Data Parallel Haskell

SP Jones, R Leshchinskiy, G Keller, M Chakravarty

Slides partially pilfered from Simon Peyton Jones
Motivation

Multicore

Parallel programming essential

Task parallelism
- Explicit threads
- Synchronise via locks, messages, or STM

Data parallelism
Operate simultaneously on bulk data

Massive parallelism
- Easy to program
 - Single flow of control
 - Implicit synchronisation

Modest parallelism
Hard to program
Flat data parallelism

- Apply sequential operation to bulk data
- Widely used, well understood, well supported

```
foreach i in 1..N {
    ...do something to A[i]...
}
```

- “something” is sequential
- Single point of concurrency
- Great for dense matrices

- e.g. HPF, MPI, MapReduce, Matlab’s Parallel Toolbox

1,000,000’s of (small) work items
Nested data parallel

- Main idea: allow "something" to be parallel

```java
foreach i in 1..N {
    ...do something to A[i]...
}
```

- Now the parallelism structure is recursive, and un-balanced

- Hard to implement!

Still 1,000,000's of (small) work items
Nested DP is great for programmers

- Fundamentally more modular
- Opens up a much wider range of applications:
 - Sparse arrays, variable grid adaptive methods (e.g. Barnes-Hut)
 - Divide and conquer algorithms (e.g. sort)
 - Graph algorithms (e.g. shortest path, spanning trees)
 - Physics engines for games, computational graphics (e.g. Delauney triangulation)
 - Machine learning, optimisation, constraint solving
Nested DP is tough for compilers

- ...because the concurrency tree is both irregular and fine-grained
- But it can be done! NESL (Blelloch 1995) is an existence proof
- Key idea: “flattening” transformation: nested DP \Rightarrow flat DP
Data parallelism requires functional programming

- Side effects must be synchronized!
- Much harder to implement
- Synchronization kills performance

```pseudocode
B = true;
Sum = 0;
A = [1,2,3,4,5];
foreach i in 1..length(A) {
    B = not(B);
    if (B) then Sum = Sum + A[i]
}
```
Why Data Parallel Haskell?

- Purely functional language
 - Computations don’t affect shared state unless indicated by their type
 - Execution order only constrained by data dependencies when specified by programmer
- Rich type system
 - Helps hide implementation details
- Mature and speedy compiler (GHC)
 - Easy to specify source-to-source transformations
What does DPH add?

• Parallel arrays
 ▪ efficient unboxed representations for all Haskell data types
• Parallelized library of array operations
• Convenient array comprehension syntax
• Source-to-source transformation pipeline
 ▪ Turns inefficient Nested Data parallelism into optimized Flat Data parallelism
• “Gang Parallelism” execution model
class ArrElem e where

 data [:e:]

 Parallel array is associated with ArrElem type class. This allows us to specify efficient array implementations for different element types.

 (!:) :: [:e:] -> Int -> e
 Array indexing.

 mapP :: (a->b) -> [:a:] -> [:b:]
 Maps first argument over elements of parallel array

 replicateP :: Int -> a -> [:a:]
 Generate parallel array by replicating second argument

 etc...
Parallel Arrays - Example

class ArrElem Int where
 data [:Int:] = ArrInt ByteArray
 Efficiently stores [:Int:] as a dense unboxed byte array.
 (!:) (ArrInt a) i = indexIntArray a i

 mapP fn a = mapIntArray fn a

 replicateP n x = replicateIntArray n x

 etc...

Note: These aren’t parallel operations, but instead specify what happens at each core.
Parallel array comprehensions

`:: [:Float:]` is the type of parallel arrays of `Float`

```haskell
vecMul :: [:Float:] -> [:Float:] -> Float

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]
```

An array comprehension: “the array of all f1*f2 where f1 is drawn from v1 and f2 from v2”

```
sumP :: [:Float:] -> Float
```

Operations over parallel array are computed in parallel; that is the only way the programmer says “do parallel stuff”

NB: no locks!
Sparse vector multiplication

A sparse vector is represented as a vector of (index, value) pairs

\[
\text{svMul} :: \left[: (\text{Int}, \text{Float}) :\right] \rightarrow \left[: \text{Float} :\right] \rightarrow \text{Float}
\]

\[
\text{svMul} \ sv \ v = \text{sumP} \left[f \star (v !: i) \mid (i,f) \leftarrow sv \ : \right]
\]

Parallelism is proportional to length of sparse vector

\[v !: i \text{ gets the } i\text{'th element of } v \]
Sparse matrix multiplication

A sparse matrix is a vector of sparse vectors

```
smMul :: [:[:(Int,Float):]:] -> [:Float:] -> Float
smMul sm v = sumP [: svMul row v | row <- sm :]
```

Nested data parallelism here!
We are calling a parallel operation, svMul, on every element of a parallel array, sm
Hard to implement well

- Evenly chunking at top level might be **ill-balanced**
- Top level along might **not be very parallel**
The flattening transformation

- Concatenate sub-arrays into one big, flat array
- Operate in parallel on the big array
- Segment vector keeps track of where the sub-arrays are

- Lots of tricksy book-keeping!
- Possible to do by hand (and done in practice), but very hard to get right
- Blelloch’s NESL showed it could be done systematically
Data-parallel quicksort

sort :: [:Float:] -> [:Float:]
sort a = if (length a <= 1) then a
 else sa!:0 +++ eq +++ sa!:1
where
 m = a!:0
 lt = [: f | f<-a, f<m :]
 eq = [: f | f<-a, f==m :]
 gr = [: f | f<-a, f>m :]
 sa = [: sort a | a <- [:lt,gr:] :]
How it works

Step 1

Step 2

Step 3

...etc...

• All sub sorts at the same level are done in parallel
• Segment vectors track which chunk belongs to which sub problem
• Instant insanity when done by hand
Transformation Pipeline

1. Desugaring
 - comprehensions \rightarrow function calls

2. Vectorization/Flattening
 - maps Nested Data parallelism to Flat Data parallelism

3. Distribution
 - splits computation between a gang of threads

4. Fusion
 - eliminate intermediate arrays and unnecessary synchronization points in sequential code executed on each thread
Fusion

- Flattening is not enough

vecMul :: [:Float:] -> [:Float:] -> Float
vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]

- Do not
 1. Generate [: f1*f2 | f1 <- v1 | f2 <- v2 :]
 (big intermediate vector)
 2. Add up the elements of this vector

- Instead: multiply and add in the same loop

- That is, **fuse** the multiply loop with the add loop

- Very general, aggressive fusion is required
Purity pays off

- Extensive source-to-source transformations
- Depend utterly on purely-functional semantics:
 - no assignments
 - every operation is a pure function

The data-parallel languages of the future will be functional languages
And it goes fast too...

1-processor version goes only 30% slower than C

Perf win with 2 processors

Pinch of salt

Figure 2. Speedup of ssvm (x-axis is number of PEs)
Summary

- Data parallelism is the only way to harness 100’s of cores
- Nested DP is great for programmers: far, far more flexible than flat DP
- Nested DP is tough to implement
- But we (think we) know how to do it
- Functional programming is a massive win in this space
- Prototype in current GHC release (6.10.1)

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell