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Abstract This article reviews the gradient sampling methodology for solving non-
smooth, nonconvex optimization problems. We state an intuitively straightforward
gradient sampling algorithm and summarize its convergence properties. Throughout
this discussion, we emphasize the simplicity of gradient sampling as an extension
of the steepest descent method for minimizing smooth objectives. We provide an
overview of various enhancements that have been proposed to improve practical
performance, as well as an overview of several extensions that have been proposed
in the literature, such as to solve constrained problems. We also clarify certain
technical aspects of the analysis of gradient sampling algorithms, most notably
related to the assumptions one needs to make about the set of points at which the
objective is continuously differentiable. Finally, we discuss possible future research
directions.
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6.1 Introduction

The gradient sampling (GS) algorithm is a conceptually simple descent method for
solving nonsmooth, nonconvex optimization problems, yet it is one that possesses
a solid theoretical foundation and has been employed to substantial success in a
wide variety of applications. Since the appearance of the fundamental algorithm
and its analysis little over a dozen years ago, GS has matured into a comprehensive
methodology. Various enhancements have been proposed that make it a competitive
approach in many NSO contexts, and it has been extended in various interesting
ways, such as for NSO on manifolds and for solving constrained problems. The
purpose of this work is to provide background and motivation for the development
of the GS method, discuss its theoretical guarantees, and provide an overview of
the enhancements and extensions that have been the subject of research over recent
years.

The underlying philosophy of GS is that virtually any nonsmooth objective
function of interest is differentiable almost everywhere; in particular, this is true if
the objective f : Rn → R is either LLC (see Theorem 1.5) or semialgebraic. In such
cases, when f is evaluated at a randomly generated point x ∈ R

n, it is differentiable
there with probability one. This means that an algorithm can rely on an ability to
obtain the objective function value f (x) and gradient ∇f (x), as when f is smooth,
rather than require an oracle to compute a subgradient. In most interesting settings,
f is not differentiable at its local minimizers, but, under reasonable assumptions, the
carefully crafted mechanisms of the GS algorithm generate a sequence of iterates—
at which f is differentiable—converging to stationarity.

At the heart of GS is a stabilized steepest descent approach. When f is
differentiable at x, the negative gradient −∇f (x) is, of course, the traditional
steepest descent direction for f at x in the 2-norm in that

− ∇f (x)

‖∇f (x)‖ = argmin
‖d‖≤1

∇f (x)T d. (6.1)

However, when x is near a point where f is not differentiable, it may be necessary to
take a very short step along −∇f (x) to obtain decrease in f . It is for this reason that
the traditional steepest descent method may converge to nonstationary points when
f is nonsmooth.1 The GS algorithm stabilizes the choice of the search direction to
avoid this issue. In each iteration, a descent direction from the current iterate xk

is obtained by supplementing the information provided by ∇f (xk) with gradients
evaluated at randomly generated points {xk,1, . . . , xk,m} ⊂ B̄(xk; εk), which are
near xk , and then computing the minimum-norm vector gk in the convex hull of

1Although this fact has been known for decades, most of the examples that appear in the literature
are rather artificial since they were designed with exact line searches in mind. Analyses showing
that the steepest descent method with inexact line searches converges to nonstationary points of
some simple convex nonsmooth functions have appeared recently in [1, 22].
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these gradients. This choice can be motivated by the goal, using the ε-subdifferential
∂G
ε f (x) given in Definition 1.10, that

− gk

‖gk‖ ≈ argmin
‖d‖≤1

max
g∈∂G

ε f (x)
gT d; (6.2)

i.e., −gk can essentially be viewed as a steepest descent direction for f from xk in a
more “robust” sense. A line search is then used to find a positive stepsize tk yielding
decrease in f , i.e., f (xk − tkg

k) < f (xk). The sampling radius εk that determines
the meaning of “near xk” may either be fixed or adjusted dynamically.

A specific instance of the GS algorithm is presented in Sect. 6.2. Its convergence
guarantees are summarized in Sect. 6.3. We then present various enhancements
and extensions of the approach in Sects. 6.4 and 6.5, respectively, followed by a
discussion of some successful applications of the GS methodology in Sect. 6.6.
Throughout this work, our goal is to emphasize the simplicity of the fundamental
GS strategy. We believe that this, in addition to its strong convergence properties
for locally Lipschitz optimization, makes it an attractive choice when attempting to
solve difficult types of NSO problems.

Although the first convergence analysis of a GS algorithm was given by Burke,
Lewis, and Overton in [8], an earlier version of the method was presented by these
authors in [7]. That algorithm, originally called a “gradient bundle” method, was
applied to a function that was not only nonconvex and nonsmooth, but also non-
locally-Lipschitz, namely, the spectral abscissa—i.e., the largest of the real parts
of the eigenvalues—of a linear matrix function A mapping a parameter vector
x to the space of nonsymmetric square matrices. The spectral abscissa is not
locally Lipschitz at a matrix X̄ when an eigenvalue of X̄ with largest real part
has multiplicity two or more [5], but it is semialgebraic and, hence, differentiable
almost everywhere, so a GS algorithm was applicable. The method was surprisingly
effective. As anticipated, in most cases the apparent local minimizers that were
approximated had the property that the eigenvalues of A with largest real part
had multiplicity two or more. An illustration that appeared in [7] is reproduced
in Fig. 6.1; the extremely “steep” contours of the objective function indicate its
non-Lipschitzness. Obtaining theoretical results for a GS algorithm applied to
solve non-locally-Lipschitz problems seems very challenging; we discuss this issue
further in Sect. 6.3.3, after describing the substantial body of theory that has been
developed for the locally Lipschitz case in Sects. 6.3.1 and 6.3.2.

6.2 Algorithm GS

We now state a specific variant of the GS algorithm. We start by assuming only
that the objective function f is locally Lipschitz over R

n, which implies, by
Rademacher’s theorem (see Theorem 1.5), that f is differentiable almost every-
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Fig. 6.1 Contours of the spectral abscissa of an affine matrix family given in [7]. Iterates of the
ordinary gradient (“steepest descent”) method with a line search are shown (small circles) along
with those of the GS (“gradient bundle”) algorithm (asterisks). Both start at (−1,−1)

where. As previously mentioned, at the heart of the algorithm is the computation
of a descent direction by finding the minimum norm element of the convex hull of
gradients obtained about each iterate. The remaining procedures relate to the line
search to obtain decrease in f and the selection of a subsequent iterate so that f is
differentiable at all elements of {xk}.

While the essence of the methods from [7] and [8] remains intact, Algorithm GS
differs in subtle yet important ways from the methods presented in these papers, as
we now explain.

1. Algorithm GS incorporates a key modification proposed by Kiwiel in [28,
Algorithm 2.1], namely, the second inequality in (6.4); the version in [8] used
εk instead of min{tk, εk}. As Kiwiel explained, this minor change allowed him
to drop the assumption in [8] that the level set {x : f (x) ≤ f (x0)} is compact,
strengthening the convergence results for the algorithm.

2. A second change suggested in [28, Algorithm 2.1] is the introduction of the
termination tolerances νopt and εopt. These were used in the computational
experiments in [8], but not in the algorithm statement or analysis. Note that if
εopt is set to zero, then Algorithm GS never terminates since εk can never be
zero, though it may happen that one obtains ‖gk‖ = 0.

3. A third change, also suggested by Kiwiel, is the usage of the nonnormalized
search direction −gk (originally used in [7]) instead of the normalized search
direction −gk/‖gk‖ (used in [8]). The resulting inequalities in (6.3) and (6.4) are
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taken from [28, Section 4.1]. This choice does not affect the main conclusions
of the convergence theory as in both cases it is established [8, 28] that the
stepsize tk can be determined by a finite process. However, since Theorem 6.1
below shows that a subsequence of {gk} converges to zero under reasonable
conditions, one expects that fewer function evaluations should be required by
the line search asymptotically when using the nonnormalized search direction,
whereas using the normalized direction may result in the number of function
evaluations growing arbitrarily large [28, Section 4.1]. Our practical experience
is consistent with this viewpoint.

4. Another aspect of Algorithm GS that is different in both [8] and [28] concerns
the randomization procedure in Step 2. In the variants given in those papers, it
was stated that the algorithm terminates if f is not continuously differentiable
at the randomly sampled points {xk,1, . . . , xk,m}. In the theorem stated in the
next section, we require only that f is differentiable at the sampled points. Since
by Rademacher’s theorem and countable additivity of probabilities this holds
for every sampled point with probability one, we do not include a termination
condition here.

5. Finally, Steps 11–14 in Algorithm GS do require explicit checks that ensure
that f is differentiable at xk+1, but unlike in the variants in [8] and [28], it is
not required that f be continuously differentiable at xk+1. This differentiability
requirement is included since it is not the case that f is differentiable at xk −tkg

k

with probability one, as is shown via an example in [24], discussed further in
Sect. 6.4.2. For a precise procedure for implementing Step 14, see [28].

The computation in Step 3 of Algorithm GS requires solving a strongly convex
quadratic optimization problem (QP) to compute the minimum-norm element of
the convex hull of the current and sampled gradients, or, equivalently, to compute
the 2-norm projection of the origin onto this convex hull. It is essentially the same
operation required in every iteration of a bundle method. To see this, observe that
solving the QP in Step 3 can be expressed, with

Gk := [∇f (xk) ∇f (xk,1) · · · ∇f (xk,m)
]
,

as computing (zk, d
k,λk) ∈ R×R

n ×R
m+1 as the primal-dual solution of the QPs

⎧
⎪⎪⎨

⎪⎪⎩

minimize z + 1
2‖d‖2

subject to GT
k d ≤ z1,

(z, d) ∈ R × R
n,

and

⎧
⎪⎪⎨

⎪⎪⎩

minimize 1
2‖Gkλ‖2

subject to 1T λ = 1, λ ≥ 000,

λ ∈ R
m+1.

(6.5)

The latter problem, yielding Gkλ
k = gk , can easily be seen to be equivalent

to solving the subproblem ming∈Gk
1
2‖g‖2 stated in Step 3, whereas the former

problem, yielding dk = −gk , can be seen to have the same form as the subproblems
arising in bundle methods.
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Algorithm GS: Gradient sampling

Data: initial point x0 at which f is differentiable, initial sampling radius
ε0 ∈ (0,∞), initial stationarity target ν0 ∈ [0,∞), sample size
m ≥ n + 1, line search parameters (β, γ ) ∈ (0, 1) × (0, 1), termination
tolerances (εopt, νopt) ∈ [0,∞) × [0,∞), and reduction factors
(θε, θν) ∈ (0, 1] × (0, 1];

1 for k ∈ N do
2 independently sample {xk,1, . . . , xk,m} uniformly from B̄(xk; εk)

3 compute gk as the solution of ming∈Gk
1
2‖g‖2, where

Gk := conv{∇f (xk),∇f (xk,1), . . . ,∇f (xk,m)};

4 if ‖gk‖ ≤ νopt and εk ≤ εopt, then
5 terminate;
6 else
7 if ‖gk‖ ≤ νk, then
8 set νk+1 ← θννk , εk+1 ← θεεk , and tk ← 0;
9 else

10 set νk+1 ← νk , εk+1 ← εk , and

tk ← max
{
t ∈ {1, γ , γ 2, . . . } :

f (xk − tgk) < f (xk) − βt‖gk‖2
}

; (6.3)

11 if f is differentiable at xk − tkg
k, then

12 set xk+1 ← xk − tkg
k;

13 else
14 set xk+1 randomly as any point where f is differentiable such that

f (xk+1) < f (xk) − βtk‖gk‖2

and ‖xk − tkg
k − xk+1‖ ≤ min{tk, εk}‖gk‖; (6.4)

Normally, the initial stationarity target ν0 is chosen to be positive and the
reduction factors θν and θε are chosen to be less than one so that the stationarity
target and sampling radius are reduced every time the condition ‖gk‖ ≤ νk is
satisfied. However, it is also interesting to consider the variant with ν0 = 0 and
θε = 1, forcing the algorithm to run forever with ε fixed unless it terminates with
gk = 000 for some k ∈ N. We consider both of these variants in the global convergence
theory given in the next section.
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6.3 Convergence Theory for Algorithm GS

Any NSO method seeks to find a point x that is Clarke stationary (such that 000 ∈
∂f (x); see (1.7), Definition 1.8 and Theorem 1.2) or at least ε-stationary (such that
000 ∈ ∂G

ε f (x); see Definition 1.10). For all practical purposes, one cannot generally
evaluate ∂f (or ∂G

ε f ) at (or near) any point where f is not differentiable. That said,
Algorithm GS is based on the idea that one can approximate the minimum norm
element in ∂G

ε f (xk) through random sampling of gradients in the ball B̄(xk; ε).
To a large extent this idea is motivated by [6] which investigates how well the
entire Clarke subdifferential ∂f (x) can be approximated through random sampling.
However, the results in [6] cannot be directly exploited in the analysis of the GS
algorithm because the gradients are sampled only at a finite number of points near
any given iterate.

One might wonder why Algorithm GS involves the use of m ≥ n+1 gradients at
randomly sampled points in addition to the gradient at the current iterate. Loosely
speaking, this lower bound on the number of gradients is required in the analysis to
ensure that one can use Carathéodory’s theorem to argue that there is a sufficiently
good chance that −gk either (1) is a sufficiently good search direction from xk , or
(2) is small enough to indicate that the current iterate is approximately εk-stationary.
In the latter case, the analysis actually involves checking for εk-stationarity of a
point near xk , not of xk itself, which explains why n + 1 gradients are needed
in addition to ∇f (xk). It remains an open question whether it would suffice to
sample gradients at just n randomly sampled points in addition to the gradient at xk;
however, such a possibility is not of much consequence, especially if one employs
the adaptive sampling enhancement discussed in Sect. 6.4.3.

6.3.1 Global Convergence Guarantees

A critical aspect of theoretical convergence guarantees for Algorithm GS concerns
the set of points where f is continuously differentiable, which we denote by D.
Consideration of D played a crucial role in the analysis in both [8] and [28], but
there were some oversights concerning both the requirements of the algorithm with
respect to D and the assumptions on D. Regarding the requirements of the algorithm
with respect to D, there is actually no need, from a theoretical point of view, for
either the iterates {xk} or the randomly generated sampled points {xk,j } to lie in D;
all that is needed is that f is differentiable at these points. Most implementations
of GS algorithms do not attempt to check any form of differentiability in any
case, but if one were to attempt to implement such a check, it is certainly more
tractable to check for differentiability than continuous differentiability. Regarding
the assumptions on D, in the theorems that we state below, we assume that D is
an open set with full measure in R

n. In contrast, the relevant assumption stated in
[8, 28] is weaker, namely, that D is an open dense subset of Rn. However, the proofs
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of convergence actually require the full measure assumption on D that we include
below.2

There are three types of global convergence guarantees of interest for Algo-
rithm GS: one when the input parameters ensure that {εk} ↓ 0, one when εk is
repeatedly reduced but a positive stopping tolerance prevents it from converging to
zero, and one when εk = ε > 0 for all k. These lead to different properties for
the iterate sequence. The first theorem below relates to cases when the stationarity
tolerance and sampling radius tolerance are both set to zero so that the algorithm
can never terminate.

Theorem 6.1 Suppose that f is locally Lipschitz on R
n and continuously differen-

tiable on an open set D with full measure in R
n. Suppose further that Algorithm GS

is run with ν0 > 0, νopt = εopt = 0, and strict reduction factors θν < 1 and
θε < 1. Then, with probability one, Algorithm GS is well defined in the sense that
the gradients in Step 3 exist in every iteration, the algorithm does not terminate, and
either

(i) f (xk) ↓ −∞; or
(ii) νk ↓ 0, εk ↓ 0, and every cluster point of {xk} is Clarke stationary for f .

Theorem 6.1 is essentially the same as [28, Theorem 3.3] (with the modifications
given in [28, Section 4.1] for nonnormalized directions), except for two aspects:

1. The proof given in [28] implicitly assumes that D is an open set with full
measure, as does the proof of [8, Theorem 3.4] on which Kiwiel’s proof is based,
although the relevant assumption on D in both papers is the weaker condition
that D is an open dense set. Details are given in Appendix 1.

2. In the algorithms analyzed in [28] and [8], the iterates {xk} and the randomly
sampled points {xk,j } were enforced to lie in the set D where f is continuously
differentiable. We show in Appendix 2 that the theorem still holds when this
requirement is relaxed to ensure only that f is differentiable at these points.

As Kiwiel argues, Theorem 6.1 is essentially the best result that could be
expected. Furthermore, as pointed out in [28, Remark 3.7(ii)], it leads immediately
to the following corollary.

Corollary 6.1 Suppose that f is locally Lipschitz on R
n and continuously differen-

tiable on an open set D with full measure in R
n. Suppose further that Algorithm GS

is run with ν0 > νopt > 0, ε0 > εopt > 0, and strict reduction factors θν < 1 and
θε < 1. Then, with probability one, Algorithm GS is well defined in the sense that
the gradients in Step 3 exist at every iteration, and either

(i) f (xk) ↓ −∞; or
(ii) Algorithm GS terminates by the stopping criteria in Step 4.

2This oversight went unnoticed for 12 years until J. Portegies and T. Mitchell brought it to our
attention recently.
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The final result that we state concerns the case when the sampling radius is fixed.
A proof of this result is essentially given by that of [28, Theorem 3.5], again taking
into account the comments in the Appendices.

Theorem 6.2 Suppose that f is locally Lipschitz on R
n and continuously differen-

tiable on an open set D with full measure in R
n. Suppose further that Algorithm GS

is run with ν0 = νopt = 0, ε0 = εopt = ε > 0, and θε = 1. Then, with probability
one, Algorithm GS is well defined in the sense that the gradients in Step 3 exist at
every iteration, and one of the following occurs:

(a) f (xk) ↓ −∞; or
(b) Algorithm GS terminates for some k ∈ N with gk = 000; or
(c) there exists K ⊆ N with {gk}k∈K → 000 and every cluster point of {xk}k∈K is

ε-stationary for f .

Of the five open questions regarding the convergence analysis for GS raised
in [8], three were answered explicitly by Kiwiel in [28]. Another open question
was: “Under what conditions can one guarantee that the GS algorithm terminates
finitely?” This was posed in the context of a fixed sampling radius and therefore asks
how one might know whether outcome (b) or (c) occurs in Theorem 6.2, assuming
f is bounded below. This remains open, but Kiwiel’s introduction of the termination
tolerances in the GS algorithm statement led to Corollary 6.1 which guarantees that
when the sampling radius is reduced dynamically and the tolerances are nonzero,
Algorithm GS must terminate if f is bounded below. The only other open question
concerns extending the convergence analysis to the non-Lipschitz case.

Overall, Algorithm GS has a very satisfactory convergence theory in the locally
Lipschitz case. Its main weakness is its per-iteration cost, most notably due
to the need to compute m ≥ n + 1 gradients in every iteration and solve a
corresponding QP. However, enhancements to the algorithm have been proposed
that can vastly reduce this per-iteration cost while maintaining these guarantees. We
discuss these and other enhancements in Sect. 6.4.

6.3.2 A Local Linear Convergence Result

Given the relationship between GS and a traditional steepest descent approach, one
might ask if there are scenarios in which Algorithm GS can attain a linear rate of
local convergence. The study in [25] answers this in the affirmative, at least in a
certain probabilistic sense. If (1) the set of sampled points is good in a certain sense
described in [25], (2) the objective function f belongs to a class of functions defined
by the maximum of a finite number of smooth functions (“finite-max” functions),
and (3) the input parameters are set appropriately, then Algorithm GS will produce
a step yielding a reduction in f that is significant. This analysis involves VU-
decomposition ideas [31, 32, 36], where in particular it is shown that the reduction
in f is comparable to that achieved by a steepest descent method restricted to the
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smooth U-space of f . This means that a linear rate of local convergence can be
attained over any infinite subsequence of iterations in which the sets of sampled
points are good.

6.3.3 The Non-Lipschitz Case

In the non-locally-Lipschitz case, the Clarke subdifferential ∂f is defined in [6, p.
573]; unlike in the Lipschitz case, this set may be unbounded, presenting obvious
difficulties for approximating it through random sampling of gradients. In fact, more
than half of [6] is devoted to investigating this issue, relying heavily on modern
variational analysis as expounded in [41]. Some positive results were obtained,
specifically in the case that f is “directionally Lipschitz” at x̄, which means that
the “horizon cone” [6, p. 572] of f at x̄ is pointed, that is, it does not contain a line.
For example, this excludes the function on R defined by f (x) = |x|1/2 at x̄ = 0, but
it applies to the case f (x) = (max{0, x})1/2 even at x̄ = 0. The discussion of the
directionally Lipschitz case culminates with Corollary 6.1, which establishes that
the Clarke subdifferential can indeed be approximated by convex hulls of gradients.
On the more negative side, Example 7.2 shows that this approximation can fail
badly in the general Lipschitz case. Motivated by these results, Burke and Lin have
recently extended the GS convergence theory to the directionally Lipschitz case
[4, 34]. However, it would seem difficult to extend these results to the more general
non-Lipschitz case.

Suppose f : Rn×n → R is defined by

f (X) = max{Reλ : det(λI − X) = 0},

the spectral abscissa (maximum of the real parts of the eigenvalues) of X. Assume
that X̄ has the property that its only eigenvalues whose real parts coincide with
f make up a zero eigenvalue with multiplicity q associated with a single Jordan
block (the generic case). In this case the results in [5] tell us that the horizon cone
of f is pointed at X̄ if and only if the multiplicity q ≤ 2; on the other hand f is
locally Lipschitz at X if and only if q = 1. In the light of the previous paragraph,
one might expect much greater practical success in applying GS to minimize the
spectral abscissa of a parameterized matrix if the optimal multiplicities are limited
to 1 or 2. However, this seems not to be the case. The results reported in [7] for
unconstrained spectral abscissa minimization, as well as results for applying the
algorithm of [12] (see Sect. 6.5.2 below) for constrained nonsmooth, nonconvex
optimization to problems with spectral radius objective and constraints, as reported
in [15, Section 4.2 and Appendix A.1], do not show any marked deterioration as
the optimal multiplicities increase from 2 or 3, although certainly the problems are
much more challenging for larger multiplicities. We view understanding the rather
remarkably good behavior of the GS algorithm on such examples as a potentially
rewarding, though certainly challenging, line of investigation.
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6.4 Enhancements

As explained above, the statement of Algorithm GS differs in several ways from
the algorithms stated in [7, 8], and [28]. Other variants of the strategy have also
been proposed in recent years, in some cases to pose new solutions to theoretical
obstacles (such as the need, in theory, to check for differentiability of f at each new
iterate), and in others to enhance the practical performance of the approach. In this
section, we discuss a few of these enhancements.

6.4.1 Restricting the Line Search to Within a Trust Region

Since the gradient information about f is obtained only within the ball B̄(xk; εk) for
all k ∈ N, and since one might expect that smaller steps should be made when the
sampling radius is small, an argument can be made that the algorithm might benefit
by restricting the line search to within the ball B̄(xk; εk) for all k ∈ N. In [28,
Section 4.2], such a variant is proposed where in place of −gk the search direction
is set as −εkg

k/‖gk‖. With minor corresponding changes to conditions (6.3) and
(6.4), all of the theoretical convergence guarantees of the algorithm are maintained.
Such a variant with the trust region radius defined as a positive multiple of the
sampling radius εk for all k ∈ N would have similar properties. This variant might
perform well in practice, especially in situations when otherwise setting the search
direction as −gk would lead to significant effort being spent in the line search.

6.4.2 Avoiding the Differentiability Check

The largest distraction from the fundamentally simple nature of Algorithm GS is
the procedure for choosing a perturbed subsequent iterate if f is not differentiable
at xk − tkg

k; see Steps 11–14. This procedure is necessary for the algorithm to
be well defined since, to ensure that −gk is a descent direction for all k ∈ N, the
algorithm relies on the existence of and ability to compute −∇f (xk) for all k ∈ N.
One might hope that this procedure, while necessary for theoretical convergence
guarantees, could be ignored in practice. However, due to the deterministic nature
of the line search, situations exist in which landing on a point of nondifferentiability
of f occurs with positive probability.

Example 6.1 Consider the function f : R2 → R given by

f (w, z) = max{0.5w2 + 0.1z,w + 0.1z + 1,−w + 0.1z + 1,−0.05z − 50};
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see Fig. 6.2. As shown by Helou, Santos, and Simões in [24], if Algorithm GS
is initialized at x0 = (w0, z0) chosen anywhere in the unit ball centered at
(10, 10), then there is a positive probability that the function f will not be
differentiable at x0 − t0g

0. This can be explained as follows. At any point in the
unit ball centered at (10, 10), the function f is continuously differentiable and
∇f (x0) = (w0, 0.1). Moreover, there is a positive probability that the sampled
points obtained at this first iteration will yield g0 = ∇f (x0). Therefore, given a
reasonable value for the parameter β that appears in (6.3) (e.g., β = 10−4), the
sufficient decrease of the function value is attained with t0 = 1. This guarantees
that the function f will not be differentiable at the next iterate, since the first
coordinate of x1 = (w1, z1) will be zero.

The authors of [24] propose two strategies to avoid the issues highlighted by
this example. The first is that, rather than perturb the iterate after the line search,
one could perturb the search direction before the line search. It is shown that if the
random perturbation of the search direction is sufficiently small such that, for one
thing, the resulting direction is still one of descent for f , then f will be differentiable
at all iterates with probability one. Their second proposed strategy involves the use
of a nonmonotone line search. In particular, it is shown that if a strictly positive value
Δk is added on the right-hand side of the sufficient decrease condition in (6.3) such
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Fig. 6.2 Contours of a function illustrating the necessity of the differentiability check in Algo-
rithm GS. Initialized uniformly within the illustrated ball, there is a positive probability that
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that {Δk} is summable, then one can remove ∇f (xk) from the set Gk for all k ∈ N

and maintain convergence guarantees even when f is not differentiable at {xk}. This
can be shown by noticing that, due to the positive term Δk, the line search procedure
continues to be well defined even if −gk is not a descent direction for f at xk

(which may happen since ∇f (xk) is no longer involved in the computation of gk).
However, the summability of {Δk} implies that the possible increases in f will be
finite and, when the sampled points are good enough to describe the local behavior
of f around the current iterate, the function value will necessarily decrease if the
method has not reached (approximate) stationarity. Overall, the sufficient reductions
in f achieved in certain iterations will ultimately exceed any increases.

Another proposal for avoiding the need to have f differentiable at xk for all
k ∈ N is given in [28, Section 4.3], wherein a technique is proposed for using
a limited line search, potentially causing the algorithm to take null steps in some
iterations. In fact, this idea of using a limited line search can also be used to avoid
the need to sample a new set of m ≥ n+ 1 gradients in each iteration, as we discuss
next.

6.4.3 Adaptive Sampling

As previously mentioned, the main weakness of Algorithm GS is the cost of
computing m ≥ n + 1 gradients in every iteration and solving a corresponding
QP. Indeed, in many situations in practice, the sampling of such a large number of
gradients in each iteration can lead to a significant amount of wasted computational
effort; e.g., this is the case if a productive step would have been produced if fewer
gradients were computed and used in the step computation. To take advantage
of such situations, one can instead sample adaptively, attempting to search along
directions computed using fewer gradients and proceeding as long as a sufficient
reduction is attained.

In [13], Curtis and Que show how such an adaptive sampling strategy can be
employed so that the convergence guarantees of Algorithm GS are maintained while
only a constant number (independent of n) of gradients need to be sampled in
each iteration. A key aspect that allows one to maintain these guarantees is the
employment of a limited line search, as first proposed in [28], potentially leading
to a null step when fewer than n + 1 gradients are currently in hand and when the
line search is not successful after a prescribed finite number of function evaluations.
See also [14] for further development of these ideas, where it is shown that one
might not need to sample any gradients as long as a sufficient reduction is attained.

The work in [13] also introduces the idea that, when adaptive sampling is
employed, the algorithm can exploit a practical feature commonly used in bundle
methods. This idea relates to warm-starting the algorithm for solving the QP
subproblems. In particular, suppose that one has solved the primal-dual pair of QPs
in (6.5) for some m ∈ N to obtain (zk, d

k,λk), yielding gk = −dk . If one were to
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subsequently aim to solve the pair of QPs corresponding to the augmented matrix
of gradients

Gk = [
Gk ∇f (xk,m+1) · · · ∇f (xk,m+p)

]
,

then one obtains a viable feasible starting point for the latter QP in (6.5) by
augmenting the vector λk with p zeros. This can be exploited, e.g., in an active-
set method for solving this QP; see [27].

As a further practical enhancement, the work in [13, 14] also proposes the natural
idea that, after moving to a new iterate xk , gradients computed in previous iterations
can be “reused” if they correspond to points that lie within B̄(xk; εk). This may
further reduce the number of sampled points needed in practice.

6.4.4 Second Order-Type Variants

The solution vector dk of the QP in (6.5) can be viewed as the minimizer of the
model of f at xk given by

qk(d) = f (xk) + max
g∈Gk

gT d + 1
2dT Hkd

with Hk = I , the identity matrix. As in other second order-type methods for
nonlinear optimization, one might also consider algorithm variants where Hk is
set to some other symmetric positive definite matrix. Ideas of this type have been
explored in the literature. For example, in [13], two techniques are proposed: one in
which Hk is set using a quasi-Newton updating strategy and one in which the matrix
is set in an attempt to ensure that the model qk represents an upper bounding model
for f . The idea of employing a quasi-Newton approach, inspired by the success
of quasi-Newton methods in practice for NSO (see [33]), has also been explored
further in [14, 16].

Another approach, motivated by the encouraging results obtained when employ-
ing spectral gradient methods to solve smooth [3, 21] and nonsmooth [11] optimiza-
tion problems, has been to employ a Barzilai-Borwein (BB) strategy for computing
initial stepsizes in a GS approach; see [35] and the background in [2, 38, 39]. Using
a BB strategy can be viewed as choosing Hk = αkI for all k ∈ N where the scalar
αk is set according to iterate and gradient displacements in the latest iteration.

In all of these second order-type approaches, one is able to maintain convergence
guarantees of the algorithm as long as the procedure for setting the matrix Hk is
safeguarded during the optimization process. For example, one way to maintain
guarantees is to restrict each Hk to the set of symmetric matrices whose eigenvalues
are contained within a fixed positive interval. One might also attempt to exploit the
self-correcting properties of BFGS updating; see [16].
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6.5 Extensions

In this section, we discuss extensions to the GS methodology to solve classes of
problems beyond unconstrained optimization on R

n.

6.5.1 Riemannian GS for Optimization on Manifolds

Hosseini and Uschmajew in [26] have extended the GS methodology for minimizing
a locally Lipschitz f over a set M, where M is a complete Riemannian manifold
of dimension n. The main idea of this extension is to employ the convex hull of
gradients from tangent spaces at randomly sampled points transported to the tangent
space of the current iterate. In this manner, the algorithm can be characterized
as a generalization of the Riemannian steepest descent method just as GS is a
generalization of traditional steepest descent. Assuming that the vector transport
satisfies certain assumptions, including a locking condition, the algorithm attains
convergence guarantees on par with those for Algorithm GS.

6.5.2 SQP-GS for Constrained Optimization

Curtis and Overton in [12] proposed a combination sequential quadratic pro-
gramming (SQP) and GS method for solving constrained optimization problems
involving potentially nonsmooth constraint functions, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

minimize f (x)

subject to c(x) ≤ 000,

x ∈ R
n,

(6.6)

where f : R
n → R and c : R

n → R
nc are locally Lipschitz. A key aspect

of the proposed SQP-GS approach is that sampled points for the objective and
each individual constraint function are generated independently. With this important
feature, it is shown that the algorithm, which follows a penalty-SQP strategy
(e.g., see [20]), attains convergence guarantees for minimizing an exact penalty
function that are similar to those in Sect. 6.3.1. Moreover, with the algorithm’s
penalty parameter updating strategy, it is shown that either the penalty function
is driven to −∞, the penalty parameter settles at a finite value and any limit
point will be feasible for the constraints and stationary for the penalty function,
or the penalty parameter will be driven to zero and any limit point of the algorithm
will be stationary for a constraint violation measure. As for other exact penalty
function methods for nonlinear optimization, one can translate between guarantees
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for minimizing the exact penalty function and solving the constrained problem (6.6);
in particular, if the problem is calm [10, 40], then at any local minimizer x∗ of (6.6)
there exists a threshold for the penalty parameter beyond which x∗ will be a local
minimizer of the penalty function.

Tang, Liu, Jian, and Li have also proposed in [42] a feasible variant of the SQP-
GS method in which the iterates are forced to remain feasible for the constraints
and the objective function is monotonically decreasing throughout the optimization
process. This opens the door to employing a two-phase approach common for
solving some optimization problems, where phase 1 is responsible for attaining a
feasible point and phase 2 seeks optimality while maintaining feasibility.

6.5.3 Derivative-Free Optimization

Given its simple nature, GS has proved to be an attractive basis for the design of new
algorithms even when gradient information cannot be computed explicitly. Indeed,
there have been a few variants of derivative-free algorithms that have been inspired
by GS.

The first algorithm for derivative-free optimization inspired by GS was proposed
by Kiwiel in [29]. In short, in place of the gradients appearing in Algorithm GS, this
approach employs Gupal’s estimates of gradients of the Steklov averages of f . In
this manner, function values only—specifically, O(mn) per iteration—are required
for convergence guarantees. A less expensive incremental version is also proposed.

Another derivative-free variant of GS, proposed by Hare and Nutini in [23], is
specifically designed for minimizing finite-max functions. This approach exploits
knowledge about which of these functions are almost active—in terms of having
value close to the objective function—at a particular point. In so doing, rather
than attempt to approximate gradients at nearby points, as in done in [29], this
approach only attempts to approximate gradients of almost active functions. The
convergence guarantees proved for the algorithm are similar to those for GS
methods, though the practical performance is improved by the algorithm’s tailored
gradient approximation strategy.

Finally, we mention the manifold sampling algorithm, proposed by Larson,
Menickelly, and Wild in [30], for solving nonconvex problems where the objective
function is the L1-norm of a smooth vector function F : R

n → R
r . While this

approach does not employ a straightforward GS methodology in that it does not
randomly sample points, it does employ a GS-type approach in the way that the
gradient of a model of the objective function is constructed by solving a QP of
the type in (6.5). Random sampling can be avoided in this construction since the
algorithm can exploit knowledge of the signs of the elements of F (x) at any x ∈ R

n

along with knowledge of ∂‖ · ‖1.
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6.6 Applications

We mentioned in the introduction that the original GS paper [7] reported results for
spectral abscissa optimization problems that had not been solved previously. The
second GS paper [8] reported results for many more applications that again had not
been solved previously: these included Chebyshev approximation by exponential
sums, eigenvalue product minimization for symmetric matrices, spectral and pseu-
dospectral abscissa minimization, maximization of the “distance to instability”, and
fixed order controller design by static output feedback.

Subsequently, the GS algorithm played a key role in the HANSO (hybrid
algorithm for nonsmooth optimization)3 and HIFOO (H-infinity fixed order opti-
mization)4 toolboxes. The former is a stand-alone code for unconstrained NSO
while the latter is a more specialized code used for the design of low order
controllers for linear dynamical systems with input and output, computing fixed
order controllers by optimizing stability measures that are generally nonsmooth at
local minimizers [9]. HIFOO calls HANSO to carry out the optimization. The use of
“hybrid” in the expansion of the HANSO acronym indicated that, from its inception,
HANSO combined the use of both a quasi-Newton algorithm (BFGS) and GS.
The quasi-Newton method was used in an initial phase which, rather surprisingly,
typically worked very effectively even in the presence of nonsmoothness, very
often providing a fast way to approximate a local minimizer. This was followed
by a GS phase to refine the approximation, typically verifying a loose measure
of local optimality. The HIFOO toolbox has been used successfully in a wide
variety of applications, including synchronization of heterogeneous multi-agent
systems and networks, design of motorized gimbals that stabilize an angular motion
of an optical payload around an axis, flight control via static output feedback,
robust observer-based fault detection and isolation, influence of tire damping on
control of quarter-car suspensions, flexible aircraft lateral flight dynamic control,
optimal control of aircraft with a blended wing body, vibration control of a
fluid/plate system, controller design of a nose landing gear steering system, bilateral
teleoperation for minimally invasive surgery, design of an aircraft controller for
improved gust alleviation and passenger comfort, robust controller design for a
proton exchange membrane fuel cell system, design of power systems controllers,
and design of winding systems for elastic web materials—for a full list of references,
see [15].

The successful use of BFGS in HANSO and HIFOO led to papers on the use
of quasi-Newton methods in the nonsmooth context, both for unconstrained [33]
and constrained [15] optimization. The latter paper introduced a new BFGS-SQP
method for nonsmooth constrained optimization and compared it with the SQP-
GS method discussed in Sect. 6.5.2 on a suite of challenging static output feedback

3www.cs.nyu.edu/overton/software/hanso/.
4www.cs.nyu.edu/overton/software/hifoo/.

www.cs.nyu.edu/overton/software/hanso/
www.cs.nyu.edu/overton/software/hifoo/
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controller design problems, half of them non-Lipschitz (spectral radius minimiza-
tion) and half of them locally Lipschitz (pseudospectral radius minimization). It
was found that although the BFGS-SQP method was much faster than SQP-GS,
nonetheless, if the latter method based on GS was allowed sufficient running time,
it frequently found better approximate solutions than the former method based on
BFGS in a well defined sense, evaluated using “relative minimization profiles”.
Interestingly, this was particularly pronounced on the non-Lipschitz problems,
despite the fact that the GS convergence theory does not extend to this domain.
See Sect. 6.3.3 for further discussion of this issue.

Finally, we mention an interesting application of GS to robot path planning
[43]. This work is based on the observation that shortest paths generated through
gradient descent on a value function have a tendency to chatter and/or require an
unreasonable number of steps to synthesize. The authors demonstrate that the GS
algorithm can largely alleviate this problem. For systems subject to state uncertainty
whose state estimate is tracked using a particle filter, they proposed the GS with
particle filter (GSPF) algorithm, which uses the particles as the locations in which
to sample the gradient. At each step, the GSPF efficiently finds a consensus direction
suitable for all particles or identifies the type of stationary point on which it is stuck.
If the stationary point is a minimum, the system has reached its goal (to within the
limits of the state uncertainty) and the algorithm terminates; otherwise, the authors
propose two approaches to find a suitable descent direction. They illustrated the
effectiveness of the GSPF on several examples using well known robot simulation
environments. This work was recently extended and modified in [19], where the
practical effectiveness of both the GSPF algorithm and the new modification was
demonstrated on a Segway robotic mobility platform.

6.7 Conclusion and Future Directions

Gradient sampling is a conceptually straightforward approximate steepest descent
method. With a solid convergence theory, the method has blossomed into a powerful
methodology for solving nonsmooth minimization problems. The theme of our
treatment of GS in this work has been to emphasize the fact that, even though the
basic algorithm has been enhanced and extended in various ways, the foundation of
the approach is fundamentally simple in nature.

We have also corrected an oversight in the original GS theory (i.e., that the
convergence results depend on assuming that the set of points over which the
Lipschitz function f is continuously differentiable has full measure, although we do
not have a counterexample to convergence of GS in the absence of this assumption).
At the same time we have loosened the requirements of the algorithm (showing that
f need only be differentiable at the iterates and sampled points). An open question
that still remains is whether one can extend the GS theory to broader function
classes, such as the case where f is assumed to be semi-algebraic but not necessarily
locally Lipschitz or directionally Lipschitz.
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Opportunities for extending GS theory for broader function classes may include
connecting the algorithm to other randomized/stochastic optimization methods.
For example, one might view the algorithm as a stochastic-gradient-like method
applied to a smoothed objective. (A similar philosophy underlies the analysis by
Nesterov and Spokoiny in [37]). More precisely, given a locally Lipschitz objective
f , consider a smoothing fε whose value at any point x is given by the mean value
of f over the ball B̄(x; ε). The GS algorithm uses gradients of f at uniformly
distributed random points in this ball. Notice that each such gradient can also
be viewed as a stochastic gradient for the smoothing fε in the sense that its
expectation is the gradient of fε at x. Thus, one might hope to prove convergence
results for a GS algorithm (with predetermined stepsizes rather than line searches)
that parallel convergence theory for stochastic gradient methods. Recent work by
Davis, Drusvyatskiy, Kakade and Lee [18] gives convergence results for stochastic
subgradient methods on a broad class of problems.

Another potentially interesting connection is with the work of Davis and
Drusvyatskiy [17] on stochastic model-based optimization. Consider a GS variant
that successively minimizes stochastic models of the objective function f , where we
assume for simplicity that f is a globally Lipschitz convex function. In this variant,
rather than moving along the direction −gk , consider instead the construction of
a cutting plane approximation of f from its affine minorants at the current iterate
xk and the sampled points {xk,i}, augmented by the proximal term βk‖x − xk‖2,
where {βk} is a predetermined sequence. Suppose that the next iterate is chosen as
the minimizer of this model; for a given k and with βk = 1, by Eq. (6.5), this scheme
and GS produce similar descent directions as the sampling radius tends to zero. It
follows from the results of [17] that the expected norm of the gradient of the Moreau
envelope [17, p. 6] is reduced below ε in O(ε−4) iterations. In fact, the assumptions
on f in [17] are substantially weaker than convexity, and do not require any property
of the set on which f is continuously differentiable.

Connecting the convergence theory for GS to stochastic methods as suggested
in the previous two paragraphs could be enlightening. However, while stochastic
methods are often designed for settings in which it is intractable to compute function
values exactly—a feature reflected in the fact that the analyses for such methods
are based on using predetermined stepsize sequences—the GS methodology has so
far been motivated by problems for which functions and gradients are tractable to
compute. In such settings, the line search in Algorithm GS is an ingredient that is
crucial to its practical success.
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Appendix 1

This appendix is devoted to justifying the requirement that D, the set of points on
which the locally Lipschitz function f is continuously differentiable, must be an
open full-measure subset of R

n, instead of the original assumption in [8] that D

should be an open and dense set in R
n.

There are two ways in which the analyses in [8, 28] actually depend on D having
full measure:

1. The most obvious is that both papers require that the points sampled in each
iteration should lie in D, and a statement is made in both papers that this occurs
with probability one, but this is not the case if D is assumed only to be an open
dense subset ofRn. However, as already noted earlier and justified in Appendix 2,
this requirement can be relaxed, as in Algorithm GS given in Sect. 6.2, to require
only that f be differentiable at the sampled points.

2. The set D must have full measure for Property 6.1, stated below, to hold. The
proofs in [8, 28] depend critically on this property, which follows from [6,
Eq. (1.2)] (where it was stated without proof). For completeness we give a proof
here, followed by an example that demonstrates the necessity of the full measure
assumption.

Property 6.1 Assume that D has full measure and let

Gε(x) := cl conv ∇f
(
B̄(x; ε) ∩ D

)
.

For all ε > 0 and all x ∈ R
n, one has ∂f (x) ⊆ Gε(x), where ∂f is the Clarke

subdifferential set presented in Definition 1.8.

Proof of Property 6.1 Let x ∈ R
n and v ∈ ∂f (x). We have from [10, Theorem

2.5.1] that Theorem 1.2 can be stated in a more general manner. Indeed, for any set
S with zero measure, and considering Ωf to be the set of points at which f fails to
be differentiable, the following holds:

∂f (x) = conv

{
lim
j

∇f (yj ) : yj → x where yj /∈ S ∪ Ωf for all j ∈ N

}
.

In particular, since D has full measure and f is differentiable on D, it follows that

∂f (x) = conv

{
lim
j

∇f (yj ) : yj → x with yj ∈ D for all j ∈ N

}
.

Considering this last relation and Carathéodory’s theorem, it follows that v ∈
conv

{
ξ1, . . . , ξn+1

}
, where, for all i ∈ {1, . . . , n + 1}, one has ξ i = lim

j
∇f (yj,i )
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for some sequence {yj,i}j∈N ⊂ D converging to x. Hence, there must exist a
sufficiently large ji ∈ N such that, for all j ≥ ji , one obtains

yj,i ∈ B̄(x; ε) ∩ D �⇒ ∇f (yj,i ) ∈ ∇f
(
B̄(x; ε) ∩ D

) ⊆ conv ∇f
(
B̄(x; ε) ∩ D

)
.

Recalling that Gε(x) is the closure of conv ∇f
(
B̄(x; ε) ∩ D

)
, it follows that ξ i ∈

Gε(x) for all i ∈ {1, . . . , n + 1}. Moreover, since Gε(x) is convex, we have v ∈
Gε(x). The result follows since x ∈ R

n and v ∈ ∂f (x) were arbitrarily chosen. �
With the assumption that D has full measure, Property 6.1 holds and hence the

proofs of the results in [8, 28] are all valid. In particular, the proof of (ii) in [28,
Lemma 3.2], which borrows from [8, Lemma 3.2], depends on Property 6.1. See
also [8, the top of p. 762].

The following example shows that Property 6.1 might not hold if D is assumed
only to be an open dense set, not necessarily of full measure.

Example 6.2 Let δ ∈ (0, 1) and {qk}k∈N be the enumeration of the rational
numbers in (0, 1). Define

D :=
∞⋃

k=1

Qk , where Qk :=
(

qk − δ

2k+1 , qk + δ

2k+1

)
.

Clearly, its Lebesgue measure satisfies 0 < λ(D) ≤ δ. Moreover, the set D

is an open dense subset of [0, 1]. Now, let iD : [0, 1] → R be the indicator
function of the set D,

iD(x) =
{

1, if x ∈ D,

0, if x /∈ D.

Then, considering the Lebesgue integral, we define the function f : [0, 1] →
R,

f (x) =
∫

[0,x]
iDdλ.

Let us prove that f is a Lipschitz continuous function on (0, 1). To see this,
note that given any a, b ∈ (0, 1) with b > a, it follows that

|f (b) − f (a)| =
∣∣
∣
∣

∫

[0,b]
iDdλ −

∫

[0,a]
iDdλ

∣∣
∣
∣ =

∣∣
∣
∣

∫

(a,b]
iDdλ

∣∣
∣
∣ ≤

∫

(a,b]
1dλ = b − a,

which ensures that f is a Lipschitz continuous function on (0, 1). Conse-
quently, the Clarke subdifferential set of f at any point in (0, 1) is well defined.
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Moreover, we claim that, for all k ∈ N, f is continuously differentiable at any
point q ∈ Qk and the following holds

f ′(q) = iD(q) = 1. (6.7)

Indeed, given any q ∈ Qk , we have

f (q + t) − f (q) =
∫

[0,q+t ]
iDdλ −

∫

[0,q]
iDdλ =

∫

(q,q+t ]
iDdλ, for t > 0.

Since Qk is an open set, we can find t > 0 such that [q, q + t] ⊂ Qk ⊂ D, for
all t ≤ t . Hence, given any t ∈ (0, t], it follows that

f (q + t) − f (q) =
∫

(q,q+t ]
1dλ = t �⇒ lim

t↓0

f (q + t) − f (q)

t
= 1 = iD(q).

The same reasoning can be used to see that the left derivative of f at q exists
and it is equal to iD(q). Consequently, we have f ′(q) = iD(q) = 1 for all
q ∈ Qk, which yields that f is continuously differentiable on D.

By the Lebesgue differentiation theorem, we know that f ′(x) = iD(x)

almost everywhere. Since the set [0, 1] \ D does not have measure zero, this
means that there must exist z ∈ [0, 1]\D such that f ′(z) = iD(z) = 0. Defining
ε := min{z, 1 − z}/2, we see, by (6.7), that the set

Gε(z) := cl conv ∇f ([z − ε, z + ε] ∩ D)

is a singleton Gε(z) = {1}. However, since f ′(z) = 0, it follows that 0 ∈ ∂f (z),
which implies ∂f (z) �⊂ Gε(z).

Note that it is stated on [8, p. 754] and [28, p. 381] that the following holds: for
all 0 ≤ ε1 < ε2 and all x ∈ R

n, one has ∂̄ε1f (x) ⊆ Gε2(x). Property 6.1 is a special
case of this statement with ε1 = 0, and hence this statement too holds only under
the full measure assumption.

Finally, it is worth mentioning that in practice, the full measure assumption on
D usually holds. In particular, whenever a real-valued function is semi-algebraic
(or, more generally, “tame”)—in other words, for all practical purposes virtually
always—it is continuously differentiable on an open set of full measure. Hence, the
original proofs hold in such contexts.



6 Gradient Sampling Methods for Nonsmooth Optimization 223

Appendix 2

In this appendix, we summarize why it is not necessary that the iterates and sampled
points of the algorithm lie in the set D in which f is continuously differentiable,
and that rather it is sufficient to ensure that f is differentiable at these points, as in
Algorithm GS. We do this by outlining how to modify the proofs in [28] to extend
to this case.

1. That the gradients at the sampled points {xk,j } exist follows with probability one
from Rademacher’s theorem, while the existence of the gradients at the iterates
{xk} is ensured by the statement of Algorithm GS. Notice that the proof of part
(ii) of [28, Theorem 3.3] still holds in our setting with the statement that the
components of the sampled points are “sampled independently and uniformly
from B̄(xk; ε) ∩ D” replaced with “sampled independently and uniformly from
B̄(xk; ε)”.

2. One needs to verify that f being differentiable at xk is enough to ensure
that the line search procedure presented in (6.3) terminates finitely. This is
straightforward. Since ∇f (xk) exists, it follows that the directional derivative
along any vector d ∈ R

n \ {0} is given by f ′(xk; d) = ∇f (xk)T d . Furthermore,
since −∇f (xk)T gk ≤ −‖gk‖2 (see [8, p. 756]), it follows, for any β ∈ (0, 1),
that there exists t > 0 such that

f (xk − tgk) < f (xk) − tβ‖gk‖2 for any t ∈ (0, t).

This shows that the line search is well defined.
3. The only place where we actually need to modify the proof in [28] concerns item

(ii) in Lemma 3.2, where it is stated that ∇f (xk) ∈ Gε(x̄) (for a particular point
x̄) because xk ∈ B̄(x̄; ε/3) ∩ D; the latter is not true if xk �∈ D. However, using
Property 6.1, we have

∇f (xk) ∈ ∂f (xk) ⊂ Gε/3(x
k) ⊂ Gε(x̄) when xk ∈ B̄(x̄; ε/3),

and therefore, ∇f (xk) ∈ Gε(x̄) even when xk �∈ D.

Finally, although it was convenient in Appendix 1 to state Property 1 in terms
of D, it actually holds if D is replaced by any full measure set on which f is
differentiable. Nonetheless, it is important to note that the proofs of the results in
[8, 28] do require that f be continuously differentiable on D. This assumption is
used in the proof of (i) in [28, Lemma 3.2].
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