r+1, .- r+s.
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The system (5.4)-(5.6) consists of m + s + 1 equations in 3 + -+ + 2 + 2¢2,, +
-+« + 2t2, cunknowns, so that it is square if m = cg(t;, *** , ty+s)-

THEOREM 5.1. Define the dual matrices by (5.4)—(5.6). Then f has a first-order
local minimum at xo if and only if U; = «;l,;, where « ; is a nonnegative real number,
j=lL -, r+s,andV;=0,j=r+1,--,r+s.

Proof. First suppose that f does not have a first-order local minimum at x, and
assume the given condition on the dual matrices holds. Let d be a descent direction for
f from xy. Then by Lemma 3.4,

Re(le(XO)Mjl)<0’ l=19“"tj, j=1’"°,r+s9
where { u ; } are the eigenvalues of BY)(d), defined by (3.10). It follows that

'Sk Re (tr (A1 (x0) BY(d))) <O.

Jj=1

(Note that 27t «;t; = 1 by (5.5), so not all the { «; } are zero.) Therefore, since the
trace is the sum of diagonal elements,

rEsKj tr (Re (A;1(x0)BY)(d))) <0.

j=1

But from (5.4), using the facts that U; = «;I, and V; = 0, and that X;;(xo) B is real
forj=1,---,r, we have

r+s _ )

> kjtr (Re (X1(%0)BY’) =0,  k=1,---,m.

Jj=1

By (3.10), this is a contradiction.

Now suppose that the given condition on the dual matrices does not hold. We wish
to show that there exists a descent direction. Solve the following linear system in
[603 Oy, vt ’ 6m, Erily "0, 3r+s] € RSt

(5.7) dol,+ 2 Nu(x0)BY =Ej,  j=1,--,r,
k=1

(5.8) dol,+ 2 8 Re(Ni(x0)BY)=E;,  j=r+1,--,r+s,
k=1

(5.9) eily+ 2 Im (N1 (xX0)B)=Fj,  j=r+1,--,r+s,
k=1

where the right-hand sides { E;, F,;} will now be defined. First note that the coefficient
matrix of the left-hand side has full row rank, since it is the transpose of the coefficient
matrix of the system (5.4)-(5.6), which defines the dual matrices. Now define all right-
hand side matrices { E;, F;} to be zero except one, namely Ej or Fj, which is to be
defined by the first applicable case from the following list. At least one case must apply
by assumption.

(i) Set Ej, = eyel if there is a dual matrix U, with a nonzero element in the
(p, g) position, with p # g. Here e, denotes the pth column of I,,.

(ii) Set Fj, = eyel if there is a dual matrix ¥, with a nonzero element in the
(p, q) position, with p # q.
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(iii) Set Ej, to
(5.10) eer—e, el el —e, . el

if Uy, is diagonal but has different pth and (p + 1)th diagonal entries.
(iv) Set Fj, to (5.10) if V}, is diagonal but has different pth and (p + 1)th diagonal
entries.
(v) The only other possibility is that U, = kI where «;, < 0 for some A, since we
knowtr V;=0,j=r+1,---,r+sby(5.6). Set E, = —I,.
Now take inner products of { U;} with (5.7) and (5.8), respectively, and inner
products of {¥;} with (5.9), respectively. Summing the result and using (5.4) we obtain

r+s r+s
502tl'Uj+ 2 ejter=U;,:Eh+V;,:Fh.
j=1 Jj=r+1

Here one of the terms on the right-hand side is zero. The other is nonzero by construction.
Using (5.5), (5.6) we therefore have 8, # 0, and, as before, we may take 6, > 0 by
reversing the sign of the right-hand side and the solution of (5.7)-(5.9). Now add i times
(5.9) to (5.8) to obtain

m .
1D T 8RN (x0) B =E;+ Fj—(8+¢;i)l,,  j=r+1,---,r+s.
k=1

In cases (i)—(iv) the eigenvaluesof all E;, j=1, --- ,r,and all E; + F;,j=r+ 1, -+,
r + s, are zero, even for j = h. Therefore, by (5.7) and (5.11),

RC(X]](X())M_,’[)=“'50, = 1,“',tj, j=1,-~~,r+s,

where { u; } are the eigenvalues of

Bd)= 3 &BY.
k=1

In case (v) the Ath equation gives
Re (N1 (Xo)pm) = —0o— 1

since E, = —I. In both cases f'(xo;d) <0, where d=1[8;, - - ,8,]7, by Lemma
34. O

Remark. In cases (i)-(iv), descent is obtained by maintaining all eigenvalue mul-
tiplicities but making A,; = - -+ = Ay, defective (to first order). We could just as well
split A,y = - -+ = A, so that the change in all eigenvalues in the group has a common
positive component in the direction (in the complex plane) —\;;(Xp), and has different
components in the orthogonal direction, i.e., tangent to the circle centered at the origin
and passing through A\, ;(x,). This is what we did in Theorem 4.4, where the multiple
eigenvalue is real. All we need do is set Ej, or F},, respectively, to a matrix with imaginary
eigenvalues and nonzero inner product with U, or V. In case (v), descent is obtained
by preserving all nondefective eigenvalue multiplicities but reducing the modulus of A
by more than the moduli of the other eigenvalues.

Remark. Inthe case s =0, ¢; = 1, j=1,---, r, Theorem 5.1 reduces to the
standard min-max optimality condition where only case (v) applies. In the case s = 0,
r = 1, the theorem reduces to Theorem 4.3. In the case r = 0, s = 1, the theorem reduces
to a statement about splitting a multiple eigenvalue which is one of a single active complex
conjugate pair.
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We conclude this section with two examples.

Example 5.1. Reconsider Example 1.1. At xo = [—1], wehaver =2, ¢, =, = 1,
s = 0. The codimension of the manifold defined by |X;(x)| = |[M(x)] is cs(1, 1;0) =
1, so since m = 1, the dimension of the manifold is zero. The optimality condition is
checked as follows. We have

Ai(xo) = 1, A2 (x) = —1,

1o byl
[Qlel—[l _1], [121—2[1 Ik

m_[1 @ _[3
-] w-f}
Equations (5.4)-(5.6), which define the dual matrices, in this case scalars, give
1 3
EU1—5U2=0’ U|+U2=1.

The solution is U; = x; = 3, U, = k, = 4, 50 xp is indeed optimal.
Example 5.2. Let n = 10, let xo = [0, - - -, 0]7, and define 4y = A(x,) by

V2
V2

Ao = 1 -1

This matrix has one active quadruple real eigenvalue and one active double complex
conjugate pair of eigenvalues, all with modulus V2. Thus r = I,s=1,¢4,=4,,b=2.1In
order for a generic family 4(x) to have xp, and only xp, as a point where 4(x) has a
quadruple real eigenvalue and a complex conjugate pair with the same modulus, we
require

m=cs(4;2)=16+8—1—1=22,
The component matrices {4y}, k = 1, - -+, 22, are randomly generated by setting the

elements: in the Order (Al)lla (Al)l,Za R (Al)l,n, Y (Al)n,na (AZ)I,I, T, (Am)nJH
to the sequence ¥,, v = 1, 2, - - - , defined by

0,
¥ = 4095’

0,=(4450,_,+ 1) mod 4096

and 00= 1.
Wehave)\lJ:vE,l: 13 e 94’>\2,1= 1 +l,l= l,2,and
Pi=0Q = eef + ee; + eel + esel,

i 1
Py=——(esel +eed)+—(ecel + ese),

V2 V2

i 1
0,=—(esel +ese]) +—(esel +ese?).

V2 V2
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Here ¢, is the pth column of the identity matrix of the appropriate dimension, so that
P, O, are 10 X 4 and P,, Q, are 10 X 2. Forming the system (5.4)-(5.6) and solving
it, we obtain

455 .040 .039 -.231
—-.110 .094 -.057 -.187

.007 .017  .335 —-.043 |’
—-227 .092 .002 -.187

354 —.017 -515 —-.078
UZ = ’ V2 = .
-.114 —.050 .338 S15

Thus there are many possible descent directions. For examp.e, we have the following:

(i) Let E, = —eqel, E, = 0, F, = 0. Solving (5.7)-(5.9) we obtain (8, d, &,) with
f'(0; d) = —8p = —.227. Along this direction A, ; = - - - = \; 4 does not split but becomes
defective (to first order).

(ii) Let E, = —ezel + eel, E; =0, F, = 0. We get f'(0; d) = —6p = —.150.
Because E; has imaginary eigenvalues, A;; = - -+ = A4 splits into a complex conjugate
pair and a double real eigenvalue (to first order).

(iii) Let E, = 0, E, = —eyel, F, = 0. We get 1/(0; d) = —8, = —.114. This time
it is the double complex conjugate pair of eigenvalues that becomes defective (to
first order).

(iv) Let E; =0, E; = —esel + ejel, F, = 0. We get /'(0; d) = —8, = —.097. The
double complex conjugate pair of eigenvalues splits in directions tangent to the circle in
the complex plane centered at the origin with radius V2.

Finally, there is the degenerate case.

U1=

(2C) Nonsymmetric case, where neither (2A) nor (2B) applies.

This case generally applies if m < cg(t), - , t,+,). As before such situations are degen-
erate, and the optimality condition does not apply.

6. The defective case. If 4(xp) has a defective active eigenvalue, none of the previous
results apply. In such cases it seems very hard to determine in general whether x; is a
local minimizer of f, and, if not, to generate a descent direction. Indeed, it is well known
that even determining the Jordan structure of A(xp) is difficult numerically.

Suppose there is one real active multiple eigenvalue A\;(xp) = -+ = N\(xp), and
suppose the orders of the corresponding Jordan blocks are 4y = -+ Z u,, 1 S p = 1t.
The codimension of the manifold on which the same Jordan structure is preserved is
¢ = cp(uy, ***, u,), given by (2.6). If m > ¢, then generically the dimension of this
manifold is at least one, and if X, does not minimize f on the manifold, it seems reasonable
to suppose that a descent direction exists. This is not clear, however, since fis not Lipschitz
along lines through xp.

If m = ¢, then generically X, is the only point where A(x) has the given Jordan
structure. If A\, (xp) is derogatory, i.e., there is more than one Jordan block corresponding
to A (xo), it may be possible to decrease f(x) by making A\, (x) “more defective,” i.e.,
moving to a point x where two of the Jordan blocks combine to form a larger block.
Such points lie on a manifold with smaller codimension and hence larger dimension. If
m = c and A;(Xp) is nonderogatory, i.e., p = 1, it will generally be necessary to split the
multiple eigenvalue to obtain a reduction in f. It seems that the cases where x, is most
likely to be a minimum are where A, (x,) is nonderogatory.

If X\;(xo) is nonderogatory, an arbitrary perturbation of x with size ¢ will generally
perturb the eigenvalues by O(e'/*). More specifically, the eigenvalues can be expanded
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in Puiseux series; see Kato (1984, p. 65). The sum of the perturbed eigenvalues is analytic
in ¢ (Kato (1984, p. 78)); accordingly, the O(e!/?) changes in the ¢ eigenvalues are
generally of equal magnitude and along directions in the complex plane separated by
angles of 27/ . It follows that if ¢ > 2, the spectral radius is increased by O(¢!/?). If t =
2, the only case in which the spectral radius changes by O(¢) is that in which the eigenvalues
split into a complex conjugate pair; or more generally, if \; (xp) is complex, that in which
the changes in the eigenvalues are tangent to the circle in the complex plane centred at
the origin and passing through A, (xo). However, it is also true in the nondefective case
that arbitrary perturbations to x generally increase the spectral radius; the question is
whether a properly chosen perturbation can decrease f. It may be possible, even in the
nonderogatory case, to perturb x so that the spectral radius is decreased. This would
require that the first nonzero term in the Puiseux series be either an imaginary term of
size O(e'/?) or a real term of size O(¢). It might be achieved, for example, by splitting
off a complex conjugate pair of eigenvalues and preserving multiplicity ¢ — 2.

Consider Example 1.1. At xo = 0, A\;(Xxp) is defective, with n =t =2, p = 1. We
have ¢ = m = 1, and, indeed, Xx; is the only point where \;(x) is defective. The point X,
is a local minimizer of f. Now generalize the example to

1+v& 1 ]

A(x) =
(x)[ & l+vg

with xo = [ 0]. Regardless of v, the eigenvalues of 4(x) are real for £, < 0 and we may
legitimately generalize the notion of directional derivative to say that f'(0; —1) = +co.
For £, > 0, the eigenvalues are a complex conjugate pair, with

Ma(E)=1+vExiVE

so that
f10;+1)=v+}.

Thus zero is a first-order local minimizer if and only if ¥ = —1. In fact, we may without
difficulty extend the definition of Clarke’s generalized gradient to handle the case m =
1 regardless of whether X\, (x) is defective. In this particular case we obtain

3f(0)=[—oc0,y+14]

so that, for any v, f has a first-order local minimum at zero if and only if 0 € 3/(0).

The reason that duality theory, particularly the theorems in §§ 4 and 5, is so useful
is that information computed only at x, defines dual variables, in our case matrices, that
resolve the question of optimality and give information regarding descent directions. If
() is defective, however, it does not seem possible, even in the simple case just
described, to resolve optimality directly from the information given by the Jordan form
of A(xp) together with the component matrices { 4 } . It is possible, of course, to determine
whether a given direction d is a descent direction by looking at the limit of the well
defined quantities f'(xo + ed; d), where ¢ > 0 and A(x, + ¢d) has distinct eigenvalues,
but this is of little use when m > 1.

Let us turn to Example 1.2 (see Fig. 1.2). We see that at, say, xo = [1, 0]7, it is a0t
trivial to determine which directions into the “complex region” are descent directions.
In this case, the defective manifold shown in Fig. 1.2 is linear, so reducing f by keeping
the eigenvalue defective poses no difficulty.

Finally, consider the following example.
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Example 6.1. Let n = 3, m = 2 and define

1 10 S -2 -4 0 00
Ax)=10 1 1|+&] .7 1.2 1 +&|0 0 Of.
0 01 -2 8 -3 1 00

Let xo = [0, 0]7. At xo, 4 has a nonderogatory triple eigenvalue. The codimension ¢ =
3 — 1 = 2. Since m = 2, Xy is the only point with this Jordan structure. Figure 6.1 gives
a contour plot of p(£,, & ). Figure 6.2 shows graphs of p(£;, &) along the lines £, = 0.1,
& = 0 and & = —0.1, respectively.

There is a curve clearly visible in Fig. 6.1 across which p(x) is not differentiable.
Along the part of the curve above the point x,, 4(x) is defective; more specifically, the
triple eigenvalue splits into one defective double real eigenvalue and one single eigenvalue.
On the part of the curve below x5, A(x) is not defective, and in fact it has distinct
eigenvalues, one complex conjugate pair and one real eigenvalue. Along this part of the
curve, p(x) is a Lipschitz max function, with the complex conjugate pair and the real
eigenvalue achieving the same modulus. Theorem 5.1 is trivially applicable at these
points. It can be seen that p is Lipschitz along £ = —0.1 (Fig. 6.2(c)), that p is not
Lipschitz along & = 0.1 (Fig. 6.2(a)), and that p has even more rapid variation along
& = 0 (Fig. 6.2(b)); this is because a triple eigenvalue is being perturbed in the last case.
There is another curve emanating up from x, along which the triple eigenvalue also splits
into one defective double real eigenvalue and one single eigenvalue. This curve is not
visible in the contour plot, since it is the distinct eigenvalue that has the maximum
modulus. Thus the “defective manifold” has a cusp at x,. This is consistent with the
illustration given by Arnold (1971, p. 38); the manifold here corresponds to a cross-
section of the one shown by Arnold.

We note that p is apparently locally but not globally minimized at x,. There are
lower values of p on the curve of discontinuity towards the bottom of Fig. 6.1.

g =1

£y = -1

FI1G. 6.1. Contour plot of Example 6.1.
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In summary, the question of optimality seems very hard to resolve in the defective
case, and many interesting questions remain open.
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