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Abstract

An edge of a graph is light when the sum of the degrees of its endvertices is
at most 13. The well-known Kotzig Theorem states that every 3-connected planar
graph contains a light edge. Later, Borodin [1] extended this result to the class of
planar graphs of minimum degree at least 3.

We deal with generalizations of these results for planar graphs of minimum degree
2. Borodin, Kostochka and Woodall [3] showed that each such graph contains a light
edge or a member of two infinite sets of configurations, called 2-alternating cycles and
3-alternators. This implies that planar graphs with maximum degree ∆ ≥ 12 are ∆-
edge-choosable. We prove a similar result with 2-alternating cycles and 3-alternators
replaced by five fixed bounded-sized configurations called crowns. This gives another
proof of ∆-edge-choosability of planar graphs with ∆ ≥ 12. However, we show
efficient choosability, i.e. we describe a linear-time algorithm for max{∆, 12}-edge-
list-coloring planar graphs. This extends the result of Chrobak and Yung [5].

1 Introduction

One of the best-known facts concerning planar graphs states that every planar graph
contains a vertex of degree at most 5. Let the weight of edge e = uv, denoted by w(e),
be the sum of the degrees of its end-vertices, i.e. w(e) = degG(u) + degG(v). We say that
an edge is light when its weight is at most 13. In 1955 Kotzig [12] showed the following
theorem.

Theorem 1.1 (Kotzig). Every 3-connected planar graph contains a light edge.
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This result was an inspiration for dozens of papers, which form the now so-called light
graph theory (see the surveys by Jendrol’ and Voss [10, 11] and the introduction in [13]).

Kotzig’s theorem was generalized in several directions, see e.g. [2, 7, 15]. In particular,
Erdős conjectured that it is valid also for planar graphs with vertices of degree at least 3,
and this was proved by Borodin [1]:

Theorem 1.2 (Borodin). Every simple planar graph with minimum degree δ ≥ 3 contains
a light edge.

A light edge is not always present if the graph under consideration has vertices of
degree 2; for example, consider the bipartite complete graph K2,k for any k ≥ 12. In this
example each vertex of degree d ≥ 12 has many 2-neighbors. However, one can guarantee
the existence of a light edge by bounding the number of 2-neighbors.

Proposition 1.3. Let G be a simple planar graph with minimum degree δ ≥ 2 such that
each d-vertex, d ≥ 12, has at most d − 11 neighbors of degree 2. Then G contains a light
edge.

Proof. We may assume that every 2-vertex of G is adjacent to two vertices of degree at
least 12 for otherwise there is a light edge in G. Consider the graph G′ obtained from G by
replacing each path uxw such that deg(x) = 2 by an edge joining u and w. Additionally we
replace multiple edges by single ones. Clearly G′ is a simple planar graph with vertices of
degree at least 3 and by Theorem 1.2, G′ contains an edge of weight at most 13. Consider
such an edge uw.

First assume that u has a 2-neighbor x in G. Then degG(u) ≥ 12 and in G vertex u
has at least 11 neighbors of degree at least 3 which implies that degG′(u) ≥ 11 and hence
uw has weight at least 14, a contradiction.

Hence we may assume that u has no 2-neighbor in G and the same holds for w. It
follows that uw belongs to G. Also, degG(u) = degG′(u) and degG(w) = degG′(w), and
hence uw has in G the same weight as in G′.

Borodin, Kostochka, and Woodall [3] proved the following result, where the number of
2-neighbors is not bounded:

Theorem 1.4 (Borodin, Kostochka, and Woodall). Every planar graph with mini-
mum degree δ ≥ 2 contains a light edge, a 2-alternating cycle or a 3-alternator.

In the above theorem a 2-alternating cycle is an even length cycle with every second
vertex of degree 2, while a 3-alternator is a bipartite subgraph F with partite sets U,W
such that, for each u ∈ U , 2 ≤ degF (u) = degG(u) ≤ 3, and for each w ∈ W , either
degF (w) ≥ 3 or w has exactly two neighbors in U , both of degree 14− degG(w) (the latter
case is possible only if degG(w) = 11 or 12).

In this paper, we give a similar result involving only five small fixed subgraphs, called
crowns (see Section 2 for the definition and see Fig. 1 for an illustration), instead of 2-
alternating cycles and 3-alternators.

2



Theorem 1.5. Every planar graph with minimum degree δ ≥ 2 contains a light edge or a
k-crown, for some k ∈ {1, . . . , 5}.

Unlike 2-alternating cycles and 3-alternators the five crowns have bounded size and are
contained in the “neighborhood” of one vertex.

1.1 Applications

Let G be a graph. An edge-list assignment L : E(G) → P(N) is a function that assigns
to each edge e of G a set (or a list) L(e) of admissible colors. A function λ : E(G) → N
is an L-edge-coloring if λ(e) ∈ L(e) for every e ∈ E(G), and λ(e) 6= λ(f) for every pair
of incident edges e, f ∈ E(G). If G admits an L-edge-coloring, it is L-edge-colorable.
For k ∈ N , a graph G is k-edge-choosable if it has an L-edge-coloring for every edge-list
assignment L such that |L(e)| ≥ k for each e ∈ E(G).

Throughout the paper ∆(G) will denote the maximum degree of graph G, i.e., the
largest of the vertex degrees in G. Usually it is clear which graph we refer to and then we
simply write ∆.

Although it is conjectured that if a graph is k-edge-colorable then it is also k-edge-
choosable, there is no analog of Vizing’s Theorem for list-coloring, i.e. it is not known
whether every graph is ∆ +O(1)-choosable. However Borodin, Kostochka and Woodall [3]
showed the following theorem:

Theorem 1.6 (Borodin, Kostochka, and Woodall). Every planar graph with maxi-
mum degree ∆ ≥ 12 is ∆-edge-choosable.

A subgraph of a planar graph is reducible when it cannot appear in a minimal coun-
terexample for Theorem 1.6. In this sense, a light edge is reducible (see the paragraph
“Edges of Bounded Weight” below). In Section 3 we show that crowns are reducible.
Together with our main result this gives a new proof of Theorem 1.6.

We also consider efficient algorithms for edge-list-coloring planar graphs. Then given
an n-vertex graph G and an edge-list assignment L such that lists have length max{∆, 12},
one has to compute an L-edge-coloring of G. Note that the size of the input is Θ(|E(G)|∆),
which is bounded by O(n∆) when G is planar. Hence O(n∆)-time algorithms are consid-
ered to be linear. Additionally, we assume that each list of admissible colors is sorted. If
this assumption is not met the lists can be bucket-sorted in O(|E(G)|∆ + M) time, where
M denotes the value of the largest color in the lists. Hence, equivalently one can assume
that M = O(|E(G)|∆), which seems to be very natural. We will refer to it as the small
colors assumption.

The proof of the 2-choosability criterion by Erdős, Rubin and Taylor [8] (proved earlier
by Vizing [14]) yields a linear-time algorithm for optimally edge-list-coloring graphs with
∆ = 2. For ∆ = 3 there is a linear-time algorithm for 4-edge-list-coloring general graphs
due to Gabow and Skulrattanakulchai [9]. For higher values of ∆ one can use simple
algorithms which rely on the existence in a planar graph of an edge of low weight.
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Edges of Bounded Weight. Assume we want to edge-list-color a planar graph G with
maximum degree ∆ and with lists of length at least D. When an algorithm finds in G
an edge e of weight at most D + 1 then this edge is removed and the resulting graph
is colored recursively. Since there are at most D − 1 edges incident with e, these edges
do not use all colors from list L(e) and we can color e with one of the remaining colors.
Observe that this proves that light edges are reducible. Also note that when ∆ = O(1)
this algorithm has linear time complexity. When ∆ is not bounded, but the small color
assumption holds, the algorithm can be also implemented to work in linear time (see
Lemma 4.1). Clearly, any graph can be edge-list-colored from lists of length D = 2∆− 1,
since then any edge has weight at most D + 1. For ∆ = 4, 5 nothing better is known,
even for planar graphs; just note that for these values of ∆, there are planar graphs with
all edges of weight 2∆, for example, consider the octahedron and the dodecahedron. For
∆ = 6, . . . , 10 we can use the result of Borodin [1]: every planar graph of minimum degree
at least 4 contains an edge of weight at most 11. Hence any planar graph contains an edge
of weight at most max{∆ + 3, 11} and can be edge-list-colored in linear time from lists of
length max{∆ + 2, 10}. For ∆ ≥ 11 we can take advantage of Theorem 1.2. As before, it
immediately yields a linear-time algorithm which requires lists containing max{∆ + 1, 12}
colors.

Ordinary Edge-Coloring. Chrobak and Yung [5] presented a linear-time algorithm
for max{∆, 19}-edge-coloring planar graphs. Although it was not mentioned explicitly
their algorithm can be easily adapted to the list version of the problem. Then its time
complexity increases to O(n∆), provided that the small colors assumption holds. There
is also an O(n log n)-time algorithm due to Chrobak and Nishizeki [4] and a very recent
O(n)-time algorithm by Cole and Kowalik [6], both for max{∆, 9}-edge-coloring planar
graphs. However, as far as we know neither of these two algorithms can be extended to
the edge-list-coloring problem.

Our Algorithm. We show an O(∆n)-time algorithm for max{∆, 12}-list-coloring planar
graphs. The algorithm does not require a plane embedding of the input graph. This extends
the algorithm of Chrobak and Yung [5].

2 The Main Result

In this section we present the main result of the paper, i.e. a generalization of Kotzig’s
theorem.

Definition 1. Let G be a multigraph, and let S be a subgraph of G, whose vertices are
v, x1, x2, . . . , x2k+1, for some k ≥ 1. We call S a crown of size k around v (shortly, a
k-crown or just a crown), if the following conditions are satisfied:

(i) E(S) = {vx2i+1 : i = 0, . . . , k} ∪ {xixi+1 : i = 1, . . . , 2k},
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∆ length of lists time paper

2 optimal O(n) Vizing [14]; Erdős, Rubin and Taylor [8]
3 ∆ + 1 O(n) Gabow, Skulrattanakulchai [9]

4, 5 2∆− 1 O(n) folklore
6, 7 10 O(n) Borodin [1]

8, 9, 10 ∆ + 2 O(n) Borodin [1]
11 ∆ + 1 O(n) Borodin [1]
≥ 12 ∆ O(∆n) this work

Table 1: Linear-time algorithms for list-edge-coloring planar graphs. For ∆ = 4, 5, . . . , 11
the algorithms consist of finding a reducible edge whose existence is obvious or guaranteed
by the cited paper.

x1 x2k+1

x2 x2k

x3 x2k−1

x4 x2k−2x5 x2k−3

v

. . .

Figure 1: A k-crown.

(ii) degG(x1) = degG(x2k+1) = 2,

(iii) for each i = 1, 2, . . . , k − 1, degG(x2i+1) = 3, and

(iv) vertices v, x1, x2, . . . , x2k+1 are all distinct.

Moreover, a crown of size at most 5 will be called a small crown.

Observe that a crown S is not necessarily an induced subgraph of G. Thus, for an
example, G may have edges vx2 or x2x4 which are not in S. We note here that every
edge of a crown S in a graph G has an end-vertex of degree 2 or 3 in G. Thus, if in G
one connects two vertices of degree ≥ 3 by an additional edge, then a new crown is not
introduced. These remarks will be used later in some arguments. Now we are ready to
prove the main result of the paper.

Proof of Theorem 1.5. Clearly, it suffices to prove the result for connected graphs. In this
proof we identify planar graphs with their fixed plane embeddings. This allows us to
consider faces of these graphs. The length of a face f , denoted by `(f), is the length of
the shortest closed walk induced by all edges incident with f . In order to make the proof
easier, we will allow multiple edges and loops in our graphs (where each loop contributes
2 to the degree of its endvertex) with the following restrictions:
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(a) each face of G is of length ≥ 3;

(b) for each 2-vertex, at least one of the faces incident with it is not a triangle, and the
two edges incident with it are not parallel.

Clearly, every simple planar graph, except C3, satisfies these conditions. However, for C3

the theorem holds trivially.
Suppose that G is a counterexample of the theorem on |V (G)| vertices with the maxi-

mum possible number of edges. Let G∗ be the graph obtained from G by removing all its
2-vertices.

Claim 1. G∗ is a triangulation.

The proof is by contradiction. We will show that if G∗ is not a triangulation then G is not
maximal, i.e., that one can add an edge to G so that it is still a counterexample for the
theorem.

First assume that G∗ is disconnected. Then there is a 2-vertex x ∈ V (G) with neighbors
u and v, each of degree ≥ 12, such that u and v belong to different components of G∗.
Consider the graph G ∪ {uv} such that the added edge uv is embedded in a face of G
containing u and v. Clearly it is a plane multigraph with neither light edges nor crowns.
Note that u and v are not adjacent in G for otherwise they are also adjacent in G∗. Hence
G ∪ {uv} satisfies conditions (a) and (b). This contradicts maximality of G and so G∗ is
connected. Now it remains to show that every face of G∗ is of length 3.

Graph G∗ does not contain a face of length 1 for otherwise G contains a 2-vertex
incident with parallel edges. If G∗ contains a 2-face f = xyx it implies that f contains at
least one 2-vertex of graph G. If f contains precisely one 2-vertex then G violates (b), a
contradiction. If f contains at least two 2-vertices, G contains two adjacent 2-vertices or
a 1-crown, a contradiction again. Hence each face of G∗ has length at least 3.

Suppose that f is a face of G∗ of length k ≥ 4. Since G∗ is connected, f has a facial
walk, i.e. the shortest walk consisting of edges incident with f . Let x0x1 . . . xx−1xk be the
vertices of this walk in clockwise order, x0 = xk.

We first prove that if f contains a 2-vertex from G, say w, and xi, xj denote the
neighbors of w, then i = j ± 1 (mod k). Otherwise, consider the graph G′ obtained from
G by connecting xi and xj by a new edge xixj. Obviously, G′ is planar, because a plane
embedding of G′ can be obtained from a plane embedding of G by drawing edge xixj in
a face of G that contains the 2-walk xiwxj. Moreover, G′ satisfies the restrictions (a) and
(b). Since xi, xj have a 2-neighbor, each of them is of degree ≥ 12 in G, which implies that
G′ has no light edge. Finally observe that conditions deg(xi) ≥ 12 and deg(xj) ≥ 12 imply
that no crown contains the new edge xixj, and consequently G′ contains no crown. Hence,
G′ contradicts the maximality of G. This establishes our auxiliary claim, that i = j ± 1
(mod k).

Since each of x0x1 and x2x3 has weight at least 14, it easily follows that deg(x0) +
deg(x2) ≥ 14 or deg(x1)+deg(x3) ≥ 14; say the latter holds. Consider the graph G+x1x3,
where x1x3 is inserted in f . The above auxiliary claim implies that x1 and x3 belong to
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a common face in G, hence the resulting graph is planar. Again, one can show that this
graph contradicts the maximality of G. This establishes Claim 1.

Note that the above claim implies that G has no bridges, and so the length of a face is the
same as the number of (distinct) edges incident with it. Claim 1 and the fact that there
are no 1-crowns in G easily imply the following:

Claim 2. Every face f of G is of length `(f) = 3, 4, 5 or 6. Moreover, for `(f) = 4, 5, 6
face f is incident with `(f)− 3 vertices of degree 2.

Initial charge. Let F (G) denote the set of faces of G. We assign a charge to each
vertex and face of G. For every x ∈ V (G), we define the initial charge c(x) = deg(x)− 4.
Similarly, for every f ∈ F (G), let c(f) = `(f) − 4. By Euler’s formula the total sum of
charge assigned to vertices and faces is

∑

x∈V (G)∪F (G)

c(x) =
∑

v∈V (G)

(deg(v)− 4) +
∑

f∈F (G)

(`(f)− 4) =

= 2|E(G)| − 4|V (G)|+ 2|E(G)| − 4|F (G)| = −8. (1)

Notice that only 2-vertices, 3-vertices and 3-faces have negative initial charge. Our goal
is to redistribute charge between vertices and faces according to prescribed rules in such
a way that the total sum of charge will be nonnegative, which will contradict (1). This
contradiction will settle the theorem.

Rules. We use the following discharging rules to redistribute charge between vertices and
faces.

(R1) A 2-vertex receives 1 unit from each of its two neighbors.

(R2) A 3-vertex receives 1/3 of a unit from each of its three neighbors.

(R3) A 3-face v1v2v3 with deg(v1) ≤ 5, receives 1/2 of a unit from each of v2 and v3.

Let f be a face and let v1, v2, v3 be three consecutive vertices incident with f such that
deg(v2) ≥ 6.

(R4) If both v1 and v3 are of degree ≥ 6 then v2 sends 1/3 of a unit to f .

(R5) If `(f) ≥ 4, one of v1, v3 is of degree 2 and the other is of degree ≥ 6, then v2 receives
1/6 from f .

(R6) If `(f) ≥ 4, and both of v1, v3 are of degree 2 then v2 receives 2/3 from f .

Since we deal with multigraphs, the multiple incidence/adjacency is considered in the
application of these rules. Thus, for example, if a 3-vertex x is adjacent to a vertex v by
two edges, then v sends the amount 1

3
+ 1

3
of a unit of charge to x by (R2).
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Final Charge. Here we will prove that for each x ∈ V (G) ∪ F (G), the final charge
c∗(x) is non-negative, i.e. c∗(x) ≥ 0. Let f be an arbitrary face of G. By Claim 2,
`(f) ∈ {3, 4, 5, 6}. Hence we consider four cases:

`(f) = 3: If f contains a vertex of degree at most 5, then c∗(f) = 0 by (R3). Otherwise, all
three neighbors are of degree ≥ 6, so it gets 1/3 from each of them by (R4). Hence,
c∗(f) = 0.

`(f) = 4: In this case, by Claim 2, f contains exactly one 2-vertex. Let f = x1x2x3x4 with
deg(x4) = 2. If deg(x2) ≤ 5 then f sends no charge, and so c(f) = c∗(f) = 0. If
deg(x2) ≥ 6, f gets 1/3 from x2 by (R4), and it sends 1/6 to each of x1 and x3 by
(R5). This yields c∗(f) = 0.

`(f) = 5: By Claim 2, f contains exactly two 2-vertices, and so we can assume that f =
x1x2x3x4x5 with deg(x1) = deg(x3) = 2. Then f sends 1/6 to each of x4, x5 by (R5),
and it sends 2/3 to x2 by (R6). Hence, c∗(f) = 0.

`(f) = 6: By Claim 2, f has three 2-vertices alternating with three vertices of degree at
least 12. Each of the latter receives 2/3 by (R6), which implies that the final charge
of f is 0.

We consider now the final charge of the vertices. By rules (R1) and (R2), it is obvious
that 2- and 3-vertices have non-negative final charge, and 4- and 5-vertices do not alter
their charge, which is non-negative.

Suppose now that a vertex v is of degree d ∈ {6, 7, 8}. Then, it may send charge only
to incident faces by rule (R4). Moreover, if some incident face is a triangle then its two
other vertices have degrees at least 6, which implies that each such triangle receives 1/3
from v. Hence,

c∗(v) ≥ d− 4− d

3
≥ 0.

Next suppose that v is of degree d ∈ {9, 10}. It may send charge only to incident faces
by rules (R3) and (R4) and each such face receives at most 1/2 from v. Hence,

c∗(v) ≥ d− 4− d

2
≥ 0.

Suppose now that v is of degree 11. Notice that v is not adjacent to a 2-vertex, and so
it sends charge to a neighbor only if it is a 3-vertex. Since by Claim 2, no two 3-neighbors
of v are consecutive in clockwise order around v, the number of 3-neighbors is at most 5.
Notice that v sends 1/2 to at most 10 faces, and to the remaining faces it sends at most
1/3. Hence,

c∗(v) ≥ 7− 10

2
− 1

3
− 1

3
· 5 = 0.

Finally suppose that d ≥ 12. Let x0, x1, . . . , xd−1 be the neighbors of v enumerated in
clockwise order around v, and let fi be the face incident with the walk xivxi+1 (throughout
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this proof we take the indices in xi modulo d). We consider a few cases regarding the
number d2 of 2-vertices adjacent to v.

Case 1: d2 = 0. Since v sends at most 1/2 to each incident face and it has at most bd
2
c

adjacent 3-neighbors, its final charge is

c∗(v) ≥ d− 4− d

2
− 1

3

⌊
d

2

⌋
≥ d

3
− 4 ≥ 0.

Case 2: d2 = 1. Let x1 be the 2-neighbor of v. By Claim 1, without loss of generality we
may assume that f0 is a 3-face and f1 is a face of length 4 or 5 (f1 cannot be a face of
length 6 since then f1 contains two 2-neighbors of v so d2 ≥ 2). Notice that v sends 1 to
x1 and 1/2 to f0. Next, it sends nothing to f1 and ≤ 1/2 to each of the d − 2 remaining
faces. Finally, it sends at most 1

3

⌊
d−1
2

⌋
to its adjacent 3-vertices. If d ≥ 13, then

c∗(v) ≥ d− 4− 1− 1

2
− d− 2

2
− 1

3

⌊
d− 1

2

⌋
≥ 0.

Now assume that d = 12. We consider two subcases regarding the degree of x2. If
deg(x2) ≥ 6, then f1 sends 1

6
to v by (R5), and we conclude

c∗(v) ≥ d− 4− 1− 1

2
− d− 2

2
− 1

3

⌊
d− 1

2

⌋
+

1

6
= 0.

Finally, since d is even, if deg(x2) ≤ 5 then there is a face distinct from f1 that receives at
most 1/3 from v. In that case, we obtain

c∗(v) ≥ d− 4− 1− 1

2
− d− 3

2
− 1

3
− 1

3

⌊
d− 1

2

⌋
= 0.

Case 3: d2 ≥ 2. Observe that since the rules move charge only between incident faces and
vertices, while calculating the charge sent by v we can restrict ourselves only to v and its
adjacent vertices and incident faces. In order to make the argument shorter, we use the
following claim:

Claim 3. We can modify the neighborhood of v so that every 2-vertex xi is adjacent to
xi−1 and the final charge c∗(v) stays the same.

Let degG(xi) = 2. Then by Claim 1, xi is adjacent to xi−1 or xi+1. Assume that it is
adjacent to xi+1. Then xi+2 is not a 2-vertex adjacent to xi+1, since G does not contain
a 1-crown. Then we remove xi, and we draw it inside face fi+1 together with the edges
to v and xi+1. In the new drawing, let us rename the vertices and faces so that they are
still enumerated in clockwise order. In particular, xi+1 is renamed as x′i, xi is renamed
as x′i+1, and for every j 6= i, i + 1, vertex xj is renamed as x′j. In the new drawing, let
f ′i be the face incident with the walk x′ivx′i+1. Let cj (respectively c′j) be the charge sent
from v to fj (respectively f ′j) minus the charge received by v from fj (respectively f ′j).
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Obviously the charge sent/received by v to/from neighbors of v has not changed. Also,
c′j = cj, for j 6= i − 1, i + 1. If degG(xi−1) = 2 then by Claim 2, fi−1 is of length 5 or
6, so by (R5) and (R6), c′i−1 − ci−1 = −1/6 − (−2/3) = 1/2. If degG(xi−1) = 3, 4, 5 then
there is no 2-vertex adjacent to xi−1, so fi−1 is a 4-face and f ′i−1 is a 3-face, hence by (R3),
c′i−1−ci−1 = 1/2. Finally, when degG(xi−1) ≥ 6 then fi−1 is of length 4 or 5, so by (R4) and
(R5), c′i−1 − ci−1 = 1/3− (−1/6) = 1/2. Hence c′i−1 − ci−1 = 1/2 in all cases. Analogously
one can verify that no matter what is the degree of xi+2, c′i+1 − ci+1 = −1/2. Hence the
charge sent from v remains the same. This settles the claim.

We modify the neighborhood of v as described in Claim 3. Note that if xi is a 2-vertex,
then its neighbor xi−1 is of degree ≥ 12. Obviously, this redrawing in Claim 3 introduces
neither a crown nor a pair of consecutive v neighbors of v of degree 3, 4, or 5. Also, G∗

stays unchanged.

In what follows, we will bound the amount of charge sent by v to faces. Denote by d4,5

the number of 4- and 5-neighbors of v. Denote by f−1/6 and f1/3 the number of faces which
send 1/6 to v or receive 1/3 from v, respectively. Let xi and xj be two distinct 2-neighbors
of v, such that for each k ∈ {i + 1, . . . , j − 1}, deg(xk) > 2. If there is a crown whose
vertices belong to {v, xi−1, xi, xi+1, . . . , xj} we call the (ordered) pair (xi, xj) bad, otherwise
it is good. Let b denote the number of bad pairs. Note that there are d2 − b good pairs.

Claim 4. For any good pair (xi, xj) one of the following conditions holds:

(A) degG(xi+1) ≥ 6,

(B) for some k ∈ {i + 1, . . . , j − 2}, deg(xk) ≥ 6 and deg(xk+1) ≥ 6,

(C) for some k ∈ {i + 1, . . . , j − 2}, degG(xk) ∈ {4, 5}.

Assume that none of the above conditions holds. Note that by Claim 3, j 6= i + 1.
Then, the following property holds: for each k ∈ {i + 1, . . . , j − 1}, degG(xk) ≥ 6 if
k has the same parity as i and degG(xk) = 3 otherwise. Let H be the subgraph of
G with V (H) = {v, xi−1, xi, xi+1, . . . , xj} and E(H) = {vxk : k ∈ {i − 1, i, . . . , j}} ∪
{xi−1xi, xi−1xi+1} ∪ {xkxk+1 : k ∈ {i + 1, . . . , j − 1}}. Then H is a crown around v, unless
some pair of its vertices xa, xb coincide. Notice that then deg(xa) = deg(xb) ≥ 6. As long
as there is such a pair in H we remove from H all the vertices and edges inside the 2-cycle
vxaxb and we remove edge vxb. The resulting subgraph H is a crown around v with vertices
in the set {v, xi−1, xi, xi+1, . . . , xj}, which is a contradiction. This settles the claim.

Observe that in case (A) face fi sends 1/6 to v by (R5), and in case (B) face fk

receives precisely 1/3 from v by (R4). As there are d2 − b good pairs it follows that
f−1/6 + f1/3 + d4,5 ≥ d2 − b. Thus, some d2 − b − f−1/6 − d4,5 faces receive precisely
1/3 from v. Note that for any 2-vertex xi, the face fi does not receive a charge from v.
Thus, there are d2 faces which do not receive any charge from v. Each of the remaining
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d− d2 − (d2 − b− f−1/6 − d4,5) faces receives at most 1/2 unit from v. Now we bound the
total charge sent from v to faces minus the charge received from faces. It amounts at most:

1

3

(
d2 − b− f−1/6 − d4,5

)
+

1

2

[
d− d2 − (d2 − b− f−1/6 − d4,5)

]− 1

6
f−1/6

=
d

2
− 2

3
d2 +

b

6
+

d4,5

6
. (2)

In the sequel we estimate the charge v sends to neighbors. We start from bounding
the number of 3-neighbors of v. Consider (cyclically) the degree sequence S0 = deg(x0),
deg(x1),. . . , deg(xd−1). First remove elements with value 2 from this sequence. If two
consecutive elements of the resulting sequence S1 have value each at least 6, we will call
them a big pair. Observe that if (A) holds in Claim 4, then by Claim 3 degG(xi−1) ≥ 12
and consequently degG(xi−1) and degG(xi+1) are a big pair. Hence by Claim 4, in S1 there
are at least (d2 − b) − d4,5 big pairs (we consider the last element of S1 to be consecutive
with the first one). Next, as long as the sequence contains a big pair we remove one of
the elements of the pair, unless the sequence consists of only two elements, each of value
at least 6. In the latter case both these elements are removed. After these two steps, the
resulting sequence S2 has length ≤ d− d2− (d2− b− d4,5). By Claim 1, and because edges
have weight at least 14, it follows that in G∗ vertex v has no pair of consecutive neighbors
both of degree 3, 4 or 5. It follows that sequence S2 does not contain a pair of consecutive
elements equal to 3, 4 or 5. Thus, S2 contains at most bd−d2−(d2−b−d4,5)

2
c = bd+b+d4,5

2
c − d2

elements equal to 3, 4 or 5, and hence this is an upper bound for the number of 3-, 4-
and 5-neighbors of v. It follows that v has at most bd+b+d4,5

2
c − d2 − d4,5 = bd+b−d4,5

2
c − d2

neighbors of degree 3. Thus, the total charge sent from v to its neighbors is at most

d2 +
1

3

(⌊
d + b− d4,5

2

⌋
− d2

)
. (3)

Finally, by (2) and (3) we conclude that

c∗(v) ≥ d− 4− d2 − 1

3

(⌊
d + b− d4,5

2

⌋
− d2

)
−

(
d

2
− 2

3
d2 +

b

6
+

d4,5

6

)

≥ d

3
− 4− b

3
.

Each k-crown contains k − 1 vertices of degree 3, which are neighbors of v. For each
bad pair (xi, xj) there is a crown with vertices from {v, xi−1, . . . , xj}. Since small crowns
are excluded, such a crown contains at least five 3-neighbors of v. Hence v has at least
5b neighbors of degree 3. By Claim 1, each 3-neighbor of v is incident in G∗ with two
triangular faces containing v. Each of these faces contains also a neighbor of v of degree
at least 11, as light edges are excluded. The edge joining v and its neighbor can belong
to at most 2 of these faces. Consequently there are at least 5b edges joining v and its
neighbors of degree at least 11. Finally, v has at least b neighbors of degree 2. It follows
that degG(v) ≥ 11b and so b ≤ b d

11
c.

11



Hence for d ≥ 14, we get c∗(v) ≥ d
3
− 4 − 1

3
· d

11
> 0. For d = 13, we get c∗(v) ≥

d
3
− 4 − 1

3
= 0. Observe that Claim 1 implies that all the vertices of a crown around v,

except for v, are adjacent to v. Hence a crown around v implies that at least 13 edges are
incident with v, for it has size at least 6. Consequently, for d = 12, there are no crowns
around v and c∗(v) ≥ d

3
− 4 = 0.

This completes the case d ≥ 12. We infer that every vertex and face has non-negative
charge after the rules are applied, which is a contradiction. This establishes the proof.

In Theorem 1.5 the number 5 is best possible in the sense that there is a planar graph
with minimum degree 2 with no crowns of size smaller than 5 and with no light edges. To
construct such a graph take a triangulation T with vertices of degree 5 and 6 such that
5-vertices are at distance at least 5 from each other; for example the duals of some fullerens
are such graphs. Then, for each 5-vertex x of T we choose one incident triangle and we
remove its edge not incident with x. As a result we get a graph T ′ with faces of length 3
and 4. Next, we put a vertex into each face of T ′ and we join it with the vertices incident
with the face. Denote the resulting triangulation by T ′′. Observe that every light edge in
T ′′ joins a 3-vertex with a 10-vertex. Moreover, the 10-vertex is adjacent to a 4-vertex.
For each 4-vertex y ∈ V (T ′′) let its neighbors be y0, y1, y2, y3 in clockwise order. Finally,
for each i ∈ {0, 1, 2, 3} we add a new 2-vertex connected to yi and yi+1 (indices modulo
4). Clearly, the resulting graph G has vertices of degree 2, 3, 12, and 14 only. Vertices of
degree 2 and 3 are adjacent to vertices of degree 12 or 14. Hence there are no light edges
in G. One may verify that G contains crowns of size 5 and 6 but no crowns of smaller size.

3 Reducibility of Crowns

In this section we show that crowns are reducible. Although we use crowns of size at most
5, here we consider all crowns. In the next lemma we will use the well-known fact that
every even cycle is 2-edge-choosable.

Lemma 3.1. Let G be a graph of maximum degree ∆ and let S be a k-crown in G, k ≥ 1.
Let L be a list assignment of G such that |L(e)| ≥ ∆ for every edge e ∈ E(G). Then any
L-coloring of G− E(S) can be extended to an L-coloring of G.

Proof. Let λ be an arbitrary L-edge-coloring of G − E(S). For every e ∈ E(S), let
I(e) denote the set of edges from E(G) − E(S) that are incident with e and let L′(e) =
L(e) \⋃

f∈I(e) λ(f). Let us denote the vertices of S as in Fig. 1. Recall that degG(x1) =

degG(x2k+1) = 2 and for every i = 3, 5, . . . , 2k − 1, degG(xi) = 3. Note that for i =
1, 3, . . . , 2k + 1, |L′(vxi)| ≥ k + 1 and for i = 1, 2, . . . , 2k, |L′(xixi+1)| ≥ 2. Without
loss of generality we may assume that for i = 1, 3, . . . , 2k + 1, |L′(vxi)| = k + 1 and for
i = 1, 2, . . . , 2k, |L′(xixi+1)| = 2. Clearly in order to extend λ to an L-coloring of G it
suffices to L′-color the graph S. Thus our objective will be to construct an L′-coloring
of S, where L′ is any list assignment with the above prescribed lengths of lists. We do
it by induction on k. For k = 1 we must 2-list-color a 4-cycle but even-length cycles are
2-choosable [8, 14].

12



Now, we consider the case k = 2. We may assume that L′(vx3) ⊆ L′(x2x3) ∪ L′(x3x4),
for otherwise we color vx3 with a color from L′(vx3) \ [L′(x2x3) ∪ L′(x3x4)] and then we
are left with the problem of 2-list-coloring of a 6-cycle. Since |L′(vx3)| = 3, it follows that
L′(x2x3) 6= L′(x3x4). Then we color x2x3 with a color not in L′(x3x4) and we color x1x2

with a free color. We assume now that vx3 has two free colors, otherwise we remove one.
We may also assume that vx3 and x4x5 do not have a common free color, for otherwise
we color them both with such a color and then we can color vx1, vx5, x3x4, in this order,
always using a free color. Since vx5 has three free colors and both vx3, x4x5 have two free
colors, either vx3 or x4x5 has a free color p 6∈ L′(vx5). In the case p ∈ L′(vx3) we color vx3

with p and then we color the remaining edges in the following order: vx1, x3x4, x4x5, vx5.
In the latter case we assign color p to x4x5 and we color x3x4, vx3, vx1, vx5, in this order,
always using a free color. This settles the case k = 2.

Now assume k ≥ 3. We consider two possibilities:

Case 1: L′(x2x3) = L′(x3x4). Let r be a color from L′(vx3) \ L′(x2x3). We remove x3

and identify x2 with x4. For each i = 1, 3, 4, . . . , k + 1 let L′′(vx2i−1) = L′(vx2i−1) \
{r}. The resulting graph is a (k − 1)-crown, and it is L′′-colorable by the induction
hypothesis. Let λ′′ be such a coloring. We extend λ′′ to an L′-coloring of S as follows.
Let p ∈ L′(x2x3) \ {λ′′(x1x2)} and q ∈ L′(x3x4) \ {λ′′(x4x5)}. Since L′(x2x3) =
L′(x3x4) and λ′′(x1x2) 6= λ′′(x4x5), it follows that p 6= q. Hence we can color x2x3

with p, x3x4 with q, and vx3 with r.

Case 2: L′(x2x3) 6= L′(x3x4). Let L′(x2x3) = {a, b} and c ∈ L′(x3x4), c 6∈ {a, b}. Then
we color vx3 with a color distinct from a, b, and c. This is possible since |L′(vx3)| =
k + 1 ≥ 4. Next, we color x3x4 with c and we color x4x5, x5x6, . . . , x2kx2k+1, in this
order, always using a free color. Now for every i = 5, 7, . . . , 2k − 1, vxi has at least
k− 2 free colors and vx2k+1 has at least k− 1 free colors. Hence, we may color them
greedily, i.e., in the order vx5, vx7, . . . , vx2k+1 always using a free color. Afterwards
vx1 has at least one free color and both x1x2, x2x3 have two free colors, so we color
them greedily as well.

Theorem 1.5 and Lemma 3.1 imply the following corollary.

Corollary 3.2. Every planar graph with maximum degree ∆ ≥ 12 is ∆-edge-choosable.

4 List-Edge-Coloring Algorithm

In this section we describe a linear-time algorithm which for a given simple planar graph G
and an edge-list assignment L, computes an L-edge-coloring of G, provided that for every
e ∈ E(G), |L(e)| = max{∆(G), 12}. The algorithm does not need a plane embedding of
graph G. In fact, one can use the algorithm for any class of graphs which can replace
planar graphs in Theorem 1.5.
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We assume that the input graph G is given in the form of adjacency lists. Also the list
assignment is stored as an array of lists, one list for each edge. Additionally, we assume
that each list of admissible colors is sorted. Equivalently, one can assume that the largest
color has value O(|E(G)|∆). Then the lists can be sorted in linear time using bucket-sort.

In the following subsection we describe some tools used by our coloring algorithm. Then
we describe the main body of the algorithm and we analyze its time complexity.

4.1 Efficient Coloring and Finding Small Crowns

Lemma 4.1. Let G be a graph of maximum degree ∆ containing an edge e of weight at
most max{∆+1, 13}. Let L be an edge-list assignment of G such that |L(e)| ≥ max{∆, 12}
for every edge e ∈ E(G). Then any L-edge-coloring of G − {e} can be extended to an L-
edge-coloring of G in O(∆) time.

Proof. Let λ denote the L-edge-coloring of G − {e} and let I(e) denote the set of edges
incident with e and let L′(e) = L(e) \ ⋃

f∈I(e) λ(f). Clearly |L′(e)| ≥ 1. The algorithm

simply colors e with any color from L′(e). In order to find L′(e) efficiently, each vertex
x in graph G stores a sorted list Used(x) of colors used by the already colored incident
edges. As the list L(e) is also sorted, the set L′(e) can be easily found in O(∆) time.
Additionally, after coloring the edge e = xy, both lists Used(x) and Used(y) are updated
in O(∆) time.

The following lemma states that the proof of Lemma 3.1 can be transformed into an
efficient algorithm when k = O(1).

Lemma 4.2. Let G be a graph of maximum degree ∆ and let S be a k-crown in G,
k = O(1). Let L be an edge-list assignment of G such that |L(e)| ≥ ∆ for every edge
e ∈ E(G). Then any L-edge-coloring of G − E(S) can be extended to an L-edge-coloring
of G in O(∆) time.

Proof. We consider the algorithm arising from the proof of Lemma 3.1. Each of the sets
L′(e) from the proof of Lemma 3.1 is computed in O(∆) time, as described in the proof
of Lemma 4.1. As k = O(1), this whole phase takes O(∆) time. Afterwards, we deal
with bounded-sized graphs and bounded-sized list assignments hence the remaining part
of coloring algorithm takes constant time. Finally, as in the proof of Lemma 4.1 relevant
sets Used(·) are updated in O(∆) time.

Now we consider algorithm SearchSmallCrown(G,x) (see Alg. 4.1) which will be
used for searching for small crowns.

Lemma 4.3. Let x and v be distinct vertices in a graph G and let degG(x) ∈ {2, 3}. As-
sume that in G there is a small crown around v containing x. Then algorithm
SearchSmallCrown(G,x) returns a light edge or the edges of a small crown. More-
over, its time complexity is O(∆).
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Algorithm 4.1 SearchSmallCrown(G,x): Searching for a small crown

1: for each v ∈ N(x) do
2: H ← (∅, ∅) . H is the empty graph
3: for each y ∈ N(v) do
4: if degG(y) ∈ {2, 3} then
5: for each z ∈ N(y) \ {v} do
6: if degG(z) ≤ 3 then
7: return {yz} . yz is a light edge
8: else
9: V (H)← V (H) ∪ {y, z}; E(H)← E(H) ∪ {yz}

10: Find in H a vertex ȳ such that degG(ȳ) = 2 and distH(x, ȳ) is as small as possible.
11: if ȳ exists then
12: P ← the shortest path in H between ȳ and another vertex of degree 2 in G
13: if P 6= ∅ and |E(P )| ≤ 10 then
14: C ← E(P ) ∪ {vw : w ∈ V (P ) and degG(w) ∈ {2, 3}}
15: return C . C is a (|E(P )|/2)-crown.
16: return ∅

Proof. First assume that the algorithm returns set C in line 15. We will show that C
contains the edges of a small crown. Since a light edge was not returned in line 7, then for
some vertex v, which is a neighbor of x,

E(H) = {yz : y ∈ N(v), degG(y) ∈ {2, 3}, z ∈ N(y)− {v} and degG(z) > 3}. (4)

Note that H is a bipartite graph with partite sets Y = {y ∈ V (H) : degG(y) ∈ {2, 3}} and
Z = {z ∈ V (H) : degG(z) > 3}. Hence P has even length, as both its ends have degree 2
in G. Let y0, z1, y1, z2, y2, . . . , z|E(P )|/2, y|E(P )|/2 be the successive vertices of P . Note that
these vertices are all distinct for otherwise P is not the shortest path in H between ȳ and
another 2-vertex. By (4) each vertex yi of path P is adjacent to v. Note that P contains
at least two edges, since it has distinct ends. It follows that C contains edges of a crown
around v of size |E(P )|/2 ≤ 5.

Now it suffices to show that the algorithm returns a light edge in line 7 or returns set
C in line 15. Assume that neither of these happens. Let S be a small crown around v
containing x, v 6= x. (S exists by the assumptions of the lemma). Let k denote the size of
S. In lines 2 to 9 the algorithm finds the subgraph H ⊆ G with edge set described in (4).
Let x1, x2 be the neighbors of v in S with degree 2 in G. Observe that E(S−v) ⊆ E(H). In
line 10 the algorithm finds some vertex ȳ, because S contains x, x1 and x2 (possibly x = x1

or x = x2). If ȳ = x1 (respectively ȳ = x2) then there is a path in H from ȳ to another
vertex of degree 2 in G, namely x2 (respectively x1). Consequently when ȳ ∈ {x1, x2}
the algorithm finds some path P in line 12, and |E(P )| ≤ 2k. Also if ȳ 6∈ {x1, x2} then
H contains a path from ȳ to x and a path from x to x1, hence some path P is found.
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Moreover, then distH(x, ȳ) ≤ min{distH(x, x1), distH(x, x2)} and so

|E(P )| ≤ distH(ȳ, x) + min{distH(x, x1), distH(x, x2)}
≤ 2 min{distH(x, x1), distH(x, x2)}
≤ 2k.

It follows that |E(P )| ≤ 10. Hence line 15 is executed, a contradiction. This proves that
the algorithm returns a small crown or a light edge.

Clearly, graph H has O(∆) size and building it takes O(∆) time. The other part of the
algorithm can be easily implemented using Breadth First Search and then it takes time
linear respect in the size of H, i.e. O(∆) time.

4.2 Main Body of the Algorithm

Now we describe algorithm EdgeListColor, which edge-list-colors an input simple pla-
nar graph G with edge color lists of length max{∆(G), 12}. Our algorithm uses a queue Q
which stores vertices around which one should look for light edges and small crowns. It is
initialized with the set of all vertices of G. However, one vertex may appear several times
in Q.

Algorithm 4.2 EdgeListColor(G): List-edge-coloring planar graph G.

RecursiveColor(G)

1: C ← ∅
2: while C = ∅ do
3: x← a vertex from queue Q
4: if degG(x) = 1 then
5: y ← the sole neighbor of x; C ← {xy}
6: else if x is incident with a light edge xy then
7: C ← {xy}
8: else if degG(x) ∈ {2, 3} then
9: C ← SearchSmallCrown(G,x)

10: if C = ∅ then Q← Q \ {x}
11: Q← Q ∪ V (C)
12: E(G)← E(G) \ E(C)
13: if E(G) 6= ∅ then
14: RecursiveColor(G)

15: E(G)← E(G) ∪ E(C)
16: Color edges from E(C) according to Lemma 4.1 or Lemma 4.2

EdgeListColor(G)

1: Q← V (G)
2: RecursiveColor(G)
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After the initialization the algorithm calls a recursive routine RecursiveColor(G)
(see Alg. 4.2). Let us consider one such recursive call. Consider the following assertion:

Q contains all 1-vertices and endpoints of light edges in G; for any small crown
C around v in G queue Q contains a vertex x ∈ V (C) \ {v}, degG(x) ∈ {2, 3}.

Obviously, the assertion holds after initialization. Then, each time some set of edges is
removed from the graph, the endpoints of these edges are added to Q in line 11. Also, if
a vertex x is removed from Q and not inserted again then degG(x) 6= 1, there is no light
edge incident with x and either degG(x) 6∈ {2, 3} or there is no small crown containing it.
This proves that the assertion always holds at the beginning of the RecursiveColor(G)
routine. The assertion together with Theorem 1.5 and Lemma 4.3 guarantees that in line 11
set C contains a single edge of weight ∆ + 1, a single light edge, or the edges of a small
crown. This easily implies the following:

Corollary 4.4. Algorithm EdgeListColor(G) properly colors a planar graph G.

Proposition 4.5. The time complexity of algorithm EdgeListColor is O(|V (G)|∆).

Proof. Since in each recursive call at least one edge is removed, there are O(|E(G)|) =
O(|V (G)|) recursive calls. In each recursive call O(1) vertices are added to Q, hence in
total O(|V (G)|) vertices are added to Q. A straightforward implementation of line 6 works
in O(∆) time. Line 9 takes O(∆) time by Lemma 4.3. Hence the total time spent on lines
1–10 is O(|V (G)|∆).

Finally, as the number of recursive calls is O(|V (G)|, by Lemmas 4.1 and 4.2 the total
time spent on lines 11–16 is O(|V (G)|∆). This settles the proof.

Acknowledgments

The authors thank anonymous referees for reading the paper carefully and for providing
many helpful comments.

References

[1] O. V. Borodin. On the total coloring of planar graphs. J. Reine Ange. Math.,
(394):180–185, 1989.

[2] O. V. Borodin. Joint extension of two theorems of Kotzig on 3-polytopes. Combina-
torica, 13(1):121–125, 1993.

[3] O. V. Borodin, A. V. Kostochka, and D. R. Woodall. List edge and list total colourings
of multigraphs. J. Comb. Theory Ser. B, 71:184–204, 1997.

[4] M. Chrobak and T. Nishizeki. Improved edge-coloring algorithms for planar graphs.
J. Algorithms, 11:102–116, 1990.

17



[5] M. Chrobak and M. Yung. Fast algorithms for edge-coloring planar graphs. J. Algo-
rithms, 10:35–51, 1989.

[6] R. Cole and ÃL. Kowalik. New linear-time algortihms for edge-coloring planar graphs.
To appear in Algorithmica.
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