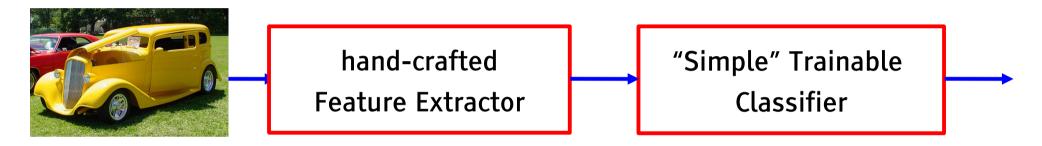
Scene Understanding With Deep Learning

Yann LeCun Center for Data Science Courant Institute of Mathematical Sciences Center for Neural Science New York University http://yann.lecun.com

Deep Learning = Learning Representations/Features

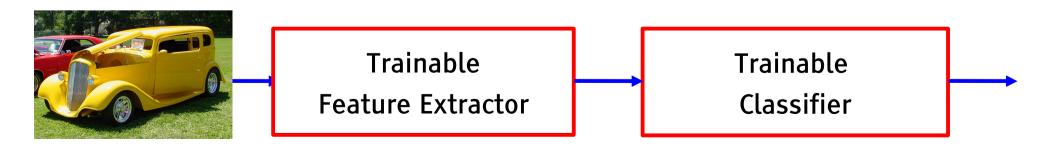
Y LeCun

The traditional model of pattern recognition (since the late 50's)
 Fixed/engineered features (or fixed kernel) + trainable classifier

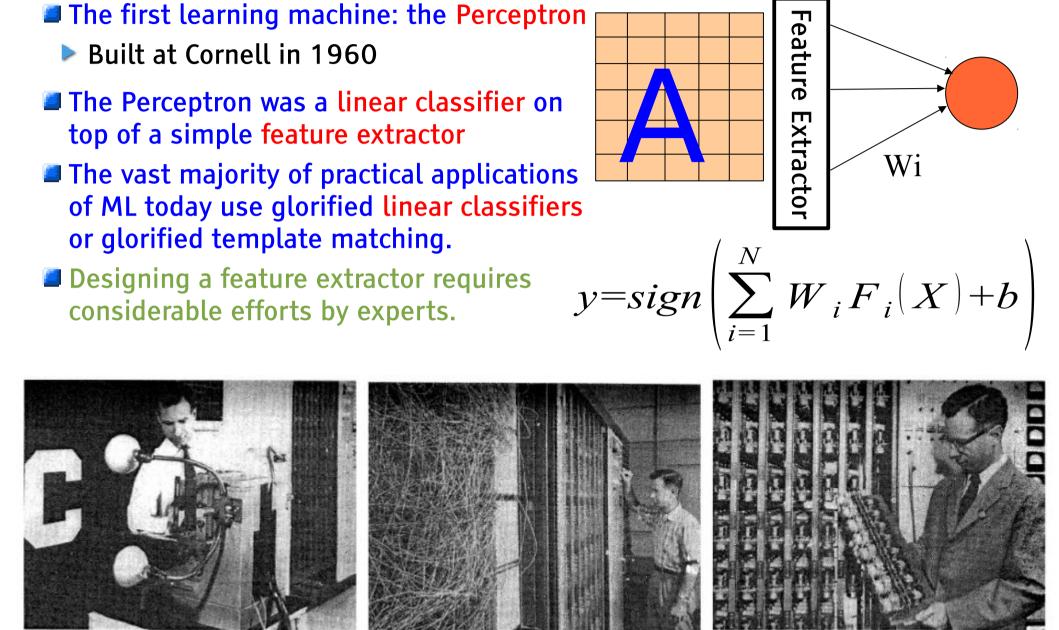


End-to-end learning / Feature learning / Deep learning

Trainable features (or kernel) + trainable classifier



This Basic Model has not evolved much since the 50's

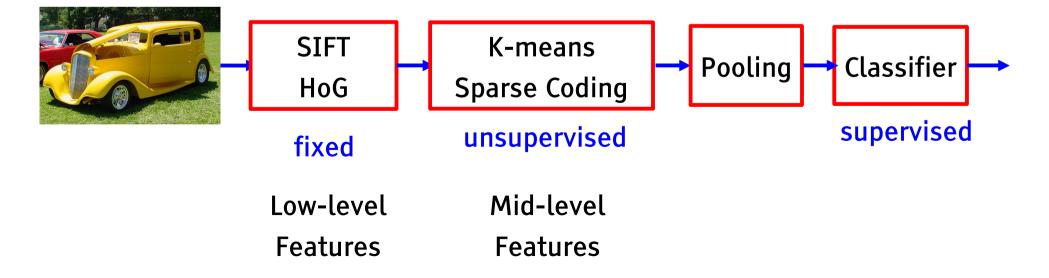


Architecture of "Mainstream" Pattern Recognition Systems

Modern architecture for pattern recognition

Speech recognition: early 90's – 2011

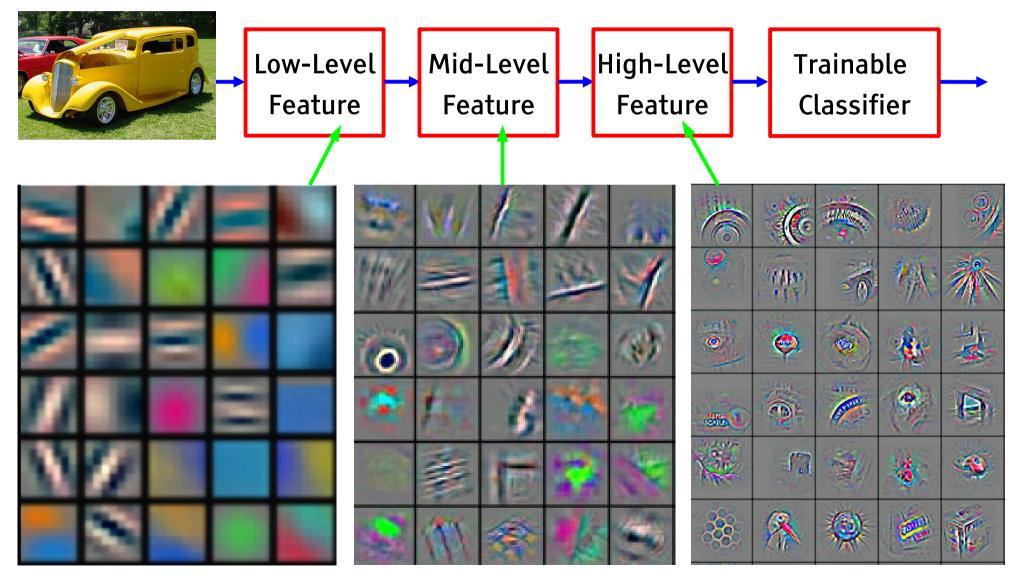
Object Recognition: 2006 - 2012



Deep Learning = Learning Hierarchical Representations

Y LeCun

It's deep if it has more than one stage of non-linear feature transformation



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction
Each stage is a kind of trainable feature transform

Image recognition

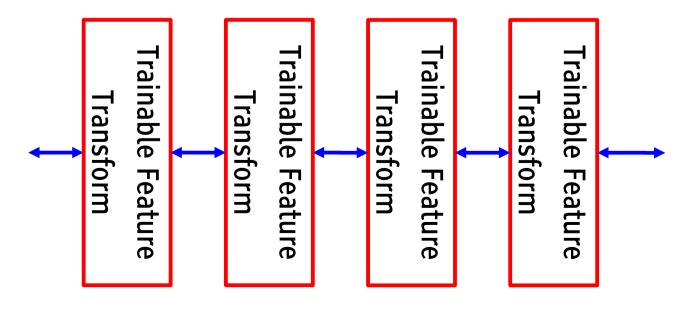
▶ Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object

🗾 Text

▷ Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

Speech

▷ Sample → spectral band → sound → ... → phone → phoneme → word →



Learning Representations: a challenge for ML, CV, AI, Neuroscience, Cognitive Science...

How do we learn representations of the perceptual world?

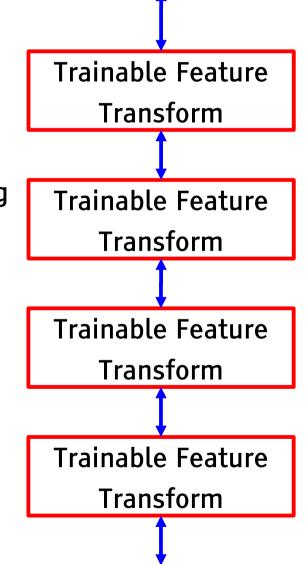
- How can a perceptual system build itself by looking at the world?
- How much prior structure is necessary

ML//CV/AI: learning features or feature hierarchies

What is the fundamental principle? What is the learning algorithm? What is the architecture?

Neuroscience: how does the cortex learn perception?

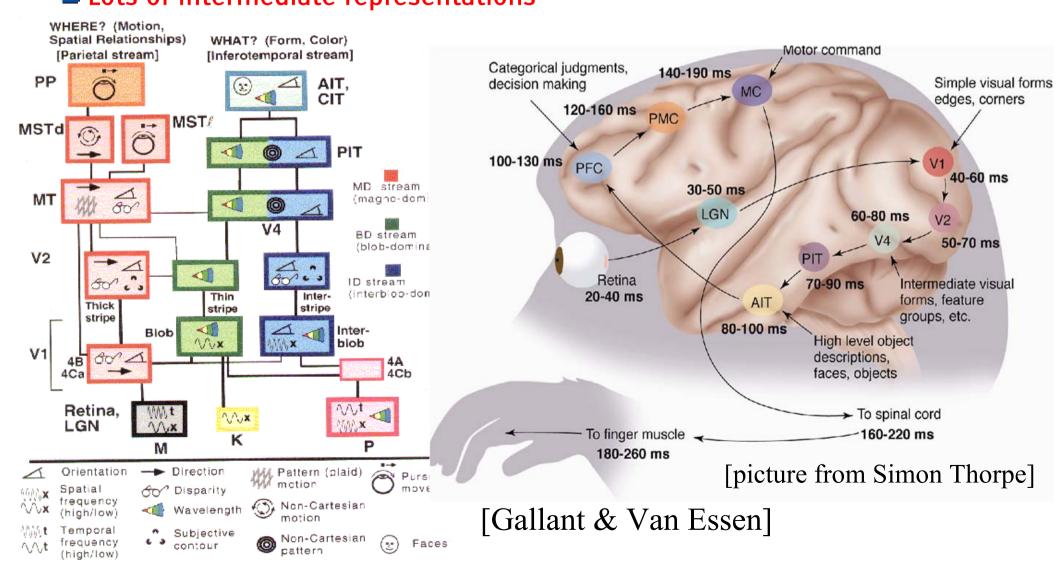
- Does the cortex "run" a single, general learning algorithm? (or a small number of them)
- Cognitive Science: how does the mind learn abstract concepts on top of less abstract ones?
- Deep Learning addresses the problem of learning hierarchical representations with a single algorithm or perhaps with a few algorithms



YleCun

The Mammalian Visual Cortex is Hierarchical

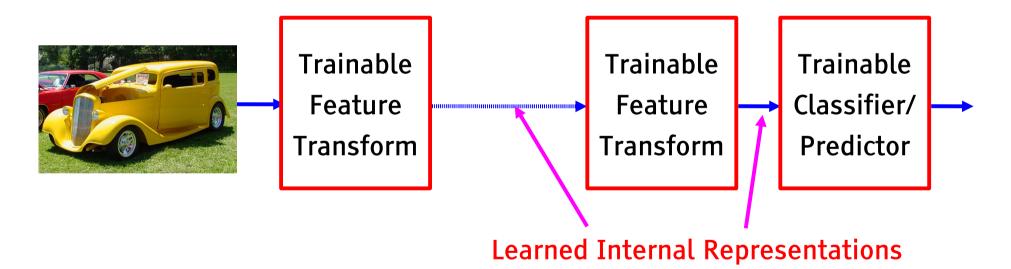
The ventral (recognition) pathway in the visual cortex has multiple stages
 Retina - LGN - V1 - V2 - V4 - PIT - AIT
 Lots of intermediate representations



Trainable Feature Hierarchies: End-to-end learning

A hierarchy of trainable feature transforms

- Each module transforms its input representation into a higher-level one.
- High-level features are more global and more invariant
- Low-level features are shared among categories



How can we make all the modules trainable and get them to learn appropriate representations?

Three Types of Training Protocols

Purely Supervised

- Initialize parameters randomly
- Train in supervised mode
 - typically with SGD, using backprop to compute gradients
- Used in most practical systems for speech and image recognition
- Unsupervised, layerwise + supervised classifier on top
 - Train each layer unsupervised, one after the other
 - Train a supervised classifier on top, keeping the other layers fixed
 - Good when very few labeled samples are available
- Unsupervised, layerwise + global supervised fine-tuning
 - Train each layer unsupervised, one after the other
 - Add a classifier layer, and retrain the whole thing supervised

Good when label set is poor (e.g. pedestrian detection)

Unsupervised pre-training often uses regularized auto-encoders

Deep Learning and Feature Learning Today

Deep Learning has been the hottest topic in speech recognition in the last 2 years

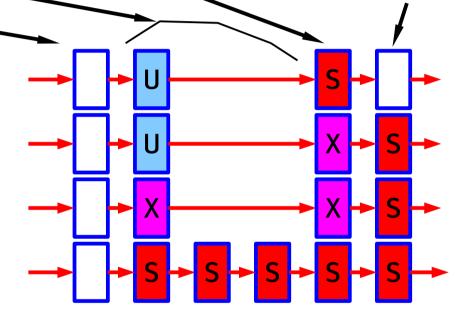
- A few long-standing performance records were broken with deep learning methods
- Microsoft and Google have both deployed DL-based speech recognition system in their products
- Microsoft, Google, IBM, Nuance, AT&T, and all the major academic and industrial players in speech recognition have projects on deep learning
- Deep Learning is the hottest topic in Computer Vision
 - Feature engineering is the bread-and-butter of a large portion of the CV community, which creates some resistance to feature learning
 - But the record holders on ImageNet and Semantic Segmentation are convolutional nets
- Deep Learning is becoming hot in Natural Language Processing
- Deep Learning/Feature Learning in Applied Mathematics
 - The connection with Applied Math is through sparse coding, non-convex optimization, stochastic gradient algorithms, etc...

In Several Fields, Feature Learning Has Caused Revolutions: Speech Recognition, Handwriting Recognition

- U= unsupervised, S=supervised, X=unsupervised+supervised
- Low-level feat. \rightarrow mid-level feat. \rightarrow classifier \rightarrow contextual post-proc

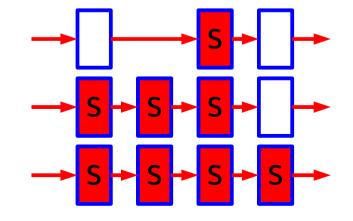
Speech Recognition

- Early 1980s: DTW
- Late 1980s: GMM
- 1990s: discriminative GMM
- 2010: deep neural nets



Handwriting Recognition and OCR

- Early 80's: features+classifier
- Late 80's: supervised convnet
- Mid 90's: convnet+CRF



In Several Fields, Feature Learning Has Caused Revolutions: Object Detection, Object Recognition, Scene Labeling

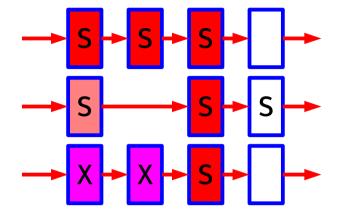
Face & People Detection (1993-now)

- Supervised ConvNet on pixels (93, 94, 05, 07)
- Selected Haar features + Adaboost (2001)
- Unsup+Sup ConvNet on raw pixels (2011)

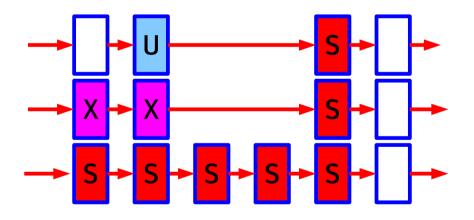
Object Recognition

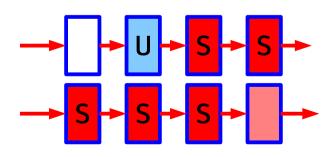
- SIFT/HoG+sparse+SVM (2005, 2006)
- unsup+sup convnet (2009, 2010)
- supervised convnet (2012)

Semantic Segmentation / scene labeling
 unsup mid-lvl, CRF (2009, 10, 11, 12)
 supervised convnet (2008, 12, 13)



Y LeCun





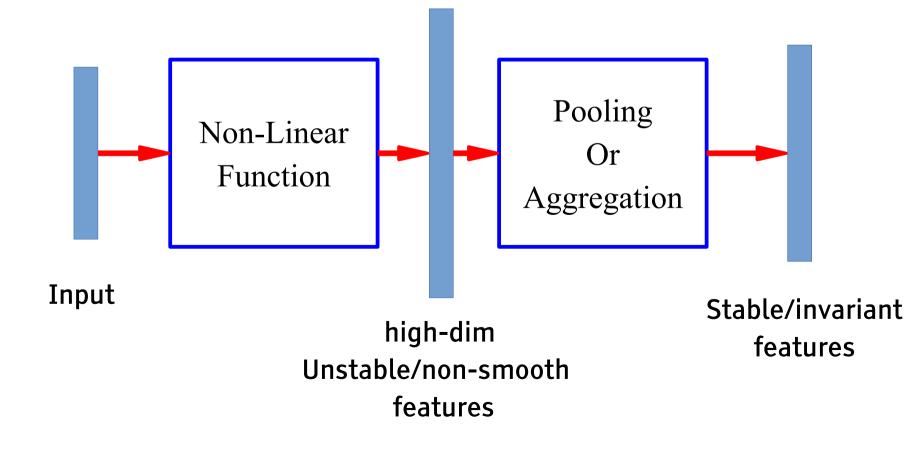
Basic Modules for Feature Learning

Embed the input non-linearly into a high(er) dimensional space

In the new space, things that were non separable may become separable

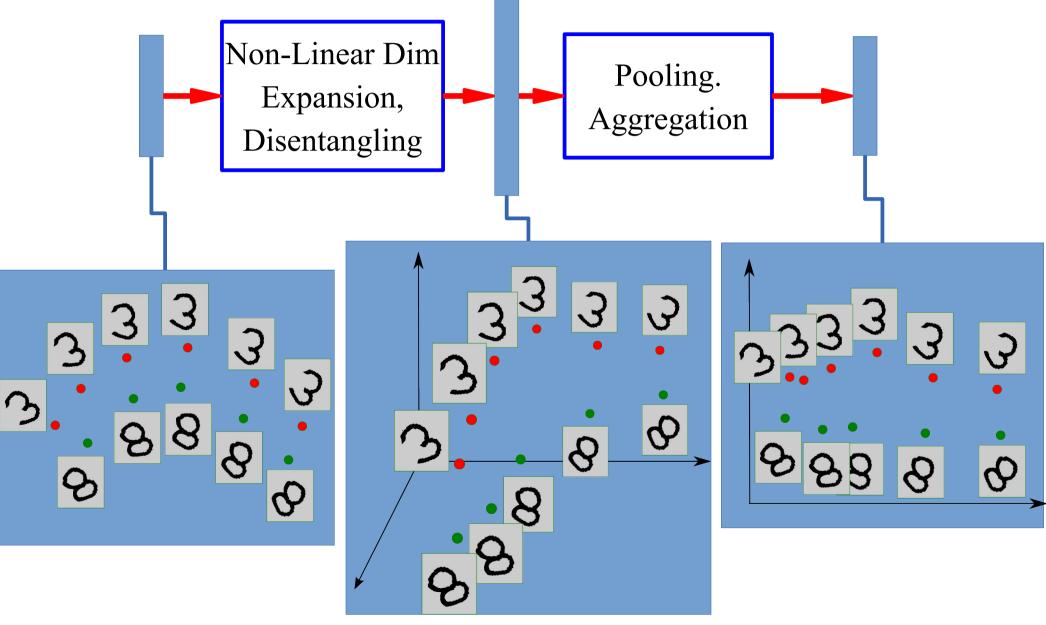
Pool regions of the new space together

Bringing together things that are semantically similar. Like pooling.



Non-Linear Expansion \rightarrow Pooling

Entangled data manifolds

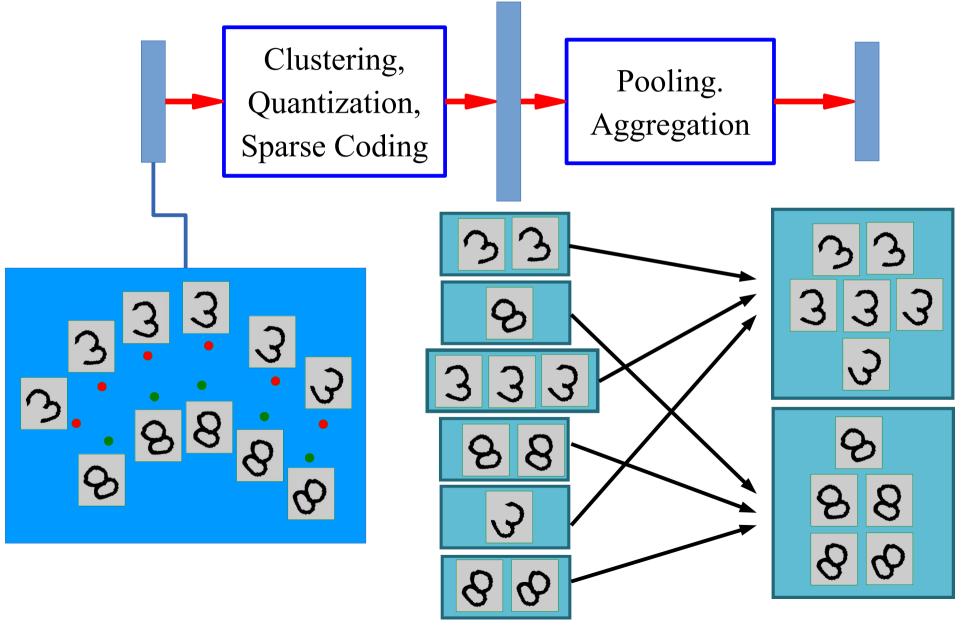


Y LeCun

Sparse Non-Linear Expansion -> Pooling

Y LeCun

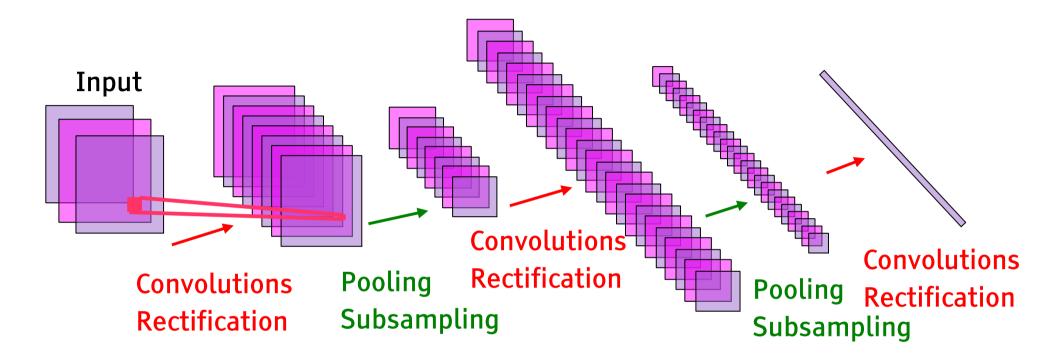
Use clustering to break things apart, pool together similar things



Convolutional Networks

Convolutional Network (ConvNet)

Y LeCun



Non-Linearity: half-wave rectification: out = max(0, in)

- Pooling: max, L2 norm, Lp norm....
- Training:
 - Supervised (1988-2006),
 - Unsupervised+Supervised (2006-now)

Convolutional Nets

Y LeCun

- Are deployed in many commercial applications
 - Check reading: AT&T 1996
 - Handwriting recognition: Microsoft early 2000
 - Face and person detection: NEC 2005
 - Gender and age recognition: NEC 2010
 - Photo tagging: Google and Baidu 2013
- Have won several competitions
 - ImageNet LSVRC, Kaggle Facial Expression, Kaggle Multimodal Learning, German Traffic Signs, Connectomics, Handwriting....

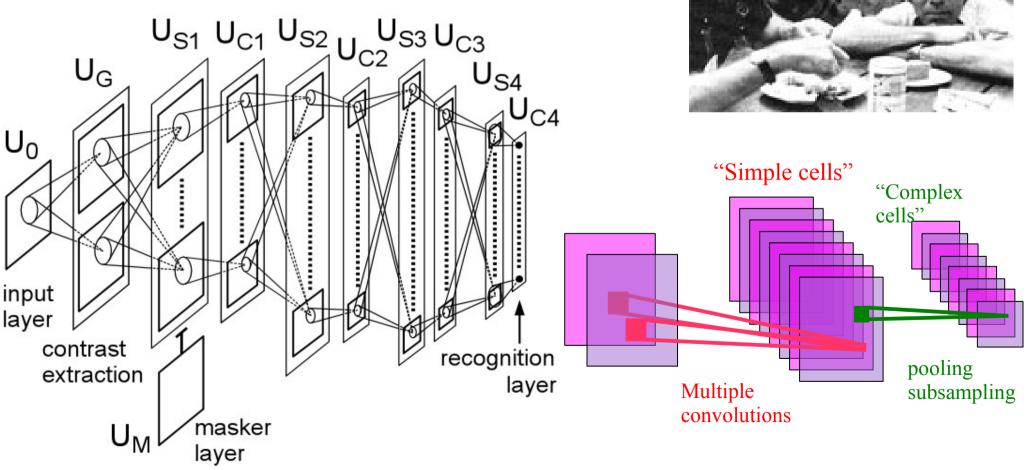
Are applicable to array data where nearby values are correlated

- Images, sound, time-frequency representations, video,
- volumetric images, RGB-Depth images,.....
- One of the few deep models that can be trained purely supervised

Early Hierarchical Feature Models for Vision

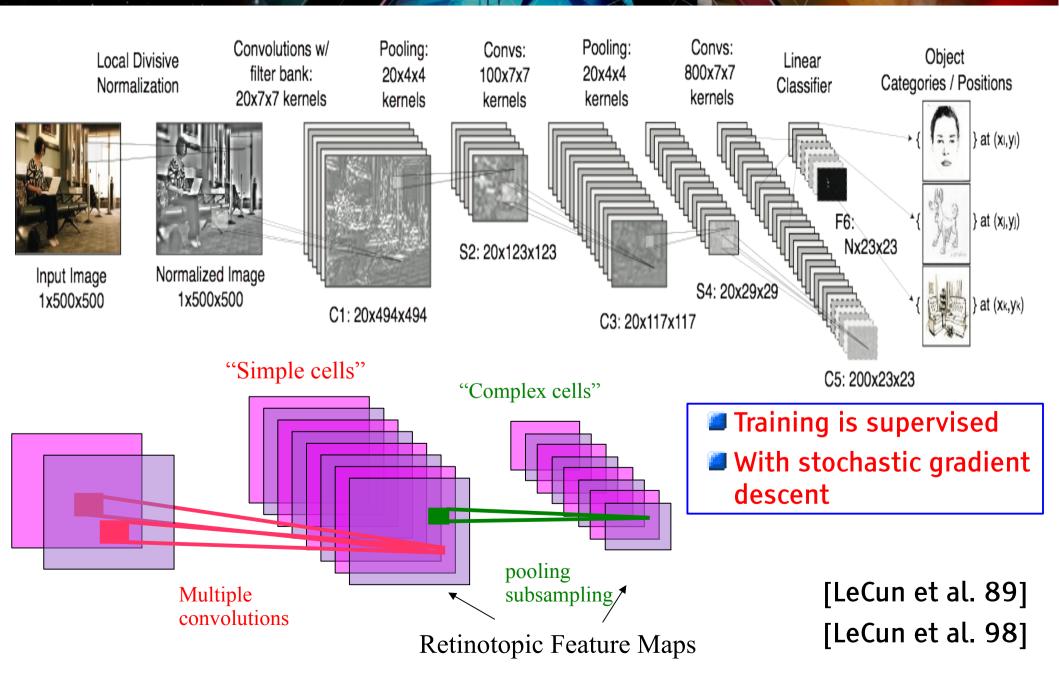
[Hubel & Wiesel 1962]:

- simple cells detect local features
- complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.



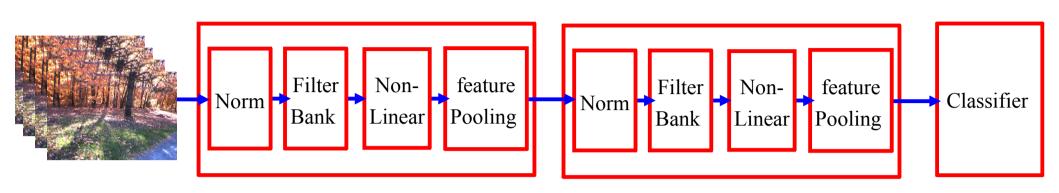
Cognitron & Neocognitron [Fukushima 1974-1982]

The Convolutional Net Model (Multistage Hubel-Wiesel system)



Feature Transform:Normalization \rightarrow Filter Bank \rightarrow Non-Linearity \rightarrow Pooling

Y LeCun



Stacking multiple stages of

▶ [Normalization \rightarrow Filter Bank \rightarrow Non-Linearity \rightarrow Pooling].

Normalization: variations on whitening

- Subtractive: average removal, high pass filtering
- Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis
 Non-Linearity: sparsification, saturation, lateral inhibition....

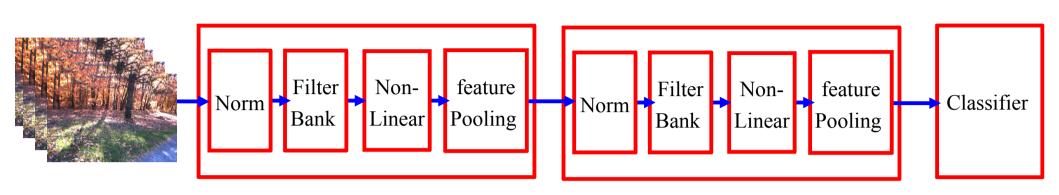
Rectification, Component-wise shrinkage, tanh, winner-takes-all

Pooling: aggregation over space or feature type, subsampling

$$X_i; \quad L_p: \sqrt[p]{X_i^p}; \quad PROB: \frac{1}{b} \log\left(\sum_i e^{bX_i}\right)$$

Feature Transform:Normalization \rightarrow Filter Bank \rightarrow Non-Linearity \rightarrow Pooling

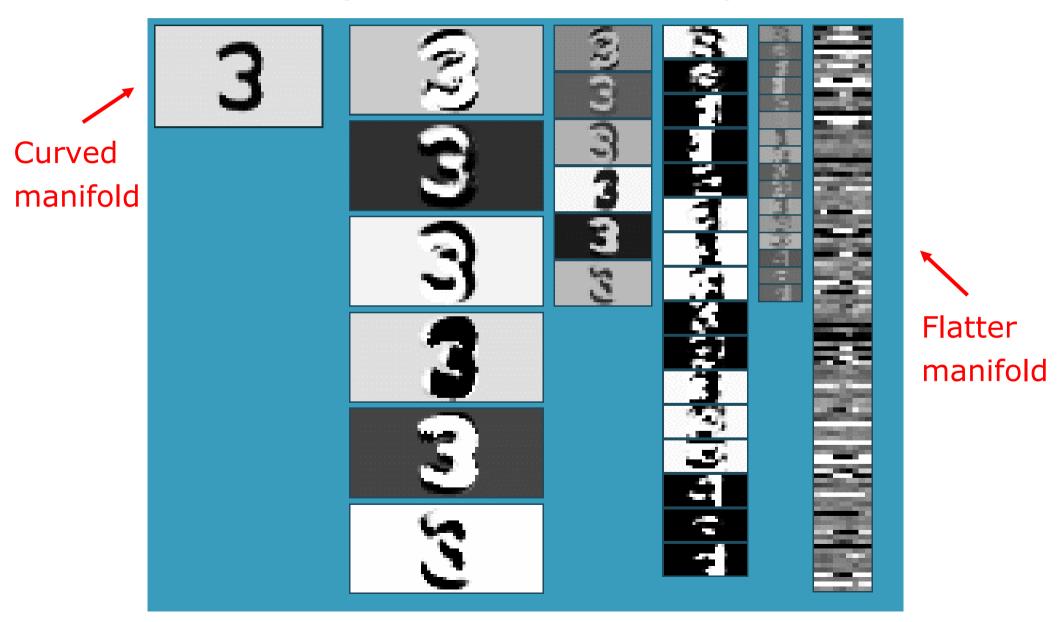
Y LeCun



- Filter Bank → Non-Linearity = Non-linear embedding in high dimension
- Feature Pooling = contraction, dimensionality reduction, smoothing
- Learning the filter banks at every stage
- Creating a hierarchy of features
- Basic elements are inspired by models of the visual (and auditory) cortex
 - Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]
 - Many "traditional" feature extraction methods are based on this
 - SIFT, GIST, HoG, SURF...
- [Fukushima 1974-1982], [LeCun 1988-now],
 - since the mid 2000: Hinton, Seung, Poggio, Ng,....

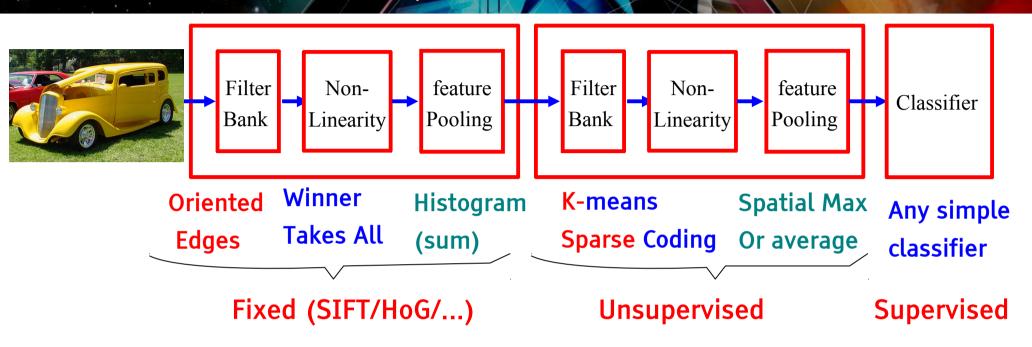
Convolutional Network (vintage 1990)

If iters \rightarrow tanh \rightarrow average-tanh \rightarrow filters \rightarrow tanh \rightarrow average-tanh \rightarrow filters \rightarrow tanh



"Mainstream" object recognition pipeline 2006-2012 is not very different from ConvNets

Y LeCun



Fixed Features + unsupervised mid-level features + simple classifier

- SIFT + Vector Quantization + Pyramid pooling + SVM
 - [Lazebnik et al. CVPR 2006]
- SIFT + Local Sparse Coding Macrofeatures + Pyramid pooling + SVM
 - [Boureau et al. ICCV 2011]
- SIFT + Fisher Vectors + Deformable Parts Pooling + SVM
 - [Perronin et al. 2012]

Tasks for Which Deep Convolutional Nets are the Best

Handwriting recognition MNIST (many), Arabic HWX (IDSIA) OCR in the Wild [2011]: StreetView House Numbers (NYU and others) Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU) Pedestrian Detection [2013]: INRIA datasets and others (NYU) Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT) Human Action Recognition [2011] Hollywood II dataset (Stanford) Object Recognition [2012] ImageNet competition Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona (NYU) Scene parsing from depth images [2013] NYU RGB-D dataset (NYU) Speech Recognition [2012] Acoustic modeling (IBM and Google) Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

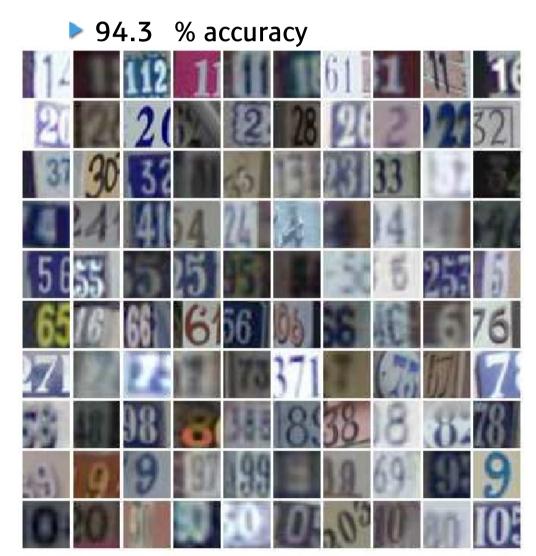
The list of perceptual tasks for which ConvNets hold the record is growing.Most of these tasks (but not all) use purely supervised convnets.

Simple ConvNet Applications with State-of-the-Art Performance

- Traffic Sign Recognition (GTSRB)
 German Traffic Sign Reco Bench
 - 99.2% accuracy

House Number Recognition (Google)

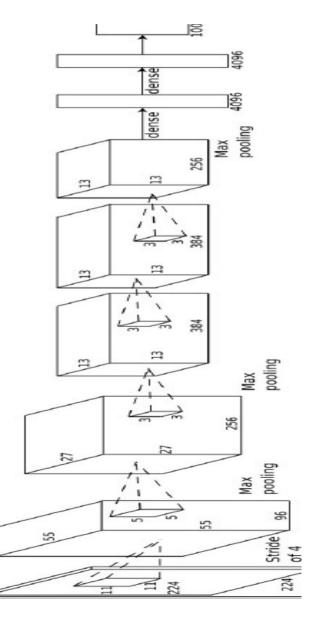
Street View House Numbers



Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

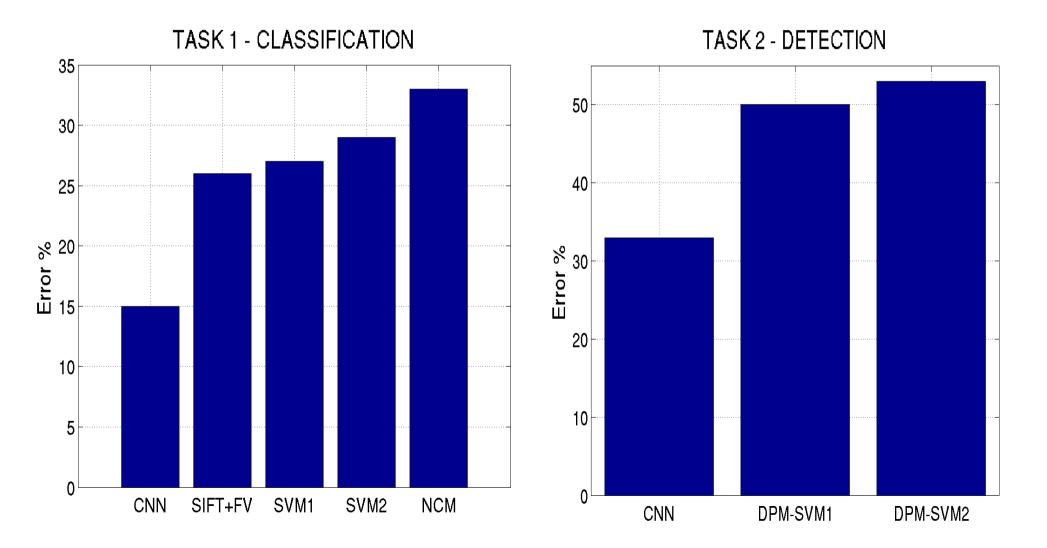
Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops

4M	FULL CONNECT	4Mflop
16M	FULL 4096/ReLU	16M
37M	FULL 4096/ReLU	37M
	MAX POOLING	
442K	CONV 3x3/ReLU 256fm	74M
1.3M	CONV 3x3ReLU 384fm	224M
884K	CONV 3x3/ReLU 384fm	149M
	MAX POOLING 2x2sub	
	LOCAL CONTRAST NORM	
307K	CONV 11x11/ReLU 256fm	223M
	MAX POOL 2x2sub	
	LOCAL CONTRAST NORM	
35K	CONV 11x11/ReLU 96fm	105M



Object Recognition: ILSVRC 2012 results

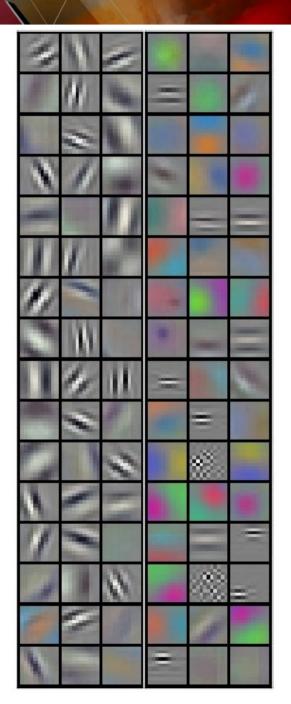
ImageNet Large Scale Visual Recognition Challenge
 1000 categories, 1.5 Million labeled training samples



Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Method: large convolutional net

- 650K neurons, 832M synapses, 60M parameters
- Trained with backprop on GPU
- Trained "with all the tricks Yann came up with in the last 20 years, plus dropout" (Hinton, NIPS 2012)
- Rectification, contrast normalization,...
- Error rate: 15% (whenever correct class isn't in top 5)
 Previous state of the art: 25% error
- Has changed many people's opinion of ConvNets in the vision community.
- Acquired by Google in Jan 2013
 Deployed in Google+ Photo Tagging in May 2013



Object Recognition [Krizhevski, Sutskever, Hinton 2012]

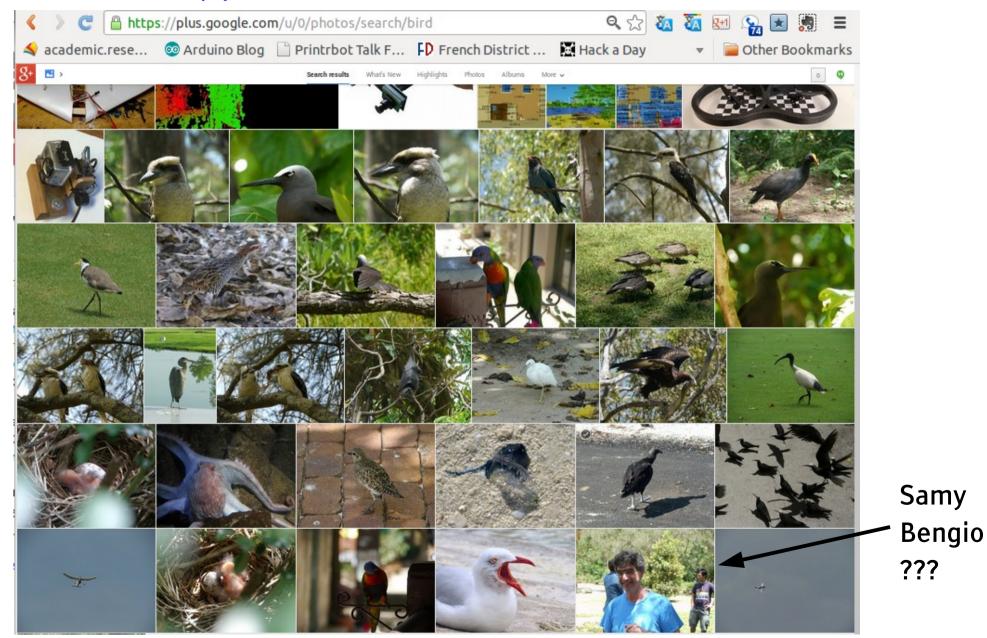
Y LeCun

leopard	motor scooter	container ship	mite
leopard	motor scooter	container ship	mite
jaguar	go-kart	lifeboat	black widow
cheetah	moped	amphibian	cockroach
snow leopard	bumper car	fireboat	tick
Egyptian cat	golfcart	drilling platform	starfish
A REAL PROPERTY AND A REAL PROPERTY A REAL PRO			CONTRACTOR OF A DESCRIPTION OF A DESCRIP

grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

ConvNet-Based Google+ Photo Tagger

Searched my personal collection for "bird"



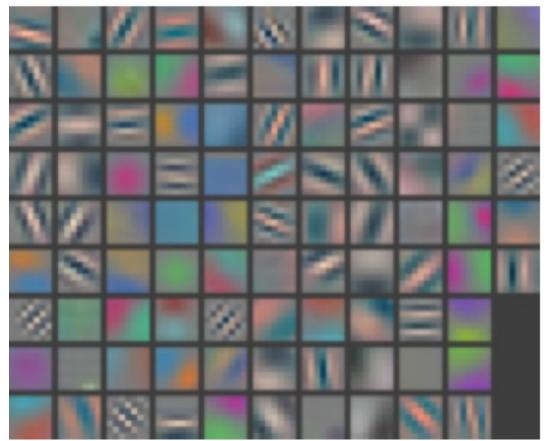
Another ImageNet-trained ConvNet [Zeiler & Fergus ^{Y LeCun} 2013]

Convolutional Net with 8 layers, input is 224x224 pixels

- conv-pool-conv-pool-conv-conv-conv-full-full
- Rectified-Linear Units (ReLU): y = max(0,x)
- Divisive contrast normalization across features [Jarrett et al. ICCV 2009]

Trained on ImageNet 2012 training set

- 1.3M images, 1000 classes
- 10 different crops/flips per image
- Regularization: Dropout
 - [Hinton 2012]
 - zeroing random subsets of units
- Stochastic gradient descent
 - for 70 epochs (7-10 days)
 - With learning rate annealing



Object Recognition on-line demo [Zeiler & Fergus 2013]

http://horatio.cs.nyu.edu

主 🐘 🖃
r Bookmarks
۳ NYU
mes
Ξ
er

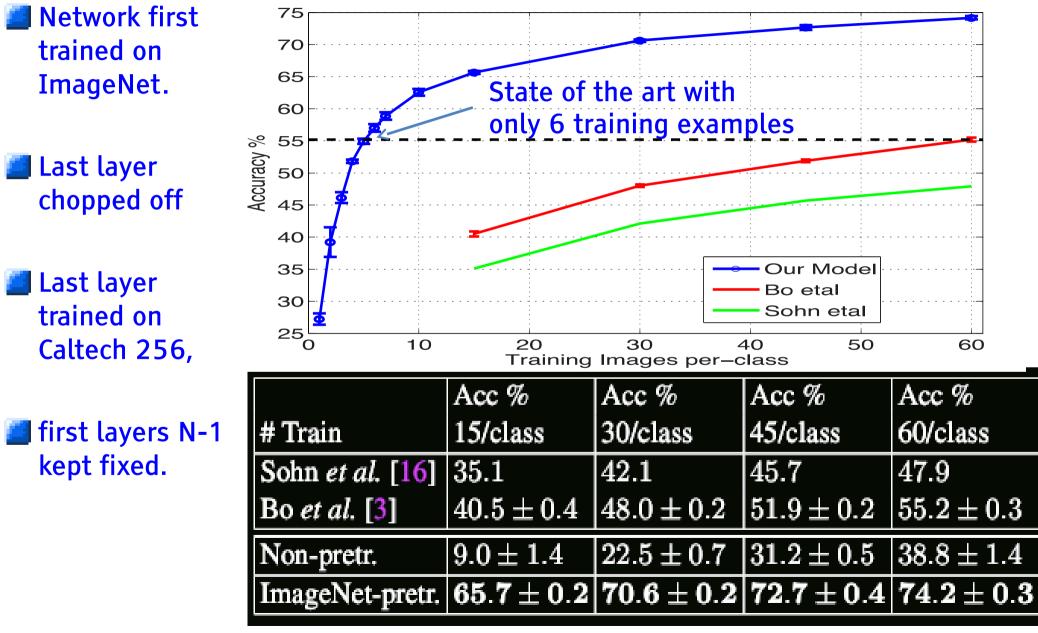
-

ConvNet trained ImageNet [Zeiler & Fergus 2013]

	Val	Val	Test
Error %	Top-1	Top-5	Top-5
Deng et al. SIFT + FV [7]	——		26.2
Krizhevsky et al. [12], 1 convnet	40.7	18.2	
Krizhevsky et al. [12], 5 convnets	38.1	16.4	16.4
*Krizhevsky et al. [12], 1 convnets	39.0	16.6	
*Krizhevsky et al. [12], 7 convnets	36.7	15.4	15.3
Our replication of [12], 1 convnet	41.7	19.0	
1 convnet - our model	38.4 ± 0.05	16.5 ± 0.05	
5 convnets - our model (a)	36.7	15.3	15.3
1 convnet - tweaked model (b)	37.5	16.0	16.1
6 convnets, (a) & (b) combined	36.0	14.7	14.8

Features are generic: Caltech 256

Y LeCun



3: [Bo, Ren, Fox. CVPR, 2013] 16: [Sohn, Jung, Lee, Hero ICCV 2011]

Features are generic: PASCAL VOC 2012

Network first trained on ImageNet.

Last layer trained on Pascal VOC, keeping N-1 first layers fixed.

Acc %	[15]	[19]	Ours	Acc %	[15]	[19]	Ours
Airplane	92.0	97.3	96.0	Dining table	63.2	77.8	67.7
Bicycle	74.2	84.2	77.1	Dog	68.9	83.0	87.8
Bird	73.0	80.8	88.4	Horse	78.2	87.5	86.0
Boat	77.5	85.3	85.5	Motorbike	81.0	90.1	85.1
Bottle	54.3	60.8	55.8	Person	91.6	95.0	90.9
Bus	85.2	89.9	85.8	Potted plant	55.9	57.8	52.2
Car	81.9	86.8	78.6	Sheep	69.4	79.2	83.6
Cat	76.4	89.3	91.2	Sofa	65.4	73.4	61.1
Chair	65.2	75.4	65.0	Train	86.7	94.5	91.8
Cow	63.2	77.8	74.4	Tv/monitor	77.4	80.7	76.1
Mean	74.3	82.2	79.0	# won	0	15	5

[15] K. Sande, J. Uijlings, C. Snoek, and A. Smeulders. Hybrid coding for selective search. In PASCAL VOC Classification Challenge 2012,

[19] S. Yan, J. Dong, Q. Chen, Z. Song, Y. Pan, W. Xia, Z. Huang, Y. Hua, and S. Shen. Generalized hierarchical matching for sub-category aware object classification. In PASCAL VOC Classification Challenge 2012

Building a ConvNet Model: Example in Torch7

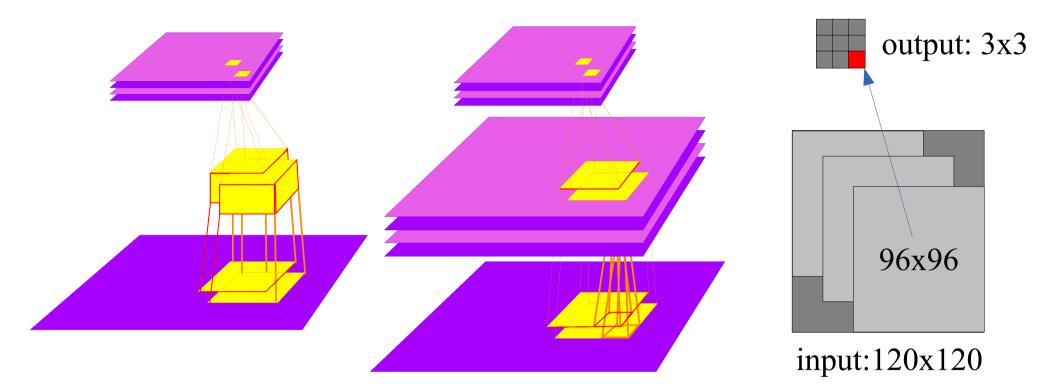
```
model = nn.Sequential()
-- stage 1 : filter bank -> squashing -> L2 pooling -> normalization
model:add(nn.SpatialConvolutionMM(nfeats, nstates[1], filtsiz, filtsiz))
model:add(nn.Tanh())
model:add(nn.SpatialLPPooling(nstates[1],2,poolsiz,poolsiz,poolsiz,poolsiz))
model:add(nn.SpatialSubtractiveNormalization(nstates[1], normkernel))
-- stage 2 : filter bank -> squashing -> L2 pooling -> normalization
model:add(nn.SpatialConvolutionMM(nstates[1],nstates[2],filtsiz,filtsiz))
model:add(nn.Tanh())
model:add(nn.SpatialLPPooling(nstates[2],2,poolsiz,poolsiz,poolsiz,poolsiz))
model:add(nn.SpatialSubtractiveNormalization(nstates[2], normkernel))
-- stage 3 : 2 fully-connected layers
model:add(nn.Reshape(nstates[2]*filtsize*filtsize))
model:add(nn.Linear(nstates[2]*filtsize*filtsize, nstates[3]))
model:add(nn.Tanh())
model:add(nn.Linear(nstates[3], noutputs))
```

- http://www.torch.ch (Torch7: Lua-based dev environment for ML, CV....)
- http://code.cogbits.com/wiki/doku.php (Torch7 tutorials/demos by C. Farabet)
- http://eblearn.sf.net (C++ Library with convnet support by P. Sermanet)

Convolutional Networks For Semantic Segmentation, Scene Labeling/parsing

Applying a ConvNet on Sliding Windows is Very Cheap!

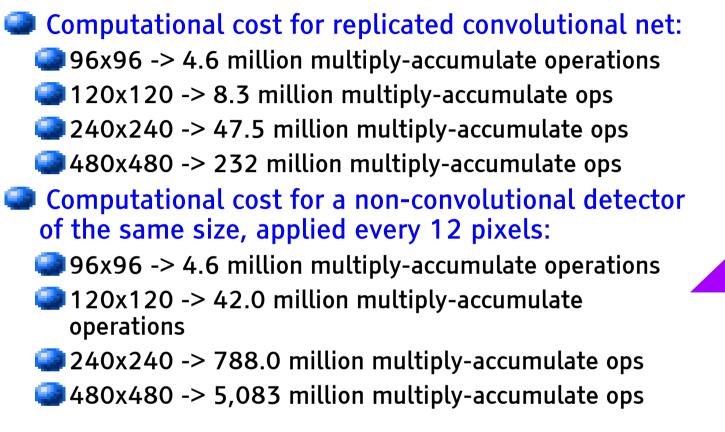
Y LeCun

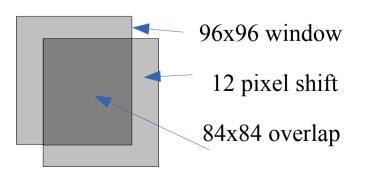


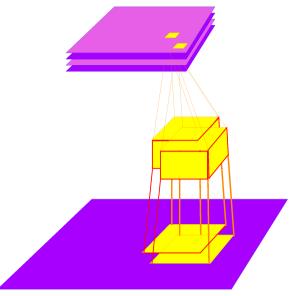
- Traditional Detectors/Classifiers must be applied to every location on a large input image, at multiple scales.
- Convolutional nets can be applied to large images very cheaply.

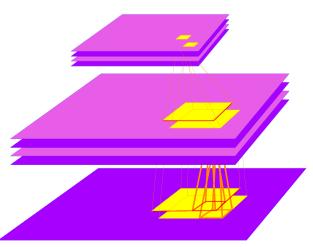
The network can be applied to multiple scales every half octave

Building a Detector/Recognizer: Replicated Convolutional Nets









ConvNets for Pedestrian Detection, Face Detection

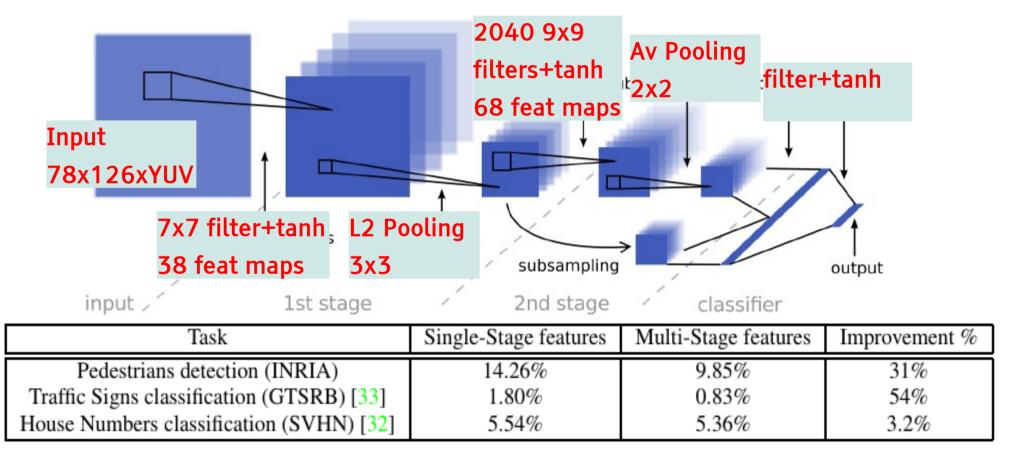
Y LeCun

Face [Vaillant et al IEE 1994] [Garcia et al PAMI 2005] [Osadchy et al JMLR 2007] Pedestrian: [Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]

ConvNet Architecture with Multi-Stage Features for Object Detection

Y LeCun

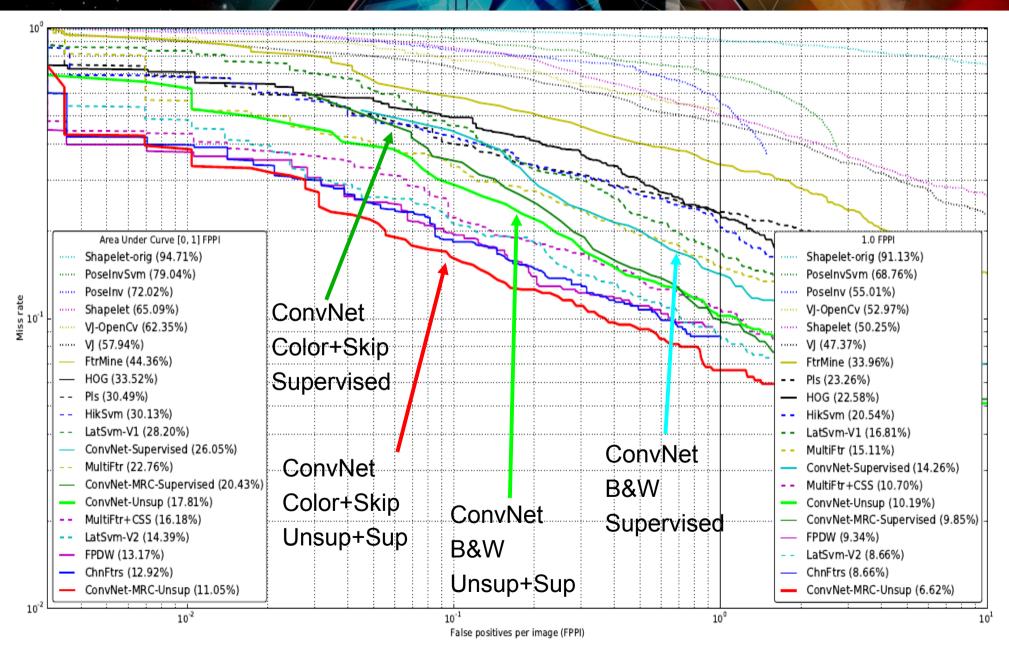
- Feature maps from all stages are pooled/subsampled and sent to the final classification layers
 - Pooled low-level features: good for textures and local motifs
 - High-level features: good for "gestalt" and global shape



[Sermanet, Chintala, LeCun CVPR 2013]

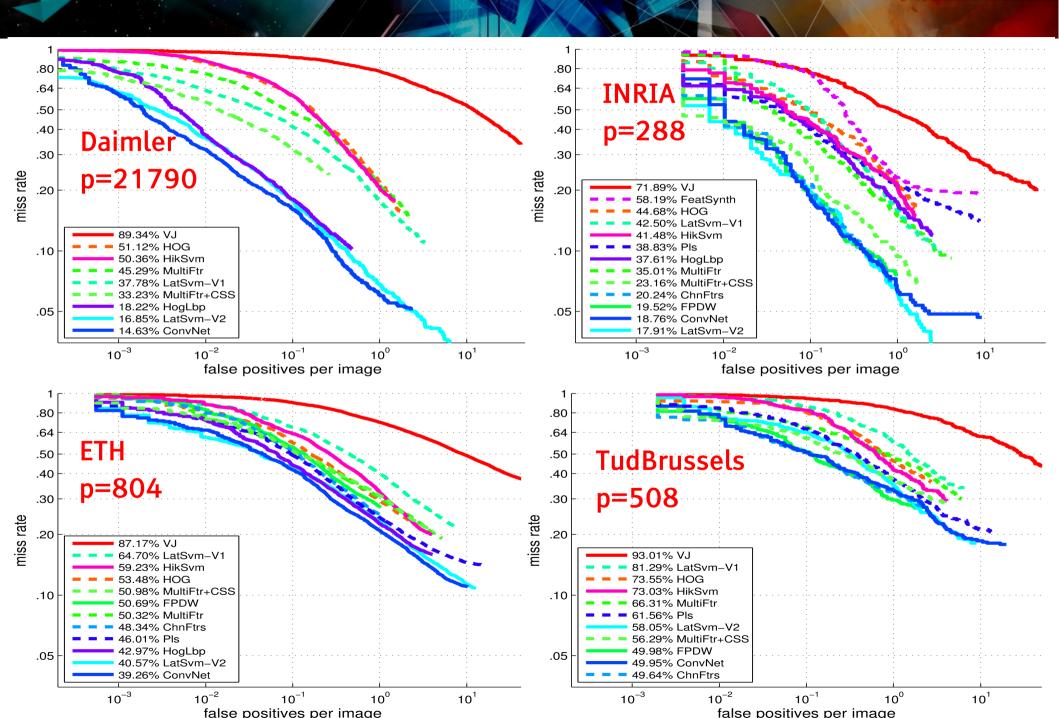
Y LeCun

Pedestrian Detection: INRIA Dataset. Miss rate vs false positives

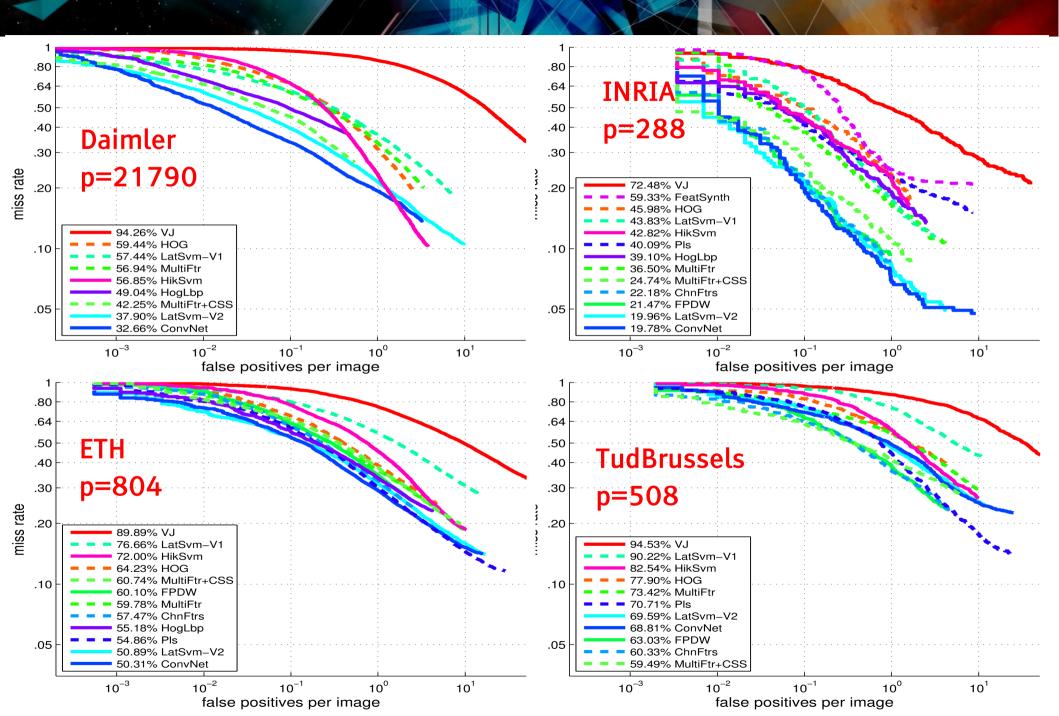


[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

Results on "Near Scale" Images (>80 pixels tall, no occlusions)

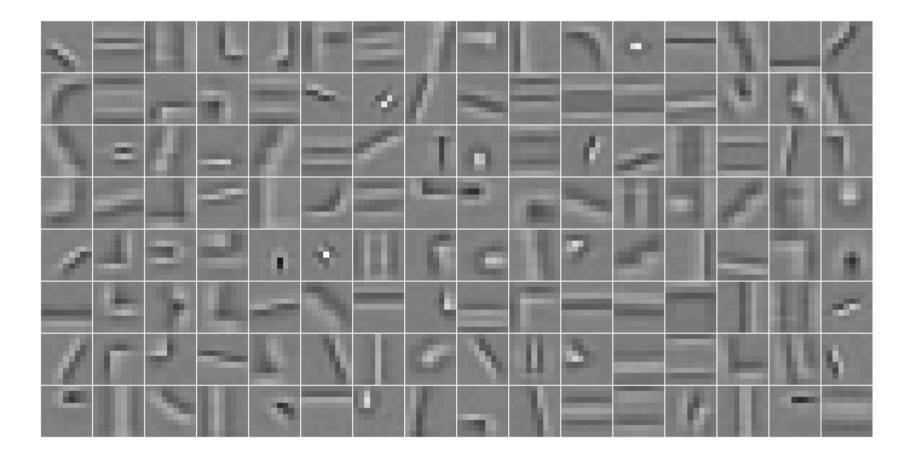


Results on "Reasonable" Images (>50 pixels tall, few occlusions)



Unsupervised pre-training with convolutional PSD

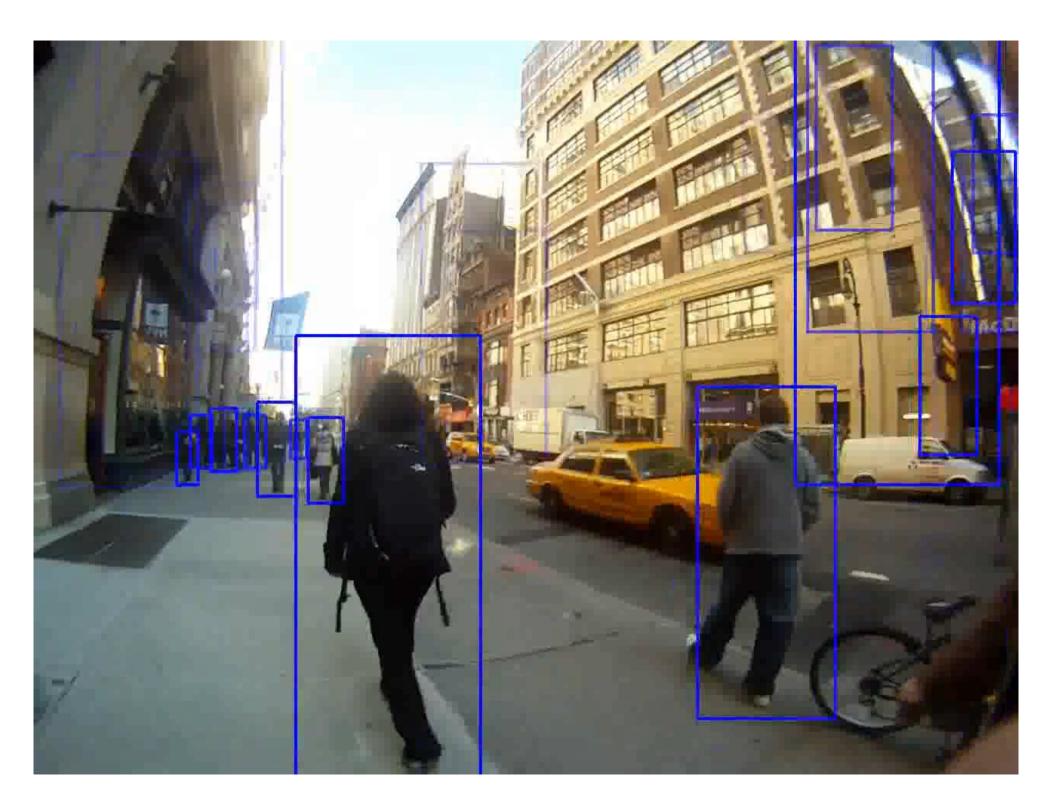
- 128 stage-1 filters on Y channel.
- Unsupervised training with convolutional predictive sparse decomposition



Unsupervised pre-training with convolutional PSD

- Stage 2 filters.
- Unsupervised training with convolutional predictive sparse decomposition

•	S.			8	8		4	a.	2	1	ě.	8	÷	-	8	10	8	8	88		E.	E.	х,		
Υ.	\mathcal{O}_{1}	8	10	3	а,			5		82	12		e,	÷.	4	×.	÷.	3	145	-		2	P	Ξ.	14.
28	51	¥.	15	H	2	3	۳.	8	2	2		¥.	8	2	2	5	-	Ξ.	\mathbf{S}_{i}	24	8		*	8	Υ.
	\mathbf{x}_{i}	8	х.	ê	e.	÷			6	\mathbf{z}_{i}	e.	5	6	æ.	2	Υ.	×.	Ξ.		6	æ,		\mathbf{e}	γ.	*
	10	12	13		24	10	T.		Ζ.	24	۰.	8	2	Υ.	٤.	ъ.	18	14	0.1	-	25	۰.	21	25	2
3	2	10		-	-		3	٩.	а			1	к.		9		20	2	2		6	6	4		1
	π.					÷.		1	×.	-	5	3	10	1	-	10	2	ê.		н		15	1	2	
-	Ji.	8	1	2	÷.	ē,	康	ξ.	2		\mathbf{P}_{i}	8			II	н.	1	I.	1	۰.	2	ŝ.	×.	8	1
	24			÷.	2	2		10	¥.	12	1		4	6.	5	- 22	8	8	÷.	10	3	Ċ,	4	R	
		6			я.	8	10	1	ŵ.	-	8	х.	16	-	a,		12	11	14	ч.	8	3		3	
1	1						2			10		10	1		18	1	-			19	12				
3	5		12		1	ų		1	1	18	2		0		2	F	3	1	C.	2	1		G	16	9
1				4	4	3.					2	-		2	2		a.			1	-			Ш	-



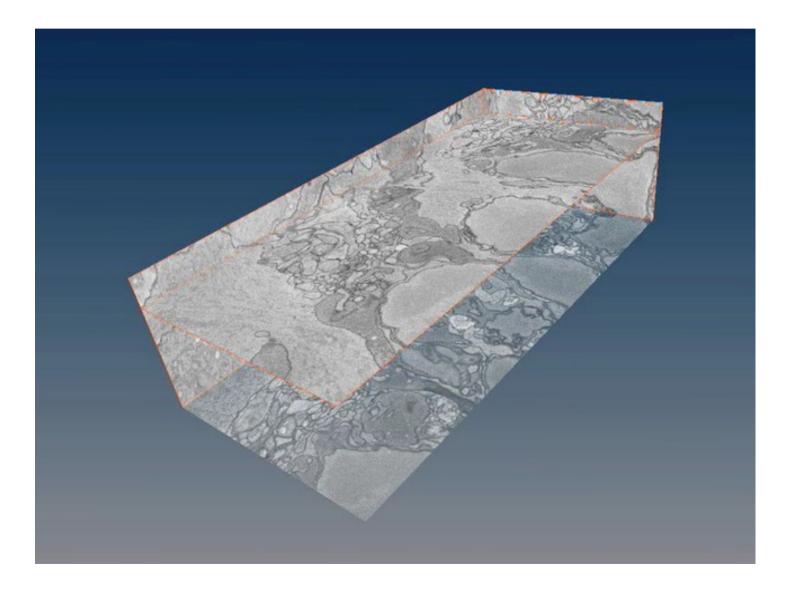
ConvNets for Image Segmentation

Biological Image Segmentation [Ning et al. IEEE-TIP 2005]

Image Labeling for Off-Road Robots [Hadsell JFR 2008]

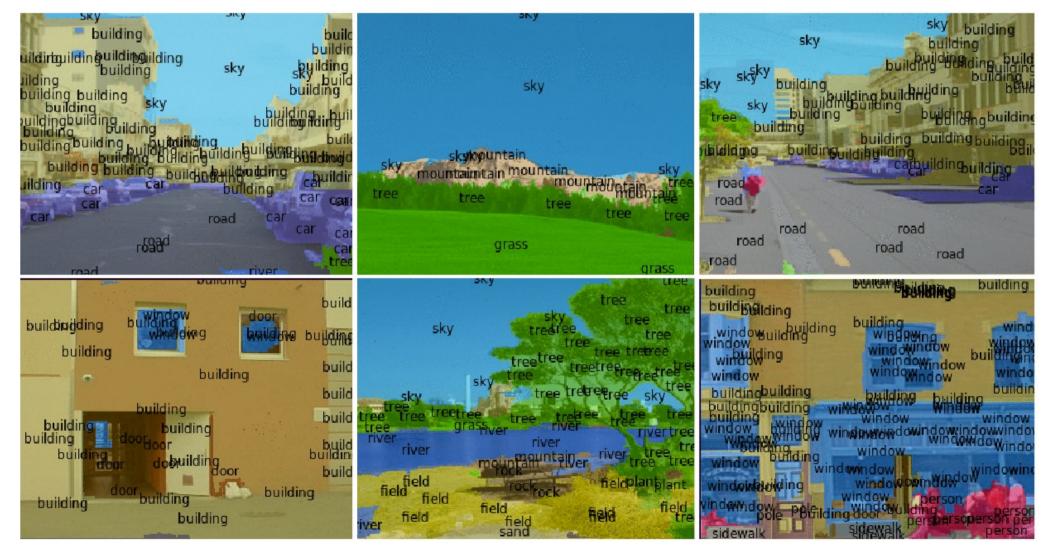
ConvNet in Volumetric Image Segmentation

3D convnet to segment volumetric images [Jain, Turaga, Seung 2007]



Semantic Segmentation

Labeling each pixel with the category of the object it belongs to



[Farabet et al. ICML 2012]

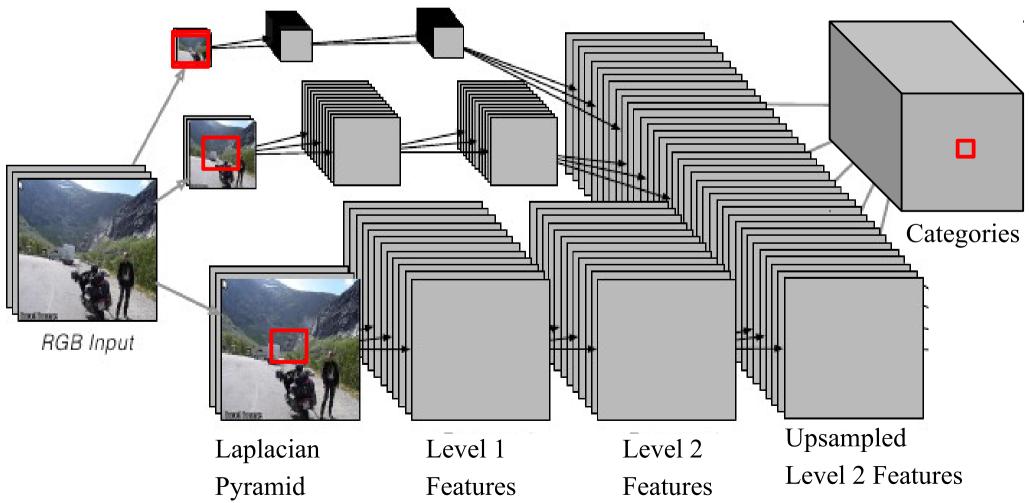
Y LeCun

Scene Parsing/Labeling: ConvNet Architecture

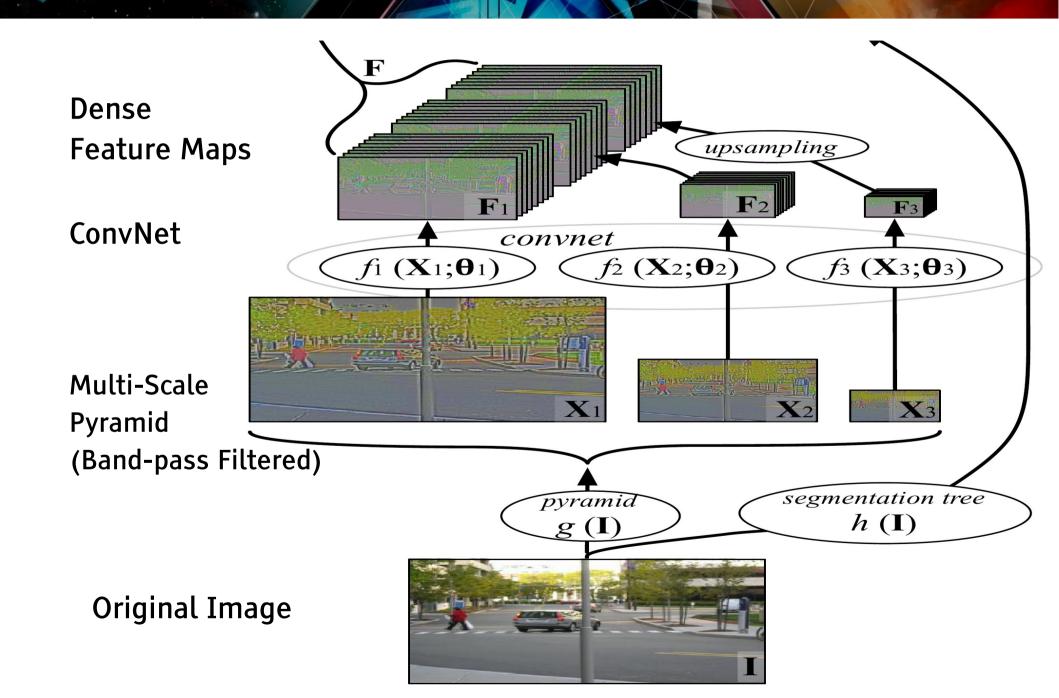
Each output sees a large input context:

- 46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez
- [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

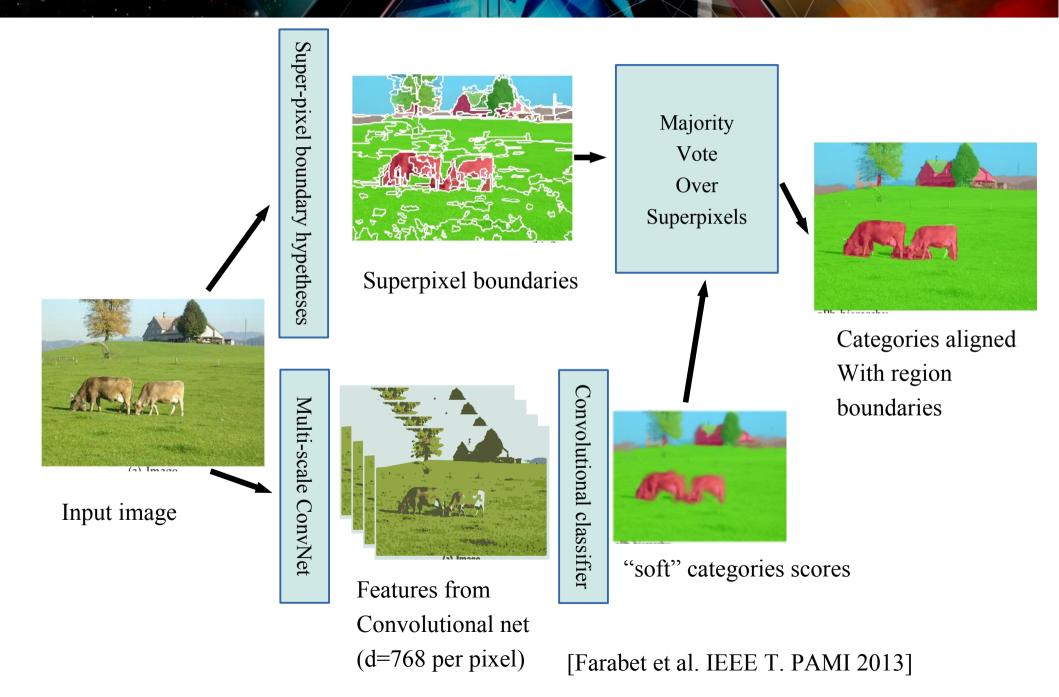
Trained supervised on fully-labeled images



Scene Parsing/Labeling: System Architecture

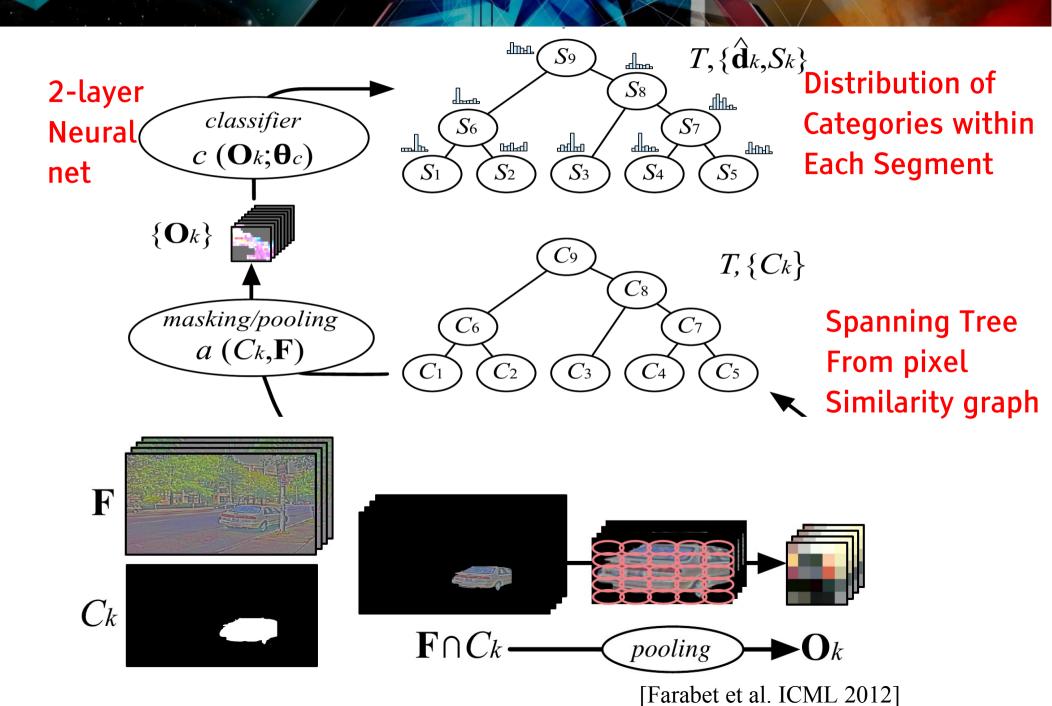


Method 1: majority over super-pixel regions



Y LeCun

Method 2: optimal cover of purity tree



Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

	Pixel Acc.	Class Acc.	CT (sec.)
Gould <i>et al.</i> 2009 [14]	76.4%	-	10 to 600s
Munoz et al. 2010 [32]	76.9%	66.2%	12s
Tighe <i>et al.</i> 2010 [46]	77.5%	-	10 to 300s
Socher <i>et al.</i> 2011 [45]	78.1%	-	?
Kumar <i>et al.</i> 2010 [22]	79.4%	-	< 600s
Lempitzky <i>et al.</i> 2011 [28]	81.9%	72.4%	> 60s
singlescale convnet	66.0 %	56.5 %	0.35s
multiscale convnet	78.8 %	72.4%	0.6s
multiscale net + superpixels	80.4%	74.56%	0.7s
multiscale net + gPb + cover	80.4%	75.24%	61s
multiscale net + CRF on gPb	81.4%	76.0 %	60.5s

[Farabet et al., rejected from CVPR 2012] [Farabet et al. ICML 2012] [Farabet et al. IEEE T. PAMI 2013]

Scene Parsing/Labeling: Performance

		Pixel Acc.	Class Acc.	1 🝙				
Liu et al. 2009 [31]	74.75%	-						
Tighe <i>et al.</i> 2010 [44]		76.9%	29.4%					
raw multiscale net ¹		67.9%	45.9%					
multiscale net + superpixels	,1	71.9%	50.8%					
multiscale net + $cover^1$		72.3%	50.8%					
multiscale net + $cover^2$		78.5%	29.6%					
				Pixe				
		Tighe et al. 2	2010 [44]	66.				
🗃 Deveelene deteest		raw multise	ale net ¹	37.				
Barcelona dataset [Tighe 2010]:	m	44						
170 categories.		multiscale ne	$t + cover^1$	46.				
			3					

SIFT Flow Dataset

ILiu 2009]:

33 categories

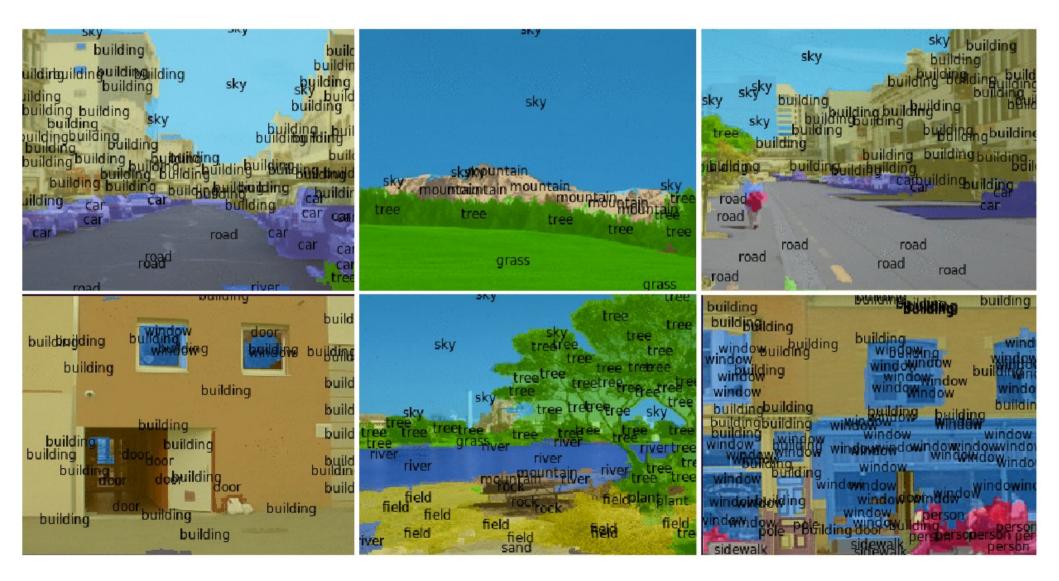
	Pixel Acc.	Class Acc.
Tighe <i>et al.</i> 2010 [44]	66.9%	7.6%
raw multiscale net ¹	37.8%	12.1 %
multiscale net + superpixels ¹	44.1%	12.4 %
multiscale net + cover ¹	46.4%	12.5 %
multiscale net + cover ²	67.8 %	9.5 %

[Farabet et al., rejected from CVPR 2012]

[Farabet et al. ICML 2012] [Farabet et al. IEEE T. PAMI 2013]

Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

Samples from the SIFT-Flow dataset (Liu)

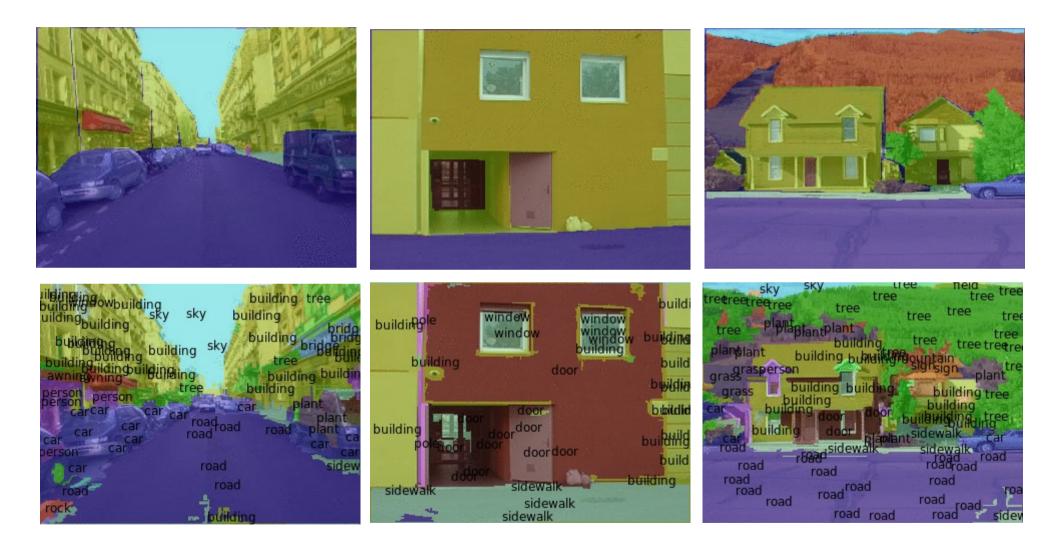


[Farabet et al. ICML 2012]

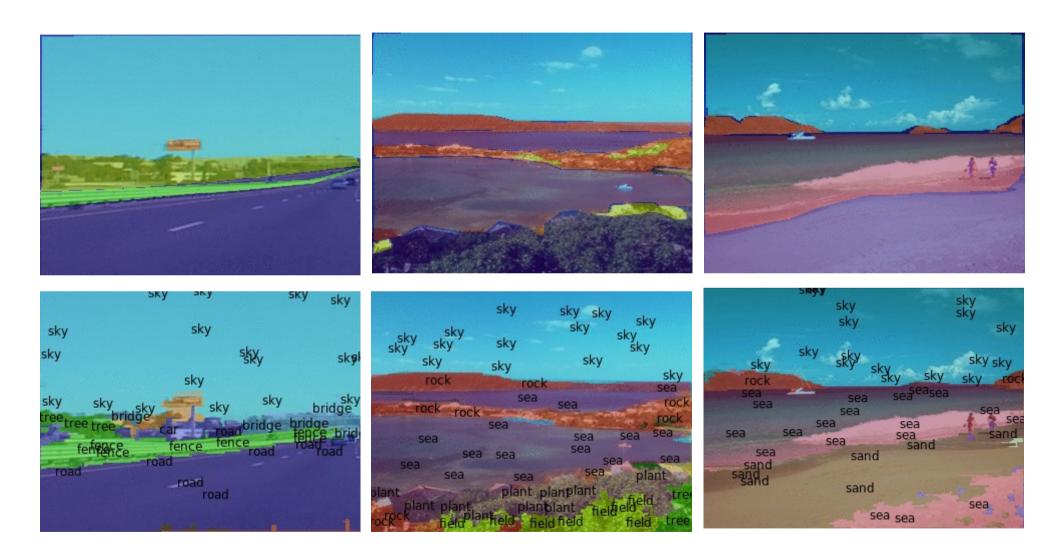
Scene Parsing/Labeling: SIFT Flow dataset (33 categories)



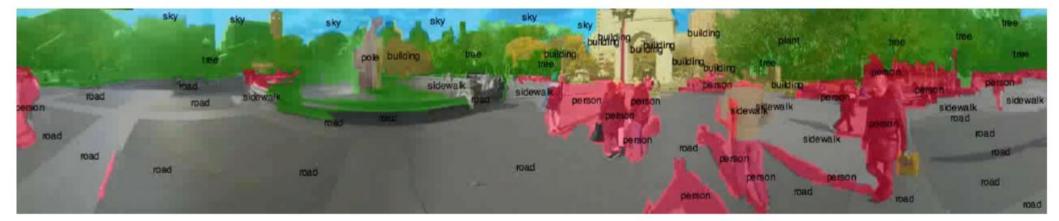
[Farabet et al. ICML 2012]



[Farabet et al. ICML 2012]



[Farabet et al. ICML 2012]



[Farabet et al. 2012]



[Farabet et al. 2012]

Y LeCun

- No post-processing
- Frame-by-frame

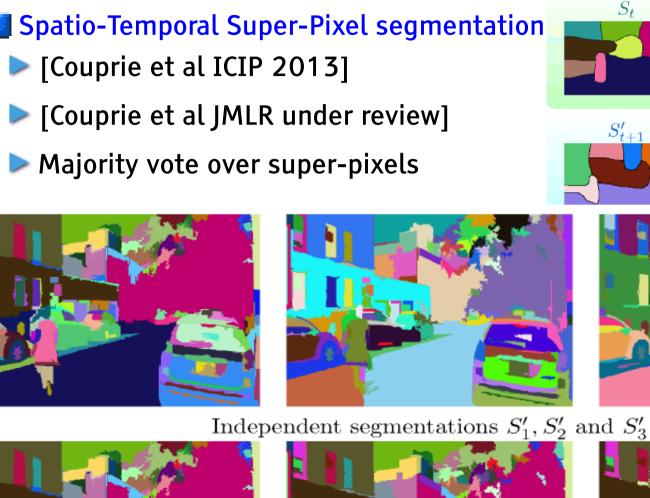
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

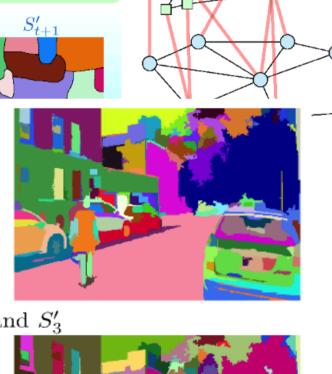
But communicating the features over ethernet limits system perf.

Y LeCun

Temporal Consistency

 S_t





Temporally consistent segmentations $S_1(=S'_1), S_2$, and S_3

Scene Parsing/Labeling: Temporal Consistency

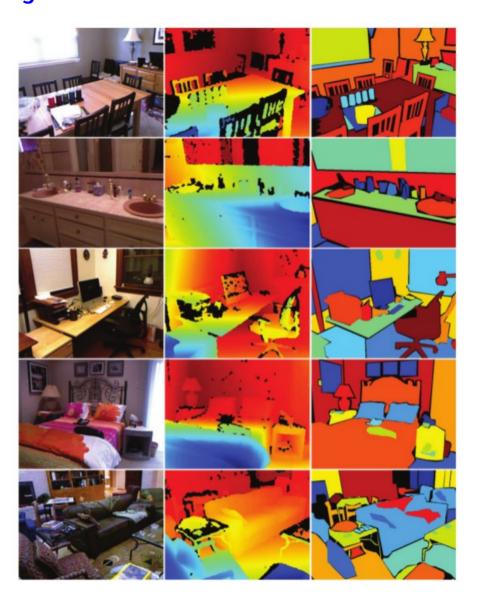
Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICIP 2013]

NYU RGB-Depth v2: Indoor Scenes Dataset

407024 RGB-D images of apartments 1449 labeled frames, 894 object categories

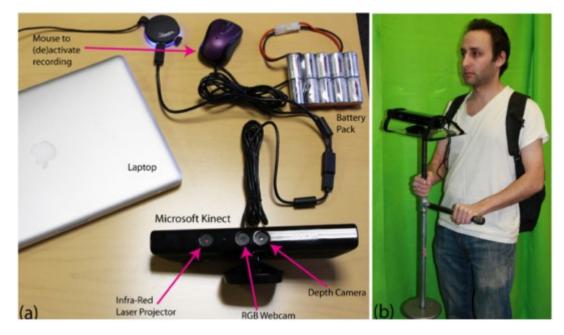
[Silberman et al. 2012]

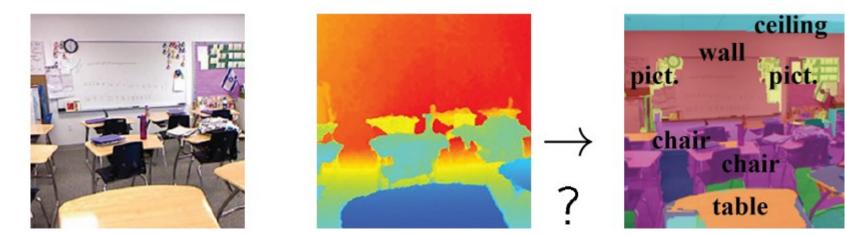


NYU RGB-D Dataset

Y LeCun

Captured with a Kinect on a steadycam





Results

	Class	Multiscale	MultiScl. Cnet
	Occurrences	Convnet Acc. Farabet et al. (2013)	+depth Acc.
bed	4.4%	30.3	38.1
objects	7.1~%	10.9	8.7
chair	3.4%	44.4	34.1
furnit.	12.3%	28.5	42.4
ceiling	1.4%	33.2	62.6
floor	9.9%	68.0	87.3
deco.	3.4%	38.5	40.4
sofa	3.2%	25.8	24.6
table	3.7%	18.0	10.2
wall	24.5%	89.4	86.1
window	5.1%	37.8	15.9
books	2.9%	31.7	13.7
TV	1.0%	18.8	6.0
unkn.	17.8%	-	-
Avg. Class Acc.	-	35.8	36.2
Pixel Accuracy (mean)	-	51.0	52.4
Pixel Accuracy (median)	-	51.7	52.9
Pixel Accuracy (std. dev.)	-	15.2	15.2

Results

Y LeCun

Depth helps a bit

- Helps a lot for floor and props
- Helps surprisingly little for structures, and hurts for furniture

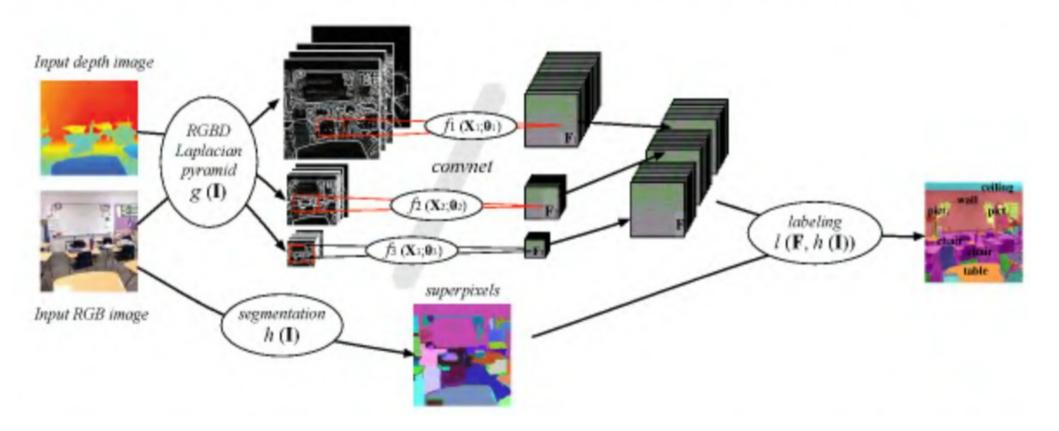
	Ground	Furniture	Props	Structure	Class	Pixel	Comput.
					Acc.	Acc.	time (s)
Silberman et al. (2012)	68	70	42	59	59.6	58.6	>3
Cadena and Kosecka (2013)	87.9	64.1	31.0	77.8	65.2	66.9	1.7
Multiscale convnet	68.1	51.1	29.9	87.8	59.2	63.0	0.7
Multiscale+depth convnet	87.3	45.3	35.5	86.1	63.5	64.5	0.7

[C. Cadena, J. Kosecka "Semantic Parsing for Priming Object Detection in RGB-D Scenes" Semantic Perception Mapping and Exploration (SPME), Karlsruhe 2013]

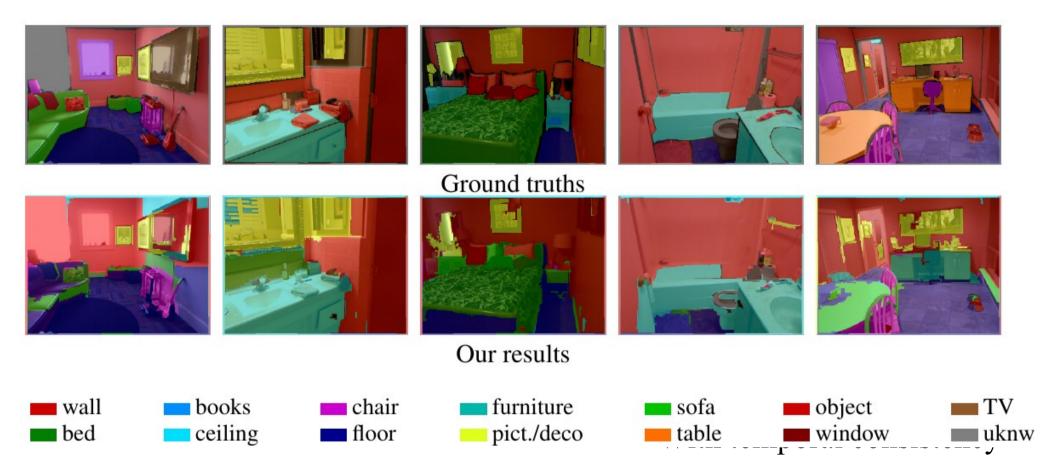
Architecture for indoor RGB-D Semantic Segmentation

Similar to outdoors semantic segmentation method

- Convnet with 4 input channels
- Vote over superpixels

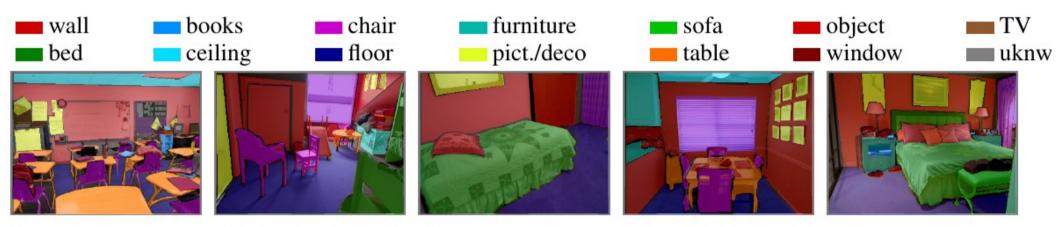


Scene Parsing/Labeling on RGB+Depth Images



[Couprie, Farabet, Najman, LeCun ICLR 2013]

Scene Parsing/Labeling on RGB+Depth Images



Ground truths

Our results

[Couprie, Farabet, Najman, LeCun ICLR 2013]

Labeling Videos

Y LeCun

Temporal consistency

(a) Output of the Multiscale convnet trained using depth information - frame by frame

(b) Results smoothed temporally using Couprie et al. (2013a)

[Couprie, Farabet, Najman, LeCun ICLR 2013] [Couprie, Farabet, Najman, LeCun ICIP 2013] [Couprie, Farabet, Najman, LeCun submitted to JMLR]

Semantic Segmentation on RGB+D Images and Videos

Y LeCun

[Couprie, Farabet, Najman, LeCun ICIP 2013]

Backprop in Practice

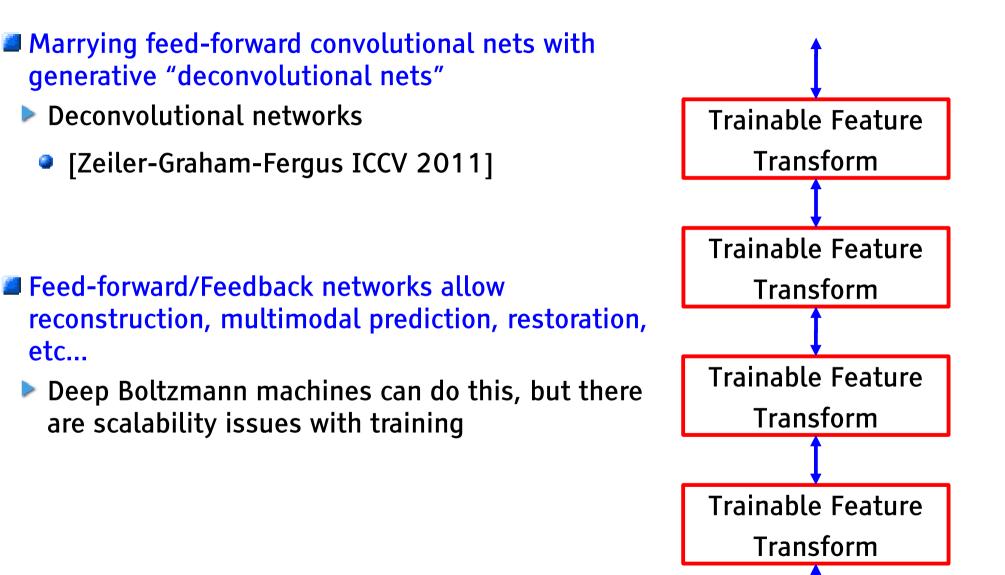
- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
 - But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
 - Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Challenges

Future Challenges

- Integrated feed-forward and feedback
 - Deep Boltzmann machine do this, but there are issues of scalability.
- Integrating supervised and unsupervised learning in a single algorithm
 - Again, deep Boltzmann machines do this, but....
- Integrating deep learning and structured prediction ("reasoning")
 - This has been around since the 1990's but needs to be revived
- Learning representations for complex reasoning
 - "recursive" networks that operate on vector space representations of knowledge [Pollack 90's] [Bottou 2010] [Socher, Manning, Ng 2011]
- Representation learning in natural language processing
 - [Y. Bengio 01], [Collobert Weston 10], [Mnih Hinton 11] [Socher 12]
- Better theoretical understanding of deep learning and convolutional nets
 - e.g. Stephane Mallat's "scattering transform", work on the sparse representations from the applied math community....

Integrating Feed-Forward and Feedback



Integrating Deep Learning and Structured Prediction

- Integrating deep learning and structured prediction is a very old idea
 - In fact, it predates structured prediction
- Globally-trained convolutional-net + graphical models
 - trained discriminatively at the word level
 - Loss identical to CRF and structured perceptron
 - Compositional movable parts model
- A system like this was reading 10 to 20% of all the checks in the US around 1998

[LeCun, Bottou, Bengio, Haffner "Gradient-Based Learning Applied to Document Recognition" Proceedings of the IEEE, 1998]

