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Learning a Similarity Measure

& Many methods for classification, clustering, and dimensionality reduction
rely on a similarity measure.

& Question: how do we learn a mapping G(X) such that the Euclidean
distance in the transformed space [|G(X1)-G(X2)ll corresponds to the
“semantic distance’ between X1 and X2 in the input space?

& The idea goes back to Fisher's Linear Discriminant Analysis (LDA):

» find a projection such that, in the projected space, the ratio of inter-
class variance to intra-class variance is maximized.

» while the idea is appealing, its performance for classification is
abysmal (better off using logistic regression, which is much simpler,

faster, and better).

@ There has been a regain of interest in new kinds of metric learning over the
last few years which use local discrimination criteria and non-linear

mappings

Yann LeCun * New York University



Metric Learning is not Embedding

& There are lots of methods to embed points into a low dimensional space:
Multi-Dimensional Scaling, Isomap, LLE, Laplacian Eigenmaps......

& These methods do not produce a full mapping from the input space to the
low dimensional space.

» They merely map the training samples
» They cannot be applied to new samples without some additional

hack.

& In Metric Learning, we want to learn a mapping G(X) that can be
applied to any new X (not just the training samples).

t New York University

Yann LeCun



Exam

& X and Y are images
E(X,Y)

& Y is a discrete variable with many

TGO0GN possible values |
» All the people in our gallery
& Example of architecture:

G(X) G(Y) » A function G(X) maps input
images into a low-dimensional
space in which the Euclidean
distance measures dissemblance.

@ Inference:

» Find the Y in the gallery that
minimizes E(X,Y) (find the Y that
is most similar to X)

» Minimization through exhaustive
search.

Yann LeCun

t New York University



Basic Idea of Metric Learning

& Pick a family of transformation {Gw(X), w in W}

& Use a ““Siamese Architecture”, and learn a parameter W that will:

Make this small Make this large
E(W,X1,X2) E(W,X1,X2)

f

u;}w(Xl)—Gw()ﬂ qu(Xl) Gw(X2)
‘ Gw(X1) ‘ ‘ Gw(X2) \ ‘ Gw(X1) ‘ ‘ Gw(X2) \

Semantially similar samples Semanticlly different samples
(e.g. same label) (e.g. different labels)

t New York University
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& Specific methods differ in how they pick:
» the loss function

» the architecture E(W,X1,X2) (linear or non-linear)
» the optimization algorithm (gradient descent, SDP, ....)

» how they approximate the loss function and its gradient: the loss
has sums with a quadratic number of terms in the number of
training samples.

& Cosine-based Siamese networks (non-linear G(X))

& Neighborhood Component Analysis (linear and non-linear versions)
& Contrastive Loss Function Methods (margin-like loss)

& Invariant Manifold Learning (DrLIM)

& Non-linear NCA with unsupervised pre-training

Yann LeCun

t New York University



s Other Dimensionality Reduction Methods

@@ PCA-based dimensionality reduction methods
@ Linear projection trained non-discriminatively to maximize variance.
@ Disadvantages: linear; no discrimination.

@@ LDA-based dimensionality reduction methods

@ Linear projection trained discriminatively to maximize inter-class variance and minimize
intra-class variance.

@ Disadvantage: linear
@@ Kernel — PCA and Kernel — LDA
@ Non-linear extensions of the above.
@ Disadvantage: no invariance unless it's built into the kernel.
&® LLE and MDS
@ Maps each training sample into low-dim Euclidean space that preserve distances or angles.
@ Disadvantages: no direct mapping, no parameterized invariance, no simple way to use the
“semantic” distance between training samples.
@ Advantages of trainable metrics:
@ The non-linear parameterization of the mapping allows to learn dissimilarity metrics that are
invariant to irrelevant transformations of the inputs.



Trainable Metrics vs hand-crafted invariances
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i@ Dissimilarity metrics with hand-crafted invariances
@ Tangent distance methods.
@ Elastic matching.
@ Warping-based normalization algorithms.

@ Disadvantages

@ Cannot learn invariance to transformations that are hidden in the data (e.g.
Glasses or no glasses for face recognition).



;Siamese Architecture for Comparing Time-Series Data
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'ID Convolutional Net (TDNN)
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Examples

i Loss function:

¥ maximize cosine of output vectors for genuine pair

¥ make it close to zero (or -1) for forged pair

ACCEPTED REJECTED

E

i 80 % of forgeries detected
for 97 % genuine
signatures accepted

}g

084 009 il The “code” for a signature

. W only has 80 dimensions.

11 030
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* eighborhood Component Analysis (NCA)
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[Golberger, Roweis, Hinton, Salakhutdinov, NIPS 2004 ]

& Linear version: d(z,y) = (z —y)’ Q(I —y) = (Az — Ay) " (Az — Ay).
& Probability that Xi picks Xj as neighbor:

exp(—||Ax; — Ax; %)

Pij = : pii =
/ D> ki €Xp(—|| Az — Awgl]?)
& Loss runcuon:
_—4 —_ i 7
@ Gradient: A ; 3; Pij Za: P

af
o = ZAZ; (p?: Zk:mkwakwfk -y sziﬂz‘jiﬁff)
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Neighborhood Component Analysis (NCA)

[Golberger, Roweis, Hinton, Salakhutdinov, NIPS 2004 ]

JeC;

af
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& Problem: the first term has a lot of terms in it (as many as there are
training samples) ==> quadratic

& Solution: thresholding and random sampling

» the Pik values fall off very quickly. Most of them can dafely be
ignored

» it suffices to take a random subset of the samples.

Yann LeCun

t New York University
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Non-Linear NCA with Unsupervised Pre-Training_

[Salakhutdinov and Hinton “Learning a Nonlinear Embedding by Preserving Class
Neighbourhood Structure” AISTATS*07]

@ Basic Idea: use NCA with a very DIy .y’
‘““deep’ neural net, capable of Y =301 ™ > 51 Y
producing highly non-linear T W, T W,
mappings. 2000 2000

& Problem: these networks are difficult
to train with gradient descent

& Solution:

» 1. pre-train the network layer by
layer using an unsupervised
method

» 2. refine the pre-trained network
with non-linear NCA

Yann LeCun

t New York University
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Non-Linear NCA with Unsupervised Pre-Training
L — SR —_———— |

[Salakhutdinov and Hinton “Learning a Nonlinear Embedding by Preserving Class
Neighbourhood Structure” AISTATS*07]

& Same method as regular NCA:

We are given a set of N labeled training cases (x2,c®),
a =1,2,..,N, where x* € R% and ¢* € {1,2,...,C}.
For each training vector x%, define the probability that point
a selects one of its neighbours b (as in [9, 13]) in the trans-
formed feature space as:

exp (—dﬂb)
Zz#q CXp (_dﬂz) ?

We focus on the Fuclidean distance metric:

dap =|| f(x*|W) — F(x"|W) |

Pab = Paa = 0 (3)

Yann LeCun

t New York University



Non-Linear NCA with Unsupervised Pre-Training

& Each layer is trained

Decoder |

minimizes a linear

with the Restricted =
Boltzmann Machine P
RBM| |

algorithm TTTTTTTTTTT

@ The fine-tuning e
!

combination of the
NCA loss and the [ spo ]

reconstruction error CLsw 1 rem
Pretraining Fine-tuning

Yann LeCun * New York University
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N on-Linear/NCA on MNIST digits
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Another Loss Function
m—ﬂﬁa&_.ld —

& Idea: don't push away all the points, simply push away the most
offending alien points [MOAP] (the point with a different label than Xi
that is closest to it)

» This will eventually cause a point with the same label to be closest
to Xi

MOAP: }7% — argminy;éyz' E(I/Vg Y, Xz)

LV, Y Y XX L) =) LY (EW, Y, XY)+L™ (miny 2y E(W, Y, X))

\

/ Decreasing function:
Increasing function: Pulls up on the energies
Pushes down on the energy of the most otfending
of the correct answers Incorrect answer

Yann LeCun

t New York University



L.oss Function

i T —

E(W,X1,X2)

u;}w(Xl‘)—GW(XZ')II—I

Gw(X1) Gw(X2)

A b

a 1Q 20 a3a
sudidean dietfanocs

i@ Siamese models: distance between the outputs of two identical copies of a model.
i@ Energy function: E(W,X1,X2) = lIGw(X1)-Gw(X2)ll

@@ If X1 and X2 are from the same category (genuine pair), train the two copies of the model
to produce similar outputs (low energy)

i@ If X1 and X2 are from different categories (impostor pair), train the two copies of the
model to produce different outputs (high energy)

i@ Loss function: increasing function of genuine pair energy, decreasing function of
impostor pair energy.



_Examples of Loss Functions
I —————

& Most Offending Alien Point:

Y' = argmin, .y E(W, y, X"

Square-Square Loss
W) =3 EW,Y" X%+ (max(0,m — miny zys E(W, Y, X))’

Square-Exponential Loss

L(W) = Z EW,Y", X")? + K exp (miny4y: E(W,Y, X))

Emiriia

m Ephus

Yann LeCun

t New York University



oss Function: Square-Exponential

m“;;f;[‘ =SS

& Our Loss function for a single training pair (X1,X2):

v L N, N D) == C A — > D> Fr __. C ==,
— C 1 —Y)%(EW(Xl’X:

And R 1s the largest possible value of

(X, X L)

Y=0 for a genuine pair, and Y=1 for
an impostor pair.
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Face Verlflcatlon datasets: AT&T FERET, and AR/Purdue

Ms,‘-;: S S

* The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

» Images had a moderate degree of variation in pose, lighting, expression and head position.

e Images from 335 subjects were used for training. Images from 5 remaining subjects for testing.
 Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

e http://www.uk.research.att.com/facedatabase.html

AT&T/ORL
Dataset




Face Verification datasets: AT&T, FERET, and A

R/Purdue

e The FERET dataset. part of the dataset was used only for training.

* Total subjects: 96. Images per subject: 6. Total images: 1122.

» Images had high degree of variation in pose, lighting, expression and head position.
» The images were used for training only.

e http://www.itl.nist.gov/iad/humanid/feret/

FERET Dataset




FaceVeiioatats: ATT, FEET, drdue |

e The AR/Purdue dataset
e Total subjects: 136. Images per subject: 26. Total images: 3536.
 Each subject has 2 sets of 13 images taken 14 days apart.

» Images had very high degree of variation in pose, lighting, expression and position. Within each set
of 13, there are 4 images with expression variation, 3 with lighting variation, 3 with dark sun glasses
and lighting variation, and 3 with face obscuring scarfs and lighting variation.

» Images from 96 subjects were used for training. The remaining 40 subjects were used for testing.
e Training set drawn from: 64896 genuine and 6165120 impostor pairs.

* Test set drawn from: 27040 genuine and 1054560 impostor pairs.

e http://rv11.ecn.purdue.edu/aleix/aleix_face_DB.html







Preprocessing

The 3 datasets each required a small amount of preprocessing.
FERET: Cropping, subsampling, and centering (see below)
AR/PURDUE: Cropping and subsampling

AT&T: Subsampling only
subsample ‘
center l

Crop




| entering with a Gaussian-blurred face template

ws_{;.:g =

i Coarse centering was done on the FERET database images
1. Construct a template by blurring a well-centered face.
2. Convolve the template with an uncentered image.
3. Choose the "peak’ of the convolution as the center of the image.

Convolve mask with

. peak is center
image

of image
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and Subsampling

i@ Local features are extracted
everywhere.

i@ averaging/subsampling layer
builds robustness to variations in
feature locations.

i@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun

Hw=“ W

“Simple cells”
“Complex cells”

. Averaging
Multiple subsampling
convolutions

[}

= N.E LWty
= .
w0 B, O i, o

t New York University



| SS—

—— ———— —_— R e e - - - - ]

Archltecture for the Mapplng Functlon Gw(X)

Convolutional net

Input
image

2@56x46

Layer 6

Layer 3
Layer 1 Layer 2 g Layer 4 Layer 5
45@20x15

15@50x40 15@25x20 45@5x5 250

Fully connected

50 units.
Low-dimensional

invariant representation

-

> .
Y 27%2 | 4x3 5x5
convolution subsampling convolutio convolution

subsampling
(15 kernels) (198 kernels) (11250 kernels)
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Internal state for genuine and impostor pairs




&

aussian Face Model in the output space

R

2006860
066 A 8EAQ

A gaussian model
constructed from 5
images of the
above subject.

1
Threshold —4
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Dataset for Verification [ Verification Results

Magu;: — ———— M‘-,—ff;: .

il tested on AT&T and AR/Purdue gl The AT&T dataset il The AR/Purdue dataset

@ AT&T dataset -alse Accept  False Reject  ~alse Accept False Reject
Number of subjects: 5 10.00% 0.00% 10.00% 11.00%
Images/subject: 10 7.50% 1.00% 7.50% 14.60%
Images/Model: 5 5.00% 1.00% 5.00% 19.00%
Total test size: 5000
Number of Genuine: 500
Number of Impostors: 4500

gl Purdue/AR dataset .

Number of subjects: 40 :
Images/subject: 26 y
Images/Model: 13 .
Total test size: 5000 o
Number of Genuine: 500 E
Number of Impostors: 4500 ;

10% 510 1520 2530 3540 ﬁmpsfeoesvo 7580 85 9 95100
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& Example: Correctly classified genuine pairs

KP8R

energy: 0.3159 energy: 0.0043 energy: 0.0046
& Example: Correctly classified impostor pairs

L 2 82A52

energy: 20.1259 energy: 32.7897 energy: 5.7186

e= 29

energy: 10.3209 energy: 2.8243

& Example: Mis-classified
pairs
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_Linear Versio

& Recently, Weinberger, Blitzer and Saul [NIPS 06] proposed a version
of this that uses a hinge loss, but is restricted to linear mappings.

» They show that semi-definite programming can be used to
optimize the loss in that case.

Yann LeCun

t New York University



[Hadsell, Chopra, LeCun, CVPR 2006]

Yann LeCun




Nim
.

@ LLE, Laplacian Eigenmaps, and Hessian LLE: map a given set of high
dimensional points to a corresponding set low-dimensional points.

g All the points must be known in advance.

g New points whose relationship to the original training points is not known cannot be
mapped to the low-dimensional space.

gl There is no real “function” that maps input objects to low-dimensional output vectors.

i With LLE: a “meaningful” and computable distance metric between input objects must
be devised.

Yann LeCun

t New York University



Learning a FUNCTION from input to output

=

New X New Y
A
| A
# Gw(X) |- .
e
/ —

& With a function, new points can be mapped easily

» We do not need to come up with a similarity metric in input space

» We do not need to know the relationship of new points to training
points

& Questions:

» How do we do it? What loss function?
» How to we determine that two samples are “similar”?

Yann LeCun

t New York University



Lear anARI from it to P“t

mﬁﬁﬁﬁﬁ&:g

Gw(X) [— —s

/I
& We want the mapping to be invariant to
irrelevant variations of the input

» Example 1: the low-dim image of an A
airplane should be independent of its .-‘f\

illumination. ——

» Examples 2: the low-dim image of a
handwritten character should be independent
of its position in the frame

Yann LeCun

t New York University
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Previous Work

@ Some methods generate a mapping, but rely on computable distance metrics in
input space.
@ Principal Component Analysis (PCA)
@ I[SOMAP
@ Local Linear Embedding (LLE)
@ Multidimensional Scaling (MDS) — in Classical Sense
@ Others don't rely on distance metrics, but they do not generate a function.
@ Laplacian EigenMaps
@ Hessian LLE
@ Kernel PCA

Yann LeCun

t New York University



hat do we want?
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@ Learning low-dimensional manifolds with invariance to irrelevant
transformation of the inputs

i Taking advantage of prior knowledge about which sample is “semantically”
similar to which other sample.

i Learning a MAPPING (an actual function) that maps inputs to the low-
dimensional space, so we can apply it to new patterns whose relationship to the
training samples 1s unknown

@ Allowing complicated non-linear mapping from input to low-dimensional
representations

@ Relying solely on neighborhood relationships, and not requiring the existence
of a computable distance metric between input patterns. So that the method can
be used to any object.

@ Finding a manifold in which the samples are uniformly distributed

Yann LeCun

t New York University
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Learning Invariant Manifolds with EBMs
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RECIPE

@ Build a neighborhood graph of the training samples, possibly using prior
knowledge. Two samples are neighbors if they are semantically similar.

i Pick a parameterized family of functions from inputs to low-dimensional
output vectors (neural nets, RBF, whatever)

@ Optimize the parameters of the function so as to minimize a loss function
that make the distance between the output vector of neighbors small, and
the distance between output vectors of non-neighbors large.

i@ Apply the trained function to new (test) samples

Yann LeCun

t New York University



‘Step 1: Building a Neighborhood Graph
I ——— e

R —————_——-- |

& Build a graph between training samples such that:

» Semantically “similar” patterns have an edge between them.
» Semantically “different” pattens don't.

& Prior knowledge can be used to build the graph

Similar viewpoints

Yann LeCun

t New York University



| Step 2: Pick a Parameterized Family of Functio

& The function can be anything:
» Neural net, RBF, other non-linear families

@ There is no restriction on the form of the function family

» But it's better if it's smooth.
» W: parameters vector

/

Yann LeCun

t New York University
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| Step 3: Pick a Loss function and Minimize it w.r.t. W
e ———— -

& Loss function:
» Outputs corresponding to input samples that are neighbors in the
neigborhood graph should be nearby

» Outputs for input samples that are not neighbors should be far away
from each other

/

Yann LeCun

t New York University
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“Architecture

Ey
|
‘ Gw (X)) = Gw(X)|
A A
fi = Gw(X)) fa = Gw(Xy)
Gyl X - W - Gl X
A +
| |
A Xo

& Siamese Architecture [Bromley, Sackinger, Shah, LeCun 1994]

Yann LeCun

t New York University



“Architecture and loss function
[ ——

@ Loss function: Make this small Make this large
» Outputs A A
corresponding to IS ——
input samples
that are A A A A

neighbors in the
neigborhood
graph should be
nearby

» Outputs for input
samples that are
not neighbors
should be far
away from each

other Similar images (neighbors Dissimilar images
in the neighborhood graph) (non-neighbors in the
neighborhood graph)

Yann LeCun * New York University
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Loss functlon

M...‘“ B

& Loss function:

» Pay quadratically
for making outputs
of neighbors far
apart

» Pay quadratically
for making outputs
of non-neigbors
smaller than a
margin m

Yann LeCun

t New York University



Mechanical Analogy

[ ——————

& The output vectors for graphs neighbors (black points) are pulled
together by a spring

& The output vectors of non-neighbors (white points) are repelled by a
spring whose rest length is equal to the margin

» The value of the margin sets an arbitrary scale for the output
space

Yann LeCun

t New York University
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i@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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M

& Objective: Sanity check
using undistorted images. No
use of any prior knowledge.

@@ Neighbors: 5 nearest
neighbors in euclidean space.

& Training: 3000 samples each
of handwritten 4's and 9's.

@ Testing: 1000 samples each
of 4's and 9's.

@ Architecture: Input
dimension: 32x32. Output
dimension: 2. A 4 layer
Convolutional Network.

test samples

Yann LeCun

t New York University



Architecture of the Gw(X) Function:

msii;; =

A small convolutional net

Input Layer 1 Layer 2 Layer 3 Cutgd
2x1%1
—
Convolitions Subsamping  Comwolutions Fuly
cannechad

Yann LeCun

t New York University
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and Subsampling

i@ Local features are extracted
everywhere.

i@ averaging/subsampling layer
builds robustness to variations in
feature locations.

i@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun

Hw=“ W

“Simple cells”
“Complex cells”

. Averaging
Multiple subsampling
convolutions

[}
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w0 B, O i, o

t New York University



& The position of a digit in the image frame is irrelevant

& Can we learn a mapping that is invariant to shifts?
& Dataset: Each digit is horizontally shifted by -6, -3, 0, 3, 6 pixels
& Neighborhood Graph: 5 (unshifted) nearest neighbors in Euclidean

distance
Original Translations of original Nearest Neighbors of original

Yann LeCun

t New York University



Simple Experiment with Shifted MNIST

m‘é‘f{!j’ —

i@ Training set: 3000 “4”
and 3000 “9” from
MNIST. Each digit is
shifted horizontally by
-6, -3, 3, and 6 pixels

i Test set (shown) 1000

“4” and 1000 “9”

il Neighborhood graph: 5
nearest neighbors in
Euclidean distance.

i Output Dimension: 2

Yann LeCun

t New York University



'Shifted MNIST: LLE Result

i@ Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

el Neighborhood graph: 5
nearest neighbors in
Euclidean distance,

gl Output Dimension: 2

il Test set (shown) 1000 “4”
and 1000 “9”

@/ﬂ\q¢94¢a4w4

Yann LeCun
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Shift-Invariant mapping: using prior knowledge

& The position of a digit in the image frame is irrelevant
& Can we learn a mapping that is invariant to shifts?
& Dataset: Each digit is horizontally shifted by -6, -3, 0, 3, 6 pixels

& Neighborhood Graph: an edge is placed between each sample and

» Shifted versions of itself
» Its 5 (unshifted) nearest neighbors in Euclidean distance
» The shifted versions of its 5 Euclidean nearest neighbors

Original Translations of original Nearest Neighbors of original

Yann LeCun

t New York University



i Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

gl Neighborhood graph: 5
nearest neighbors in
Euclidean distance, and
shifted versions of self and
nearest neighbors

el Output Dimension: 2

ial Test set (shown) 1000 “4”
and 1000 *“9”

599990991999 7
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iscovering the Viewpoint Manifold

‘Mm;;f;[‘ =SS

@ Data set: 927 images of airplanes under 6
tlluminations, 18 azimuth and 9 elevations

¥ Resolution: 48x48 pixels
i Training set :660 image

i Test set: 312 images
i Architecture: fully-connected neural net With‘ = i

20 hidden units and 3 outputs E

g Neighborhood graph: 1% and 2" nearest

neighbors in azimuth, 1* nearest neighbor in
elevation, all illuminations

Yann LeCun

t New York University



Geneﬂric"\()bject Detection and Recognition

with Invarlance to Pose and Illumlnatlon

e e e ESESS=S—————————————

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:

gl 18 azimuths il % S ‘ﬁ. D *@ = - o m
I;g et;rzeSé) degrees every 20 3"_ & ’3 & /ﬁ % g @ ﬁ, /‘E

gl 9 elevations

i 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x\*%

gl 2 cameras (stereo)

i 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University
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Data Collection, Sample Generation
| SN

Image capture setup

Objects are painted green so that:
- all features other than shape are removed
- objects can be segmented, transformed,

and composited onto various backgrounds

Original image Object mask

Shadow factor Composite image

Yann LeCun * New York University



ORB Dataset: LLE

ki&ms

Yann LeCun
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‘Automatic Discovery of the Viewpoint Manifold

Yann LeCun
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NORB Dataset: Learned Hidden Units

Yann LeCun
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Thank Yo
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Yann LeCun
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