MACHINE LEARNING AND PATTERN RECOGNITION

Spring 2004, Lecture 4b Modules and Architectures

Yann LeCun
The Courant Institute, New York University http://yann.lecun.com

A Trainer class

The trainer object is designed to train a particular machine with a given energy function and loss. The example below uses the simple energy loss.
(defclass simple-trainer object
input ; the input state
output ; the output/label state
machin ; the machine
mout ; the output of the machine
cost ; the cost module
energy ; the energy (output of the cost)
param ; the trainable parameter vector
)

A Trainer class: running the machine

Takes an input and a vector of possible labels (each of which is a vector, hence <label-set> is a matrix)
 and returns the index of the label that minimizes the energy. Fills up the vector <energies> with the energy produced by each possible label.

```
(defmethod simple-trainer mun
```



```
    (idx-copy label :output:x)
    (" cost fiprop mout output energy)
    (e (:energy:x)))
;; find index of lowest energy
(idx-dlindexmin energies))
```


A Trainer class: training the machine

Performs a learning update on one sample. <sample> is the input sample, <label> is the desired category (an integer), <label-set> is a matrix where the i-th row is the desired output for the i-th category, and <updateargs> is a list of arguments for the parameter update method (e.g. learning rate and weight decay).

Other Topologies

The back-propagation procedure is not limited to feed-forward cascades.
It can be applied to networks of module with any topology, as long as the connection graph is acyclic.

- If the graph is acyclic (no loops) then, we can easily find a suitable order in which to call the fprop method of each module.
- The bprop methods are called in the reverse order.
- if the graph has cycles (loops) we have a so-called recurrent network. This will be studied in a subsequent lecture.

More Modules

A rich repertoire of learning machines can be constructed with just a few module types in addition to the linear, sigmoid, and euclidean modules we have already seen. We will review a few important modules:

- The branch/plus moduleThe switch module
- The Softmax module
- The logsum module

The Branch/Plus Module

The PLUS module: a module with K inputs X_{1}, \ldots, X_{K} (of any type) that computes the sum of its inputs:

$$
X_{\mathrm{out}}=\sum_{k} X_{k}
$$

back-prop: $\frac{\partial E}{\partial X_{k}}=\frac{\partial E}{\partial X_{\text {out }}} \quad \forall k$
\square The BRANCH module: a module with one input and K outputs X_{1}, \ldots, X_{K} (of any type) that simply copies its input on its outputs:

$$
X_{k}=X_{\mathrm{in}} \quad \forall k \in[1 . . K]
$$

back-prop: $\frac{\partial E}{\partial \mathrm{in}}=\sum_{k} \frac{\partial E}{\partial X_{k}}$

The Switch Module

A module with K inputs X_{1}, \ldots, X_{K} (of any type) and one additional discrete-valued input Y.

- The value of the discrete input determines which of the N inputs is copied to the output.

$$
\begin{aligned}
X_{\mathrm{out}} & =\sum_{k} \delta(Y-k) X_{k} \\
\frac{\partial E}{\partial X_{k}} & =\delta(Y-k) \frac{\partial E}{\partial X_{\mathrm{out}}}
\end{aligned}
$$

the gradient with respect to the output is copied to the gradient with respect to the switched-in input. The gradients of all other inputs are zero.

The Logsum Module

fprop:

$$
X_{\mathrm{out}}=-\frac{1}{\beta} \log \sum_{k} \exp \left(-\beta X_{k}\right)
$$

bprop:

$$
\frac{\partial E}{\partial X_{k}}=\frac{\partial E}{\partial X_{\text {out }}} \frac{\exp \left(-\beta X_{k}\right)}{\sum_{j} \exp \left(-\beta X_{j}\right)}
$$

or

$$
\frac{\partial E}{\partial X_{k}}=\frac{\partial E}{\partial X_{\mathrm{out}}} P_{k}
$$

with

$$
P_{k}=\frac{\exp \left(-\beta X_{k}\right)}{\sum_{j} \exp \left(-\beta X_{j}\right)}
$$

Log-Likelihood Loss function and Logsum Modules

MAP/MLE Loss $L_{11}\left(W, Y^{i}, X^{i}\right)=E\left(W, Y^{i}, X^{i}\right)+\frac{1}{\beta} \log \sum_{k} \exp \left(-\beta E\left(W, k, X^{i}\right)\right)$

- A classifier trained with the Log-Likelihood loss can be transformed into an equivalent machine trained with the energy loss.
- The transformed machine contains multiple "replicas" of the classifier, one replica for the desired output, and K replicas for each possible value of Y.

Softmax Module

A single vector as input, and a "normalized" vector as output:

$$
\left(X_{\mathrm{out}}\right)_{i}=\frac{\exp \left(-\beta x_{i}\right)}{\sum_{k} \exp \left(-\beta x_{k}\right)}
$$

Exercise: find the bprop

$$
\frac{\partial\left(X_{\text {out }}\right)_{i}}{\partial x_{j}}=? ? ?
$$

Radial Basis Function Network (RBF Net)

- Linearly combined Gaussian bumps.
■ $F(X, W, U)=$
$\sum_{i} u_{i} \exp \left(-k_{i}\left(X-W_{i}\right)^{2}\right)$
\square The centers of the bumps can be initialized with the K-means algorithm (see below), and subsequently adjusted with gradient descent.
\square This is a good architecture for regression and function approximation.

NN-RBF Hybrids

\square sigmoid units are generally more appropriate for low-level feature extraction.
Euclidean/RBF units are generally more appropriate for final classifications, particularly if there are many classes.

- Hybrid architecture for multiclass classification: sigmoids below, RBFs on top + soft$\max +\log$ loss.

Parameter-Space Transforms

Reparameterizing the function by transforming the space

$$
E(Y, X, W) \rightarrow E(Y, X, G(U))
$$

\square gradient descent in U space:

$$
U \leftarrow U-\eta \frac{\partial G}{\partial U}^{\prime} \frac{\partial E(Y, X, W)}{\partial W}{ }^{\prime}
$$

- equivalent to the following algorithm in W space: $W \leftarrow W-\eta \frac{\partial G}{\partial U} \frac{\partial G^{\prime}}{\partial U} \frac{\partial E(Y, X, W)^{\prime}}{\partial W}$
\square dimensions: $\left[N_{w} \times N_{u}\right]\left[N_{u} \times N_{w}\right]\left[N_{w}\right]$

Parameter-Space Transforms: Weight Sharing

\square A single parameter is replicated multiple times in a machine
$\square E\left(Y, X, w_{1}, \ldots, w_{i}, \ldots, w_{j}, \ldots\right) \rightarrow$ $E\left(Y, X, w_{1}, \ldots, u_{k}, \ldots, u_{k}, \ldots\right)$
\square gradient: $\frac{\partial E()}{\partial u_{k}}=\frac{\partial E()}{\partial w_{i}}+\frac{\partial E()}{\partial w_{j}}$
$\square w_{i}$ and w_{j} are tied, or equivalently, u_{k} is shared between two locations.

Parameter Sharing between Replicas

\square We have seen this before: a parameter controls several replicas of a machine.
$E\left(Y_{1}, Y_{2}, X, W\right)=E_{1}\left(Y_{1}, X, W\right)+E_{1}\left(Y_{2}, X, W\right)$
\square gradient:
$\frac{\partial E\left(Y_{1}, Y_{2}, X, W\right)}{\partial W}=\frac{\partial E_{1}\left(Y_{1}, X, W\right)}{\partial W}+\frac{\partial E_{1}\left(Y_{2}, X, W\right)}{\partial W}$
$\square W$ is shared between two (or more) instances of the machine: just sum up the gradient contributions from each instance.

Path Summation (Path Integral)

One variable influences the output through several others

$E(Y, X, W)=$
$E\left(Y, F_{1}(X, W), F_{2}(X, W), F_{3}(X, W), V\right)$
\square gradient: $\frac{\partial E(Y, X, W)}{\partial X}=\sum_{i} \frac{\partial E_{i}\left(Y, S_{i}, V\right)}{\partial S_{i}} \frac{\partial F_{i}(X, W)}{\partial X}$
\square gradient: $\frac{\partial E(Y, X, W)}{\partial W}=\sum_{i} \frac{\partial E_{i}\left(Y, S_{i}, V\right)}{\partial S_{i}} \frac{\partial F_{i}(X, W)}{\partial W}$
\square there is no need to implement these rules explicitely. They come out naturally of the objectoriented implementation.

