Support Vector Machines: Maximum Margin Classifiers

Machine Learning and Pattern Recognition:
September 23, 2010

Piotr Mirowski
Based on slides by Sumit Chopra, Fu-Jie Huang and Mehryar Mohri
Outline

- What is behind Support Vector Machines?
 - Constrained optimization
 - Lagrange constraints
 - “Dual” solution
- Support Vector Machines in detail
 - Kernel trick
 - LibSVM demo
Binary Classification Problem

- **Given:** Training data generated according to the distribution D

 \[
 (x_1, y_1), \ldots, (x_m, y_m) \in \mathbb{R}^n \times \{-1, 1\}
 \]

- **Problem:** Find a classifier (a function) $h(x): \mathbb{R}^n \rightarrow \{-1, 1\}$ such that it generalizes well on the test set obtained from the same distribution D

- **Solution:**
 - **Linear Approach:** linear classifiers (e.g. logistic regression, Perceptron)
 - **Non Linear Approach:** non-linear classifiers (e.g. Neural Networks, SVM)
Assume that the training data is linearly separable
Assume that the training data is linearly separable

\[\mathbf{w} \cdot \mathbf{x} + b = 0 \]
Linearly Separable Data

Assume that the training data is linearly separable

\[\vec{w} \cdot \vec{x} + b = 0 \]

Abscissa on axis parallel to \(\vec{w} \)

Abscissa of origin 0 is \(b \)

\[\vec{w} \cdot \vec{x}_b + b = \tilde{y}_b \]

\[\vec{w} \cdot \vec{x}_r + b = \tilde{y}_a \]

\[\vec{w} \cdot \vec{O} + b = b \]
Assume that the training data is linearly separable

\[\vec{w} \cdot \vec{x} + b = 0 \]

absissa on axis parallel to \(\vec{w} \)

absissa of origin \(0 \) is \(b \)

Then the classifier is:

\[h(x) = \vec{w} \cdot \vec{x} + b \quad \text{where} \quad w \in \mathbb{R}^n, b \in \mathbb{R} \]

Inference:

\[\text{sign}(h(x)) \in \{-1, 1\} \]
Linearly Separable Data

- Assume that the training data is linearly separable

Margin \(\rho = \frac{1}{\|\vec{w}\|} \) (in the \(\{O, \vec{x}_1, \vec{x}_2\} \) space)

Maximize margin \(\rho \) (or \(2\rho \)) so that:

For the closest points: \(h(x) = \vec{w} \cdot \vec{x} + b \in \{-1, 1\} \)
A Constrained Optimization Problem

\[\min_w \frac{1}{2} \|w\|^2 \]

s.t.: \[y_i(w \cdot x_i + b) \geq 1, \quad i = 1, \ldots, m \]

Equivalent to maximizing the margin \[\rho = \frac{1}{\|w\|} \]

A convex optimization problem:
- Objective is convex
- Constraints are affine hence convex

Therefore, admits an unique optimum at \(w_0 \)
Optimization Problem

Compare:

\[
\min_w \frac{1}{2} \|w\|^2
\]

s.t.:

\[
y_i(w \cdot x_i + b) \geq 1, \quad i = 1, \ldots, m
\]

With:

\[
\min_w \left(\sum_{i=1}^{m} \left(-y_i(w \cdot x_i + b) + \frac{\lambda}{2} \|w\|^2 \right) \right)
\]

objective

constraints

energy/errors

regularization
Optimization: Some Theory

The problem:

\[\min_{x} f_0(x) \]

Objective function

\[s.t.: \]

- \[f_i(x) \leq 0, \quad i = 1, \ldots, m \]
 Inequality constraints
- \[h_i(x) = 0, \quad i = 1, \ldots, p \]
 Equality constraints

Solution of problem:

- Global (unique) optimum – if the problem is convex
- Local optimum – if the problem is not convex

(Notation change: the parameters to optimize are noted \(x \))
Example: Standard Linear Program (LP)

\[
\min_{x} \ c^T x \\
\begin{align*}
\text{s.t.:} & \\
Ax &= b \\
x &\geq 0
\end{align*}
\]

Example: Least Squares Solution of Linear Equations (with L₂ norm regularization of the solution x)

i.e. Ridge Regression

\[
\min_{x} \ x^T x \\
\begin{align*}
\text{s.t.:} & \\
Ax &= b
\end{align*}
\]
Constrained / unconstrained optimization

Hierarchy of objective function:
smooth = infinitely derivable
convex = has a global optimum

\[f_0 \]

- convex
- non-convex

- smooth
- non-smooth

SVM
NN
Introducing the concept of Lagrange function on a toy example
Toy Example: Equality Constraint

Example 1:

\[
\begin{align*}
&\text{min } x_1 + x_2 \quad \equiv f \\
&s.t.: \quad x_1^2 + x_2^2 - 2 = 0 \quad \equiv h_1
\end{align*}
\]

At Optimal Solution:

\[
\nabla f(x^o) = \lambda_1 \nabla h_1(x^o)
\]
Toy Example: Equality Constraint

- x is not an optimal solution, if there exists $s \neq 0$ such that

$$h_1(x+s) = 0$$
$$f(x+s) < f(x)$$

- Using first order Taylor's expansion

$$h_1(x+s) = h_1(x) + \nabla h_1(x)^T s = \nabla h_1(x)^T s = 0 \quad (1)$$
$$f(x+s) - f(x) = \nabla f(x)^T s < 0 \quad (2)$$

- Such an s can exist only when

$\nabla h_1(x)$ and $\nabla f(x)$ are not parallel
Thus we have

$$\nabla f(x^o) = \lambda_1 \nabla h_1(x^o)$$

The Lagrangian

$$L(x, \lambda_1) = f(x) - \lambda_1 h_1(x)$$

Thus at the solution

$$\nabla_x L(x^o, \lambda_1^o) = \nabla f(x^o) - \lambda_1^o \nabla h_1(x^o) = 0$$

This is just a necessary (not a sufficient) condition”

x solution implies $\nabla h_1(x) \parallel \nabla f(x)$
Toy Example: Inequality Constraint

Example 2:

\[
\begin{align*}
\min & \quad x_1 + x_2 \\
\text{s.t.:} & \quad 2 - x_1^2 - x_2^2 \geq 0
\end{align*}
\]

\[
\begin{align*}
\nabla f &= \begin{pmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2}
\end{pmatrix} \\
\nabla c_1 &= \begin{pmatrix}
\frac{\partial c_1}{\partial x_1} \\
\frac{\partial c_1}{\partial x_2}
\end{pmatrix}
\end{align*}
\]
Toy Example:

Inequality Constraint

x is not an optimal solution, if there exists such that

$$c_1(x + s) \geq 0$$

$$f(x + s) < f(x)$$

Using first order Taylor's expansion

\[
c_1(x + s) = c_1(x) + \nabla c_1(x)^T s \geq 0 \quad (1)
\]

\[
f(x + s) - f(x) = \nabla f(x)^T s < 0 \quad (2)
\]
Toy Example: Inequality Constraint

Case 1: Inactive constraint
- Any sufficiently small s as long as $\nabla f_1(x) \neq 0$
- Thus $s = -\alpha \nabla f(x)$ where $\alpha > 0$

Case 2: Active constraint
- $c_1(x) = 0$

 \[
 \nabla c_1(x)^T s \geq 0 \quad (1)
 \]
 \[
 \nabla f(x)^T s < 0 \quad (2)
 \]

In that case, $s = 0$ when:

$$\nabla f(x) = \lambda_1 \nabla c_1(x), \quad \text{where } \lambda_1 \geq 0$$
Thus we have the Lagrange function (as before)

\[L(x, \lambda_1) = f(x) - \lambda_1 c_1(x) \]

The optimality conditions

\[\nabla_x L(x^o, \lambda_1^o) = \nabla f(x^o) - \lambda_1^o \nabla c_1(x^o) = 0 \quad \text{for some} \quad \lambda_1^o \geq 0 \]

and

\[\lambda_1^o c_1(x^o) = 0 \]

Complementarity condition

either \[c_1(x^o) = 0 \] (active) or \[\lambda_1^o = 0 \] (inactive)
Same Concepts in a More General Setting
Lagrange Function

The Problem

\[\min_{x} f_{0}(x) \]

s.t.:
\[\begin{align*}
 f_{i}(x) & \leq 0, & i = 1, \ldots, m \\
 h_{i}(x) & = 0, & i = 1, \ldots, p
\end{align*} \]

Standard tool for constrained optimization: the Lagrange Function

\[L(x, \lambda, \nu) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i} f_{i}(x) + \sum_{i=1}^{p} \nu_{i} h_{i}(x) \]

dual variables or Lagrange multipliers
Lagrange Dual Function

Defined, for \(\lambda, \nu \) as the minimum value of the Lagrange function over \(x \)

\(m \) inequality constraints
\(p \) equality constraints

\[g : \mathbb{R}^m \times \mathbb{R}^p \rightarrow \mathbb{R} \]

\[
g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) = \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)
\]
Lagrange Dual Function

- **Interpretation of Lagrange dual function:**
 - Writing the original problem as unconstrained problem but with hard indicators (penalties)

 \[
 \text{minimize } \begin{pmatrix} f_0(x) + \sum_{i=1}^{m} I_0(f_i(x)) + \sum_{i=1}^{p} I_1(h_i(x)) \end{pmatrix}
 \]

 where

 \[
 I_0(u) = \begin{cases}
 0 & u \leq 0 \\
 \infty & u > 0
 \end{cases}
 \]

 \[
 I_1(u) = \begin{cases}
 0 & u = 0 \\
 \infty & u \neq 0
 \end{cases}
 \]
Lagrange Dual Function

Interpretation of Lagrange dual function:
- The Lagrange multipliers in Lagrange dual function can be seen as “softer” version of indicator (penalty) functions.

\[
\begin{align*}
\text{minimize} \quad & \left(f_0(x) + \sum_{i=1}^{m} I_0(f_i(x)) + \sum_{i=1}^{p} I_1(h_i(x)) \right) \\
\text{inf} \quad & \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)
\end{align*}
\]
If \((x^o, \lambda^o, \nu^o)\) is a saddle point, i.e. if
\[
\forall x \in \mathbb{R}^n, \quad \forall \lambda \geq 0, \quad L(x^o, \lambda, \nu) \leq L(x^o, \lambda^o, \nu^o) \leq L(x, \lambda^o, \nu^o)
\]
... then \((x^o, \lambda^o, \nu^o)\) is a solution of the primal problem \(p^o\).
Lagrange Dual Problem

- Lagrange dual function gives a lower bound on the optimal value of the problem.
- We seek the “best” lower bound to minimize the objective:

\[
\begin{align*}
\text{maximize} & \quad g(\lambda, \nu) \\
\text{s.t.:} & \quad \lambda \geq 0
\end{align*}
\]

- The dual optimal value and solution:

\[d^o = g(\lambda^o, \nu^o)\]

- The Lagrange dual problem is convex even if the original problem is not.
Primal / Dual Problems

Primal problem:

\[
\begin{align*}
\text{min } & \quad f_0(x) \\
\text{s.t.:} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

Dual problem:

\[
\begin{align*}
\text{max } & \quad g(\lambda, \nu) \\
\text{s.t.:} & \quad \lambda \geq 0
\end{align*}
\]

\[
g(\lambda, \nu) = \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)
\]
Optimality Conditions: First Order

Karush-Kuhn-Tucker (KKT) conditions
If the strong duality holds, then at optimality:

\[
\begin{align*}
 f_i(x^o) &\leq 0, \quad i = 1, \ldots, m \\
 h_i(x^o) &= 0, \quad i = 1, \ldots, p \\
 \lambda^o_i &\geq 0, \quad i = 1, \ldots, m \\
 \lambda^o_i f_i(x^o) &= 0, \quad i = 1, \ldots, m \\
 \nabla f_0(x^o) + \sum_{i=1}^{m} \lambda^o_i \nabla f_i(x^o) + \sum_{i=1}^{p} \nu^o_i \nabla h_i(x^o) &= 0
\end{align*}
\]

KKT conditions are
\- necessary in general (local optimum)
\- necessary and sufficient in case of convex problems (global optimum)