
MACHINE LEARNING AND

PATTERN RECOGNITION

Spring 2005, Lecture 03b, part II: Learning and

Generalization, Regularization

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/17

Generalization

The purpose of learning is produce a good
prediction for unseen inputs. Interpolation
is a form of generalization.
With too many parameters, a learning ma-
chine will learn the entire training set, but
may perform poorly on new data.

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/17

Training Error, Test Error

What we are really interested in is good
performance on unseen data. In practice,
we often partition the dataset into two sub-
sets: a training set and a test set. We train
the machine on the training set, and mea-
sure its performance on the test set.

The error on the training set (the average of the loss function) is often called the
emprical risk. The average loss on an infinite test set drawn from the same source as
the training set is often called the expected risk.
The number of training samples for which the training error and test error start
converging toward each other is called the “capacity” of the learning machine (there
are formal definitions for this that we will study later on).

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/17

Learning Curves

Small/Simple models: may not do well on the training data, but the difference
between training and test error quickly drops.
Big/Rich models: will learn the training data, but the difference between training and
test error can be large.
How much a model deviates from the desired mapping on average is called the model
bias of the family of functions. How much the output of a model varies when different
drawings of the training set are used is called the model variance. There is a dilemma
between bias and variance. Y. LeCun: Machine Learning and Pattern Recognition – p. 4/17

Model Selection

degree 1

degree 2

degree 3

In many situations we can construct a
sequence of models of increasing capac-
ity. The capacity of a model is related to
the size of the family of functions repre-
sentable by the model.

Examples:

polynomials of degree 1, 2, 3,....

neural nets with 10, 20, 30.... units in the first layer.

linear regressors where ||W ||2 is less than 1, 2, 3, 4....

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/17

Occam’s Razor

Occam’s Razor: do not multiply hypotheses beyond the strict necessary.

Occam’s Razor: when given the choice between several models that explain the
data equally well, choose the “simplest” one.

Occam’s Razor applied to machine learning: choose a trade off between how
well the model fits the training data and how “simple” that model is.

Occam’s Razor In other contexts: Never ascribe to malice, that which can be
explained by incompetence (Napoleon Bonaparte)

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/17

Optimal Over-Parameterization

The curve of training error and test error for a given training set size, as a function of
the capacity of the machine (the richness of the class of function) has a minimum. The
is the optimal size for the machine.

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/17

Regularization: Trading-off Accuracy for Simplicity

We need a new loss function that penalizes solutions taken from “rich” families
of function.

Let’s assume that the “complexity” of the family of functions from which a
solution W is drawn can be computed by a function H(W).

We can minimize a loss function of the form:

L(W) =
1

P

[

P
∑

i=1

L(W, yi, Xi) + λH(W)

]

where L is the conventional loss function (e.g. squared error, etc) and λ is a well
chosen positive constant.

The minimum of this loss function will be a trade-off between minimizing the

training error
∑

P

i=1 L(W, yi, Xi) and the “simplicity” of the family of function
from which W is drawn.

the coefficient λ controls the trade-off.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/17

Regularization

L(W) =
1

P

[

P
∑

i=1

L(W, yi, Xi) + λH(W)

]

H(W) is called a regularization term. It penalizes solutions taken from “rich”
families of function more than those taken from “leaner” families of functions.

How we pick this regularization term is entirely up to us!. Despite many claims
to the contrary, no theory tells us how to build the regularization function.

By picking the family of function and the penalty term, we choose an inductive
bias, i.e. we bias the system toward chosing simple solutions over complex
ones.

Sometimes we do not need to add an explicit regularization term because it is
built implicitely into the optimization algorithm (more on this later).

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/17

Induction Principles

Assuming our samples are drawn from a distribution P (X, Y), what we really want to
minimize with respect to our parameter W is the expected risk (or expected loss):

Lexpected(W) =

∫

L(W, Y, X)P (X, Y)dXdY.

but we do not have access to P (X, Y), we only have access to a few training samples
drawn from it.
The method we will employ to replace the expected risk by another quantity that we
can minimize is called the induction principle.
The simplest induction principle is called Empirical Risk Minimization and simply
consists in minimizing the loss on the training set (training error).
The alternative, which generally consists in using a regularization term to penalize
members of “rich” families of functions, is called Structural Risk Minimization
(SRM).

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/17

Examples of Regularization Terms:

Ridge Regression

Ridge Regression: penalizes large values of the parameters.

L(W) =
1

2P

P
∑

i=1

(yi −W ′Xi)2 + λ|W |2

Direct solution:

W∗ = [
1

P

P
∑

i=1

XiXi′ + λI]−1

P
∑

i=1

yiXi

Gradient descent update (weight decay):

W ← (1− ηλ)W + η(yi −W ′Xi)Xi

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/17

Examples of Regularization Terms: Lasso

Lasso: penalizes all parameter values with a linear term (this tends to shrink small,
useless parameters to 0):

L(W) =
1

2P

P
∑

i=1

(yi −W ′Xi)2 + λ|W |

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/17

Other Penalty Terms

What about a regularization term that simply counts the number of free parameters in
the machine?
It works in some cases, but not in others. For example, the function a. sin(wx + b) has
only three parameters but can exactly fit as many points as we want. This is an
example of a very high-capacity function with just a few parameters:

The problem is that we need a very high accuracy on the parameters to go through all
the points (lots of bits).

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/17

Minimum Description Length

A popular way of deriving regularization terms is the Minimum Description Length
Principle.

L(W) =
1

P

[

P
∑

i=1

L(W, yi, Xi) + H(W)

]

The idea is to interpret the loss function as an expression for the number of bits
necessary to transmit the training data.
The regularization term counts the number of bits to code the hypothesis (e.g. the
value of the parameter vector), and the error term counts the number of bits to code the
residual error (i.e. the difference between the predicted output and the real output.
Using efficient coding, the length of the code for a symbol is equal to the log of the
probability of that symbol.

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/17

MDL: Learning as Compression

MDL comes from the idea that “compact” internal representations of a set of data are
preferable to non compact ones This is another form of Occam’s Razor: do not
multiply hypotheses beyond the strict necessary.
Example:
complete this sequence: 01010101010101010.......
now complete that one : 01100010110010001......
The second sequence looks “random”, we cannot find a compact “theory” for it.
QUESTION: How do we measure randomness?
Sometimes, a simple underlying rule exists, but it is very hard to find.
Example: 9265358979323846264338328.....
Can you guess?

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/17

Measuring Randomness?

The Kolmogoroff/Chaitin/Solomonoff theory of complexity gives us a theoretical
framework:
The KCS complexity of a string of bits S relative to computer C is the length of the
shortest program that will output S when run on C.
Good news: the complexity given by two different universal computers differ at most
by a constant (the size of the program that will make one computer emulate the other).
Bad News 1: that constant can be very, very, very large. So in practice, there is no
absolute measure randomness for finite strings.
Bad New 2: the KCS complexity of a string is non-computable in general (you can’t
enumerate all the programs, because some won’t halt).
Although this is a very rich and cool theoretical concept, we can’t really use it in
practice.

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/17

Learning Theory

A better theoretical framework for studying generalization, regularization and
structural risk minimization is the so-called Statistical Learning Theory.
We will study that approach later in the course.

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/17

	Generalization
	Training Error, Test Error
	Learning Curves
	Model Selection
	Occam's Razor
	Optimal Over-Parameterization
	Regularization: Trading-off Accuracy for Simplicity
	Regularization
	Induction Principles
	Examples of Regularization Terms:\ Ridge Regression
	Examples of Regularization Terms: Lasso
	Other Penalty Terms
	Minimum Description Length
	MDL: Learning as Compression
	Measuring Randomness?
	Learning Theory

