
Yann LeCun

 Learning Hierarchies
 of Invariant Features
 Learning Hierarchies
 of Invariant Features

 Yann LeCun
 Courant Institute of Mathematical Sciences

and
 Center for Neural Science,

 New York University

 Yann LeCun
 Courant Institute of Mathematical Sciences

and
 Center for Neural Science,

 New York University

Yann LeCun

Challenges for Machine Learning, Vision, Signal Processing, AI, NeuroscienceChallenges for Machine Learning, Vision, Signal Processing, AI, Neuroscience

How can learning build a perceptual system?

How do we learn representations of the perceptual world?

In ML/CV/ASR/MIR: How do we learn features (not just classifiers)?

With good representations, we can learn categories from just a few
examples.

ML has neglected the question of learning representations, relying
instead on domain expertise to engineer features and kernels.

Deep Learning addresses the problem of learning representations

Goal 1: biologically-plausible methods for deep learning

Goal 2: representation learning for computer perception

Yann LeCun

Architecture of “Mainstream” SystemsArchitecture of “Mainstream” Systems

Traditional way: handcrafted features + classifier

“Simple” Trainable
Classifier

(hand­crafted)
Feature Extraction

Mainstream Approaches to Image and Speech Recognition

Classifier
(Supervised)

Low­Level
Features
(fixed)
MFCC
SIFT
HoG

Mid­Level
Features

(unsupervised)
Mix of Gaussians

K­means
Sparse Coding

Yann LeCun

Trainable Feature HierarchiesTrainable Feature Hierarchies

Why can't we make all the modules trainable?

Proposed way: hierarchy of trained features

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Classifier/
Predictor

Learned Internal Representation

Yann LeCun

The Mammalian Visual Cortex is HierarchicalThe Mammalian Visual Cortex is Hierarchical

The ventral (recognition) pathway in the visual cortex has multiple stages

Retina - LGN - V1 - V2 - V4 - PIT - AIT

[picture from Simon Thorpe]

[Gallant & Van Essen]

Yann LeCun

Classifier
feature

Pooling

Non­

Linear

Filter

Bank
Norm

Feature Transform =
Normalization → Filter Bank → Non-Linearity → Pooling

Feature Transform =
Normalization → Filter Bank → Non-Linearity → Pooling

Stacking multiple stages of
[Normalization Filter Bank Non-Linearity Pooling].→ → →

Normalization: variations on whitening
Subtractive: average removal, high pass filtering
Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis

Non-Linearity: sparsification, saturation, lateral inhibition....
Component-wise shrinkage or tanh, winner-takes-all

Pooling: aggregation over space or feature type, subsampling

feature

Pooling

Non­

Linear

Filter

Bank
Norm

AVERAGE :
1
K ∑

i

X i ; MAX :Max
i
X i ; L p :

p√X i
p ; PROB :

1
b
log (∑

i

e
b X i)

Yann LeCun

Classifier
feature

Pooling

Non­

Linear

Filter

Bank
Norm

Feature Transform =
Normalization → Filter Bank → Non-Linearity → Pooling

Feature Transform =
Normalization → Filter Bank → Non-Linearity → Pooling

Filter Bank → Non-Linearity = Non-linear embedding in high dimension

Feature Pooling = contraction, dimensionality reduction, smoothing

Learning the filter banks at every stage

Creating a hierarchy of features

Basic elements are inspired by models of the visual (and auditory) cortex
Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]
Many “traditional” feature extraction methods are based on this
SIFT, GIST, HoG, Convolutional networks.....

 [Fukushima 1974-1982], [LeCun 1988-now], [Poggio 2005-now], [Ng
2006-now], many others....

feature

Pooling

Non­

Linear

Filter

Bank
Norm

Yann LeCun

Basic Convolutional Network ArchitectureBasic Convolutional Network Architecture

pooling
subsampling

“Simple cells”
“Complex cells”

Multiple
convolutions

Retinotopic Feature Maps

[LeCun et al. 89]
[LeCun et al. 98]

Yann LeCun

Convolutional Network ArchitectureConvolutional Network Architecture

Yann LeCun

Convolutional Network (ConvNet)Convolutional Network (ConvNet)

input

83x83

Layer 1

64x75x75 Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

Non-Linearity: shrinkage function, tanh

Pooling: L2, average, max, average→tanh

Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

Yann LeCun

Convolutional Network (vintage 1990) Convolutional Network (vintage 1990)

filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh

Yann LeCun

“Mainstream” object recognition pipeline 2006-2010: similar to ConvNets“Mainstream” object recognition pipeline 2006-2010: similar to ConvNets

Fixed low-level Features + unsupervised mid-level features + simple classifier

Example (on Caltech 101 dataset):
SIFT + Vector Quantization + Pyramid pooling + SVM: >65%

[Lazebnik et al. CVPR 2006]

SIFT + Local Sparse Coding Macrofeat. + Pyr/ pooling + SVM: >77%
[Boureau et al. ICCV 2011]

Oriented
 Edges

Winner
Takes
All

Histogram
(sum)

Filter

Bank

feature

Pooling

Non­

Linearity

Filter

Bank

feature

Pooling

Non­

Linearity
Classifier

SIFT

K­means
Or
Sparse Coding

Pyramid
Histogram
(sum)

SVM or
Another
Simple
classifier

Yann LeCun

Other Applications with State-of-the-Art PerformanceOther Applications with State-of-the-Art Performance

Traffic Sign Recognition (GTSRB)
German Traffic Sign Reco Bench
97.2% accuracy

House Number Recognition (Google)
Street View House Numbers
94.8% accuracy

Yann LeCun

ConvNet Architecture with Multi-Stage FeaturesConvNet Architecture with Multi-Stage Features

Feature maps from all stages are pooled/subsampled and sent to the
final classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun ArXiv:1204.3968, 2012]

Yann LeCun

Industrial Applications of ConvNetsIndustrial Applications of ConvNets

AT&T/Lucent/NCR
Check reading, OCR, handwriting recognition (deployed 1996)

NEC
Intelligent vending machines and advertizing posters, cancer
cell detection, automotive applications

Google
Face and license plate removal from StreetView images

Microsoft
Handwriting recognition, speech detection

Orange
Face detection, HCI, cell phone-based applications

Startups, other companies...

Yann LeCun

 Fast Scene Parsing Fast Scene Parsing

[Farabet, Couprie, Najman, LeCun, ICML 2012]

Yann LeCun

Labeling every pixel with the object it belongs toLabeling every pixel with the object it belongs to

[Farabet et al. ICML 2012]

Would help identify obstacles, targets, landing sites, dangerous areas

Would help line up depth map with edge maps

Yann LeCun

Scene Parsing/Labeling: ConvNet ArchitectureScene Parsing/Labeling: ConvNet Architecture

Each output sees a large input context:
46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez
[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->
Trained supervised on fully-labeled images

Laplacian
Pyramid

Level 1
Features

Level 2
Features

Upsampled
Level 2 Features

Categories

Yann LeCun

Scene Parsing/Labeling: System ArchitectureScene Parsing/Labeling: System Architecture

Original Image

Multi-Scale
Pyramid
(Band-pass Filtered)

ConvNet

Dense
Feature Maps

Yann LeCun

Method 1: majority over super-pixel regionsMethod 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2012]
M

ulti­sca le C
onvN

et
Super­pix el bound ary hype theses

C
onvolut ional clas sifier

Majority

Vote

Over

Superpixels

Input image

Superpixel boundaries

Features from

Convolutional net

(d=768 per pixel)

“soft” categories scores

Categories aligned

With region

boundaries

Yann LeCun

Method 2: optimal cover of purity treeMethod 2: optimal cover of purity tree

Spanning Tree
From pixel
Similarity graph

Distribution of
Categories within
Each Segment

2-layer
Neural
net

[Farabet et al. ICML 2012]

Yann LeCun

Scene Parsing/Labeling: PerformanceScene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

Stanford Background Dataset [Gould 1009]: 8 categories

SIFT Flow dataset [Liu 2009]: 33 categories
Barcelona dataset[Tighe 2010]:
170 categories.

Yann LeCun

Scene Parsing/Labeling: ResultsScene Parsing/Labeling: Results

[Farabet et al. 2012]

Samples from the SIFT-Flow dataset (Liu)

Yann LeCun

Scene Parsing/Labeling: SIFT Flow dataset (33 categories)Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012]

Samples from the SIFT-Flow dataset (Liu)

Yann LeCun

Scene Parsing/Labeling: SIFT Flow dataset (33 categories)Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012]

Yann LeCun

Scene Parsing/LabelingScene Parsing/Labeling

[Farabet et al. ICML 2012]

Yann LeCun

Scene Parsing/LabelingScene Parsing/Labeling

[Farabet et al. ICML 2012]

Yann LeCun

Scene Parsing/LabelingScene Parsing/Labeling

[Farabet et al. 2012]

Yann LeCun

Scene Parsing/LabelingScene Parsing/Labeling

[Farabet et al. 2012]

Yann LeCun

Scene Parsing/LabelingScene Parsing/Labeling

No post-processing

Frame-by-frame

ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware
But communicating the features over ethernet limits system perf.

Yann LeCun

Scene Parsing/Labeling: Temporal ConsistencyScene Parsing/Labeling: Temporal Consistency

Majority Vote on Spatio-Temporal Super-Pixels

Reset every second

Yann LeCun

 Unsupervised
 Feature Learning:
 variations on the

 sparse auto-encoder theme

 Unsupervised
 Feature Learning:
 variations on the

 sparse auto-encoder theme

Yann LeCun

Learning Features with Unsupervised Pre-TrainingLearning Features with Unsupervised Pre-Training

Supervised learning requires lots of labeled samples

Most available data is unlabeled

Models need to be large to “understand” the task

But large models have many parameters and require many labeled samples

Unsupervised learning can be used to pre-train the system before
supervised refinement

Unsupervised pre-training “consumes” degrees of freedom while placing
the system in a favorable region of parameter space.

Supervised refinement merely find the closest local minimum within the
attractor found by unsupervised pre-training.

Unsupervised feature learning through sparse/overcomplete auto-encoders

With high-dimensional and sparse representations, the data manifold is
“flattened” (any collection of points is flatter in higher dimension)

Yann LeCun

Sparse Coding & Sparse ModelingSparse Coding & Sparse Modeling

Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z)=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

Y → Ẑ=argmin Z E (Y , Z)Inference is slow

Yann LeCun

How to Speed Up Inference in a Generative Model?How to Speed Up Inference in a Generative Model?

Factor Graph with an asymmetric factor

Inference Z → Y is easy
Run Z through deterministic decoder, and sample Y

Inference Y → Z is hard, particularly if Decoder function is many-to-one
MAP: minimize sum of two factors with respect to Z
Z* = argmin_z Distance[Decoder(Z), Y] + FactorB(Z)

INPUT

Decoder

Y

Distance

Z LATENT

VARIABLE

Factor B

Generative Model

Factor A

Yann LeCun

Idea: Train a “simple” function to approximate the solutionIdea: Train a “simple” function to approximate the solution

Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

INPUT

Decoder

Y

Distance

Z LATENT

VARIABLE

Factor B

[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008­2009]

Generative Model

Factor A

Encoder Distance

Fast Feed­Forward Model

Factor A'

1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi

Yann LeCun

Predictive Sparse Decomposition (PSD): sparse auto-encoderPredictive Sparse Decomposition (PSD): sparse auto-encoder

Prediction the optimal code with a trained encoder

Energy = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i
−W d Z∥

2
∥Z−ge W e ,Y i

∥
2
∑ j

∣z j∣

ge (W e , Y i
)=shrinkage(W e Y i

)

[Kavukcuoglu, Ranzato, LeCun, 2008 arXiv:1010.3467],→

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

∥Z− Z∥
2ge W e ,Y i



Yann LeCun

Soft Shrinkage Non-LinearitySoft Shrinkage Non-Linearity

Yann LeCun

PSD: Basis Functions on MNISTPSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts

Yann LeCun

Predictive Sparse Decomposition (PSD): TrainingPredictive Sparse Decomposition (PSD): Training

Training on
natural images
patches.

12X12
256 basis
functions

Yann LeCun

Learned Features on natural patches: V1-like receptive fieldsLearned Features on natural patches: V1-like receptive fields

Yann LeCun

Better Idea: Give the “right” structure to the encoderBetter Idea: Give the “right” structure to the encoder

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh ()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012]

Yann LeCun

LISTA: Train We and S matrices to give a good approximation quicklyLISTA: Train We and S matrices to give a good approximation quickly

Think of the FISTA flow graph as a recurrent neural net where We and S are
trainable parameters

INPUT Y ZW e sh ()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh  + S sh  + S

Yann LeCun

Learning ISTA (LISTA) vs ISTA/FISTALearning ISTA (LISTA) vs ISTA/FISTA

Yann LeCun

THIS IS ONE STAGE OF THE CONVNET

One Stage: filter → Shrinkage → L2 Pooling → Contrast NormOne Stage: filter → Shrinkage → L2 Pooling → Contrast Norm

subtr activ e+di visive
contr ast n orm

a lizat ion

C
on vol utio ns

 Shri nka ge

L
2 Po olin g &

 s ub­s am
pl ing

Yann LeCun

Local Contrast NormalizationLocal Contrast Normalization

Performed on the state of every layer, including
the input

Subtractive Local Contrast Normalization
Subtracts from every value in a feature a
Gaussian-weighted average of its
neighbors (high-pass filter)

Divisive Local Contrast Normalization
Divides every value in a layer by the
standard deviation of its neighbors over
space and over all feature maps

Subtractive + Divisive LCN performs a kind of
approximate whitening.

Yann LeCun

Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

FEATURES

Y Z

∥Y i− Y∥2

∣z j∣

W d Z ∑ j
.

∥Z− Z∥
2ge W e ,Y i



Yann LeCun

Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

FEATURES

Y ∣z j∣

ge W e ,Y i


Yann LeCun

Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

FEATURES

Y ∣z j∣

ge W e ,Y i


Y Z

∥Y i− Y∥2

∣z j∣

W d Z ∑ j
.

∥Z− Z∥
2ge W e ,Y i



Yann LeCun

Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES

Y ∣z j∣

ge W e ,Y i


∣z j∣

ge W e ,Y i


Yann LeCun

Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES

Y ∣z j∣

ge W e ,Y i


∣z j∣

ge W e ,Y i


classifier

Yann LeCun

Using PSD Features for Object RecognitionUsing PSD Features for Object Recognition

64 filters on 9x9 patches trained with PSD
with Linear-Sigmoid-Diagonal Encoder

Yann LeCun

Multistage Hubel-Wiesel Architecture: FiltersMultistage Hubel-Wiesel Architecture: Filters

Stage 1

Stage2

After PSD After supervised refinement

Yann LeCun

Results on Caltech101 with sigmoid non-linearityResults on Caltech101 with sigmoid non-linearity

 ← like HMAX model

Yann LeCun

Results on Caltech101: purely supervised
with soft-shrink, L2 pooling, contrast normalization

Results on Caltech101: purely supervised
with soft-shrink, L2 pooling, contrast normalization

Supervised learning with soft-shrinkage non-linearity, L2 complex cells, and
sparsity penalty on the complex cell outputs: 71%

Yann LeCun

What does Local Contrast Normalization Do?What does Local Contrast Normalization Do?

Original

Reconstuction
With LCN

Reconstruction
Without LCN

Yann LeCun

Optimal
Stimuli
for each
Complex
Cell

Why Do Random Filters Work?Why Do Random Filters Work?

Random
Filters
For
Simple
Cells

Trained
Filters
For
Simple
Cells

Yann LeCun

Small NORB datasetSmall NORB dataset

Two-stage system: error rate versus number of labeled training samples

No normalization

Random filters

No normalization

Unsup filters

Unsup+Sup filters
Sup filters

Yann LeCun

 Convolutional Sparse Coding
Convolutional PSD

 Convolutional Sparse Coding
Convolutional PSD

[Kavukcuoglu, Sermanet, Boureau, Mathieu, LeCun. NIPS 2010]: convolutional PSD

[Zeiler, Krishnan, Taylor, Fergus, CVPR 2010]: Deconvolutional Network
[Lee, Gross, Ranganath, Ng, ICML 2009]: Convolutional Boltzmann Machine
[Norouzi, Ranjbar, Mori, CVPR 2009]: Convolutional Boltzmann Machine
[Chen, Sapiro, Dunson, Carin, Preprint 2010]: Deconvolutional Network with
automatic adjustment of code dimension.

Yann LeCun

Convolutional TrainingConvolutional Training

Problem:
With patch-level training, the learning algorithm must reconstruct
the entire patch with a single feature vector
But when the filters are used convolutionally, neighboring feature
vectors will be highly redundant

Patch­level training produces
lots of filters that are shifted
versions of each other.

Yann LeCun

Convolutional Sparse CodingConvolutional Sparse Coding

Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Yann LeCun

Convolutional PSD: Encoder with a soft sh() Function Convolutional PSD: Encoder with a soft sh() Function

Convolutional Formulation
Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning

Yann LeCun

Pedestrian Detection, Face DetectionPedestrian Detection, Face Detection

[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010]

Yann LeCun

ConvNet Architecture with Multi-Stage FeaturesConvNet Architecture with Multi-Stage Features

Feature maps from all stages are pooled/subsampled and sent to the
final classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun ArXiv:1204.3968, 2012]

filter+tanh

22 feat maps

Input

78x126xRGB

L2 Pooling

3x3

filter+tanh

64 feat maps

Av Pooling

2x2 filter+tanh

Yann LeCun

Pedestrian Detection (INRIA Dataset)Pedestrian Detection (INRIA Dataset)

[Kavukcuoglu et al. NIPS 2010]

Yann LeCun

Convolutional PSD pre-training for pedestrian detection Convolutional PSD pre-training for pedestrian detection

ConvPSD pre-training improves the accuracy of pedestrian detection over
purely supervised training from random initial conditions.

Yann LeCun

Convolutional PSD pre-training for pedestrian detection Convolutional PSD pre-training for pedestrian detection

Trained on INRIA. Tested on INRIA, Daimler, TUD-Brussles, ETH

Same testing protocol as in [Dollar et al. T.PAMI 2011]

Yann LeCun

Results on “Near Scale” Images (>80 pixels tall, no occlusions)Results on “Near Scale” Images (>80 pixels tall, no occlusions)

Daimler
p=21790

ETH
p=804

TudBrussels
p=508

INRIA
p=288

Yann LeCun

Results on “Reasonable” Images (>50 pixels tall, few occlusions)Results on “Reasonable” Images (>50 pixels tall, few occlusions)

Daimler
p=21790

ETH
p=804

TudBrussels
p=508

INRIA
p=288

Yann LeCun

 Musical Genre
 Recognition

 Same Architecture, Different Data

 Musical Genre
 Recognition

 Same Architecture, Different Data

[Henaff et al. ISMIR 2011]

Yann LeCun

Convolutional PSD Features on Time-Frequency SignalsConvolutional PSD Features on Time-Frequency Signals

Input: “Constant Q Transform” over 46.4ms windows (1024 samples)
96 filters, with frequencies spaced every quarter tone (4 octaves)

Architecture:
Input: sequence of contrast-normalized CQT vectors
1: PSD features, 512 trained filters
2: shrinkage function rectification→
3: pooling over 5 seconds
4: linear SVM classifier
5: pooling of SVM categories over 30 seconds

GTZAN Dataset
1000 clips, 30 second each
10 genres: blues, classical, country, disco, hiphop, jazz, metal, pop,
reggae and rock.

Results
84% correct classification
(state of the art is at 92% with many features)

Yann LeCun

Single­Stage Convolutional Network
Training of filters: PSD (unsupervised)

Architecture: contrast norm → filters → shrink → max poolingArchitecture: contrast norm → filters → shrink → max pooling

subtr activ e+di visive
contr ast n orm

a lizat ion

Filt ers

 Shri nka ge

M
ax Pooli ng (5 s)

L
inea r C

l assifi er

Yann LeCun

Constant Q Transform over 46.4 ms → Contrast NormalizationConstant Q Transform over 46.4 ms → Contrast Normalization

subtractive+divisive contrast normalization

Yann LeCun

Convolutional PSD Features on Time-Frequency SignalsConvolutional PSD Features on Time-Frequency Signals

Octave-wide features full 4-octave features

Minor 3rd

Perfect 4th

Perfect 5th

Quartal chord

Major triad

transient

Yann LeCun

PSD Features on
Constant-Q Transform

PSD Features on
Constant-Q Transform

Octave-wide features

Encoder basis functions

Decoder basis functions

Yann LeCun

Time-Frequency
Features

Time-Frequency
Features

Octave-wide features on
8 successive acoustic
vectors

Almost no temporal
structure in the
filters!

Yann LeCun

Accuracy on GTZAN dataset (small, old, etc...)Accuracy on GTZAN dataset (small, old, etc...)

Accuracy: 83.4%. State of the Art: 84.3%

Very fast

Yann LeCun

 Learning
 Mid-Level Features

 Learning
 Mid-Level Features

[Boureau et al., CVPR 2010, ICML 2010, CVPR 2011]

Yann LeCun

ConvNets and “Conventional” Vision Architectures are SimilarConvNets and “Conventional” Vision Architectures are Similar

Can't we use the same tricks as ConvNets to train the second stage of a
“conventional vision architecture?

Stage 1: SIFT

Stage 2: sparse coding over neighborhoods + pooling

Oriented
 Edges

WTA Histogram
(sum)

Filter

Bank

feature

Pooling

Non­

Linearity

Filter

Bank

feature

Pooling

Non­

Linearity
Classifier

SIFT

K­means Pyramid
Histogram
(sum)

SVM with
Histogram
Intersection
kernel

Yann LeCun

Using DL/ConvNet ideas in “conventional” recognition
systems

Using DL/ConvNet ideas in “conventional” recognition
systems

Adapting insights from ConvNets:
Jointly encoding spatial neighborhoods instead of single points:
increase spatial receptive fields for higher-level features

Use max pooling instead of average pooling
Train supervised dictionary for sparse coding

This yields state-of-the-art results:
75.7% on Caltech-101 (+/-1.1%): record for single system
85.6% on 15-Scenes (+/- 0.2): record!

[Boureau et al. CVPR 2010]

Yann LeCun

The Competition: SIFT + Sparse-Coding + PMK-SVM The Competition: SIFT + Sparse-Coding + PMK-SVM

Replacing K-means with Sparse Coding
[Yang 2008] [Boureau, Bach, Ponce, LeCun 2010]

Yann LeCun

Sparse Coding within Clusters Sparse Coding within Clusters

Splitting the Sparse Coding into Clusters
only similar things get pooled together

[Boureau, et al. CVPR 2011]

Yann LeCun

 Learning
 Invariant Features

 (learning complex cells)

 Learning
 Invariant Features

 (learning complex cells)

[Kavukcuoglu, Ranzato, Fergus, LeCun, CVPR 2009]
[Gregor & LeCun 2010]

Yann LeCun

Learning Invariant Features with L2 Group SparsityLearning Invariant Features with L2 Group Sparsity

Unsupervised PSD ignores the spatial pooling step.

Could we devise a similar method that learns the pooling layer as well?

Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
Minimum number of pools must be non-zero
Number of features that are on within a pool doesn't matter
Pools tend to regroup similar features

INPUT Y Z

∥Y i
− Y∥

2 W d Z

FEATURES

∑ j
.

∥Z− Z∥
2ge W e ,Y i



∑k ∈P j
Zk

2


L2 norm within
each pool

E (Y ,Z)=∥Y−W d Z∥
2
+∥Z−ge (W e ,Y)∥

2
+ ∑

j √∑k∈P j

Z k
2

Yann LeCun

Learning Invariant Features with L2 Group SparsityLearning Invariant Features with L2 Group Sparsity

Idea: features are pooled in group.
Sparsity: sum over groups of L2 norm of activity in group.

[Hyvärinen Hoyer 2001]: “subspace ICA”
decoder only, square

[Welling, Hinton, Osindero NIPS 2002]: pooled product of experts
encoder only, overcomplete, log student-T penalty on L2 pooling

[Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
encoder-decoder (like PSD), overcomplete, L2 pooling

[Le et al. NIPS 2011]: Reconstruction ICA
Same as [Kavukcuoglu 2010] with linear encoder and tied decoder

[Gregor & LeCun arXiv:1006:0448, 2010] [Le et al. ICML 2012]
Locally-connect non shared (tiled) encoder-decoder

INPUT

Y
Encoder only (PoE, ICA),

Decoder Only or
Encoder­Decoder (iPSD, RICA)

Z INVARIANT
FEATURES

∑ j
.

 ∑k ∈P j
Zk

2


L2 norm within
each pool

SIMPLE
FEATURES

Yann LeCun

Pooling Similar Features using Group SparsityPooling Similar Features using Group Sparsity

A sparse-overcomplete version of Hyvarinen's subspace ICA

Decoder ensures reconstruction (unlike ICA which requires orthonogonal matrix)

1. Apply filters on a patch (with suitable non-linearity)
2. Arrange filter outputs on a 2D plane
3. square filter outputs
4. minimize sqrt of sum of blocks of squared filter outputs

[Jenatton, Obozinski, Bach AISTATS 2010] [Le et al. NIPS2011]
[Kavukcuoglu, Ranzato, Fergu, LeCun, CVPR 2009]

Yann LeCun

Groups are local in a 2D Topographic MapGroups are local in a 2D Topographic Map

The filters arrange
themselves spontaneously so
that similar filters enter the
same pool.

The pooling units can be seen
as complex cells

Outputs of pooling units are
invariant to local
transformations of the input
For some it's translations,
for others rotations, or
other transformations.

Yann LeCun

Image-level training, local filters but no weight sharingImage-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)
[Gregor & LeCun 2010]
Local receptive fields
No shared weights
4x overcomplete
L2 pooling
Group sparsity over pools

Input

Reconstructed Input

(Inferred) Code

Predicted Code

Decoder

Encoder

Yann LeCun

Image-level training, local filters but no weight sharingImage-level training, local filters but no weight sharing

Topographic maps of
continuously-varying
features

Local overlapping pools are
invariant complex cells

[Gregor & LeCun
arXiv:1006.0448]
(double tanh encoder)

[Le et al. ICML'12]
(linear encoder)

Yann LeCun

Image-level training, local filters but no weight sharingImage-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)

119x119 Image Input
100x100 Code

20x20 Receptive field size
sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology

Vol. 77 No. 6 June 1997, pp. 3381­3385 (Cat)

K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114­4129 (Monkey)

Yann LeCun

Image-level training, local filters but no weight sharingImage-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)

Yann LeCun

Theory of Repeated [Filter Bank → L2 Pooling → Average Pooling]Theory of Repeated [Filter Bank → L2 Pooling → Average Pooling]

Stéphane Mallat's “Scattering Transform”: Theory of ConvNet-like architectures

[Mallat & Bruna CVPR 2011] Classification with Scattering Operators

[Mallat & Bruna, arXiv:1203.1513 2012] Invariant Scattering Convolution
Networks

[Mallat CPAM 2012] Group Invariant Scattering

Yann LeCun

 Sparse Coding Using
 Lateral Inhibition

 Sparse Coding Using
 Lateral Inhibition

[Gregor, Szlam, LeCun, NIPS 2011]

Yann LeCun

Invariant Features Lateral InhibitionInvariant Features Lateral Inhibition

Replace the L1 sparsity term by a lateral inhibition matrix

Easy way to impose some structure on the sparsity

[Gregor, Szlam, LeCun NIPS 2011]

Yann LeCun

Invariant Features via Lateral Inhibition: Structured SparsityInvariant Features via Lateral Inhibition: Structured Sparsity

 Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

Sij is larger if two neurons are far away in the tree

Yann LeCun

Yann LeCun

Yann LeCun

Yann LeCun

Invariant Features via Lateral Inhibition: Topographic MapsInvariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Input patches are high-pass filtered

Yann LeCun

Invariant Features via Lateral Inhibition: Topographic MapsInvariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Left: no high-pass filtering of input
Right: patch-level mean removal

Yann LeCun

Invariant Features via Lateral Excitation: Topographic Maps Invariant Features via Lateral Excitation: Topographic Maps

Short-range lateral excitation + L1 sparsity

Yann LeCun

 Learning What/Where

Features with
 Temporal Constancy

 Learning What/Where

Features with
 Temporal Constancy

[Gregor & LeCun arXiv:1006.0448, 2010]

Yann LeCun

Invariant Features through Temporal Constancy Invariant Features through Temporal Constancy

Object is cross-product of object type and instantiation parameters
Mapping units [Hinton 1981], capsules [Hinton 2011]

small medium large

Object type Object size[Karol Gregor et al.]

Yann LeCun

What-Where Auto-Encoder ArchitectureWhat-Where Auto-Encoder Architecture

St St­1 St­2

C
1
t C

1
t­1 C

1
t­2 C

2
t

Decoder

W1 W1 W1 W2

Predicted
input

C
1
t C

1
t­1 C

1
t­2 C

2
t

St St­1 St­2

Inferred
code

Predicted
code

InputEncoder

f ° W 1 f ° W 1 f ° W 1

W 2

f
W 2

W 2

Yann LeCun

Low-Level Filters Connected to Each Complex CellLow-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)

Yann LeCun

Input

Generating from the NetworkGenerating from the Network

Yann LeCun

 Hardware
 Implementations

 Hardware
 Implementations

Yann LeCun

Higher End: FPGA with NeuFlow architectureHigher End: FPGA with NeuFlow architecture

Now Running on Picocomputing 8x10cm high-performance FPGA board
Virtex 6 LX240T: 680 MAC units, 20 neuflow tiles

Full scene labeling at 20 frames/sec (50ms/frame) at 320x240

New board with Virtex­6

Yann LeCun

NewFlow: ArchitectureNewFlow: Architecture

grid of passive processing tiles (PTs)

CPU

DMA

MEM

global network­on­chip to
allow fast reconfiguration

RISC CPU, to
reconfigure tiles and
data paths, at runtime

Multi­port memory
controller (DMA)

[x20 on a Virtex6 LX240T]

[x12 on a V6 LX240T]

Yann LeCun

NewFlow: Processing Tile ArchitectureNewFlow: Processing Tile Architecture

Term­by:­term
streaming operators
(MUL,DIV,ADD,SU
B,MAX)

configurable bank of
FIFOs , for stream
buffering, up to 10kB
per PT

full 1/2D parallel convolver
with 100 MAC units

configurable piece­wise
linear or quadratic
mapper

configurable router,
to stream data in
and out of the tile, to
neighbors or DMA
ports

[x8,2 per tile]

[x4] [x8]

[x4]

[Virtex6 LX240T]

[x20]

Yann LeCun

NewFlow ASIC: 2.5x5 mm, 45nm, 0.6Watts, 160GOPS NewFlow ASIC: 2.5x5 mm, 45nm, 0.6Watts, 160GOPS

Collaboration NYU-Purdue (Eugenio Culurciello's group)

Suitable for vision-enabled embedded and mobile devices

Status: waiting for first samples end of 2012

Pham, Jelaca, Farabet, Martini, LeCun, Culurciello 2012]

Yann LeCun

NewFlow: PerformanceNewFlow: Performance

IntelIntel
I7 4 coresI7 4 cores

neuFlowneuFlow
Virtex4Virtex4

neuFlowneuFlow
Virtex 6Virtex 6

nVidia nVidia
GT335mGT335m

neuFlowneuFlow
IBM 45nmIBM 45nm

nVidianVidia
GTX480GTX480

Peak
GOP/sec 40 40 160 182 160 1350
Actual

GOP/sec 12 37 147 54 147 294

FPS 14 46 182 67 182 374
Power
(W) 50 10 10 30 0.6 220

Embed?
(GOP/s/W) 0.24 3.7 14.7 1.8 245 1.34

Yann LeCun

 Software Platforms:
 Torch7

http://www.torch.ch

 Software Platforms:
 Torch7

http://www.torch.ch

[Collobert, Kavukcuoglu, Farabet 2011]

Yann LeCun

Torch7Torch7

ML/Vision development environment
Collaboration between IDIAP, NYU, and NEC Labs
Uses the Lua interpreter/compiler as a front-end
Very simple and efficient scripting language
Ultra simple and natural syntax
It's like Scheme underneath, but with a “normal” syntax.
Lua is widely used in the video game and web industries

Torch7 extend Lua with Numerical, ML, Vision libraries
Powerful Vector/Matrix/Tensor Engine (developed by us)
Interfaces to numerical libraries, OpenCV, etc
Back-ends for SSE, OpenMP, CUDA, ARM-Neon,...
Qt-based GUI and graphics
Open source: http://www.torch.ch/
First released in early 2012

Yann LeCun

Torch7Torch7

ML/Vision development environment
As simple as Matlab, but faster and
better designed as a language.

2D CONVOLUTION

x = torch.rand(100,100)

k = torch.rand(10,10)

res1 = torch.conv2(x,k)

MATRIX and VECTOR Operations

> M = torch.Tensor(2,2):fill(2)

> N = torch.Tensor(2,4):fill(3)

> x = torch.Tensor(2):fill(4)

> y = torch.Tensor(2):fill(5)

> = x*y -- dot product

40

> = M*x --- matrix-vector

 16

 16

[torch.Tensor of dimension 2]

TRAINING A NEURAL NET

mlp = nn.Sequential()

mlp:add(nn.Linear(10, 25)) -- 10 input, 25 hidden units

mlp:add(nn.Tanh()) -- some hyperbolic tangent transfer function

mlp:add(nn.Linear(25, 1)) -- 1 output

criterion = nn.MSECriterion() -- Mean Squared Error criterion

trainer = nn.StochasticGradient(mlp, criterion)

trainer:train(dataset) -- train using some examples

Yann LeCun

AcknowledgementsAcknowledgements

Y-Lan Boureau

Kevin Jarrett

Koray Kavukcuoglu

Marc'Aurelio Ranzato

Pierre Sermanet

Camille Couprie

Karol Gregor

Clément Farabet

Arthur Szlam

Rob Fergus

Laurent Najman (ESIEE)

Eugenio Culurciello
(Purdue)

Yann LeCun

 The End The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

