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. Challenges for Machine Learning, Vision, Signal Processing, AI, Neuroscience

& How can learning build a perceptual system?

@ How do we learn representations of the perceptual world?
& In ML/CV/ASR/MIR: How do we learn features (not just classifiers)?

@ With good representations, we can learn categories from just a few
examples.

& ML has neglected the question of learning representations, relying
instead on domain expertise to engineer features and kernels. -

@ Deep Learning addresses the problem of learning representations |
& Goal 1: biologically-plausible methods for deep learning

& Goal 2: representation learning for computer perception

t New York University
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Architecture of “Mainstream” Systems
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(hand-crafted) “Simple” Trainable

Feature Extraction Classifier

& Mainstream Approaches to Image and Speech Recognition

Low-Level Mid-Level
Features Features
(fixed) | | (unsupervised) f—pf Classifier |
MFECC Mix of Gaussians (Supervised)
SIFT K-means
HoG Sparse Coding

Yann LeCun
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Trainable Feature Hierarchies
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& Why can't we make all the modules trainable?

& Proposed way: hierarchy of trained features

Trainable Trainable Trainable
Feature |- — —»| Feature || Classifier/ |
Transform Transform Predictor

Learned Internal Representation

Yann LeCun
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The Mammalian Visual Cortex is Hierarchical

— |

& The ventral (recognition) pathway in the visual cortex has multiple stages
& Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
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yNormalization — Filter Bank — Non-Linearity — Pooling

Filter Non- feature

feature Filter Non-
" Norm

Pooling Bank | |Linear

) = Classifier
Bank Linear

Pooling

& Stacking multiple stages of
» [Normalization — Filter Bank —» Non-Linearity = Pooling].

& Normalization: variations on whitening
» Subtractive: average removal, high pass filtering
» Divisive: local contrast normalization, variance normalization

& Filter Bank: dimension expansion, projection on overcomplete basis

& Non-Linearity: sparsification, saturation, lateral inhibition....
» Component-wise shrinkage or tanh, winner-takes-all

& Pooling: aggregation over space or feature type, subsampling |

'AVERAGE:%ZXZ.; MAX :Max X;; L,:NX[; PROB:log(2 e"")

Yann LeCun
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Filter Non- feature

feature Filter Non-
" Norm

Pooling Bank | |Linear

H Classifier

Bank | |Linear Pooling

& Filter Bank = Non-Linearity = Non-linear embedding in high dimension
& Feature Pooling = contraction, dimensionality reduction, smoothing

& Learning the filter banks at every stage

& Creating a hierarchy of features

& Basic elements are inspired by models of the visual (and auditory) cortex
» Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]
» Many “traditional” feature extraction methods are based on this
» SIFT, GIST, HoG, Convolutional networks.....

@ [Fukushima 1974-1982], [LeCun 1988-now], [Poggio 2005-now], [Ng
2006-now], many others....

Yann LeCun
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Basic Convolutional Network Architecture

- Convolutions w/ Pooling: Convs: Pooling: Convs. . -
Local Divisive . Linear Obiject

o filter bank: 20xdxd 100x7x7 20x4xd 800x7x7 " Catedories / Positions
Nomalzalion 20x7x7 kernels kernels kernels kernels kernels Classifer &

5 bat (x,y)

e

S2: 20x123x123

G0 Pattu

Input Image Normalized Image . :
145001500 145004500 | S0 Y (|l e

C1: 2014944494 C3: 20xH17x117 %\ Pl

“Simple cells” C5: 200x23x23
“Complex cells”
pooling [LeCun et al. 89]
Multiple subsampling

convolutions AN / [LeCun et al. 98]

Vanm LeCun Retinotopic Feature Maps
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Parzen Windows Classifier
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Convolutional Network (ConvNet)

\“—-_“._‘_.
Layer 3
256 @6x6 Layer 4 o
Layer 1 utput
256@1x1
, 64x75x75  Ayer2
input 64@14x14

83x83

/ 9x9

9x9 10x10 pooling,  convolution

convolution 5x5 subsampling (4096 kernels)
(64 kernels)

6x6 pooling

4x4 subsamp

& Non-Linearity: shrinkage function, tanh
& Pooling: L2, average, max, average—>tanh
& Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

Yann LeCun * New York University|
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Convolutional Network (vintage 1990)
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Yann LeCun
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. “Mainstream” object recognition pipeline 2006-2010: similar to ConvNets

Filter Non- feature Filter Non- feature o
—> = > = P Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented YVinner Histogram K.means Pyramid SVM or
Edges Takes (sum) Or Histogram Another
All , .
Sparse Coding (SU™) Simple
SIFT classifier

& Fixed low-level Features + unsupervised mid-level features + simple classifier

& Example (on Caltech 101 dataset):

» SIFT + Vector Quantization + Pyramid pooling + SVM: >65%
& [Lazebnik et al. CVPR 2006]

» SIFT + Local Sparse Coding Macrofeat. + Pyr/ pooling + SVM: >77%
¢ [Boureau et al. ICCV 2011]

Yann LeCun
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.Other Applications with State-of-the-Art Performance

[ — S e

& Traffic Sign Recognition (GTSRB) @ House Number Recognition (Google)
» German Traffic Sign Reco Bench P Street View House Numbers
» 97.2% accuracy » 94.8% accuracy
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ConvNet Architecture with Multi-Stage Features

& Feature maps from all stages are pooled/subsampled and sent to the
final classification layers

» Pooled low-level features: good for textures and local motifs
» High-level features: good for “gestalt” and global shape

convolutions subsampling convolutions full

l l connection

!

convolutions subsampling

subsampling output
input 1st stage 2nd stage classifier
Task Single-Stage features | Multi-Stage features | Improvement %
Pedestrians detection (INRIA) 14.26% 0.85% 31%
Traffic Signs classification (GTSRB) [11] 1.80% 0.83% 54%
House Numbers classification (SVHN) 5.72% 5.67% 0.9%
Yann LeCun [Sermanet, Chintala, LeCun ArXiv:1204.3968, 2012]

t New York University



_Industrial Applications of ConvNets

& AT&T/Lucent/NCR
» Check reading, OCR, handwriting recognition (deployed 1996)

& NEC

» Intelligent vending machines and advertizing posters, cancer
cell detection, automotive applications

& Google
» Face and license plate removal from StreetView images

& Microsoft
» Handwriting recognition, speech detection

& Orange
» Face detection, HCI, cell phone-based applications

& Startups, other companies...

Yann LeCun
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Fast Scene Parsing

[Farabet, Couprie, Najman, LeCun, ICML 2012]

Yann LeCun
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_Ingeling eT/ery pi‘;el with the object it belo;és to

& Would help identify obstacles, targets, landing sites, dangerous areas

& Would help line up depth map with edge maps

ey

Yann LeCun [Farabet et al. ICML 2012]

t New York University



Scene Parsing/Labeling: ConvNet Architecture

& Each output sees a large input context:
» 46x46 window at full rez; 92x92 at 2 rez; 184x184 at V4 rez
» [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->
» Trained supervised on fully-labeled images

2, Categories

RGE Input

Laplacian Level 1 Level 2 Upsampled

Pyramid Features Features Level 2 Features
Yann LeCun * New York University




m —_—————— e —————————= —

Scene Parsing/L;I;mng: System Architecture

[

Dense
Feature Maps

ConvNet

Multi-Scale
Pyramid —_ o T _

(Band-pass Filtered) Y
pPyramia egmentation tree
T

Original Image

Yann LeCun * New York University|
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Method 1: majorlty over super-pixel regions

Majority
Vote
Over

Superpixels

Superpixel boundaries

sasayedAy Arepunoq [oxid-1adng

Categories aligned

A With region
E % boundaries
= o
: =
3 =
: :
Input image . S

> s::
a o = | “soft” categories scores

Features from -

Convolutional net

Yann LeCun (d=768 per pixel)  [Farabet et al. IEEE T. PAMI 2012]
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Yann LeCun
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& Stanford Background Dataset [Gould 1009]: 8 categories

Pixel Acc. Class Acc. C1 (sec.)
Gould et al. 2009 [14] 76.4% - 10 to 600s
Munoz ef al. 2010 [32] 76.9% 66.2% 12s
Tighe ef al. 2010 [20] 77 5% - 10 to 300s
Socher et al. 2011 [45] 78.1% - ?
Kumar et al. 2010 [22 79.4% - < 600s
CempitzKy ef al. 2011 [25] 81.9% 72.4% > 605
singlescale convnet 66.0 % 56.5 % 0.35s
multiscale convnet 78.8 % 72.4% 0.6s
multiscale net + superpixels 80.4% 74.56% 0.7s
multiscale net + gPb + cover 80.4% 75.24% 61s
multiscale net + CRF on gPb 81.4% 76.0% 60.5s
& SIFT Flow dataset [Liu 2009]: 33 categories
Pixel Acc. 1 Class Acc. | ‘@ Barcelona dataset[Tighe 2010]:
ueral 00007 | 7875% : 170 categories. [Pixe[ Acc. | Class Acc.
Tighe of al, 2000 [X0] | 769% 29.4% Tighe ef al. 2010 ['0] | 669% 7.6%
multiscale net + cover’ |  78.5% 296% | | multiscale net + cover | 67.8% o
multiscale net + cover* |  74.2% 46.0% multiscale net + cover* | 39.1% 10.7%
Yann LeCun [Farabet et al. IEEE T. PAMI 2012] | E—_—_— University
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Scene Parsing/Labeling: Results
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lerarchy

KF on gPb ld

Legend: - building - sky - grass - tree - mountain - object

Yann LeCun [Farabet et al. 2012]

over in g ierarchy
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i_icene PaFZing/LeTI;eling: SIFT Flow dataset?%3 ca’tzg’ories)

& Samples from the SIFT-Flow dataset (Liu)

Yann LeCun [Farabet et al. ICML 2012]

t New York University
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Scene Parsmg/Labellng SIFT Flow dataset (35 categorles)

Yann LeCun [Farabet et al. ICML 2012]

t New York University



Scene Parsing/Labeling

Yann LeCun [Farabet et al. ICML 2012]

t New York University
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Scene Parsing/Labeling
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Yann LeCun [Farabet et al. ICML 2012]
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Scene PSFZing/LeTI;eling
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Yann LeCun [Farabet et al. 2012]

t New York University



Scene PSFZing/LeTI;eling
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Yann LeCun [Farabet et al. 2012]

t New York University
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& No post-processing
& Frame-by-frame

& ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware
» But communicating the features over ethernet limits system perf.

Yann LeCun

t New York University



& Majority Vote on Spatio-Temporal Super-Pixels

& Reset every second

Yann LeCun

t New York University



Unsupervised
Feature Learning:

variations on the
L sparse auto-encoder theme

Yann LeCun




,/Learning Features with Unsupervised Pre-Training

& Supervised learning requires lots of labeled samples

& Most available data is unlabeled

& Models need to be large to “understand” the task

& But large models have many parameters and require many labeled samples

& Unsupervised learning can be used to pre-train the system before
supervised refinement

& Unsupervised pre-training “consumes” degrees of freedom while placing
the system in a favorable region of parameter space.

& Supervised refinement merely find the closest local minimum within the
attractor found by unsupervised pre-training.

& Unsupervised feature learning through sparse/overcomplete auto-encoders

& With high-dimensional and sparse representations, the data manifold is
“flattened” (any collection of points is flatter in higher dimension)

Yann LeCun

t New York University
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Sparse Coding & Sparse Modeling

[Olshausen & Field 1997]

& Sparse linear reconstruction

& Energy = reconstruction_error + code_prediction_error + code_sparsity

E(Y.2)=|Y'-w,z[+1.3 |2

INPUT

@ Inference isslow Y = Z :argminz E ( Y, Z)

Yann LeCun

t New York University
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_How to Speed Up Inference in a Generative Model?

& Factor Graph with an asymmetric factor

& Inference Z = Y is easy
» Run Z through deterministic decoder, and sample Y

& Inference Y = Z is hard, particularly if Decoder function is many-to-one
» MAP: minimize sum of two factors with respect to Z
» Z* = argmin_z Distance[Decoder(Z), Y] + FactorB(Z)

Generative Model

LATENT
VARIABLE

Yann LeCun

t New York University
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| Idea: Train a “simple” function to approximate the solution

— ‘AS“M

[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009]

& Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

Generative Model

N

Fast Feed-Forward Model

N~ T

& 1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi

Yann LeCun

Factor B

LATENT
VARIABLE

t New York University



[Kavukcuoglu, Ranzato, LeCun, 2008 — arXiv:1010.3467],

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z)=[lY'=W,Z|*+|Z g, (W, Y +A 2 |z,
g (W, Y') =shrinkage(WeYi)

Yann LeCun




"Soft Shrinkage Non-Linearity

[ —

heta=10 k=5
: , : : heta=o,h=1
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Yann LeCun

t New York University



—————— — —

PSD: Basis Functions on MNIST

Yann LeCun * New York University|



Predictive Sparse Decomposition (PSD): Training |
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Learned Features on natural patches: V1-like receptive fields

[ — ——|

Yann LeCun
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_Better Idea: Give the “right” structure to the encoder.

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012]
& ISTA/FISTA: iterative algorithm that converges to optimal sparse code

Z(t + 1) = Shrinkage, ;. [Z(t) — %Wg(WdZ(t) - Y)]

1 1
Z(t+ 1) = Shrinkage, ,, [W)Y +SZ(t)]; W, = W S=1- ZWC? Wy

Yann LeCun




_LISTA: Train We and S matrices to give a good approximation quickly

& Think of the FISTA flow graph as a recurrent neural net where We and S are
trainable parameters

& Time-Unfold the flow graph for K iterations
& Learn the We and S matrices with “backprop-through-time”

@ Get the best approximate solution within K iterations

Yann LeCun

t New York University



Learning ISTA (LISTA) vs ISTA/FISTA
—— e
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Yann LeCun
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_One Stage: filter > Shrinkage — L2 Pooling — Contrast Norm
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THIS IS ONE STAGE OF THE CONVNET

Yann LeCun




& Performed on the state of every layer, including
the input

& Subtractive Local Contrast Normalization

» Subtracts from every value in a feature a
Gaussian-weighted average of its
neighbors (high-pass filter)

& Divisive Local Contrast Normalization

» Divides every value in a layer by the
standard deviation of its neighbors over
space and over all feature maps

& Subtractive + Divisive LCN performs a kind of
approximate whitening.

Yann LeCun

t New York University



; Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD

FEATURES

Yann LeCun

t New York University



| Using PSD to Train a Hierarchy of Features

S ——————_————— |

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

FEATURES

Yann LeCun

t New York University



: Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

FEATURES

Yann LeCun

t New York University
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: Using PSD to Train a Hierarchy of Features

= == — “‘M

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor
& Phase 3: train the second layer using PSD

& Phase 4: use encoder + absolute value as 2™ feature extractor

FEATURES

Yann LeCun

t New York University



: Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

& Phase 4: use encoder + absolute value as 2™ feature extractor
& Phase 5: train a supervised classifier on top

& Phase 6 (optional): train the entire system with supervised back-propagation

classifier

FEATURES

Yann LeCun

t New York University
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Using PSD Features for Object Recognition

M‘“

& 64 filters on 9x9 patches trained with PSD
» with Linear-Sigmoid-Diagonal Encoder

Yann LeCun

welghts $-0,25828 — 00,3043

t New York University
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Multistage Hubel-Wiesel Architecture: Filters

& Stage 1

& After PSD

weights $-0,2232 - 90,2075

& After supervised refinement

weights (-0,2828 - 90,3043

weights $-0,0929 - 00734

weights $-0,0772 - 0,064

Yann LeCun

t New York University



Results on

Inearity

Caltech101 with sigmoid non-L

mm’—

Single Stage System: [64.F .~ — R/N/P>*®] - log_reg

R/N/P Rabs — N —Pa | Raps — Pa N — P N —Pa Pa
U™ 54.2% 50.0% 44.3% 18.5% 14.5%
RT 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(£1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(%2.2)
G 52.3%
Two Stage System: [64.F 55 — R/N/P°*®] — [256.F s& — R/N/P**?] - log reg
R/N/P Rabs — N —Pa | Raps — Pa N — Pm N —Pa Pa
Uutut 65.5% 60.5% 61.0% 34.0% 32.0%
RTR™ 64.7% 59.5% 60.0% 31.0% 29.7%
Uu 63.7% 46.7% 36.0% 23.1% 9.1%
RR 62.9% 33.7%(x1.5) | 37.6%(£1.9) 19.6% 8.8%
GT 55.8% < like HMAX model

Single Stage: [64.F ., — R/N/P**5] - PMK-SVM
U 64.0%

Two Stages: [64.F .7

CSG

— R/N/P®*°| — [256.F Jyo

— R/N] - PMK-SVM

uu

52.8%

Yann LeCun

t New York University



Results on Caltech101: purely supervised

wWwith soft-shrink, L2 pooling, contrast normalization

& Supervised learning with soft-shrinkage non-linearity, L2 complex cells, and
sparsity penalty on the complex cell outputs: 71%

Jos .2 69 £33 &7 628 &67.2 64.32 52.37 56
B
Kl
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w = Pyr (1024
= Py (256]
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™ - Pyr (1024)
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" W= L1 pn
m~ L1 pnl pyr
w1 Layar
20

10

o
Yann LeCun

t New York University
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‘What does Local Contrast Normalization Do?

Reconstuction
With LCN

Reconstruction
Without LCN

Yann LeCun t New York University




Why Do Random Fllters Work?
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[Kavukcuoglu, Sermanet, Boureau, Mathieu, LeCun. NIPS 2010]: convolutional PSD

Zeiler, Krishnan, Taylor, Fergus, CVPR 2010]: Deconvolutional Network
Lee, Gross, Ranganath, Ng, ICML 2009]: Convolutional Boltzmann Machine
Norouzi, Ranjbar, Mori, CVPR 2009]: Convolutional Boltzmann Machine

|Chen, Sapiro, Dunson, Carin, Preprint 2010]: Deconvolutional Network with
automatic adjustment of code dimension.

Yann LeCun

t New York University



.Convolutional Training

& Problem:

» With patch-level training, the learning algorithm must reconstruct
the entire patch with a single feature vector

» But when the filters are used convolutionally, neighboring feature
vectors will be highly redundant

welghts (-0,2828 - 00,3043

Yann LeCun

t New York University
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_Convolutional Sparse Coding

& Replace the dot products with dictionary element by convolutions.
» Input Y is a full image
» Each code component Zk is a feature map (an image)
» Each dictionary element is a convolution kernel

@ Regular sparse coding E(Y,Z) = ||Y — Z Wi Zi|]? + a Z | Z}|
k k

@ Convolutional S.C. EY,Z)=|Y — Z Wi x Zi||* + « Z | Z|
k k

k Wk |-

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Yann LeCun

t New York University
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Convolutional PSD: Encoder with a soft sh() Function
[ B—

& Convolutional Formulation
» Extend sparse coding from PATCH to IMAGE

L(z,z,D) _||$—Zpk*zk||2+2||zk — f(WF xz)[[3 + |21

» PATCH based learning » CONVOLUTIONAL learning

Yann LeCun * New York University|
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_ConvNet Architecture with Multi-Stage Features

—————— |

& Feature maps from all stages are pooled/subsampled and sent to the
final classification layers

» Pooled low-level features: good for textures and local motifs
» High-level features: good for “gestalt” and global shape

filter+tanh  Av Pooling
64 feat mapst2x2 filtter+tanh

1l

Input
78x126xRGB

t
filter+tanh . L2 Pooling \_}
22 feat maps 3x3 subsampling output
input 1st stage 2nd stage classifier
Task Single-Stage features | Multi-Stage features | Improvement %
Pedestrians detection (INRIA) 14.26% 0.85% 31%
Traffic Signs classification (GTSRB) [11] 1.80% 0.83% 54%
House Numbers classification (SVHN) 5.72% 5.67% 0.9%
Yann LeCun [Sermanet, Chintala, LeCun ArXiv:1204.3968, 2012]

t New York University



Pedestrian Detection (INRIA Dataset)
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_Convolutional PSD pre-training for pedestrian detection

& ConvPSD pre-training improves the accuracy of pedestrian detection over
purely supervised training from random initial conditions.

miss rate

R+R+ (14.8%)
- UeUs (11.5%)

1072 10" 10 10

false positives per image

t New York University

Yann LeCun



| Convolutional PSD pre-training for pedestrian detection

& Trained on INRIA. Tested on INRIA, Daimler, TUD-Brussles, ETH
& Same testing protocol as in [Dollar et al. T.PAMI 2011]

| INRIA (all  INRIA (missing E
: positives labeled) positive labels) Caltech Daimler TUD ETH |
' #testimages 288 288 4024 21790 508 1804
|Error Percentage type  1FPPI  AUC AUC AUC AUC AUC AUC |
Reasonable: at least 50 pixels tall + no or partial occlusion
| ConvNet's rank 1st 12th 1st 4th 1st |
: ConvNet 19.78 % 77.2% 32.66% 68.81% 50.31% !
| LatSvm-V2 19.96 % 63.26 % 37.9%  69.59% 50.89 %
| ChnFtrs 22.18 % 56.34 % - 60.33% 57.47 % |
| MultiFtr+CSS 24.74 % 60.89 % 42.25% 59.49% 60.74 % !
| FPDW 21.47 % 57.40 % - 63.03% 60.10 % ;
i Near: at least 80 pixels tall !
: ConvNet's rank 1st 1st 2nd 4th 1st 2nd 1st
: ConvNet 577 %  11.26 % 18.76 % 36.68 % 14.63% 49.95% 39.26 % |
| LatSvm-V2 8.83 %  14.51 % 17.91 % 34.27 % 16.85% 58.05% 40.57 % '
| ChnFtrs 8.66 %  13.12 % 20.24 % 35.12 % - 49.64% 48.34 % :
| HogLpb - - 37.61 % 30.79 % 18.22 % - 42.97 %
| Large: at least 100 pixels tall i
i ConvNet's rank 2nd 1st 2nd 2nd 1st
| ConviNet 17.27 % 2137% 11.81% 41.15% 34.56 % |
| LatSvm-V2 16.31 % 2823% 11.52% 54.16 % 3527 % !
o HoglLpb 37.71 % 2267 % | 20.2 % - 40.84 % '

Yann LeCun

t New York University
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Results on “Near Scale” Images (>80 pixels tall, no occlusions)
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_Results on “Reasonable” Images (>50 pixels tall, few occlusions)
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Musical Genre

Recognition

Same Architecture, Different Data

[Henaff et al. ISMIR 2011]

Yann LeCun

t New York University



@ Input: “Constant Q Transform” over 46.4ms windows (1024 samples)
» 96 filters, with frequencies spaced every quarter tone (4 octaves)

& Architecture:
» Input: sequence of contrast-normalized CQT vectors
» 1: PSD features, 512 trained filters
» 2: shrinkage function — rectification
» 3: pooling over 5 seconds
» 4: linear SVM classifier
» 5: pooling of SVM categories over 30 seconds

& GTZAN Dataset
» 1000 clips, 30 second each

» 10 genres: blues, classical, country, disco, hiphop, jazz, metal, pop,
reggae and rock.

& Results
» 849% correct classification
» (state of the art is at 92% with many features)

Yann LeCun * New York University|




.Architecture: contrast norm — filters = shrink = max pooling

— R —————— |
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e ; I‘ 'l Single-Stage Convolutional Network

Training of filters: PSD (unsupervised)

Yann LeCun

t New York University



Constant @) Transform over 46.4 ms o Contrast Normallzatlon
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_Convolutional PSD Features on Time-Frequency Signals

& Octave-wide features full 4-octave features
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& Octave-wide features

» Encoder basis functions

Yann LeCun
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structure in the

» Almost no temporal
filters!

8 successive acoustic

vectors

Time-
& Octave-wide features on
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.Accuracy on GTZAN dataset (small, old, etc...) :

R A——

& Accuracy: 83.4%. State of the Art: 84.3%

& Very fast
Classifier Features Acc. (%)
CSC Many features [6] 92.7
SRC Auditory cortical feat. [25] 92
RBE-SVM Learned using DBEN [12] 84.3
Linear SVM | Learned using PSD on octaves | 83.4 £ 3.1
AdaBoost Many features [2] 83
Linear SVM | Learned using PSD on frames | 79.4 £ 2.8
SVM Daubechies Wavelets [19] T78.5
Log. Reg. Spectral Covariance 3] 77
LDA MFCC + other [18] 71
Linear SWVM | Auditory cortical feat. [25] 70
GMM MFCC + other [29] 61

Yann LeCun




Mid-Level Features

[Boureau et al., CVPR 2010, ICML 2010, CVPR 2011]

Yann LeCun
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| ConvNets and “Conventional” Vision Architectures are Similar

[ —— I ———-—_ |

Jfimees Filter Non- feature Filter Non- feature -
o — —p> = = Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented (ym,  Histogram K-means Fyramid  SVM with
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT kernel

& Can't we use the same tricks as ConvNets to train the second stage of a
“conventional vision architecture?

& Stage 1: SIFT

& Stage 2: sparse coding over neighborhoods + pooling

Yann LeCun

t New York University



[Boureau et al. CVPR 2010]

& Adapting insights from ConvNets:

» Jointly encoding spatial neighborhoods instead of single points:
increase spatial receptive fields for higher-level features

Standard features: 1 SIFT =———» 1 code Macrofeatures: 2x2 SIFT == 1 code

PP PP P :
FIFF P TD %

PP TP ) =
Spatial @@@@AIFT ﬁ\ﬁ]\ﬁ\ﬁ/g @@ﬁl@

“ode
dimension

;I N
N
3y
3y

FT
sl
T

dimensions dimension

» Use max pooling instead of average pooling
» Train supervised dictionary for sparse coding

& This yields state-of-the-art results:
» 75.7%0 on Caltech-101 (+/-1.1%): record for single system
» 85.6% on 15-Scenes (+/- 0.2): record!

Yann LeCun




- The Competition: SIFT + Sparse-Coding

[ —

& Replacing K-means with Sparse Coding

» [Yang 2008] [Boureau, Bach, Ponce, LeCun 2010]

+ PMK-SVM

Method Caltech 15 Caltech 30 Scenes
Boiman et al. [1] Nearest neighbor + spatial correspondence 65.00£1.14  70.40
Jain et al. [8] Fast image search for learned metrics 61.00 69.60
Lazebnik et al. [12] Spatial Pyramid + hard quantization + kernel SVM 56,40 64.40 = 0.80  81.40 = 0.50
van Gemert et al. [24] | Spatial Pyramid + soft quantization + kernel SVM ~ — 64.14 £ 1.18 76.67T =0.39
Yang et al. [26] SP + sparse codes + max pooling + linear 67.000.45 73.210.54 80.28 = 0.93
Zhang et al. [27] ENN-SVM 59.10 £0.60  66.20x0.50 -
Zhou et al. [29] SP + Gaussian mixture — — 84.1+0.5
Baseline: SP + hard quantization + avg pool + kernel SVM 56,74 £1.31 6419 £0.84 80.89 +£0.21
Unsupervised coding | SP + soft quantization + avg pool + kernel SVM 5912151 66.42x1.26 81.52x=0.54
[ x 1 features SP + soft quantization + max pool + kernel SVM ~ 63.61 088  — 83.41 = 0.57
8 pixel grid resolution | SP + sparse codes + avg pool + kernel SVM 62.85 £1.22 7027129 83.15x0.35
SP + sparse codes + max pool + kernel SVM 64.62 054  T1.81=0.96  84.25+0.35
SP + sparse codes + max pool + linear 64.71 £ 1.05 T71.52=x1.13 83.78 £0.53
Macrofeatures + SP + sparse codes + max pool + kernel SVM ~ 69.03=1.17  7572=1.06  84.60 £ 0.38
Finer grid resolution | SP + sparse codes + max pool + linear 68.78 £ 1.09  Th14x 086 84411026

Yann LeCun

t New York University



_Sparse Coding within Cluster

m-__“‘_

& Splitting the Sparse Coding into Clusters
» only similar things get pooled together

[Boureau, et al. CVPR 2011]

o)}
o
|

Dictionary |
size

Accuracy
on
o
|

== 1024 |
- 256 |
] = 64
D ] 4 6 it 144 [ +16 [+ 64 - 16
Caltech-101 . - 4
k=256 [T05£08 [T26£ L0 TA0LL0|75.0£08 [T25£10 | T424£11 | 756406 | | | |
E=1020 | 56 £09 [T60£ 12763 £ L1 76.2£08 765121769410 |77.3L0.6 bonfigurat?gn bins, |&S scale
Scenes
k=256 | 8806 (809407 |8LAL08|8L1£05 (80808 8L5£08 | 8L9£0.7
k=102 [ 827207 [83.04£0.7 | 827£0.9 | 814£0.7 (83308 | 833£1.0 | 83.1£0.7

Results on Caltech 101 (30 trainine examoles ver class). and 13-Scenes (100 training examples ver class) as a func

Yann LeCun * New York University|




learning

Invariant Features

[Kavukcuoglu, Ranzato, Fergus, LeCun, CVPR 2009]
[Gregor & LeCun 2010]

Yann LeCun
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_Learning Invariant Features with L2 Group Sparsity

& Unsupervised PSD ignores the spatial pooling step.
& Could we devise a similar method that learns the pooling layer as well?

& Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
» Minimum number of pools must be non-zero
» Number of features that are on within a pool doesn't matter
» Pools tend to regroup similar features

E(Y,Z)=y=w,z|'+|Z-g.(W. Y+ 2|2 Zi

J keP,;

FEATURES

.2 norm within

each pool
Yann LeCun

t New York University



M

‘ Learning Invariant Features with L2 Group Sparsity

& Idea: features are pooled in group.
» Sparsity: sum over groups of L2 norm of activity in group.

& [Hyvarinen Hoyer 2001]: “subspace ICA”
» decoder only, square

@ [Welling, Hinton, Osindero NIPS 2002]: pooled product of experts
» encoder only, overcomplete, log student-T penalty on L2 pooling

& [Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
» encoder-decoder (like PSD), overcomplete, L2 pooling

@ [Le et al. NIPS 2011]: Reconstruction ICA
» Same as [Kavukcuoglu 2010] with linear encoder and tied decoder

& [Gregor & LeCun arXiv:1006:0448, 2010] [Le et al. ICML 201 2]

» Locally-connect non shared (tiled) encoder-decoder
SIMPLE L2 norm within

FEATURES

Encoder only (PoE, ICA),
Decoder Only or

j INVARIANT
Encoder-Decoder (iPSD, RICA) FEATURES

Yann LeCun

t New York University



Pooling Similar Features using Group Sparsity

& A sparse-overcomplete version of Hyvarinen's subspace ICA

& Decoder ensures reconstruction (unlike ICA which requires orthonogonal matrix)
» 1. Apply filters on a patch (with suitable non-linearity)
» 2. Arrange filter outputs on a 2D plane
» 3. square filter outputs

» 4, minimize sart of sum of blocks of squared filter outputs
Chvar laprping

Meighbarboods P, P1

Craussian
Wi dows
'n"l."l A— ’ _

iap of
faaturas

[Kavukcuoglu, Ranzato, Fergu, LeCun, CVPR 2009]
[Jenatton, Obozinski, Bach AISTATS 2010] [Le et al. NIPS2011]

Yann LeCun

t New York University
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Groups are local in a 2D Topographic Map

h——.—__A

& The filters arrange

themselves spontaneously so HHIIII"H“E

that similar filters enter the
same pool.

& The pooling units can be seen
as complex cells

& Outputs of pooling units are
invariant to local
transformations of the input

» For some it's translations,

for others rotations, or
other transformations.

Yann LeCun * New York University|




& Training on 115x115 images. Kernels are 15x15 (not shared across space!)
» [Gregor & LeCun 2010] Decoder
» Local receptive fields
» No shared weights
» 4x overcomplete
» L2 pooling
» Group sparsity over pools

I

Encoder

Yann LeCun




Image-level training, local filters but no weight sharing
I ————— .

& Topographic maps of [l e i
' L R EEAY

continuously-varying % LT LR e
features NS '

& Local overlapping pools are
invariant complex cells

» [Gregor & LeCun
arXiv:1006.0448]
(double tanh encoder)

» [Le et al. ICML'12]
(linear encoder)

Yann LeCun * New York University|



Image-level training, local filters but no weight sharing
I ————— .
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Yann LeCun
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K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)

119x119 Image Input
100x100 Code
20x20 Receptive field size

sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)



ylmage-level training, local filters but no weight sharing

@ Color indicates orientation (by fitting Gabors)
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Theory of Repeated [Filter Bank — L2 Pooling — Average Pooling

& Stéphane Mallat's “Scattering Transform”: Theory of ConvNet-like architectures
& [Mallat & Bruna CVPR 2011] Classification with Scattering Operators

& [Mallat & Bruna, arXiv:1203.1513 2012] Invariant Scattering Convolution
Networks

& [Mallat CPAM 201 2] Group Invariant Scattering
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Sparse Coding Using

Lateral Inhibition

[Gregor, Szlam, LeCun, NIPS 2011]

Yann LeCun




& Replace the L1 sparsity term by a lateral inhibition matrix

& Easy way to impose some structure on the sparsity
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[Gregor, Szlam, LeCun NIPS 2011]
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Invariant Features via Lateral Inhibition: Structured Sparsity

_“M

& Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

& Sij is larger if two neurons are far away in the tree
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_nvariant Features V|a Lateral Inhlbltlon Topographlc Maps_

& Non-zero values in S form a ring in a 2D topology
» Input patches are high-pass filtered
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yInvariant Features via Lateral Inhibition: Topographic Maps

& Non-zero values in S form a ring in a 2D topology
» Left: no high-pass filtering of input
» Right: patch-level mean removal
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Invariant Features via Lateral Excitation: Topographic Maps
| R B —————

& Short-range lateral excitation + L1 sparsity

Yann LeCun

t New York University



Learning What/Where
Features with

Temporal Constancy

[Gregor & LeCun arXiv:1006.0448, 2010]
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<Invariant Features through Temporal Constancy

& Object is cross-product of object type and instantiation parameters
» Mapping units [Hinton 1981], capsules [Hinton 2011]
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‘ . ‘ small medium  large

Object type [Karol Gregor et al.] Object size
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IDecoder

. |
t t-1 t-2 Predicted
S S S |

input

C t C t-1 C t-2 C t Inferrecli
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_Low-Level Filters Connected to Each Complex Cell
| S
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Generating from the Networ

M

Input
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Hardware

Implementations




& Now Running on Picocomputing 8x10cm high-performance FPGA board
» Virtex 6 LX240T: 680 MAC units, 20 neuflow tiles

& Full scene labeling at 20 frames/sec (50ms/frame) at 320x240

New board with Virtex-6

Yann LeCun
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Multi-port memory
controller (DMA)

[X12 on a V6 LX240T]

RISC CPU, to
= econfigure tiles and
data paths, at runtime

global network-on-chip to
—~“— Runtime Config Bus ( / indication on the width) allOW fast reconﬁguration

u Configurable Route ——“— Global Data Lines

23] :::u

grid of passive processing tiles (PTs)

[Xx20 on a Virtex6 LX240T]
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configurable router,

Term-by:-term to stream data in
streaming operators and out of the tile, to
(MUL,DIV,ADD,SU oT : neighbors or DMA
B, MAX) MUX ports

' [Xx20]

[x8,2 per tile] ®@@
configurable piece-wise
. @ linear or quadratic
_ ~ mapper

[x4]
configurable bank of
full 1/2D parallel convolver FIFOs , for stream
with 100 MAC units buffering, up to 10kB .
[Virtexe LX240T]
per PT
[x4] [X8]
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. NewFlow ASIC: 2.5x5 mm, 45nm, 0.6Watts, 160GOPS

& Collaboration NYU-Purdue (Eugenio Culurciello's group)
& Suitable for vision-enabled embedded and mobile devices

& Status: waiting for first samples end of 2012
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Intel neuFlow neuFlow nVidia neuFlow nVidia
I7 4 cores Virtex4 Virtex 6 GT335m IBM 45nm = GTX480

Embed?
(GOP/s/W)
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Software Platforms:
Torch7

http://www.torch.ch

[Collobert, Kavukcuoglu, Farabet 2011]
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& ML/Vision development environment
» Collaboration between IDIAP, NYU, and NEC Labs
» Uses the Lua interpreter/compiler as a front-end
» Very simple and efficient scripting language
» Ultra simple and natural syntax
» It's like Scheme underneath, but with a "normal” syntax.
» Lua is widely used in the video game and web industries

& Torch7 extend Lua with Numerical, ML, Vision libraries
» Powerful Vector/Matrix/Tensor Engine (developed by us)
» Interfaces to numerical libraries, OpenCV, etc
» Back-ends for SSE, OpenMP, CUDA, ARM-Neon,...
» Qt-based GUI and graphics
» Open source: http://www.torch.ch/
» First released in early 2012

Yann LeCun
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& ML/Vision development environment

» As simple as Matlab, but faster and
better designed as a language.

R X Z2

2D CONVOLUTION
torch.rand (100,100)
torch.rand (10,10)

x_
k
resl

16
16

torch.conv2 (x,k)

MATRIX and VECTOR Operations

torch.Tensor (2,2) : £i11 (2)
torch.Tensor (2,4) : £i11 (3)
torch.Tensor (2) : £111 (4)
torch.Tensor (2) : £i11 (5)
x*y -- dot product

M*x --- matrix-vector

[torch.Tensor of dimension 2]

TRAINING
mlp = nn.
mlp:add (
mlp:add (
mlp:add (

criterion

A NEURAL NET
Sequential ()
nn.Linear (10, 25) )
nn.Tanh () )
nn.Linear (25,

1) )

nn.MSECriterion|()

-- 1 output

trainer

trainer:train(dataset)

Yann LeCun

-- 10 input, 25 hidden units
-- some hyperbolic tangent transfer function

-- Mean Squared Error criterion
nn.StochasticGradient (mlp, criterion)

-—- train using some examples

t New York University
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The End
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