
MACHINE LEARNING AND

PATTERN RECOGNITION

Spring 2004, Lecture 4a

Back-Propagation, Multilayer

and Multi-Module Systems.

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/26

Non-Linear Learning

So far, we have seen how to train linear
machines, and we have hinted at the fact
that we could also train non-linear
machines.

In non-linear machines, the discriminant
function F (X, W) is allowed to be non
linear with respect to W and non linear
with respect to X .

This allows us play with a much larger set
of parameterized families of functions with
a rich repertoire of class boundaries.

well-designed non-linear classifiers can
learn complex boundaries and take care of
complicated intra-class variabilitites.

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/26

Multi-Module Systems: Cascade

Fn(Xn−1, Wn)

Fi(Xi−1, Wi)

F1(X0, W1)

Wn

X0

W1

Wi

X1

Xi

Xi−1

Xn−1

Xn

dE/dWn

dE/dWi

dE/dw1

dE/dXn

dE/dXi

dE/dXn−1

dE/dXi−1

dE/dX1

E

Energy

Y

input X

C(Xn, Y)

desired
output Y

Complex learning machines can be built by
assembling Modules into networks.

a simple example: layered, feed-forward
architecture (cascade).

computing the output from the input:
forward propagation

let X = X0,

Xi = Fi(Xi−1, Wi) ∀i ∈ [1, n]

E(Y, X, W) = C(Xn, Y)

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/26

Object-Oriented Implementation

Fn(Xn−1, Wn)

Fi(Xi−1, Wi)

F1(X0, W1)

Wn

X0

W1

Wi

X1

Xi

Xi−1

Xn−1

Xn

dE/dWn

dE/dWi

dE/dw1

dE/dXn

dE/dXi

dE/dXn−1

dE/dXi−1

dE/dX1

E

Energy

Y

input X

C(Xn, Y)

desired
output Y

Each module is an object (instance of a
class).

Each class has an “fprop” (forward
propagation) method that takes the input
and output states as arguments and
computes the output state from the input
state.

Lush:
(==> module fprop input
output)

C++:
module.fprop(input,output);

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/26

Gradient-Based Learning in Multi-Module Systems

Learning comes down to finding the W that minimizes the average over a
training set {(X1, Y 1), (X2, Y 2), . . . , (XP , Y P)} of a loss function such as:

Lenergy(W, Y i, Xi) = E(W, Y i, Xi)

Lperceptron(W, Y i, Xi) =

[

E(W, Y i, Xi)−min
y

E∗(W, y, Xi)

]

+ λH(W)

Lll(W, Y i, Xi) =

[

E(W, Y i, Xi) +
1

β
log

∫

exp(−βE(W, y, X i))dy

]

+λH(W)

λ is an appropriately picked coefficient that determines the importance of the
regularization term.

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/26

Gradient of the Loss, gradient of the Energy

Batch gradient descent (compute the full gradient before an update):

W ←W −
η

P

[

∂
∑

i L(W, Y i, Xi)

∂W
] + λ

∂H(W)

∂W

]

L(W, Y i, Xi) depends on Xi only through the E(W, Y, X i) for all Y , so we
can apply chain rule (see next page):

W ←W −
η

P

[

∑

i

(

∑

Y

∂L(W, Y i, Xi)

∂E(W, Y, Xi)

∂E(W, Y, Xi)

∂W

)

+ λ
∂H(W)

∂W

]

On-Line gradient descent (compute the gradient for one sample, and update)

W ←W − η

[(

∑

Y

∂L(W, Y i, Xi)

∂E(W, Y, Xi)

∂E(W, Y, Xi)

∂W

)

+ λ
∂H(W)

∂W

]

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/26

Gradient of the Loss, gradient of the Energy

We assumed early on that the loss depends on W only through the terms
E(W, Y, Xi):

L(W, Y i, Xi) = L(Y i, E(W, 0, Xi), E(W, 1, Xi), . . . , E(W, k − 1, X i))

therefore:

∂L(W, Y i, Xi)

∂W
=
∑

Y

∂L(W, Y i, Xi)

∂E(W, Y, Xi)

∂E(W, Y, Xi)

∂W
]

We only need to compute the terms ∂E(W,Y,Xi)
∂W

Question: How do we compute those terms efficiently?

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/26

Computing the Gradients in Multi-Layer Systems

Fn(Xn−1, Wn)

Fi(Xi−1, Wi)

F1(X0, W1)

Wn

X0

W1

Wi

X1

Xi

Xi−1

Xn−1

Xn

dE/dWn

dE/dWi

dE/dw1

dE/dXn

dE/dXi

dE/dXn−1

dE/dXi−1

dE/dX1

E

Energy

Y

input X

C(Xn, Y)

desired
output Y

To train a multi-module system, we must
compute the gradient of E with respect to
all the parameters in the system (all the
Wi).

Let’s consider module i whose fprop
method computes Xi = Fi(Xi−1, Wi).

Let’s assume that we already know ∂E
∂Xi

, in
other words, for each component of vector
Xi we know how much E would wiggle if
we wiggled that component of Xi.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/26

Computing the Gradients in Multi-Layer Systems

Fn(Xn−1, Wn)

Fi(Xi−1, Wi)

F1(X0, W1)

Wn

X0

W1

Wi

X1

Xi

Xi−1

Xn−1

Xn

dE/dWn

dE/dWi

dE/dw1

dE/dXn

dE/dXi

dE/dXn−1

dE/dXi−1

dE/dX1

E

Energy

Y

input X

C(Xn, Y)

desired
output Y

We can apply chain rule to compute ∂E
∂Wi

(how much E would wiggle if we wiggled
each component of Wi):

∂E

∂Wi

=
∂E

∂Xi

∂Fi(Xi−1, Wi)

∂Wi

[1×Nw] = [1×Nx].[Nx ×Nw]

∂Fi(Xi−1,Wi)
∂Wi

is the Jacobian matrix of Fi

with respect to Wi.

[

∂Fi(Xi−1, Wi)

∂Wi

]

kl

=
∂ [Fi(Xi−1, Wi)]k

∂[Wi]l

Element (k, l) of the Jacobian indicates
how much the k-th output wiggles when we
wiggle the l-th weight.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/26

Computing the Gradients in Multi-Layer Systems

Using the same trick, we can compute ∂E
∂Xi−1

. Let’s assume again that we already

know ∂E
∂Xi

, in other words, for each component of vector Xi we know how much E

would wiggle if we wiggled that component of Xi.

Fn(Xn−1, Wn)

Fi(Xi−1, Wi)

F1(X0, W1)

Wn

X0

W1

Wi

X1

Xi

Xi−1

Xn−1

Xn

dE/dWn

dE/dWi

dE/dw1

dE/dXn

dE/dXi

dE/dXn−1

dE/dXi−1

dE/dX1

E

Energy

Y

input X

C(Xn, Y)

desired
output Y

We can apply chain rule to compute ∂E
∂Xi−1

(how much E

would wiggle if we wiggled each component of Xi−1):

∂E

∂Xi−1
=

∂E

∂Xi

∂Fi(Xi−1, Wi)

∂Xi−1

∂Fi(Xi−1,Wi)
∂Xi−1

is the Jacobian matrix of Fi with respect to

Xi−1.

Fi has two Jacobian matrices, because it has to
arguments.

Element (k, l) of this Jacobian indicates how much the
k-th output wiggles when we wiggle the l-th input.

The equation above is a recurrence equation!
Y. LeCun: Machine Learning and Pattern Recognition – p. 10/26

Jacobians and Dimensions

derivatives with respect to a column vector are line vectors (dimensions:
[1×Ni−1] = [1×Ni] ∗ [Ni ×Ni−1])

∂E

∂Xi−1
=

∂E

∂Xi

∂Fi(Xi−1, Wi)

∂Xi−1

(dimensions: [1×Nwi] = [1×Ni] ∗ [Ni ×Nwi]):

∂E

∂Wi

=
∂E

∂Xi

∂Fi(Xi−1, Wi)

∂W

we may prefer to write those equation with column vectors:

∂E

∂Xi−1

′

=
∂Fi(Xi−1, Wi)

∂Xi−1

′

∂E

∂Xi

′

∂E

∂Wi

′

=
∂Fi(Xi−1, Wi)

∂W

′

∂E

∂Xi

′

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/26

Back-propagation

To compute all the derivatives, we use a backward sweep called the back-propagation
algorithm that uses the recurrence equation for ∂E

∂Xi

Fn(Xn−1, Wn)

Fi(Xi−1, Wi)

F1(X0, W1)

Wn

X0

W1

Wi

X1

Xi

Xi−1

Xn−1

Xn

dE/dWn

dE/dWi

dE/dw1

dE/dXn

dE/dXi

dE/dXn−1

dE/dXi−1

dE/dX1

E

Energy

Y

input X

C(Xn, Y)

desired
output Y

∂E
∂Xn

= ∂C(Xn,Y)
∂Xn

∂E
∂Xn−1

= ∂E
∂Xn

∂Fn(Xn−1,Wn)
∂Xn−1

∂E
∂Wn

= ∂E
∂Xn

∂Fn(Xn−1,Wn)
∂Wn

∂E
∂Xn−2

= ∂E
∂Xn−1

∂Fn−1(Xn−2,Wn−1)
∂Xn−2

∂E
∂Wn−1

= ∂E
∂Xn−1

∂Fn−1(Xn−2,Wn−1)
∂Wn−1

....etc, until we reach the first module.

we now have all the ∂E
∂Wi

for i ∈ [1, n].

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/26

Object-Oriented Implementation

Fn(Xn−1, Wn)

Fi(Xi−1, Wi)

F1(X0, W1)

Wn

X0

W1

Wi

X1

Xi

Xi−1

Xn−1

Xn

dE/dWn

dE/dWi

dE/dw1

dE/dXn

dE/dXi

dE/dXn−1

dE/dXi−1

dE/dX1

E

Energy

Y

input X

C(Xn, Y)

desired
output Y

Each module is an object (instance of a class).

Each class has a “bprop” (backward propagation)
method that takes the input and output states as
arguments and computes the derivative of the
energy with respect to the input from the
derivative with respect to the output:

Lush: (==> module bprop input
output)

C++: module.bprop(input,output);

the objects input and output contain two
slots: one vector for the forward state, and one
vector for the backward derivatives.

the method bprop computes the backward deriva-
tive slot of input , by multiplying the backward
derivative slot of output by the Jacobian of the
module at the forward state of input .

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/26

Architecture: Multi-layer Neural Network

Multi-layer neural nets can be seen as networks of logistic regressors.

Each layer is composed of a number of
units (sometimes abusively called
“neurons”).

Each unit performs a linear combination of
its inputs, and pass the result through a
sigmoid function. The result is passed on
to other units.

In a fully connected feed-forward net, the
units are organized in layers.

Each unit in one layer gets inputs from
every unit in the previous layer.

All the layers but the last are called “hid-
den” layers, because their state is not di-
rectly constrained from the outside (nor
provided to the outside).

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/26

Modules in a Multi-layer Neural Net

A fully-connected, feed-forward, multi-layer neural nets can be implemented by
stacking three types of modules.

Linear modules: Xin and Xout are vectors,
and W is a weight matrix.

Xout = WXin

Sigmoid modules:
(Xout)i = σ((Xin)i + Bi) where B is a
vector of trainable “biases”, and σ is a
sigmoid function such as tanh or the
logistic function.

a Euclidean Distance module E = 1
2 ||Y −

Xin||
2. With this energy function, we will

use the neural network as a regressor rather
than a classifier.

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/26

Loss Function

Here, we will us the simple Energy Loss function
Lenergy:

Lenergy(W, Y i, Xi) = E(W, Y i, Xi)

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/26

OO Implementation: the state1 Class

the internal state of the network will be kept in a
“state” class that contains two scalars, vectors, or
matrices: (1) the state proper, (2) the derivative of
the energy with respect to that state.

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/26

OO Implementation: the state1 Class

#? * state

;; a <state> is a class that carries variables between

;; trainable modules. States can be scalars, vectors,

;; matrices, tensors of any dimension, or any other

;; type of objects. A state contains a slot <x> to contain

;; the actual state, and a slot <dx> to contain the

;; partial derivatives of the loss function with respect

;; to the state variables.

(defclass state object x dx)

#? (new state [<n1> [<n2 [<n3> ...]]])

;; create a new state. The arguments

;; are the dimensions (up to 8 dimensions).

(defmethod state state l

(setq x (apply matrix l))

(setq dx (apply matrix l)))

#? (==> <state> resize [<n1> [<n2 [<n3> ...]]])

;; resize an existing state the the dimensions

;; passed as arguments.

(defmethod state resize l

(idx-redim x l)

(idx-redim dx l))

Y. LeCun: Machine Learning and Pattern Recognition – p. 18/26

Linear Module

The input vector is multiplied by the weight matrix.

fprop: Xout = WXin

bprop to input:
∂E

∂Xin

= ∂E
∂Xout

∂Xout

∂Xin

= ∂E
∂Xout

W

by transposing, we get column vectors:
∂E

∂Xin

′

= W ′ ∂E
∂Xout

′

bprop to weights:
∂E

∂Wij
= ∂E

∂Xouti

∂Xouti

∂Wij
= Xinj

∂E
∂Xouti

We can write this as an outer-product:
∂E
∂W

′

= ∂E
∂Xout

′

X ′

in

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/26

Linear Module

Lush implementation:
(defclass linear-module object w)

(defmethod linear-module linear-module (ninputs noutputs)

(setq w (matrix noutputs ninputs)))

(defmethod linear-module fprop (input output)

(==> output resize (idx-dim :w:x 0))

(idx-m2dotm1 :w:x :input:x :output:x) ())

(defmethod linear-module bprop (input output)

(idx-m2dotm1 (transpose :w:x) :output:dx :input:dx)

(idx-m1extm1 :output:dx :input:x :w:dx) ())

Y. LeCun: Machine Learning and Pattern Recognition – p. 20/26

Sigmoid Module (tanh: hyperbolic tangent)

fprop: (Xout)i = tanh((Xin)i + Bi)

bprop to input:
(∂E

∂Xin

)i = (∂E
∂Xout

)i tanh′((Xin)i + Bi)

bprop to bias:
∂E
∂Bi

= (∂E
∂Xout

)i tanh′((Xin)i + Bi)

tanh(x) = 2
1+exp−x

− 1 = 1−exp(−x)
1+exp(−x)

(defclass tanh-module object bias)

(defmethod tanh-module tanh-module l

(setq bias (apply matrix l)))

(defmethod tanh-module fprop (input output)

(==> output resize (idx-dim :bias:x 0))

(idx-add :input:x :bias:x :output:x)

(idx-tanh :output:x :output:x))

(defmethod tanh-module bprop (input output)

(idx-dtanh (idx-add :input:x :bias:x) :input:dx)

(idx-mul :input:dx :output:dx :input:dx)

(idx-copy :input:dx :bias:dx) ())

Y. LeCun: Machine Learning and Pattern Recognition – p. 21/26

Euclidean Module

fprop: Xout = 1
2 ||Xin − Y ||2

bprop to X input: ∂E
∂Xin

= Xin − Y

bprop to Y input: ∂E
∂Y

= Y −Xin

(defclass euclidean-module object)

(defmethod euclidean-module run (input1 input2 output)

(idx-copy :input1:x :input2:x)

(:output:x 0) ())

(defmethod euclidean-module fprop (input1 input2 output)

(idx-sqrdist :input1:x :input2:x :output:x)

(:output:x (* 0.5 (:output:x))) ())

(defmethod euclidean-module bprop (input1 input2 output)

(idx-sub :input1:x :input2:x :input1:dx)

(idx-dotm0 :input1:dx :output:dx :input1:dx)

(idx-minus :input1:dx :input2:dx))
Y. LeCun: Machine Learning and Pattern Recognition – p. 22/26

Assembling the Network: A single layer

;; One layer of a neural net

(defclass nn-layer object

linear ; linear module

sum ; weighted sums

sigmoid ; tanh-module

)

(defmethod nn-layer nn-layer (ninputs noutputs)

(setq linear (new linear-module ninputs noutputs))

(setq sum (new state noutputs))

(setq sigmoid (new tanh-module noutputs)) ())

(defmethod nn-layer fprop (input output)

(==> linear fprop input sum)

(==> sigmoid fprop sum output) ())

(defmethod nn-layer bprop (input output)

(==> sigmoid bprop sum output)

(==> linear bprop input sum) ())

Y. LeCun: Machine Learning and Pattern Recognition – p. 23/26

Assembling a 2-layer Net

Class implementation for a 2 layer, feed
forward neural net.

(defclass nn-2layer object

layer1 ; first layer module

hidden ; hidden state

layer2 ; second layer

)

(defmethod nn-2layer nn-2layer (ninputs nhidden noutputs)

(setq layer1 (new nn-layer ninputs nhidden))

(setq hidden (new state nhidden))

(setq layer2 (new nn-layer nhidden noutputs)) ())

Y. LeCun: Machine Learning and Pattern Recognition – p. 24/26

Assembling the Network: fprop and bprop

Implementation of a 2 layer, feed forward neural net.
(defmethod nn-2layer fprop (input output)

(==> layer1 fprop input hidden)

(==> layer2 fprop hidden output) ())

(defmethod nn-2layer bprop (input output)

(==> layer2 bprop hidden output)

(==> layer1 bprop input hidden) ())

Y. LeCun: Machine Learning and Pattern Recognition – p. 25/26

Assembling the Network: training

A training cycle:

pick a sample (X i, Y i) from the training
set.

call fprop with (X i, Y i) and record the
error

call bprop with (X i, Y i)

update all the weights using the gradients
obtained above.

with the implementation above, we would
have to go through each and every module
to update all the weights. In the future, we
will see how to “pool” all the weights and
other free parameters in a single vector so
they can all be updated at once.

Y. LeCun: Machine Learning and Pattern Recognition – p. 26/26

	Non-Linear Learning
	Multi-Module Systems: Cascade
	Object-Oriented Implementation
	Gradient-Based Learning in Multi-Module Systems
	Gradient of the Loss, gradient of the Energy
	Gradient of the Loss, gradient of the Energy
	Computing the Gradients in Multi-Layer Systems
	Computing the Gradients in Multi-Layer Systems
	Computing the Gradients in Multi-Layer Systems
	Jacobians and Dimensions
	Back-propagation
	Object-Oriented Implementation
	Architecture: Multi-layer Neural Network
	Modules in a Multi-layer Neural Net
	Loss Function
	OO Implementation: the {	t state1} Class
	OO Implementation: the {	t state1} Class
	Linear Module
	Linear Module
	Sigmoid Module (tanh: hyperbolic tangent)
	Euclidean Module
	Assembling the Network: A single layer
	Assembling a 2-layer Net
	Assembling the Network: fprop and bprop
	Assembling the Network: training

