1. Consider a linear system of algebraic equation $Ax = b$. Here the matrix A has three rows and four columns.

(a) Does such a linear system always have at least one solution? If not provide an example for which no solution exists.

(b) Can such a linear system have a unique solution? If so, provide and example of a problem with this property.

(c) Formulate, if possible, necessary and sufficient conditions on A and b which guarantee that at least one solution exists.

(d) Formulate, if possible, necessary and sufficient conditions on A which guarantee that at least one solution exists for any choice of b.

2. A real matrix A is said to skew-symmetric if $A^T = -A$. Prove that such a matrix has a full set of eigenvectors and that all its eigenvalues are purely imaginary, i.e., are of the form ai where a is a real number and $i^2 = -1$.

3. Consider $<f, g> = \int_{-1}^{+1} f(t)g(t)dt$.

Here $f(t)$ and $g(t)$ are continuous functions.

(a) Show that this defines an inner product space V over the complex field.

(b) Let the span of $1, t$, and t^2 define a subspace of V. Create an orthonormal basis of this subspace.

(c) Find the second order polynomial which is closest to the function t^3 in the norm defined by the inner product defined above.
4. In Gaussian elimination, three matrices P, L, and U are computed for a given square matrix A. Here P represents a permutation of the rows of A, L is lower triangular with diagonal elements all $= 1$, and U is upper triangular and $PA = LU$.

(a) What is partial pivoting?
(b) How can P, L, and U be used to solve a linear system of equations $Ax = b$?
(c) Can this algorithm ever fail if we use exact arithmetic?
(d) What characterizes a matrix A for which the solution of $Ax = b$ is very sensitive to small changes in b?
(e) How does the work grow as a function of n where A is n by n.

5. Show that the rank of any matrix is unchanged if it is multiplied from the left or the right by a square, nonsingular matrix of the appropriate size.

6. Consider a square matrix of order n defined by $I - 2vv^T$. Here v is column vector with n real components.

(a) Under what condition is this a matrix with orthonormal columns?
(b) Give the geometric context of this type of transformation.
(c) How are such matrices used to solve linear least squares problems?