Lecture 2
Core Library and Precision-Driven Computation

Chee Yap
Courant Institute of Mathematical Sciences
New York University
Overview

We introduce the Core Library and the underlying mechanism for achieving its basic properties. Two key concepts are Precision-Driven Computation and Conditional Zero Bounds.

• I. Core Library

• II. Precision-Driven Computation

• III. Conditional Zero Bounds
I. CORE LIBRARY
Modes of Numerical Computing

- Landscape of Numerical Modes
 - Why there is not ONE number type, \(\mathbb{C} \)?
 - Diversity of number types and applications
 - \(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{R} \subseteq \mathbb{C} \)

- 1. Symbolic Mode (e.g., Maple)
 - \(\sqrt{2} \) is represented exactly, symbolically

- 2. FP Mode (e.g., IEEE Arithmetic)
 - Fixed Precision, Floating Point

- 3. Arbitrary Precision Mode
 - Brent’s MP, Bailey’s MPFUN, Muller’s iRRAM
4. Interval Arithmetic or Enclosure Mode
 - Certified or validated computing
 - Automatic error tracking

5. Guaranteed Accuracy Mode
 - E.g., LEDA Real, Core Library
 - A priori precision bounds is given as input
Core Numerical Accuracy API

- Framework to unify some of the above modes

- CORE Levels:
 - Level I: IEEE Arithmetic
 - Level II: Arbitrary Accuracy
 - Level III: Guaranteed Accuracy
 - Level IV: Mixed Accuracy
• Delivery Mechanism (C++):

```cpp
#define Core_Level 3
#include "CORE.h"

... standard C++ Program here ...
```

• Default Level is 3
Core Library for the Impatient

- Structure of CORE files
 - src, inc, lib, ext, progs
 - Makefile in every directory

- Go to $(COREPATH)/progs/
 - Create your own subdir myproj.

- Copy into myproj one of the Makefiles
 - Take from a sibling directory. E.g., progs/demos

- Write your first program, helloCore.cpp.

- Modify the Makefile: e.g., simply set "p = helloCore".

- Now, type "make".
Numerical I/O

• Assume: standard C++ program compiled in Level 3

• Key Principle: the internal rep is exact
 ∗ Comparisons are exact
 ∗ Input may be inexact
 ∗ Printout can only be rational or bigfloat approximation

• Class of Extended Longs
 ∗ Machine long, with special values
 ∗ CORE_posInfy, CORE_negInfy, CORE_NaN
 ∗ Main application: to specify precision

• Input will be exact if represented as strings
 ∗ E.g., double x = 0.123; double y = "0.123"; double z
\[= "123/100";\] double \(w= "123e-3";\)

* **Global Variable:** defInputDigits

bullet **Output:** only see rational or bigfloat approximations

* E.g., \(\texttt{cout} <\texttt{x} ;\)

bullet **We never print garbage digits**

* The last digit is off by \(\pm 1\)
* So a printout of 1.99999 is OK for 2.0
* To set output precision, e.g., \(\texttt{cout} <\texttt{setprecision(15)};\)

bullet **Approximation:** E.g., \(x.\texttt{approx}(r\texttt{prec}, \texttt{aprec});\)

* **Global variable:** defAbsPrec, defRelPrec
* **Composite Precision:** [relprec, absprec]

bullet **Facility for I/O of hugh numbers (in hexadecimal) in files**

* Can read any prefix of the file
• Question: my internal value is $\sqrt{2}$, but after setprecision(11), it still prints 1.414.
 * Why not 1.4142135624?
 * What is the solution?
How It Works in Core Library

- Level 1 Number Types
 - int, long, float, double

- Level 2 Number Types
 - BigInt, BigRational, BigFloat, Real

- Level 3 Number Types
 - Expr

- Promotion and Demotion
 - 1⇔3 : long, double ⇔ Expr
 - 1⇔2 : long ⇔ BigInt; double ⇔ BigFloat, BigRat
 - Principle: any program must compile in each level
• What is Level 4?
 * Research Problem: Not fully defined

• Fundamental gap between Level 2 and Level 3
 * Role of zero bounds
Expressions in Core Library

• An expression is a DAG (directed acyclic graph)
 * E.g. $E = \sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}}$

• Each operation constructs an expression
 * E.g., $x \leftarrow a + b$

• At each node of expression, store:
 * User Specified precision (if any)
 * BigFloat approximation α
 * Error bound for α
 * Zero bound for α
II. PRECISION-DRIVEN EVALUATION
Expression Evaluation Problem

- \(\Omega \) be set of real operators (partial functions)
 - E.g., \(\Omega = \{+, -, \times, \div\} \cup \mathbb{Z} \)

- \(\text{Expr}(\Omega) \) be the set of expressions over \(\Omega \)
 - Evaluation: \(\text{Val} : \text{Expr}(\Omega) \rightarrow \mathbb{R} \) (partial)

- Basic Problem: Given \(e \) and \(p \in \mathbb{R} \)
 - Compute a \(p \)-bit (rel/abs) approximation to \(\text{Val}(e) \)
Precision-Driven Expression Evaluation

- Precision Bound versus Error Bound

- Up-Down Propagation:
 - Downward propagation of precision
 - Upward propagation of error

- Assume problem is solved at the leaves

- This is NOT lazy evaluation
Basic Lemmas

• Let $\mu(x) := \lg |x|$. ($\mu(0) = -\infty$)
 * We may need estimates $\mu^-(x) \leq \mu(x) \leq \mu^+(x)$

• Let $x = y \circ z$ for some operation \circ
 * Compute $\tilde{x} = \tilde{y} \circ \tilde{z}$, to some absolute precision

• To guarantee k relative bits in \tilde{x}, it suffices:

<table>
<thead>
<tr>
<th>Oper.</th>
<th>Op.Prec.</th>
<th>Prec. in \tilde{y}</th>
<th>Prec. in \tilde{z}</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = yz$</td>
<td>∞</td>
<td>$k + 1$</td>
<td>$k + 2$</td>
<td></td>
</tr>
<tr>
<td>$x = y \pm z$</td>
<td>∞</td>
<td>$k + 1 - \mu^-(x)$</td>
<td>$k + 1 - \mu^-(x)$</td>
<td></td>
</tr>
<tr>
<td>$x = y/z$</td>
<td>$k + 2$</td>
<td>$k + 2$</td>
<td>$k + 2$</td>
<td>($k \geq 2$)</td>
</tr>
<tr>
<td>$x = \sqrt{y}$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\exp(y)$</td>
<td>$k + 2$</td>
<td></td>
<td>$k + 2 + \mu^+(y)$</td>
<td></td>
</tr>
<tr>
<td>$\log(y)$</td>
<td></td>
<td></td>
<td></td>
<td>(not possible)</td>
</tr>
</tbody>
</table>
• To guarantee k absolute bits in \tilde{x}, it suffices:

<table>
<thead>
<tr>
<th>Oper.</th>
<th>Op.Prec.</th>
<th>Prec. in \tilde{y}</th>
<th>Prec. in \tilde{z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>yz</td>
<td>∞</td>
<td>$\max{\frac{k+1}{2}, k + 1 + \mu^+(z)}$</td>
<td>$\max{k+1, k + 1 + \mu^+(z)}$</td>
</tr>
<tr>
<td>$y + z$</td>
<td>∞</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
</tr>
<tr>
<td>y/z</td>
<td>$k + 1$</td>
<td>$k + 2 - \mu^-(z)$</td>
<td>$\max{1 - \mu^-(z), k + 2 - 2\mu^-}$</td>
</tr>
<tr>
<td>\sqrt{y}</td>
<td>$k + 1$</td>
<td>$\max{k + 1, 1 - \mu^-(y)/2}$</td>
<td></td>
</tr>
<tr>
<td>$\exp(y)$</td>
<td>$k + 1$</td>
<td>$\max{1, k + 2 + 2\mu^+(y) + 1}$</td>
<td></td>
</tr>
<tr>
<td>$\log(y)$</td>
<td>$k + 1$</td>
<td>$\max{1 - \mu^-(y), k + 2 - \mu^+(y)}$</td>
<td></td>
</tr>
</tbody>
</table>

• Three mutually recursive algorithms
 * Eval, Sign, Estimating $\mu^-(x), \mu^+(x)$
 * How to estimate $\mu^-(x)$?
II. ZERO BOUNDS
Zero Bounds

• Let Ω be set of real operators (partial functions)
 ∗ E.g., $\Omega = \{+,-,\times,\div\} \cup \mathbb{Z}$

• Let $e \in Expr(\Omega)$ be an expression.
 ∗ Call $B > 0$ a zero bound for e if, whenever e is well-defined and not zero, then $|Val(e)| \geq B$.

• E.g., if $e = \sqrt{3} - \sqrt{2}$, then Cauchy’s bound says $|e| \geq 1/11$ because e is the zero of $X^4 - 10x^2 + 1$.

• Classical bounds: not constructive or effective.
How to Use Zero Bounds

• Compute a numerical approximation \(\tilde{e} \) for \(e \) so that
 \[
 |\tilde{e} - e| < \frac{B}{2}
 \]

 * If \(|\tilde{e}| \geq B \), then conclude that \(\text{sign}(e) \) is the \(\text{sign}(\tilde{e}) \)
 * Otherwise, declare \(e = 0 \)

• In practice, compute \(\tilde{e} \) incrementally
 * The zero bound is irrelevant unless \(e = 0 \)

• This iteration is ONLY needed for \(\pm \)-nodes
 * Here is the CORE of Core Library!
Some Constructive Bounds

- Degree-Measure Bounds [Mignotte (1982)]
- Degree-Height, Degree-Length [Yap-Dubé (1994)]
- BFMS Bound [Burnikel et al (1989)]
- Eigenvalue Bounds [Scheinerman (2000)]
- Conjugate Bounds [Li-Yap (2001)]
- BFMSS Bound [Burnikel et al (2001)]
- k-ary Method [Pion-Yap (2002)]
An Example

- Consider the \(e = \sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}} \).

- Assume \(x = \frac{a}{b} \) and \(y = \frac{c}{d} \) where \(a, b, c, d \) are \(L \)-bit integers. Then Li-Yap Bound is \(28L + 60 \) bits, BFMSS is \(96L + 30 \) and Degree-Measure is \(80L + 56 \).

<table>
<thead>
<tr>
<th>(L)</th>
<th>50</th>
<th>100</th>
<th>500</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFMS</td>
<td>0.637</td>
<td>9.12</td>
<td>101.9</td>
<td>202.9</td>
</tr>
<tr>
<td>Measure</td>
<td>0.063</td>
<td>0.07</td>
<td>1.93</td>
<td>15.26</td>
</tr>
<tr>
<td>BFMSS</td>
<td>0.073</td>
<td>0.61</td>
<td>1.95</td>
<td>15.41</td>
</tr>
<tr>
<td>Li-Yap</td>
<td>0.013</td>
<td>0.07</td>
<td>1.88</td>
<td>1.89</td>
</tr>
</tbody>
</table>
New k-Ary Rational Bounds

- Division expressions is a bottle neck
 - Rational input numbers introduces division!
 - E.g., binary floating point, decimal numbers.

- Overwhelming majoring of "real inputs" are k-ary rationals ($k = 2, 10$)

- **THEOREM** (Pion-Yap 2003)
 - $BFMSS[k] \geq BFMSS$
 - $Measure[k] \geq Measure$

- Implemented in Core Library
Example of 2-ary Version of BFMSS:

<table>
<thead>
<tr>
<th></th>
<th>Method</th>
<th>BFMSS</th>
<th>Li-Yap</th>
<th>BFMSS[2] (new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bit-Bound function</td>
<td>$96L + 30$</td>
<td>$28L + 60$</td>
<td>$8L + 30$</td>
</tr>
<tr>
<td>2</td>
<td>Bit-Bound Range ($L = 53$)</td>
<td>$4926-5118$</td>
<td>$2085-2165$</td>
<td>$426-462$</td>
</tr>
<tr>
<td>3</td>
<td>Timing ($L = 53, 1000$ times)</td>
<td>46.7 s</td>
<td>8.35 s</td>
<td>3.58 s</td>
</tr>
</tbody>
</table>
Applications of EGC

- Meshing Generation
 - Killer App?

- Theorem Proving
 - Proving geometric theorems by random tests [Yap et al]
 - Kepler’s Conjecture [Hale]

- Producing Model Solutions
 - Table Maker’s Dilemma [Mueller]
 - Verifying Simplex Programs [Mehlhorn et al]
 - Testing Statistical Packages [McCullough]

- Symbolic Perturbation
Handling degenerate data automatically
Challenge of EGC

- Internally, all numbers are exact
 - How to round to lower precision?
 - This is necessary for cascading algorithms

- Geometric Rounding Problems
 - Very little is known

- Challenge
 - Given planar triangulation T and $p > 0$, Round T to precision $\leq p$
 - RULES: Degeneration is allowed but no inversion, preserve proximity
• Why Robust FP-Type Algorithms are hard
 * They must round and compute at same time!
Conclusions

- It is possible to provide a library to solve nonrobustness in general.

- Open Problem: Give a rounding algorithm for planar triangulations.

- Open Problem: Give a provably optimal precision-driven algorithm for the case of four arithmetic operations.
EXERCISES

(1) Compute the BFMSS Bound for the expression $\sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}}$ when x, y are L-bit integers.

(2) Do the same as (1) when x, y are rational numbers whose numerator and denominator are L-bit integers.

(3) Do the same as (1) when x, y are L-bit binary floats. More precisely, I mean x and y have the form $B = m2^n$ (for some $m, n \in \mathbb{Z}$) where $|m| < 2^L$ and $2^n < 2^L$.

The BFMS and BFMSS bounds

FOR YOUR CONVENIENCE, I PUT SOME NOTES on THE BFMSS BOUND FROM [Mehlhorn-Yap] HERE.

We investigate the zero bound from Burnikel et al [?]. Call this the BFMSS Bound. But we begin with the older version known as the BFMS Bound [?]. In the absence of division, these two rules coincide.

Conceptually the BFMS approach first transforms a radical expression $e \in \text{Expr}(\Omega_2)$ to a quotient of two division-free expressions $U(e)$ and $L(e)$.
If \(e \) is division-free, then \(L(e) = 1 \) and \(Val(e) \) is an algebraic integer (i.e., a root of some monic integer polynomial). The following lemma is immediate from Table 1:

Lemma 1. \(Val(e) = Val(U(e))/Val(L(e)) \).
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>integer (a)</td>
<td>(</td>
<td>a</td>
</tr>
<tr>
<td>2.</td>
<td>(e_1 \pm e_2)</td>
<td>(u(e_1)l(e_2) + l(e_1)u(e_2))</td>
<td>(l(e_1)l(e_2))</td>
</tr>
<tr>
<td>3.</td>
<td>(e_1 \times e_2)</td>
<td>(u(e_1)u(e_2))</td>
<td>(l(e_1)u(e_2))</td>
</tr>
<tr>
<td>4.</td>
<td>(e_1 \div e_2)</td>
<td>(u(e_1)l(e_2))</td>
<td>(l(e_1)u(e_2))</td>
</tr>
<tr>
<td>5.</td>
<td>(\sqrt[k]{e_1})</td>
<td>(\sqrt[k]{u(e_1)})</td>
<td>(\sqrt[k]{l(e_1)})</td>
</tr>
<tr>
<td>5'.</td>
<td>(\sqrt[k]{e_1})</td>
<td>(\min{\sqrt[k]{u(e_1)}l(e_1)^{k-1}, u(e_1)})</td>
<td>(\min{l(e_1), \sqrt[k]{u(e_1)}^{k-1}l(e_1)})</td>
</tr>
</tbody>
</table>

BFMS (and BFMSS) Rules for \(u(e) \) **and** \(l(e) \)**

To explain the significance of \(u(e) \) and \(l(e) \), we define two useful quantities. If \(\alpha \) is an algebraic number, define

\[
MC(\alpha) := \max_{i=1}^{m} |\alpha_i|
\]

(1)

where \(\alpha_1, \ldots, \alpha_m \) are the conjugates of \(\alpha \). Thus \(MC(\alpha) \) is the “maximum conjugate size” of \(\alpha \). In general, if \(A(X) \) is any polynomial, we define \(MC(A(X)) \) to be the maximum of \(|\alpha_i| \) where \(\alpha_i \) range over the zeros of \(A(X) \). For instance, \(M(\alpha) \leq M_0(\alpha)MC(\alpha)^d \) where \(d = \deg(\alpha) \). Using \(MC(\alpha) \) and \(M_0(\alpha) \), we obtain an approach for obtaining zero bounds:

Lemma 2. *If* \(\alpha \neq 0 \) *and then*

\[
|\alpha| \geq M_0(\alpha)^{-1}MC(\alpha)^{-d+1}
\]

where \(d = \deg(\alpha) \).
Proof. Let $d = \deg(\alpha)$. If the minimal polynomial of α is $a \prod_{i=1}^{m} (X - \alpha_i)$ then we have $a \prod_{i} |\alpha_i| \geq 1$. Thus, assuming $\alpha = \alpha_1$,

$$|\alpha| \geq \frac{1}{a \prod_{i=2}^{d} |\alpha_i|} \geq \frac{1}{a MC'(\alpha)^{d-1}}.$$

Q.E.D.

The following theorem shows the significance of $u(e), l(e)$.

Theorem 3. Let $e \in Expr(\Omega_2)$. Then $u(e)$ and $l(e)$ are upper bounds on $MC(U(e))$ and $MC(L(e))$, respectively.

Proof. The result is true in the base case where e is an integer. In general, $U(e)$ and $L(e)$ are formed by the rules in Table 1. These rules uses only the operations of $\pm, \times, \sqrt[k]{\cdot}$. Applying the previous lemma, we see that $u(e)$ and $l(e)$ are indeed upper bounds on $MC(Val(U(e)))$ and $MC(Val(L(e)))$.

Q.E.D.

Finally, we show how the BFMS Rules gives us a zero bound. It is rather similar to Lemma 2, except that we do not need to invoke $M_0(e)$.

Theorem 4. Let $e \in Expr(\Omega_2)$ and $Val(e) \neq 0$. Then

$$\left(u(e)^{D(e)^2-1}l(e)\right)^{-1} \leq |Val(e)| \leq u(e)l(e)^{D(e)^2-1}.$$

(2)

If e is division-free,

$$\left(u(e)^{D(e)-1}\right)^{-1} \leq |Val(e)| \leq u(e).$$

(3)
Proof. First consider the division-free case. In this case, \(\text{Val}(e) = \text{Val}(U(e)) \). Then \(|\text{Val}(e)| \leq u(e) \) follows from Theorem 3. The lower bound on \(|\text{Val}(e)| \) follows from lemma 2, since \(M_0(e) = 1 \) in the division-free case.

In the general case, we apply the division-free result to \(U(e) \) and \(L(e) \) separately. However, we need to estimate the degree of \(U(e) \) and \(L(e) \). We see that in the transformation from \(e \) to \(U(e), L(e) \), the number of radical nodes in the dag doubles: each \(\frac{k}{\sqrt{2}} \) is duplicated. This means that \(\deg(U(e)) \leq \deg(e)^2 \) and \(\deg(L(e)) \leq \deg(e)^2 \). From the division-free case, we conclude that

\[
(u(e)^{D(e)^2 - 1})^{-1} \leq |\text{Val}(U(e))| \leq u(e).
\]

and

\[
(l(e)^{D(e)^2 - 1})^{-1} \leq |\text{Val}(L(e))| \leq l(e).
\]

Thus \(|\text{Val}(e)| = |\text{Val}(U(e))/\text{Val}(L(e))| \geq (l(e)u(e)^{D(e)^2 - 1})^{-1} \). The upper bound on \(|\text{Val}(e)| \) is similarly shown.

Q.E.D.

Example. Consider the expression \(e_k \in \text{Expr}(\Omega_2) \) whose value is

\[
\alpha_k = \text{Val}(e_k) = (2^{2^k} + 1)^{1/2^k} - 2.
\]

Note that \(e_k \) is not literally the expression shown, since we do not have exponentiation in \(\Omega_2 \). Instead, the expression begins with the constant 2, squaring \(k \) times, plus 1, then
taking square-roots k times, and finally minus 2. Thus $u(e_k) = (2^{2^k} + 1)^{1/2^k} + 2 \leq 5$. The degree bound $D(e_k) = 2^k$. Hence the BFMS Bound says

$$|\alpha_k| \geq u(e_k)^{1-2^k} \geq 5^{1-2^k}.$$

How tight is this bound? We have

$$(2^{2^k} + 1)^{1/2^k} - 2 = 2 \left(1 + 2^{-2^k}\right)^{1/2^k} - 2$$

$$= 2 \cdot e^{2^{-k} \ln(1+2^{-2^k})} - 2$$

$$\leq 2 \cdot e^{2^{-k} \cdot 2^{-2^k}} - 2$$

$$\leq 2 \left(1 + 2 \cdot 2^{-k} \cdot 2^{-2^k}\right) - 2$$

$$= 2^{2^{-k} - 2^k}$$

using $\ln(1 + x) \leq x$ if $x > -1$ and $e^x \leq 1 + 2x$ if $0 \leq x \leq 1/2$. We also have

$$(2^{2^k} + 1)^{1/2^k} - 2 = 2 \cdot e^{2^{-k} \ln(1+2^{-2^k})} - 2$$
\[
\begin{align*}
\geq & \quad 2 \cdot e^{2^{-k}2^{-2k-1}} - 2 \\
\geq & \quad 2\left(1 + 2^{-k}2^{-2k-1}\right) - 2 \\
\geq & \quad 2^{-k-2^k}
\end{align*}
\]

using \(e^x \geq 1 + x\). Hence \(\alpha_k = \Theta(2^{-k-2^k})\). This example shows that the BFMS bound is, in a certain sense, asymptotically tight for the class of division-free expressions over \(\Omega_2\).

Improvements on the BFMS bound
The root bit-bound in (2) is quadratic in \(D(e)\), while in (3) it is linear in \(D(e)\). This quadratic factor can become a serious efficiency issue. Consider a simple example:

\[
e = (\sqrt{x} + \sqrt{y}) - \sqrt{x + y + 2\sqrt{xy}}\]

where \(x, y\) are \(L\)-bit integers. Of course, this expression is identically 0 for any \(x, y\). The BFMS bound yields a root bit-bound of \(7.5L + \mathcal{O}(1)\) bits. But in case, \(x\) and \(y\) are viewed as rational numbers (with denominator 1), the bit-bound becomes \(127.5L + \mathcal{O}(1)\). This example shows that introducing rational numbers at the leaves of expressions has a major impact on the BFMS bound. In this section, we introduce two techniques to overcome division.

The BFMS Bound. Returning to the case of radical expressions, we introduce another way to improve on BFMS. To avoid the doubling of radical nodes in the \(e \mapsto (U(e), L(e))\) transformation, we change the rule in the last row of Table 2 as
follows. When \(e = k\sqrt{e_1} \), we use the alternative rule

\[
u(e) = \sqrt[k]{u(e_1)l(e_1)^{k-1}}, \quad l(e) = l(e_1). \tag{5}
\]

But one could equally use

\[
u(e) = u(e_1), \quad l(e) = \sqrt[k]{u(e_1)^{k-1}l(e_1)}.
\]

Yap noted that by using the symmetrized rule

\[
u(e) = \min\{\sqrt[k]{u(e_1)l(e_1)^{k-1}}, u(e_1)\}, \quad l(e) = \min\{l(e_1), \sqrt[k]{u(e_1)^{k-1}l(e_1)}\},
\]

the new bound is provably never worse than the BFMS bound. The BFMSS Bound also extends the rules to support general algebraic expressions (\(\Omega_4 \) expressions).
REFERENCE

- Chapter 2 (number types) and Chapter 12 (zero bounds) of [Mehlhorn-Yap]

“A rapacious monster lurks within every computer, and it dines exclusively on accurate digits.”

THE END