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Linear Machines: Regression with Mean Square

Linear Regression, Mean Square Loss:

decision rule: y = W ′X

loss function: L(W, yi, Xi) = 1
2 (yi −W ′Xi)2

gradient of loss: ∂L(W,yi,Xi)
∂W

′
= −(yi −W (t)′Xi)Xi

update rule: W (t + 1) = W (t) + η(t)(yi −W (t)′Xi)Xi
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Linear Machines: Perceptron

Perceptron:

decision rule: y = F (W ′X) (F is the threshold function)

loss function: L(W, yi, Xi) = −(yi − F (W ′Xi))W ′X

gradient of loss: ∂L(W,yi,Xi)
∂W

′
= −(yi − F (W (t)′Xi))Xi

update rule: W (t + 1) = W (t) + η(t)(yi − F (W (t)′Xi))Xi
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Linear Machines: Logistic Regression

Logistic Regression, Negative Log-Likelihood Loss function:

decision rule: y = F (W ′X), with F (a) = tanh(a) (sigmoid function).

loss function: L(W, yi, Xi) = log(1 + exp(−yiW ′Xi))

gradient of loss: ∂L(W,yi,Xi)
∂W

′
= −

(

Y i − F (W ′X))
)

Xi

update rule: W (t + 1) = W (t) + η(t)(yi − F (W (t)′Xi))Xi
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Energy-Based Models

An energy-based model is a scalar-valued
energy function: E(W, Y, X).

X is the input, and Y the variable to be
predicted (output).

W is the parameter vector to be learned.

X and Y can be discrete variables, scalars,
vectors, tensors, sequences, probability dis-
tributions, or any other entity.

Minimum Energy Machine: Operating the machine (performing an inference),
consists in taking an input X , and looking for the value of Y within a permissible set
{Y }, that minimizes E(W, Y, X):

Y̌ = argminY ∈{Y }E(W, Y, X)
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Examples of EBM: Classifier

Y is a discrete variable, {Y } = {1, 2, 3}.

Energy: E(W, Y, X) =
∑

k Gk(W, X)δ(k, Y ),
where δ(k, Y ) = 1 iff k = Y and 0 otherwise.

Gk(W, X), the k-th component of the output
vector of G(W, X) is interpreted as the “cost” of
classifying X into category k.

Best output: Y̌ = minY ∈{Y } E(W, Y, X) =

mink Gk(W, X).
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Examples of EBM Classifier: Perceptron

Y is a discrete variable, {Y } = {−1, +1}.

Energy: E(W, Y, X) = −Y.W ′X .

Best output: Y̌ = sign(W ′X), where
sign(R) = +1 iff R > 0 and −1 otherwise.
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Examples of EBM: Regressor

X and Y are vectors or other entities

Energy: E(W, Y, X) = D(Y, G(W, X))
where D(Y, R) is a distance or dissimilarity
measure.

Best output: Y̌ = minY E(W, Y, X) =
G(W, X).
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Examples of EBM Regressor: Linear Regression

X and Y are vectors

Energy: E(W, Y, X) = ||Y −W ′X)||2.

Best output: Y̌ = minY E(W, Y, X) = W ′X .
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Examples of EBM: Matcher

X and Y are vectors of the same dimension.

Energy:
E(W, Y, X) = D(G(W, Y ), G(W, X)) where
D(., .) is a distance or dissimilarity measure.

Best output: Y̌ = minY E(W, Y, X) = G( −
1)(G(W, X)).
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Training Energy-Based Models

To train an EBM, we minimize a loss function,
which is an average over training samples of a
per-sample loss function L(W, Y i, Xi):

L(W,S) =
1

P

P
∑

i=1

L(W, Y i, Xi)

The loss function must be designed so that min-
imizing it with respect to W will make the ma-
chine approach the desired behavior.

To ensure this, we pick loss functions that, for a given training input X i, will drive the
energies E(W, Y i, Xi) associated with the desired output Y i to be lower than the
energies associated with all other (undesired) outputs values E(W, Y, X i) for all
Y 6= Y i, Y ∈ {Y }.
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Form of the Loss Function

We assume that the per-sample loss function L(W, Y i, Xi) has a lower bound
over W for all Y i, Xi.

We assume that L depends on X i only indirectly through the set of energies
{E(W, Y, Xi) , Y ∈ {Y }} .

For example, if {Y }is the set of integers between 0 and k − 1 (as would be the
case for a classifier with k categories), the per-sample loss for sample (X i, Y i)
should be of the form:

L(W, Y i, Xi) = L(Y i, E(W, 0, Xi), E(W, 1, Xi), . . . , E(W, k − 1, X i))

With this assumption, we separate the choice of the loss function from the
details of the internal structure of the machine, and limit the discussion to how
minimizing the loss function affects the energies.
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Examples of Loss: Energy Loss

Energy Loss, the simplest of all losses: Lenergy(W, Y i, Xi) = E(W, Y i, Xi). This
loss only works if E(W, Y ,Xi) has a special form which guarantess that making
E(W, Y i, Xi) lower will automatically make E(W, Y, X i) for Y 6= Y i larger than the
minimum.

Example: if E(W, Y, X) is quadratic in Y , as is the case
for regression with squared error: E(W, Y, X) = ||Y −

G(W, X)||2,
Let W (1) is the parameter before a learning update, and
W (2) the parameter after the learning update, and let
Y̌ = minY E(W (1), Y, X). Then,

E(W (2), Y i, Xi)− E(W (2), Y̌ , Xi) < E(W (1), Y i, Xi)− E(W (1), Y̌ , Xi)
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Examples of Loss: Perceptron Loss

Perceptron Loss:

Lperceptron(W, Y i, Xi) = E(W, Y i, Xi)− min
Y ∈{Y }

E(W, Y, Xi)

Adjust W so that E(W, Y i, Xi) gets smaller, while
Y̌ = minY ∈{Y } E(W, Y, Xi) gets bigger (or more
precisely, so that the difference decreases).
This algorithm makes no update whenever the energy
of the desired Y is lower than all the others.

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/24



Examples of Loss: Margin Loss

Margin Loss: for discrete output set {Y }:

Lmargin(W, Y i, Xi) = Qm

(

E(W, Y i, Xi)− min
Y ∈{Y },Y 6=Y i

E(W, Y, Xi)

)

where Qm(e) is any function that is monotonically increasing for e > −m, where m is
a constant called the margin.

Adjust W so that E(W, Y i, Xi) gets smaller,
while all E(W, Y, X i) for which E(W, Y, X i) −

E(W, Y i, Xi) < m get bigger. This guarantees that
the energy of the desired Y will be smaller than all
other energies by at least m.
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Examples of Loss: Log-Likelihood Loss

Log-Likelihood Loss:

Lll(W, Y i, Xi) = E(W, Y i, Xi) +
1

β
log





∑

Y ∈{Y }

exp(−βE(W, Y, X i))





where β is a positive constant.

- The function Fβ({Y }) = 1
β

log
(

∑

Y ∈{Y } exp(−βE(W, Y, X i))
)

is called the free

energy of the ensemble {Y } for temperature 1/β.
- We define Zβ({Y }) =

∑

Y ∈{Y } exp(−βE(W, Y, X i)) as the partition function of

ensemble {Y }.
- Interesting property # 1: Fβ({Y }) = 1

β
logZβ({Y })

- Interesting property # 2: limβ→∞ Fβ({Y }) = minY ∈{Y } E(W, Y, Xi)

For very large β, the log-likelihood loss reduces to the Perceptron loss.
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Energy-Based Supervised Learning

A supervised system parameterizes E(W, Y, X)
as follows:

E(W, Y, X) = D(Y, F (W, X))

where F (W, X) is a suitably chosen discriminant
function parameterized by W , and D is an
appropriately chosen dissimilarity measure.

A popular example would be

E(Y, X, W ) = ||Y − F (X, W )||2
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Linear Machines

The learning algorithms we have seen so far
(perceptron, linear regression) are of that form,
with the assumption that G(W, X) only depends
on the dot product of W and X .

In other words, The E function of 2-class linear
classifiers can be written as:

E(Y, X, W ) = D(Y, f(W ′X))

where W ′X is the dot product of vectors W and
X , and f is a monotonically increasing scalar
function.

in the following, we assume Y = −1 for class 1,
and Y = +1 for class 2.
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Linear Regression

Linear regression uses the Energy loss, or (equivalently) the Log-Likelihood loss.

R = W ′X

E(W, Y, X) = D(Y, R) = 1
2 ||Y −R||2

L(W, Y i, Xi) = D(Y i, W ′Xi)

∂L
∂W

= ∂D(Y i,R)
∂R

∂R
∂W

∂L
∂W

= ∂D(Y i,R)
∂R

∂(W ′Xi)
∂W

= (R− Y i)Xi

descent: W ←W + η(Y i −R)Xi
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Perceptron

Lperceptron(W, Y i, Xi) = E(W, Y i, Xi)− min
Y ∈{Y }

E(W, Y, Xi)

{Y } = {−1, +1}.

R = W ′X

E(Y, X, W ) = D(Y, R) = −Y R

Y ∈ {−1, +1}, hence minY −Y R = −sign(R)R
where sign(R) = 1 iff R > 0, and −1 otherwise.

L(W, Y i, Xi) = −(Y i − sign(R))R

∂L
∂W

= ∂−(Y i−sign(R))R
∂R

∂R
∂W

∂L
∂W

= −(Y i − sign(W ′Xi))Xi

descent: W ←W + η(Y i − sign(W ′Xi))Xi
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Logistic Regression

Lll(W ) = E(Y i, Xi, W ) + log
(

∑

Y ∈{Y } exp(−E(W, Y, X i))
)

R = 1
2W ′X

E(Y, X, W ) = D(Y, R) = − 1
2Y R = − 1

2Y W ′X

L(W ) = log(1 + exp(−Y iW ′Xi))

∂L
∂W

= ∂D(Y i,R)
∂R

∂S
∂W

∂L
∂W

= −
(

Y i+1
2 − 1

1+exp(−W ′Xi)

)

Xi

descent: W ←W +η
(

Y i+1
2 − 1

1+exp(−W ′Xi)

)

Xi
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Limitations of Linear Machines

The Linearly separable dichotomies are the partitions
that are realizable by a linear classifier (the boundary be-
tween the classes is a hyperplane).
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Number of Linearly Separable Dichotomies

The probability that P samples of dimension N are linearly separable goes to zero
very quickly as P grows larger than N (Cover’s theorem, 1966).

Problem: there are 2P possible
dichotomies of P points.

Only about N are linearly separable.

If P is larger than N , the probability that
a random dichotomy is linearly separable is
very, very small.
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Example of Non-Linearly Separable Dichotomies

Some seemingly simple dichotomies are
not linearly separable

Question: How do we make a given prob-
lem linearly separable?
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