Problems from Cormen, Leiserson and Rivest:
2-4 Algebra with big-Oh & 2-5 Variations on O and Ω. Also, 7.5-3 Data Structure.

2-4 Asymptotic notation properties
Let $f(n)$ and $g(n)$ be asymptotically positive functions. Prove or disprove each of the following conjectures.

a. $f(n) = O(g(n))$ implies $g(n) = O(f(n))$.
b. $f(n) + g(n) = \Theta(\min(f(n), g(n)))$.
c. $f(n) = O(g(n))$ implies $\log(f(n)) = O(\log(g(n)))$, where $\log(g(n)) > 0$ and $f(n) \geq 1$ for all sufficiently large n.
d. $f(n) = O(g(n))$ implies $2^f(n) = O(2^g(n))$.
e. $f(n) = O(g(n))$ implies $g(n) = \Omega(f(n))$.
f. $f(n) = \Theta(f(n)/2))$.
g. $f(n) = \Theta(g(n))$ implies $g(n) = \Omega(f(n))$.
h. $f(n) + o(f(n)) = \Theta(f(n))$.

2-5 Variations on O and Ω
Some authors define Ω in a slightly different way than we do; let’s use $\bar{\Omega}$ (read “omega infinity”) for this alternative definition. We say that $f(n) = \bar{\Omega}(g(n))$ if there exists a positive constant c such that $f(n) \geq cg(n) \geq 0$ for infinitely many integers n.

a. Show that for any two functions $f(n)$ and $g(n)$ that are asymptotically nonnegative, either $f(n) = O(g(n))$ or $f(n) = \bar{\Omega}(g(n))$ or both, whereas this is not true if we use Ω in place of $\bar{\Omega}$.

b. Describe the potential advantages and disadvantages of using $\bar{\Omega}$ instead of Ω to characterize the running times of programs.

Some authors also define O in a slightly different manner; let’s use O' for the alternative definition. We say that $f(n) = O'(g(n))$ if and only if $|f(n)| = O(g(n))$.

c. What happens to each direction of the “if and only if” in Theorem 2.1 under this new definition?
Some authors define \tilde{O} (read “soft-oh”) to mean O with logarithmic factors ignored:

$$\tilde{O}(g(n)) = \{f(n) : \text{there exist positive constants } c, k, \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \log^k(n) \text{ for all } n \geq n_0 \}.$$

d. Define Ω and Θ in a similar manner. Prove the corresponding analog to Theorem 2.1.

7.5-3 Show how to implement a first-in, first-out queue with a priority queue.
Show how to implement a stack with a priority queue. (FIFO’s and stacks are defined in Section 11.1.)

Problem 1.1 Order the following functions by their growth rate (the most slowly-growing function appearing first); if two functions are same, group them together.

1. 1
2. 7
3. $7 \lg n$
4. $(\lg n)^{\lg n}$
5. $\sqrt{\lg^2 n}$
6. n
7. $n \lg n$
8. $n^{\frac{1}{\lg n}}$
9. $n^{\lg 7}$
10. $n^{1 + \frac{\lg n}{\lg n}}$
11. $n^{\lg \lg n}$
12. $(1 - \frac{1}{n})^n$
13. $(1 - \frac{1}{7})^n$
14. $(1 + \frac{1}{7})^n$
15. $(1 + \frac{1}{7})^n$

Problem 1.2 a. Suppose $T_1(n)$ is $\Omega(f(n))$ and $T_2(n)$ is $\Omega(g(n))$. Which of the following statements are true? Justify your answer.

1. $T_1(n) + T_2(n) = \Omega(\max(f(n), g(n)))$.
2. $T_1(n)T_2(n) = \Omega(f(n)g(n))$.

b. Now answer the previous question for this definition of Ω.
(See problem 2-5 in CLR pp. 39: $T(n) = \Omega(f(n))$, if there is a positive constant C such that

$T(n) \geq C \cdot f(n) \geq 0$, infinitely often, i.e., for infinitely many values of n.)

Problem 1.3 Solve the following recurrence equation

$$T(n) = T(n-1) + 4n^3.$$